Solutions to Homework Assignment 3

1. We should just recognize that \(W(t + \Delta t) - W(t) \) is a normal random variable with mean 0 and variance \(\Delta t \), and the definition of the kurtosis.

2. (a) It is straightforward to see
\[
\frac{S(t_{j+1})}{S(t_j)} = \exp \left((r - \frac{1}{2}\sigma^2) \Delta t + \sigma \Delta W_j \right),
\]
so
\[
\sum_{j=0}^{n-1} \left(\log \frac{S(t_{j+1})}{S(t_j)} \right)^2 = \sum_{j=0}^{n-1} \left((r - \frac{1}{2}\sigma^2) \Delta t + \sigma \Delta W_j \right)^2
\]
\[
= \sigma^2 \sum_{j=0}^{n-1} (\Delta W_j)^2 + (r - \frac{1}{2}\sigma^2)^2 \sum_{j=0}^{n-1} (\Delta t)^2 + 2\sigma (r - \frac{1}{2}\sigma^2) \sum_{j=0}^{n-1} (\Delta W_j) \cdot \Delta t.
\]

(b) As \(\Delta t \to 0 \),
\[
\sum_{j=0}^{n-1} (\Delta W_j)^2 \to \sum_{j=0}^{n-1} \Delta t = T, \]
\[
\sum_{j=0}^{n-1} (\Delta t)^2 = \Delta t \sum_{j=0}^{n-1} \Delta t = T \Delta t \to 0, \]
\[
\sum_{j=0}^{n-1} \Delta W_j \cdot \Delta t = \frac{T}{n} \sum_{j=0}^{n-1} \Delta W_j \to 0.
\]
The last part is based on the law of large numbers. After adding up these three parts, we have the limit \(\sigma^2 T \).

(c)
\[
\sum_{j=0}^{n-1} Y_j = (r - \frac{1}{2}\sigma^2)T + \sigma W(T) = \log \frac{S(T)}{S(0)},
\]
so the term that should be subtracted from the sum is
\[
\frac{1}{n} \left(\log \frac{S(T)}{S(0)} \right)^2,
\]
which can be easily implemented in any estimate. To answer the question when it is justified to leave out this correction term, we note

\[\frac{1}{n} \left(\sum_{j=0}^{n-1} Y_j \right)^2 = \frac{1}{n} \left(\alpha^2 T^2 + 2\alpha\sigma T^{3/2} Z + \sigma^2 T Z^2 \right) \]

where \(Z \) is a standard normal random variable and \(\alpha = r - \sigma^2/2 \). The mean of the sum is

\[\frac{1}{n} \left(\alpha^2 T^2 + \sigma^2 T \right) , \]

and the variance of the sum is

\[\frac{1}{n^2} \left(4\alpha^2 \sigma^2 T^3 + 2\sigma^4 T^2 \right) . \]

We claim that as \(n \) becomes very large, both the mean and the variance of this correction term approach zero, therefore it is justified to drop that correction term when \(n \) is very large, or \(\Delta t \) approaches zero.

(d) If \(r \) and \(\sigma \) are both time dependent, we need to adjust the model to

\[S(t) = S(0) \exp \left(\int_0^t \left(r(u) - \frac{1}{2} \sigma^2(u) \right) du + \int_0^t \sigma(u) dW(u) \right) . \]

The sum in question becomes

\[\sum_{j=0}^{n-1} \left(\log \frac{S(t_{j+1})}{S(t_j)} \right)^2 \]

\[= \sum_{j=0}^{n-1} \left((r_j - \frac{1}{2} \sigma_j^2) \Delta t + \sigma_j \Delta W_j \right)^2 \]

\[= \sum_{j=0}^{n-1} \sigma_j^2 (\Delta W_j)^2 + \sum_{j=0}^{n-1} (r_j - \frac{1}{2} \sigma_j^2)^2 (\Delta t)^2 + 2 \sum_{j=0}^{n-1} \sigma_j (r_j - \frac{1}{2} \sigma_j^2) (\Delta W_j) \cdot \Delta t \]

The first term will go to

\[\int_0^T \sigma^2(t) dt \]

and the other two will also approach zero, as long as \(r(t) \) and \(\sigma(t) \) satisfy some boundedness conditions.

3. Let \(f(t, x) = \log x \),

\[d \log S = \frac{1}{S} dS + \frac{1}{2} \left(\frac{1}{S^2} \right) (dS)^2 \]

\[= \alpha dt + \sigma dW - \frac{1}{2} \sigma^2 dt \]

\[= \left(\alpha - \frac{1}{2} \sigma^2 \right) dt + \sigma dW \]

2