Solutions to Sample Questions

1.

\[\sigma = \sqrt{\frac{(u - 1 - r\Delta t)(1 + r\Delta t - d)}{\Delta t}} \]

Here \(r \) is the annualized risk-free interest rate and \(\Delta t \) is measured in years. Since this is only for one period, using a generic \(r \) to denote the interest rate over the period is OK, which will leave just \(r \), instead of \(r\Delta t \) in the numerator.

2. If we use the approximation \(e^x \approx 1 + x \) for small \(x \), we get \(u = 1.1 \) and \(d = 0.9 \) (note that \(u-d \) is no longer 1 here). So the risk-neutral probabilities \(\hat{p} = \hat{q} = 1/2 \). The stock price at the end of period two can take \(S(HH) = 60.5 \), \(S(HT) = 49.5 \), and \(S(TT) = 40.5 \). The payoff of the call is

\[V(HH) = 8.5, \; V(HT) = V(TH) = 0. \]

Following the backward iteration steps, we have \(V_0 = 2.125 \). If you use the original formula \(u = e^{0.1} \approx 1.1052 \), the arithmetic would be a little more work but you should end up with just a slightly different answer.

3. In this case \(u = 1.2 \), \(d = 0.8 \), and \(\hat{p}, \hat{q} \) stay at \(1/2 \), so \(S(HH) = 72 \), \(S(HT) = S(TH) = 48 \), and \(S(TT) = 32 \). The payoff of the put is

\[V(HH) = 0, \; V(HT) = V(TH) = 4, \; V(TT) = 20. \]

The put price at time 0 is \(V_0 = 7 \).

4. Let \(V \) denote the price of the contract of one share. We have

\[V(HH) = 8.5, \; V(HT) = V(TH) = -2.5, \; V(TT) = -11.5. \]

So \(V_0 = -2 \). If you enter this contract, you should get paid in an amount of \(2 \times 100 = $200 \). To justify this answer, we consider the replicating portfolio where we borrow $52 from a bank to buy one share of the stock at the price $50, so we pocket $2 upfront. By the time \(T = 0.5 \), the payoff of this portfolio is \(S_T - K \), which is exactly the same as what you would get from this forward contract. Therefore you should get paid $200 to enter this contract for 100 shares.