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Summary
In this course, we introduced the basic concepts of ordinary differential equations,
and discussed several tools in solving mostly linear equations and systems of equa-
tions. For nonlinear equations, qualitative behaviors, such as the stability near
critical points, are emphasized. The discussion on partial differential equations
is kept at minimum, and the focus is on the significance of the three prototype
equations (heat equation, wave equation, and Laplace equation) in fundamental
sciences.
In the following, we list major topics for each chapter covered in the semester, and
clarify on the scope of the final.

Topics:

• Chapter 1: Introduction

First we described a differential equation as a condition that relates the
unknown function and its derivatives, and showed some examples where
straightforward integration could lead to a solution. There is a geometric
interpretation (slope fields and solution curves) to a differential equation
which allows us to visualize solutions, and we should take advantage of var-
ious computer softwares to help us to obtain this information. Also it is
necessary for us to determine the order of an equation, whether an equa-
tion is linear or nonlinear, homogeneous or nonhomogeneous. In the case
that straightforward integration is possible to lead to a solution, we realize
that the success is dependent on whether we can separate the variables in
the equation. This suggests the first thing to try when we encounter a new
equation.

As a general rule of thumb with equations, keep in mind that before you claim
a solution, you should always confirm by verifying if your answer satisfies the
original equation and various conditions (such as initial and/or boundary
conditions).

On the theoretical side, it should be pointed out that existence and unique-
ness of the solutions are not automatically guaranteed. Theorem 1 on page
24 gives the conditions to guarantee the existence and uniqueness of a local
solution for the general initial value problem. We note that this theorem can
be extended to system of equations.

• Chapter 2: Mathematical Models

We only use the population dynamics equations as examples to demonstrate
some of the origins of differential equations. The common theme that appears
constantly in these models is a rate of change on the left-hand-side, and
the resulting effects on the righ-hand-side. These population equations are



nonlinear equations, and solutions usually include some exponential terms, so
the solution behavior as t→∞ (asymptotes) is of crucial interest. We should
watch out for the sign in front of t (growth vs. decay) in those exponential
terms, as they will dominate the long time behavior of the solutions.

For most practical problems, numerical solutions are the most efficient way,
even though only approximate solutions are generated. The Euler method is
the most fundamental method for which we can even use a simple calculator
to plot a few points on the approximate solution curve. Improved methods
are all based on the Euler method, and it would be sufficient for us to know
how to implement Euler method for one or two steps for this final.

• Chapter 3: Linear Equations of Higher Order

First we must be able to determine if an equation is linear or not, and in
the linear case we expect to obtain a generic solution. Before we solve the
equations, we should explore the properties of linear equations. For homoge-
neous linear equations, the greatest advantage is that a linear combination of
solutions is still a solution. This is called the principle of superposition. To
organize all possible solutions and find the one that satisfies the extra con-
dition that comes with the problem (such as an initial condition), we need
to introduce the concept of general solutions. An intuitive way is to select a
collection that is supposed to ”cover” all possible solutions, and we need the
concept of linearly independent solutions. This is really the parallel of linear
independence of vectors in linear algebra. There is a formal definition, simi-
lar to the definition in linear algebra, and there is also another one based on
the Wronskian that is more straightforward to use. For an n-th order linear
equation, we expect to find n linearly independent solutions and a general
solution can be formed by taking a linear combination of these n linearly
independent solutions.

Constant coefficient equations are a special kind of linear equations. In this
case the problem is reduced to an eigenvalue problem, and the solution be-
havior is determined by the roots of the characteristic equation. There are
details relating to the nature of the roots, whether they are repeated, complex
or real, and they contribute to the characterization of the solution behavior.
The examples of mass-spring systems, mechanical vibration, and electrical
circuits will help us to appreciate the significance of the second-order constant
coefficient equations.

Solutions to nonhomogeneous equations are related to the solutions to the
corresponding homogeneous equations. In particular, a solution to the non-
homogeneous equation can be written as

y = yc + yp

where yc is a general solution to the corresponding homogeneous equation,
and yp is any particular solution. We discussed two approaches to find a



particular solution: the method of undetermined coefficient, and the variation
of parameters. One feature that is important in practice is the phenomenon
of resonance, which can be inspected by comparing the frequency of the
forcing term and the frequency of the system.

• Chapter 4: System of Differential Equations

It turns out that an equation of any order can be recast as a first-order
system, so it is only necessary for us to consider these first-order systems.
Various matrix techniques are naturally used to develop methods to solve
system of equations. The most obvious one is the method of elimination, but
we will learn later that there are more efficient methods.

• Chapter 5: Linear Systems of Differential Equations

The general form is x′ = Ax and the matrix A is the focus. More specif-
ically, the eigenvalues and eigenvectors of A will play the major role. If
there is a complete set of eigenvalues/eigenvectors, a general solution to the
homogeneous equation will be

x = c1v1e
λ1t + c2v2e

λ2t + . . . + cnvne
λnt

In cases where we do not have n linearly independent eigenvectors, compli-
cations arise and we will need to address them more carefully by introducing
so-called generalized eigenvectors. It is not our priority to cover the general
situation in the final.

The mass-spring system can be used again to illustrate the roles played by
the eigenvalues, particularly when we realize that the eigenvalues are complex
and the periodic behavior associated with the complex eigenvalues.

We also introduced matrix exponentials, the connection with fundamental
matrix solutions, and the representation of solutions in these matrix expo-
nentials. A fundamental matrix contains all the independent solution vectors
and it is therefore invertible, and any solution (to the homogeneous equation)
can be expressed in terms of a fundamental matrix.

• Chapter 6: Nonlinear Systems and Phenomena

It is not realistic to expect closed-form solutions for nonlinear equations
in most cases. Instead we focus on the behavior of the solution near the
critical points, and try to connect solution curves between all these critical
points. Near a critical point, the solutions of the nonlinear equation behave
quite close to that of the corresponding linear system, which is derived by
calculating the Jacobian of the right-hand-side of the nonlinear equations,
evaluated at the critical point in consideration. Therefore the eigenvalues
of the Jacobian matrix will determine the behavior of the so-called almost
linear systems, except in the borderline cases (zero real part eigenvalues).
For the ecological models, we should be able to identify the nature of the
system the equations describe, whether it is predator, or competitor model.



• Chapter 7: Laplace Transform

Laplace transform can be efficient in solving some initial value differential
equation problems, but we should be aware that success is not guaranteed
and the complication with the improper integrals can cause problems.

Transform methods can be quite powerful in dealing with constant coefficient
differential equations. The power of a transform is in its ability to transform
a complicated equation into a relatively less complicated equation. However
the task of transforming back the solution sometimes overweights the con-
venience. For the final, Laplace transform formulas beyond those in Figure
7.1.2 will be provided during the exam.

• Chapter 9: Fourier Series Methods

Fourier series are introduced to ”standardize” all piecewise smooth periodic
functions, in the sense that we can just use an infinite collection of coeffi-
cients to specify a periodic function. The coefficient formulas are natural to
memorize: cosine coefficients are given by an integral involving the function
to be worked on (f(x)) and the cosine function, and similar formulas for the
sine coefficients. The reason that they can be so useful in partial differential
equations is that there are those modes arising from a problem, and each one
of them corresponds to one such trigonometric term. If we understand the
behavior of one mode and we can decompose the initial condition into a sum
of these modes, the total solution can be expressed as a Fourier series, with
a little modification that the coefficients now depend on another variable.
Different equations will have different variable coefficients in these Fourier
series. To solve a PDE using Fourier series, we must make sure that the
domain is rectangular (corresponding to these natural modes, or eigenfunc-
tions), we can expand f into a Fourier series, and we know what coefficients
that need to be in front of the sine and cosine terms.

The Laplace equation was not discussed in class, so it will not be included
in this exam.


