- 1. Consider the one-step trinomial tree, where the stock price after one time period will be one of the following: S_0u, S_0 or S_0d . Here S_0 is the stock price at the beginning of the time period, u > 1 and d < 1 are given, and r > 0 is the annualized risk-free interest rate.
 - (a) Derive the conditions for the risk-neutral probability measure, that is the probabilities p_1, p_2 and p_3 of those three outcomes respectively.
 - (b) Suppose in addition to the stock, a call option on the stock is also traded, with a payoff at the end of the time period to be $S_0(u-1)$ if the stock price reaches S_0u , and zero otherwise. Find a risk-neutral probability measure that leads to no-arbitrage in this model.
- 2. Let W_t be a Brownian motion. Determine for each of the following events if it is in the filtration of \mathcal{F}_s where r < s < t. Explain your answers.
 - (a) $W_s > 1$.
 - (b) $W_t > 2W_s$.
 - (c) $W_s > W_{s-2}$.
 - (d) $W_r < 0.$
- 3. For the four-step binomial model with a dividend paid at t = 0.5 in the last assignment, prove the following results:
 - (a) If $\delta \leq r$, the American call has the same value as the corresponding European call, that is, you should never exercise the option earlier than the expiration time.
 - (b) If $\delta > r$ and $S_0 > K$, the American call has a higher value than the corresponding European call.
- 4. Consider a derivative with the payoff function $F(S_T) = \log S_T^2$ and expiration T, and assume the Black-Scholes model for the stock price S_t . Assume that the risk-free interest rate is r and the volatility of the stock is σ . Price this derivative by evaluating the expectation of the discounted payoff under the risk-neutral probability measure.
- 5. Suppose a stock S_t follows a geometric Brownian motion with a time-dependent volatility. It is observed that the current stock price $S_0 = 100$ and r = 1%, and the 3-month and 6-month European call options with strike 100 have implied volatilities 20% and 25% respectively. Find a piecewise constant volatility function that is consistent with the implied volatilities.