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Continuous time models

• We start with the model from Chapter 3

• Sum it over j:

• Can we take the limit as N approaches infinity (delta t tends to zero)?

• What are the benefits?

• last sum converges to a normal random variable, so we call it lognormal!

• what is more important than the distribution of S at a fixed time?

• increments: 
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Stock price as a process

• Prices at different times:

• We must consider them as a collection of random variables

• Obviously the order is important - when you enter at time j and exit at time k, 
you care about                      , another random variable

• A collection of time indexed random variables - a stochastic process

• Not only are we concerned about individual       as a random variable, we also 
need to consider all possible increments  

• As random variables, we ask for their distributions. But the relations between 
different increments can be crucial for dependence consideration

• Natural first step: independent increments. Is it appropriate for stock prices?

S0, S1, S2, . . . , SN

Sj

log Sj � log Sk

log Sj � log Sk
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Increments

• Price change over a time period

• What we get from our discrete model: a sum of independent Bernoulli rv’s - 
binomial rv

• If we further divide the time period into subintervals, we are still dealing with 
binomial rv’s

• As the partition increases, these binomial rv’s converge to normal rv’s (in 
distribution), justified by CLT.

• Statistics: the mean and the variance (of increments) should depend on the 
time elapsed:                     and 

• Independent increments: as long as individual rv’s are independent!

µ(tj � tk) �2(tj � tk)
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Random walk and Markov property

• Use notation 

• A sum of steps, each consisting of two components (drift + Z)

• Called a random walk, X_j is the position of the walk at time j

• Increments                , independent of all the previous X’s before k

• Distribution of X at j, given X at k, is unaffected by the X values before k

• Dependence of the history up to k - only through X at k

• This is called the Markov property!

Xj = log Sj

Xj �Xk
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From random walk to Brownian motion

• Think of the limiting process as 

•                          collection of rv’s indexed by a continuous time variable t

• Properties inherited or extended:

• X at t is a normal random variable;

• increment                is a normal random variable: 

• increments from nonoverlapping periods are independent

• The path, X as a function of t, is continuous, but nowhere differentiable

• Standard notation: 

N !1,�t! 0, N�t = T

Xj = Xtj ! Xt,

Xt �Xs N
�
µ(t� s), �2(t� s)

�

Wt
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Definition of BM

• A process       indexed by t for t>=0 is a Brownian motion if             , and for 
every t and s (s<t), we have                 distributed as a normal random variable 
with mean 0 and variance t-s, and the random variable                is 
independent of the W random variables before s.

• The above says much more. Just compare with                   where 

• Quadratic variations and the relevance:

• why is it that the variance is proportional to the time elapsed?

• why is that BM paths are so ragged?

• how does the stock price variance grow in time?

Wt W0 = 0
Wt �Ws

Wt �Ws

Xt =
p

tY Y = N(0, 1)
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Extending BM

• Add a (time-dependent) drift

• Allow local variance (for each step) to be time-dependent

• Discrete time: 

• Continuous time: 

• Stock return over (t,t+dt): 

• This is the Black-Scholes model for stock price

• Attempt to solve - do we have                           ?

Xj �Xj�1 = µj�t + �j

p
�tZj

dXt = µ(t) dt + �(t) dWt

dSt

St
= µ(t) dt + �(t) dWt

dSt

St
= d log St

Tuesday, October 23, 12



Ito’s lemma

• assume that f(x) is continuously twice differentiable

• usual differential: df = f’(x) dx

• if x=x(t) is also continuously differentiable (in t): df = f’(x) x’(t) dt

• now let x=X_t from a stochastic process as described in the previous slide

• notice W_t is nowhere differentiable

• guess:                                                                            ?

• not quite! as we see 

• expect 

df(Xt) = f 0(Xt) dXt = f 0(Xt) (µdt + � dWt)

W 2
t+h �W 2

t = (Wt+h �Wt)(Wt+h + Wt)

= 2Wt(Wt+h �Wt) + (Wt+h �Wt)2

dW 2
t = 2Wt dWt + dt
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From Taylor expansion

• Assuming f(x) twice differentiable

• Ito process:                                                       with approximations:                           

• Leading term (in h) after replacing Z^2 with 1: 

• Justifications: the difference has mean and variance:

f(Xt+h) = f(Xt) + f 0(Xt)(Xt+h �Xt) +
1
2
f 00(Xt)(Xt+h �Xt)2 + · · ·

Xt+h �Xt = µh + �
p

hZ + e

(Xt+h �Xt)2 = µ2h2 + �2hZ2 + 2µ�h3/2Z + · · ·

�2h

�2hE[Z2 � 1] = 0, �4h2V ar(Z2 � 1) = 3�4h2

dXt = µ(Xt, t) dt + �(Xt, t) dWt
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Ito’s lemma

• Letting 

• Assuming differentiability again

• If we allow f to be time dependent

• Theorem 5.1 (page 110) notations

h! dt

d(f(Xt)) =
✓

f 0(Xt)µ +
1
2
f 00(Xt)�2

◆
dt + �f 0(Xt) dWt

d(f(X
t

, t)) =
✓

f
t

(X
t

, t) + f
x

(X
t

, t)µ +
1
2
f

xx

(X
t

, t)�2

◆
dt + �f

x

(X
t

, t) dW
t

dt2 = 0
dt dWt = 0

(dWt)2 = dt
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Applications

• Product rule: let X_t and Y_t be Ito processes

• If 

• then 

• What about 

d(XtYt) = Xt dYt + Yt dXt + dXt dYt

dXt = µ1 dt + �1 dWt

dYt = µ2 dt + �2 dWt

dXt dYt = �1�2(dWt)2 = �1�2dt

d

✓
Xt

Yt

◆

Tuesday, October 23, 12



Applications in stock price modeling

• Solving SDE

• Try 

• Integrate in t, assuming constant mu and sigma

dSt

St
= µ dt + � dWt

f(St) = log St

df(St) =
1
St

dSt +
1
2

✓
� 1

S2
t

◆
�2S2

t dt

=
✓

µ� 1
2
�2

◆
dt + � dWt

log ST � log S0 =

✓
µ� 1

2

�2

◆
T + �WT

ST = S0 exp

✓
µ� 1

2

�2

◆
T + �WT

�
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CEV model

• Assuming volatility is S-dependent

•                     implies that the volatility is inverse proportional to S    

•                   , Ito’s lemma gives   

• No luck in explicit solution unless beta=1          

dSt

St
= µdt + S��1

t � dWt

0 < � < 1

d(f(St)) =
✓

S1��µ� �

2
S��1�2

◆
dt + � dWt

f(S) =
S1��

1� �
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Deriving Black-Scholes Equation

• Consider the pricing of a call option C, with strike K, expiration T

• Assume S follows a geometric BM

• Risk free interest rate r

• At time t<T, the price of call is a function of stock price at the time (S)

• Recognizing C=C(S,t)

dC(St, t) =
@C

@t
dt +

@C

@S
dSt +

1
2

@2C

@S2
(dSt)2

=
✓

Ct + µSCS +
1
2
�2S2CSS

◆
dt + �SCS dWt
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Deriving Black-Scholes Equation (continued)

• Forming a portfolio: one share of call + alpha shares of the stock

• Change of the portfolio over (t,t+dt), assuming constant alpha:

• If we choose                   (delta hedging), the random component disappears, 
which implies that the portfolio is hedged - no effect of stock price fluctuation

• Portfolio is iick-free, we must have 

• This leads to the Black-Scholes PDE with terminal condition

• Compare with the standard heat equation, suggest backward in time

d(C + ↵S) =
✓

Ct + µSCS +
1
2
�2S2CSS + ↵µS

◆
dt + �S (CS + ↵) dWt

↵ = �CS

d(C + ↵S) = r(C + ↵S)dt

Ct + rSCS +
1
2
�2S2CSS = rC C(ST , T ) = max(ST �K, 0)
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Use of the PDE

• The PDE is parabolic, solutions will be smoothed in time (backward)

• Set up a region in (S,t): 0 < t < T, 0<S< S_max

• Terminal condition imposed at t=T

• Solve backward in time to 0: C(S,0)

• Enter the observed current price S(0) in place of S

• Boundary conditions: C(0,t) = 0, C(S_max,t) = (S_max - K) exp(-r(T-t))

• Advantage of the PDE approach:

• easy to extend to time-dependent sigma

• efficient numerical methods available
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Justification of the derivation

• How do we justify this price (solution from a PDE)?

• Imagine you start with C(S,0), when the stock price is S. By following the 
delta hedge strategy, you want to end up with the value max(S_T-K,0), no 
matter what happens to the market

• Replication strategy: invest C(S,0) in stock and the risk-less bond, adjusting 
according to the call delta, verify at T that the total value matches the call 
payoff

• Composition of the portfolio: alpha shares of the stock, beta units of the bond

•                  to be adjusted, according to the strategy

P (t) = ↵(t)S(t) + �(t)B(t)

↵(t), �(t)
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Change of value in the portfolio

• Change of portfolio value in time:

• In differential: 

• In discrete form:

• Total change in two parts:

P (t + �t)� P (t)

dP = ↵(t)dS(t) + �(t)dB(t) + S(t)d↵(t) + B(t)d�(t)

↵(t + �t)S(t + �t)� ↵(t)S(t)
=↵(t + �t)S(t + �t)� ↵(t)S(t + �t) + ↵(t)S(t + �t)� ↵(t)S(t)
= (↵(t + �t)� ↵(t)) S(t + �t) + ↵(t) (S(t + �t)� S(t))

�(t + �t)B(t + �t)� �(t)B(t)
=�(t + �t)B(t + �t)� �(t)B(t + �t) + �(t)B(t + �t)� �(t)B(t)
= (�(t + �t)� �(t)) B(t + �t) + �(t) (B(t + �t)�B(t))

↵(t) (S(t + �t)� S(t)) + �(t) (B(t + �t)�B(t)) �! ↵dS + �dB

(↵(t + �t)� ↵(t)) S(t + �t) + (�(t + �t)� �(t)) B(t + �t)
�! Sd↵ + Bd� + d↵dS + d�dB
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Self-financing strategy

• First part in the last slide: change in stock price, bond price, holding shares 
fixed over time period

• Second part: adjusting the number of shares, all at the end of the time period

• Self-financing strategy: making sure the second part is zero

• This corresponds to rebalancing in such a way that no money is taken out of 
the portfolio, and no money is injected into the portfolio either

• Such is the name of the strategy: self-financing

• Consequence of this trading strategy:

dP = ↵dS + �dB
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Replicating the call

• Begin with a portfolio 

• Following                 , and a beta such that it is a self-financing strategy

• Want to show P(T) = C(S(T),T), no matter what S(T) ends up with

• Consider the differential

• We use                                                         , and the BS equation

• Result:

P = ↵(0)S(0) + �(0)B(0) = C(S(0), 0)

↵ =
@C

@S

d (P (S, t)� C(S, t)) = dP � dC

=
@C

@S
dS + �dB � @C

@t
dt� @C

@S
dS � 1

2
@2C

@S2
(dS)2

= �rBdt� @C

@t
dt� 1

2
@2C

@S2
�2S2dt

dS

S
= µdt + �dW, dB = rBdt, P =

@C

@S
S + �B

d(P � C) = r (P � SCS) dt� r (C � SCS) dt = r(P � C)dt
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Matching at T

• Solving the ODE:

• We have                                                    ,   the call is replicated!

• Need to check the self-financing condition

• Theorem 5.3: 

• A unique beta exists, given alpha is a smooth function of S and an initial 
portfolio value P(0), such that                        is a self-financing portfolio 
with initial value P(0).

• Implication on the hedging practice: by the end of the trading adjustment 
period, the rebalancing needs to observe the following condition: there can 
only be transfer of money within the stock and bond accounts 

P (t)� C(t) = (P (0)� C(0)) ert = 0

P (S, t) = C(S, t), for 0 < t  T

P = ↵S + �B
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Solving the PDE

• Linear PDE, variable coefficients

• A series of changes of variables introduced to reduce to the heat equation

• First,             , we arrive at a constant-coefficient equation

• Change of time variable 

•

S = eZ

@C

@t
+

✓
r � 1

2
�2

◆
@C

@Z
+

1
2
�2 @2C

@Z2
= rC

⌧ = T � t

C = e�r⌧D

@D

@⌧
�

✓
r � 1

2
�2

◆
@D

@Z
� 1

2
�2 @2D

@Z2
= 0

@C

@⌧
�

✓
r � 1

2
�2

◆
@C

@Z
� 1

2
�2 @2C

@Z2
+ rC = 0
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Heat Equation

• Eliminate the first-order term:

• Standard heat equation

• Initial condition is also likewise transformed

• Solution transformed into the original variables

• Black-Scholes formula reproduced

y = Z +
✓

r � 1
2
�2

◆
⌧

@D

@⌧
=

1
2
�2 @2D

@y2
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Dividend-paying stock

• The previous model assumes no dividend paying stocks

• Many stocks do pay dividends

• FX products - foreign currency as the underlying and it grows at its rf rate

• This model assumes reinvestment

• If the dividend rate is d, one share at t will grow to exp(d(T-t)) shares at T

• Buying exp(-d(T-t)) shares is equivalent to one futures contract:

• Price of a futures contract: 

• or delivery contract price                               , the price at t to have one share 
delivered at T

S(t)e�d(T�t) �Ke�r(T�t)

X(t) = S(t)e�d(T�t)
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Call option on X

• An option on X with expiration T must have the same value as an option on S

• But the delivery contract pays no dividend (X is its price)

• Process for X:

• Drift does not matter!

• Call price:

• with

• Applies to commodity options - it costs money to hold commodities (d=-q), 
this is the cost of carry.

dXt

Xt
= (µ + d) dt + � dWt

C(S, t) = XN(d1)�Ke�r(T�t)N(d2)

= Se�d(T�t)N(d1)�Ke�r(T�t)N(d2)

d1 =

log(S/K) +

�
r � d +

1
2�2

�
(T � t)

�
p

T � t
, d2 = d1 � �

p
T � t
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