1. Use Itô’s formula to show that
\[\int_0^t W(s) \, dW(s) = \frac{1}{2} W^2(t) - \frac{1}{2} t \]

2. Let \(X(t) = e^{\sigma W(t)} \). Use Itô’s formula to write down a stochastic differential for \(X \). Then, by taking the expectation, find a first order linear ODE for \(m(t) = \mathbb{E}[X(t)] \) and solve it to show that
\[\mathbb{E}[e^{\sigma W(t)}] = e^{\frac{\sigma^2}{2} t} \]

3. Two standard Brownian motions \(dW^{(1)}(t) \) and \(dW^{(2)}(t) \) are correlated with correlation \(\rho \) if
\[\mathbb{E}[dW^{(1)} \cdot dW^{(2)}] = \rho \, dt \]
Suppose that \(Y(t) \) is driven by two correlated Brownian motions:
\[dY(t) = \mu \, dt + \sigma_1 dW^{(1)}(t) + \sigma_1 dW^{(2)}(t). \]
Show that alternatively we can express
\[dY(t) = \mu \, dt + \sigma dW(t) \]
where \(W(t) \) is another standard Brownian motion. Derive the formula for \(\sigma \) in terms of \(\sigma_1, \sigma_2 \) and \(\rho \).