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Abstract

Let g be a complex semisimple Lie algebra. We prove a Kazhdan-Lusztig algorithm for Whittaker
modules of g with arbitrary infinitesimal characters. This leads to a description of the block decom-
position of the category of Whittaker modules with non-integral infinitesimal characters, and also
to a character formula for irreducible Whittaker modules, generalizing previous work of Mili¢i¢-

Soergel and Romanov for integral infinitesimal characters.
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Chapter 1

Introduction

This dissertation studies Whittaker modules of a complex semisimple Lie algebra g. To motivate
this subject, let G be a suitably nice real semisimple Lie group. In order to better study properties
of a smooth representation V of G, one natural question is whether it can be realized as a subspace
of the space of smooth functions on Gy, analogous to realizing finite dimensional vector spaces
over R as R™. Such a realization can be obtained via matrix coefficients. These are functions c,, -+ :
Go — C, g — (v¥,g-v) depending on a choice of v € V and v* € V*. If v* is fixed, then (under
suitable assumptions) v — c,, ,+ defines a map V — C*°(Gp) whose image lies in the representation
generated by the c,, ,+'s.

One tractable situation is when both v and v* transform according to some finite-dimensional
representations of a maximal compact subgroup Ko of Go. This is called the K-finite case, and in
this case c, .+ is determined by its restriction to a certain abelian subgroup Ay = (R™)™ of Gy,
namely the split torus appearing in the Iwasawa decomposition Gy = KogAoNop. If Go = SL(2,R),
then Ap = R™ and ¢, ,+|a, satisfies a Legendre equation and is a hypergeometric function. On the
other hand, if v* no longer satisfies the above K-finite condition but transforms instead according
to a one dimensional representation of the unipotent subgroup Ny in the Iwasawa decomposition,
then c, ,+ is still determined by ¢, y+|a,. For Go = SL(2,R), ¢y v+, instead satisfies the Whittaker
equation. In this case, v* is called a Whittaker functional on V, and the induced map V — C*°(G) is
called a Whittaker model of V. They were first considered by Jacquet [Jac67], and has found fruitful
applications in many different settings. There have been many interesting papers about them, for
example Shalika [Sha74], Casselman-Hecht-Mili¢i¢ [CHMO0], etc.

We are interested in the same concept for representations of Lie algebras. For a complex
semisimple Lie algebra g, a maximal nilpotent subalgebra n, and a character  : n — C, we con-
sider Whittaker modules which are representations V of g generated by a vector v € V on which n

acts by the character 1. Kostant studied these modules in his beautiful paper [Kos78]. He showed

1



2 Chapter 1. Introduction

that in the non-degenerate case (when 1 is nonzero on all simple root spaces of n), the category of

Whittaker modules has a very simple description.
Problem. Find a composition series and the multiplicities of composition factors of Whittaker modules.

Algebraic treatments on this problem were successful. As is already mentioned, Kostant treated
the non-degenerate case. In the degenerate case, McDowell constructed and studied standard Whit-
taker modules, which are analogs of Verma modules [McD85]. Based on McDowell’s work, Mili¢i¢
and Soergel later gave a precise answer to the problem using algebraic arguments for modules with
integral infinitesimal characters [MS97]. Here the infinitesimal character describes the action of the
center of the enveloping algebra U/ (g). Integrality is a usual assumption and is the “basic case”
compared to general infinitesimal characters.

It was observed by Mili¢i¢ and Soergel that the problem has a solution based on the localiza-
tion theory of Beilinson and Bernstein, similar to the solution of Kazhdan-Lusztig conjecture for
Verma modules. A geometric proof of Kostant’s result in the non-degenerate case was obtained
in 1986 but was published much later [MS14]. The general argument for Verma modules was not
translated to Whittaker modules until a key ingredient was proven by Mochizuki [Moc11], namely
the decomposition theorem for general holonomic D-modules. Based on this, Romanov proved an
algorithm for computing multiplicities of Whittaker modules with integral infinitesimal characters

in her dissertation [Rom21].
Goal. Generalize Mili¢i¢-Soergel’s and Romanov’s results to arbitrary infinitesimal characters.

In the remaining part of this introduction, we give a brief presentation on the preliminaries
on Whittaker modules and Beilinson-Bernstein’s localization theorems, state the main results, and

explain the idea of our proof. The introduction will conclude with an outline of the dissertation.

1.1 Preliminaries on Whittaker modules

In this section we present relevant facts on Whittaker modules without proof. References include
[Kos78], [McD85], [MS97], [Mil], and [Rom21].

Let us start with notations. Let g D b D n, h be a complex semisimple Lie algebra, a Borel
subalgebra, the nilpotent radical of the Borel, and a Cartan subalgebra. Let G O B D N, H denote
a complex connected algebraic group with Lie algebra g, and subgroups corresponding to b, n,
respectively. Write X for the root system of (g, ), [T C £t C X for the set of simple and positive

roots determined by b, p for the half sum of roots in £*, and W for the Weyl group of Z. For any
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Lie algebra character 1 : n — C, we define a subset © of simple roots by
© = {« € IT| 1 is nonzero on the a-root space in n}. (1.1.1)

We then let a subscript © denote subobjects defined by ©. Thus Lg is the root subsystem of £
generated by roots in ©, £ = £t N Lg, pe is the half sum of roots in £, and W is the subgroup
of W generated by reflections of roots in ©. Finally, let U/(g) be the universal enveloping algebra of
g, and let Z(g) be the center of U(g).

By an infinitesimal character, we mean a C-algebra homomorphism from Z(g) to C. Via the
Harish-Chandra isomorphism Z(g) = Sym(b)w (this is the map vy o @[z (4) in [Dix96, Theorem
7.4.5]), infinitesimal characters xg are parameterized by W-orbits 0 in h*, where any A € 0 deter-

mines xg by the composition
Z(g) = Sym(n)" = Sym(p)  C.

Consequently each 0 determines a maximal ideal kerxg in Z(g). We let Uy = U(g)o = U(g)a
denote the quotient U/ (g) /U (g) kerxg. For us, 6 will always denote the W-orbit of A.

The category of Whittaker modules, denoted by N, is the full subcategory of all g-modules
consisting of those that are finitely generated over g, locally finite over n, and locally finite over
Z(g). Here we say a module over an algebra is locally finite if every element generates a finite
dimensional subspace. N has a full subcategory Ny consisting of modules on which Z(g) acts
by Xe. Similarly, N; consists of modules on which & —n(&) acts locally nilpotently for all & € n.
We set Mg, = Ng NNy, By McDowell’s work [McD85], every object in A has finite length, and
each irreducible object is contained in one of the Ng ,,’s. Different n’s define different subcategories
Noy’s of N, but their categorical structures are similar whenever twon’s give the same ©. If © =TT,
we say that 1 is non-degenerate, in which case Ny ,, is semisimple with one irreducible object, and
N, is equivalent to the category of finite dimensional Z(g)-modules [MS14, Theorem 5.6 and 5.9].
If ©® = @ (i.e. n = 0), Ny o recovers the category of highest weight modules, which is also known as
Bernstein-Gelfand-Gelfand’s category O (although their original definition of category O is slightly
different).

We aim to describe characters of irreducible objects in Ny ,, for any 8 and 1) in terms of charac-
ters of certain standard modules M (A, 1) which are constructed by McDowell analogous to Verma
modules. We first describe its definition in the non-degenerate case. The cyclic Whittaker module for
A and non-degenerate 1 is

Yg(An) =U(gla ® Cy,
U(n)
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where n acts on C;; by 1. Kostant [Kos78, Theorem A] showed that Y4(A,1) is irreducible and
Mili¢i¢-Soergel [MS14, Theorem 5.6] showed that it is the unique irreducible object of the semisim-
ple category Ny .. When 1 is degenerate, the same definition produces a possibly decomposable
module. Instead, we take the standard module to be the one parabolically induced from the cyclic
Whittaker module of a Levi subalgebra. More precisely, let pg be the parabolic subalgebra of type
O containing b with ad h-stable Levi [g. 1 then restricts to a non-degenerate character of [g Nn. The
standard Whittaker module is
M) =U(g) ® Yig(A—p+pe,m).
Ulre)

When 1 is non-degenerate, M(A,1) = Y4(A,m); whenn = 0, these are just Verma modules.

M(A, 1) lands in the category Ng . Also, M(Aq,1) = M(A,,n) if and only if Ay and A; are in the
same Wg-orbit. Therefore, if A € 0 is fixed and regular (and will be chosen to be antidominant with
respect to roots in b in this section and the next), standard modules in Ny ,, are parameterized by
right Wg-cosets in W. If A is singular, then standard objects are instead parameterized by double
cosets W \W/W?, where W is the stabilizer of A. For a right Wg-coset C, we will write w€ for
the unique longest element in C under the Bruhat order and write M(w¢A,n) for the correspond-
ing standard module. McDowell showed that each M(w®A, 1) has a unique irreducible quotient,
denoted by

L(wEA).

Any irreducible object in Ny, arises in this way, and LwCAn) = L(wPAn) if and only if
M(WEA, M) = M(wPA,n). So irreducible objects are also parameterized by We\W if A is regular
and by We\W/W? if A is singular. The irreducible objects and standard objects form two natural
bases of Grothendieck group KN 1.

By mimicking the construction for Verma modules, Romanov developed in her dissertation
[Rom21, §2.2] a character theory for N . This is a map ch on objects of Ny ,, that factors through
and is injective on the Grothendieck group KN ,,. The characters of standard Whittaker modules
are computed explicitly in loc. cit. (see [Rom21, §2.2 Equation (2)]). Although our main results are
stated in terms of the character map, they are in fact statements of the Grothendieck group, and we
will not use any other property of the character map.

Nevertheless, let us briefly describe the shape of this character theory. Let h®be the center of lg,
letsg = [lg, l@]be the semisimple part of [, and let hg = sg N h,be a Cartan in s, so thath = hg S
h®. Since n is non-degenerate on sg N n, the category N (sg )y, of Whittaker modules of sg with

generalized sg N n-character 1 is equivalent to the category of finite dimensional Z(sg)-modules.
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The Grothendieck group KA (sg ), is therefore free abelian with a basis given by dominant integral
weights of hg. For an object V € N (sg )y, we write [V] for its class in KN (s@)y.

Any object V in Ny, is necessarily locally h®-finite. Hence V can be decomposed into a direct
sum of generalized h©-weight spaces V&, p € (h©)*. It can be shown that each one of these is an

se-module living in NV (s@)n. The character map is defined by

ch: Obj N, — KN (se)y 2 ZI(6®)N, Ve ) [VHe,
pe(h®)*

where Z[[(H®)*]] is the group of power series in et, 1 € (h®)*. The characters of standard modules
are easily computed, and is a linear combination with partition functions as coefficients, similar to

Verma modules. The readers can refer to [Rom21, §2.2 Equation (2)] for details.

1.2 The character formula

Throughout this dissertation, we will use a subscript A on the combinatorial objects defined in the
previous section to denote subobjects that are integral to A. Thus Z, consists of roots o € X integral
to A, meaning o' (A\) € Z, where o is the coroot of &; ¥ = ZIyNZIt, and My C Iy is the
corresponding set of simple roots (which may not be simple in £1); W), is the Weyl group of I,
which can be embedded in Was{w e W|wA—A € Z-L}.

Let us fix a A that is antidominant regular with respect to . This means « () is not zero
or a positive integer for all « € L. We aim to express the character of L(wEA, 1) in terms of the
characters of standard modules M(wPA, ). The precise expression involves combinatorial data
extracted from double cosets Wg\W/W,. Each double coset WguW, contains a unique shortest
element u with respect to Bruhat order (Corollary 2.3.3). We can then take the intersections of uW5
with various right Wg-cosets in WguW,. This produces a partition of uW,,. Left-translating back
into W), we obtain a partition of W), which coincides with the partition given by right W) g(y,A)-
cosets of Wy (Proposition 2.4.3). Here, W), g(y,7) is @ parabolic subgroup of W) corresponding to
the subset of simple roots ©(u, A) = u 1Zg NIy C Ty (Proposition 2.4.2). We thus obtain a map

from the set of right Wg-cosets in WguW, to the set of right W), g(y,,A)-cosets in W}, i.e. a map
(—)Ix s We\WeuWi — W) (1) \Wa (1.2.1)

(Notation 2.4.5). Recall that there is a partial order < on Wg\W inherited from the restriction of
Bruhat order to the set of the longest element in each coset (see §2.2). We denote the partial order

on Wy g(un) \Wa by <y a.
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The double cosets reflects the block decomposition of Ny ,, (here a “block” means an indecom-
posable direct summand of Ng ). On the level of character formula, ch M(wPA,M) appears in
chL(wEA,n) only if D and C are in the same double coset WguW, and D[, <y a Cla (for which
we will simply write D <, » C; see Notation 2.4.5). The precise coefficient of ch M(wPA,n) is
described by Whittaker Kazhdan-Lusztig polynomials. For a triple (W, TT, ©), Whittaker Kazhdan-
Lusztig polynomials are polynomials Pcp € Zl[q] labeled by pairs (C, D) of right Wg-cosets with
C < D (defined in 4.1.1). By Romanov’s work, these polynomials compute (at ¢ = —1) the character
formula of irreducible Whittaker modules for integral infinitesimal characters. Applied to the triple
(Wi, T, ©(u, 7)) (see 4.1.2, or (W.1) and (W.2) in §1.4) and the pair (C, D), we obtain polynomials
P = PE'\?\,DM-

Theorem 1.2.2 (Character formula: regular case). Let A be antidominant reqular. For any C € Wg\W,
let WouW,, be the double coset containing C, where u is the unique shortest element in this double coset.
Then

chLwCA,n) = chMWEA ) + Z Pg%(—])ch M(WPA, 1),

DeWg\WeuWj,
D<u,;\C

This appears as Theorem 5.1.2 below. We also extend this to singular A in Theorem 5.2.5. At the
special case 1 = 0, we recover the non-integral Kazhdan-Lusztig conjecture for Verma modules.

The above formula follows from an algorithm (so called Kazhdan-Lusztig algorithm), namely
Theorem 4.2.2. The proof of the algorithm is done by studying (weakly) equivariant D-modules.
Moreover, our tool for dealing with non-integrality (namely the non-integral intertwining func-
tor) is also geometric and makes sense for arbitrary (possibly non-equivariant) quasi-coherent D-
modules. Therefore the method used here for extending integral results to the non-integral case
should apply to other Kazhdan-Lusztig problems as well. We postpone the statement of the algo-

rithm to §1.4 after discussing the geometric ideas behind the proof.

1.3 Localization of Whittaker modules

The strategy of Mili¢i¢-Soergel, Romanov, and the author is to study D-modules corresponding to
Whittaker modules. In this section we introduce the localization framework related to Whittaker
modules. References for facts below include [BB81], [BB93], [MS14], [Mil], [Rom21].

Let X be the flag variety of g, the variety of Borel subalgebras of g. The sheaf of ordinary (al-
gebraic) differential operators Dy is the subsheaf of Hom¢(Ox, Ox) generated by multiplications
of functions and actions of vector fields. The natural action of G on X can be differentiated, which

assigns each element in g a vector field on X, whence a map g — Dx.
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More generally, for each A € h*, Beilinson-Bernstein constructed in [BB81] a twisted sheaf of
differential operators D, on X together with a map g — D, that induces an isomorphism Uy =
I'(X, D)) (Up is defined in §1.1). Here D, is a sheaf of C-algebras that is locally isomorphic to Dx.
We use the parametrization of these sheaves as in [Mil, Chapter 2 §1], under which Dx = D_,.
A € b* is said to be antidominant if for all « € £, the coroot " satisfies «¥' () € Z-.; regular if

oY (A) # O for all . If A is antidominant and regular, Beilinson and Bernstein showed that taking

global sections on X is an equivalence of categories
I'(X,—) : Mod ¢ (Dx) = Mod(Up) (1.3.1)

between the category of quasi-coherent D)-modules and the category of Ug-modules, and a quasi-
inverse is given by the localization functor D) ®, —. If A is only antidominant but not regu-
lar, I'(X, —) is still exact, but some Dj-modules can have zero global section. The subcategory
Noxn of Mod(Uy) corresponds, under the above equivalence of categories, to the subcategory
Mod¢on(Da, N,m) consisting of n-twisted Harish-Chandra sheaves. This is the full subcategory

of all coherent D, -modules consisting of those V such that
* Visan N-equivariant Ox-module,
¢ the action map D) ® V — V of D on V is N-equivariant, and

e for alln € n, the equation 7(&) = (&) +n(&) holds in End¢(V), where m is the action of n
inducedbyn C g — D, C V, and pis the action given by the differential of the N-equivariant

structure on V.

n-twisted Harish-Chandra sheaves are automatically holonomic (see [MS14, Lemma 1.1] for a
proof; see [HTTO08, 2.3.6] for the definition of holonomicity and [HTTO08, Chapter 3] for properties
of holonomic modules). Holonomic modules share very nice properties. They have finite length
(which, in particular, implies the finite length result of McDowell). They are preserved by direct

images and inverse images along morphisms of smooth varieties. They admit a duality operation
D : Modho1 (D)) < Modhot(P3F) = Modhot (D-2)

(here Modp 1 denotes the category of holonomic modules, and the last isomorphism is because
DA°P = D_,). In our notations for holonomic D-modules, for a morphism f between smooth
varieties, we have direct images f, f; and inverse images ", f !, Here f+ agrees with the one
in [BGK"87, VL5] and with [, in [HTT08]. It also agrees with the x-direct image in the usual

six-functor formalism. f, is the functor obtained by conjugating f by holonomic duality ID (this
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is denoted by [, in [HTTO08]). ' agrees with the one defined in [BGK 87, VL.4] (f' in [HTTO8]).
When f is a closed immersion of a smooth subvariety, HOf') consists of sections of V supported
in the subvariety. f* is a shift of f' by the relative dimension (f* in [HTT08]); forgetting the D-
module structures, ™ agrees with the usual O-module inverse image f*. n-twisted Harish-Chandra
sheaves are functorial with respect to all these operations.

Let C(w), w € W be the Schubert cells (i.e. N-orbits) on X, with inclusion maps i,, : C(w) —
X. There exist nonzero n-twisted Harish-Chandra sheaves on C(w) if and only if w = w¢
is the longest element in the right Wg-coset that contains it. If this is the case, the category
Mod¢on (D¢ (w¢), N, n) is semisimple, in which the unique irreducible object, denoted by (’)2 (wC)
has O¢(,,cy as the underlying structure of an N-equivariant O ,,c)-module, but with an n-

twisted D (,,c)-action (Lemma 3.2.1 or [MS14, §4]). We call the D-module direct images

OTI

n
o C(w©)

C(WC)’ M(WC/}\/T]) =

I(WC/A/T]) = 'WC—Q- ‘WC!

the standard module and the costandard module, respectively. The standard module 7 (w€, An)

contains a unique irreducible submodule
L: (W C 4 A/ n ) 7

and L(wE, A1) is the unique irreducible quotient of M (wC,A,m). The L(wE, A, n)’s exhaust all ir-
reducible objects in Mod¢on (Da, N, 1) ( [MS14, §3]). Romanov showed (using the character theory
she developed) that if A is antidominant, I'(X, —) sends MWE, A1) to M(WEA, ) and L(wE, A1)
to either L(wCA,n) or 0. If A is furthermore regular, L(WE, A1) is always sent to L(wEA,n). This
allows us to study Whittaker modules using geometry on X.

In practice Z(w®, A, 1) is more convenient to work with than M (w®, A, 7). The holonomic du-
ality ID sends Z(wE,An) and L(wE, A1) to M(wWE,—A,n) and L(wE,—A,1), respectively. So we
have the following flowchart

DRy — D
No .y ——2— Modon(Da, N, 1) = Modcon(D_», N,1),

LwCAn) = LW, A n) = LS, —An),
M(WCA/T]) = M(WC/ )\/Tl) = I(WC/ —7\/Tl)
Because of the finite length property, the set of irreducible objects form a basis for the Grothendieck
group KModcon(D_a,N,m). A standard argument using pullback-pushforward adjunctions

shows that the set of standard modules also form a basis for KMod o (D_x, N,n). Therefore,

our goal of finding coefficients of ch M(WPA, ) in chL(wEA, 1) is the same as finding the change
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of bases matrix in KMod¢on(D_j,N,n) from the basis given by the L’s to the one given by the
1’s. Of course, the special case of 1 = 0 has already been treated by the ordinary Kazhdan-Lusztig

conjecture, proven by Beilinson-Bernstein [BB81] and Brylinsky-Kashiwara [BK81].

1.4 The Kazhdan-Lusztig algorithms

Before discussing the extension to non-integral infinitesimal characters, let us first discuss Ro-
manov’s work in the integral case. Her argument is in the same spirit as the algorithm for highest
weight modules which we now recall.

Consider the case 1 = 0 of highest weight modules. The conjecture of Kazhdan-Lusztig [KL79]
predicts that the change of basis between Verma modules and irreducibles are computed by com-
binatorics in the Hecke algebra . To relate our problem with H, we would like to build a compar-

ision map v that fits into the commutative diagram

Modon(Da, N) ~ H

- q=—1.

KMOdCOh(D)\,N) — Z[VV]

In this diagram, H and Z[W] are the Hecke algebra and the group algebra of W, respectively, and
the bottom map sends [Z,,] to the basis in Z[W] labeled by w. Moreover, the regular action of # on
the top right corner should lift to an A “action” on the Z,, and L,, in Mod¢on(Dx, N). Once this
diagram is constructed, [L1,] = V(L )lq=—1 by commutativity of the diagram, and v(£,) can be
computed by studying the H-action.

In further detail, recall that the Hecke algebra H is an algebra which has an underlying free
Z[q*"]-module structure with two bases labeled by W: the defining basis {5,,} and the Kazhdan-

Lusztig basis {Cy} [KL79]. The Kazhdan-Lusztig basis is characterized by three conditions:

(KL.1) the expansion of C,, in terms of the §,,’s involve only those with v < w, the coefficient of

dw is 1, and the coefficient of 0, (v < w) is a polynomial P, (q) with no constant term;

(KL.2) the product C,, Cs, where s is a simple reflection so that ws > w, is a Z-linear combination

of Cy/swithv < ws;
(KL.3) Cs =65+q

(after some normalizations, the first two conditions are (1.1.b) and (2.3.b) of [KL79], respectively).
Here < and < are the Bruhat order on W. These conditions inductively determine the Kazhdan-

Lusztig basis and provide a recursive algorithm for computing it. The coefficients Py, of the &,’s
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are the famous Kazhdan-Lusztig polynomials. The Kazhdan-Lusztig conjecture predicts that the co-
efficients of the Verma modules in the irreducible modules in the Grothendieck group are given by
Kazhdan-Lusztig polynomials evaluated at —1 (or at 1, depending on the normalization). In view
of the above diagram, proving the conjecture amounts to constructing v so that v(Z,,) = 6, and
v(Lw) = Cw.

To this end, we define the map v by sending a D)-module F to a linear combination of 5,’s
where the coefficient of 6, is the generating function (in variable q) of the pullback of F to the

Schubert cell C(v):

VIF)= ) (XqiwF)dw-
wew

Then v sends Z, to 6, and v(L,, ) automatically satisfies condition (KL.1) for support reason. More-
over, multiplication by Cs on 8., for a simple reflection s lifts on Z,, to the “push-pull” operation
along the natural map X — X; to the type-s partial flag variety (we call this operation the U-functor
since it agrees with the one defined in [Vog79, Definition 3.8]). (KL.2) is proven by an induction on
{(w) by showing the same lifting for irreducibles, using the Decomposition Theorem of Beilinson-
Bernstein-Deligne [BBD82] for regular holonomic D-modules (or perverse sheaves). This proves
v(Lw) = Cw and hence the Kazhdan-Lusztig conjecture. A detailed argument following these
lines can be found in Mili¢i¢’s unpublished notes [Mil, Chapter 5]. Since the character map on
highest weight modules factors through the Grothendieck group, one can write down characters
of irreducible modules in terms of characters of Verma modules, and the latter can be easily com-
puted.

This proof naturally extends to parabolic highest weight categories corresponding to a subset ©
of simple roots and with regular integral infinitesimal characters. Two bases of the Grothendieck
group are now given by parabolic Verma modules and their irreducible quotients, both labeled by
right Wg-cosets. The map v is now defined by pulling back to orbits of a parabolic subgroup Pg
of type O, and the image of the comparison map v is now replaced by a smaller -module. The
Kazhdan-Lusztig polynomials are then replaced by parabolic Kazhdan-Lusztig polynomials, which
form a subset of the ordinary Kazhdan-Lusztig polynomials.

In the case of Whittaker modules with integral regular infinitesimal characters, we still have
two bases of the Grothendieck group labeled by right Wg-cosets: the standard Whittaker mod-
ules defined by McDowell and their irreducible quotients. By the work of Mili¢i¢-Soergel [MS97],
the category Ny ,, is equivalent to the highest weight category with a singular infinitesimal char-
acter. The latter is known to be Koszul dual to parabolic highest weight category with an inte-

gral regular infinitesimal character by the work of Beilinson-Ginzburg-Soergel [BGS96]. Therefore,
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the Kazhdan-Lusztig polynomials of Whittaker modules (what Romanov called Whittaker Kazhdan-
Lusztig polynomials) are expected to be dual to parabolic Kazhdan-Lusztig polynomials. More pre-
cisely, if we define © as in (1.1.1), then the Whittaker category N, are expected to be dual to
the parabolic highest weight category determined by ©. A starting point towards proving this
would be a Kazhdan-Lusztig algorithm for Whittaker modules. However, the D-modules in this
situation are no longer regular holonomic (merely holonomic). Therefore a decomposition theo-
rem for general holonomic modules is needed in order for the same argument to work. This is
proven by Mochizuki [Moc11]. Romanov then adapted the strategy for highest weight modules
to the case of Whittaker modules in her dissertation (later published in [Rom21]) and obtained a
Kazhdan-Lusztig algorithm. Together with the character theory she developed, this implies a char-
acter formula for irreducible Whittaker modules. The comparison map v in the highest weight

setting now becomes a map

MOdCOh(IDA/ N/TI) l) H@

defined by pulling back a sheaf to orbits of the form C(w®), where Hg is an H-module which
is free over Z[q™'] with a basis labeled by We\W. This H-module structure defines a Kazhdan-
Lusztig basis of He, whose elements coincide with the images of irreducible D-modules under
V.

The work of this paper generalizes Romanov’s algorithm to arbitrary infinitesimal characters.
There are two extra complications compared to Romanov’s situation. First, although standard and
irreducible Whittaker modules are still parameterized by Wg\W, now our category is a direct sum
of smaller blocks, and different blocks have different sizes. On the other hand, the parabolic highest
weight category can have fewer blocks, so the duality mentioned in the preceding paragraph fails.
Nevertheless, one can expect the blocks to be parameterized by Weyl group data involving both
We and W,. Indeed, as can be seen from the character formula 1.2.2, blocks are parameterized by
double cosets W \W/W,, and the polynomials for each block turn out to be the same as (integral)
Whittaker Kazhdan-Lusztig polynomials of the integral Weyl group Wj.

The second complication is that the “push-pull” operation along X — X does not exist when A
is non-integral to s — there is no sheaf of twisted differential operators on X; that pulls back to D,.
As a result, induction on {(w) cannot proceed as before. To remedy this, we use the intertwining
functor I for non-integral s in place of the U-functor. It is an equivalence of categories between
Dy-modules and Dgx-modules. This allows us to increase £(w) and retain induction hypotheses.
This idea of proof is suggested to the author by Milici¢.

We can now state our algorithm. We fix a character n : n — C and define a subset © of simple
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from 1 as in (1.1.1). For each A (not necessarily antidominant), we define a map v similar to the
highest weight case, but now we only pull back to Schubert cells of the form C(wC). It fits into the

commutative diagram

(=1
Modcon (Da, N, 1) ——— He 2 P Hown

W@LLW)\
-] q=— lqu

= (=1
KModcon(Da, N, 1) —— ZWe\W] —> P ZIWj o) \WAl

W@ u W)\

Here Hg is the free Z[q*']-module with basis {dctcewo\w, Z[We\W] is the Z-module with
the same basis, and the first horizontal map at the bottom sends [Z (wE,A,m)] to §¢. The mod-
ules Hg(y,n) and Z[W)y, g(u,n)\Wal are defined similarly but their bases are instead labeled by
Wy o) \Wa. The map (—)I, is defined on basis elements analogous to (1.2.1). Each Hgy,3) is a
module over the Hecke algebra H) = H(W,) of the integral Weyl group W,. Thus each o € Tl
defines an operator T on Heo(u) representing the multiplication of the Kazhdan-Lusztig basis
element C, s € H corresponding to the simple reflection s,. Romanov’s main result [Rom21,
Theorem 11], interpreted combinatorially and applied to Hg ), says that the operators TYA in-
ductively define a Kazhdan-Lusztig basis of Hg(y,,)) in a similar fashion as the condition (KL.2).

More precisely, the Kazhdan-Lusztig basis {\p,, » (F)} of Hg (A is the unique basis such that
(W.1) Gy (F) =0+ ZG<MF P}*GA 5g for some P}LG?‘ € gZlql; and

(W.2) if Fis not the shortest right coset, there exist « € TT) and cg € Z such that Fsy <y, Fand

TeMWua(Fsa)) = D cg bualG)
G<unF
(see 4.1.2). We can still formally consider an H-module structure on Hg as in the integral case and
define operators T : Hg — Hefor simple roots c. When « is integral, T represents the U-functor,
preserves the decomposition (—)l, and restricts to T&* on each Heo(un)- When a simple root {3 is
non-integral, we will instead consider the endomorphism (—) - sg on He given by 8¢ - sg = d¢s g
which represents the intertwining functor I ,.

Here is our (slightly rephrased) algorithm.

Theorem 1.4.1 (Kazhdan-Lusztig algorithm). Fix a character n : n — C. For any A and any C €
We\W, write WeuW,, for the double coset containing C, where u is the unique shortest element in this

double coset. Then
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(A.1) There exist polynomials P‘é% € qZlq] so that

VLWEAN) =vIZWEAN)+ Y PES VIZ(WP, A ).
DeWg\WeuW,
D<u,;\C
(A.2) For any integral simple root o such that Cs« < C, there exist integers cp depending on C, D, and
S, Such that
Ta(V(LWE* 5, A M) = > cp VIL(WP,A,m)).
DeWg\WeuWj,
Dgu,?\c

(A.3) For any non-integral simple root {3 such that Csg < C,

‘V(C(WC/ 7\111)) S = .V(E(WCSB/SBA/T]))'

(A4) v(LWE, N1\ isa Kazhdan-Lusztig basis element of Heg (v 0)-

This appears as Theorem 4.2.2 below. The character formula 1.2.2 follows by taking (A.1) and
(A.4) for —A dominant regular (so that A is antidominant regular), precomposing v with ID (so that
the 7’s become the M'’s), descending to the Grothendieck group by specializing at ¢ = —1, passing
through Beilinson-Bernstein localization, and applying the character map.

The proof of the algorithm is an induction on the length 2(wC€). The ideas behind (A.1) and (A.2)
are similar to (KL.1) and (KL.2), respectively. (A.3) reflects the action of non-integral intertwining

functor Is ;. In fact, the following diagram commutes

()1
Modcon(Da, N, 1) —— Ho —> P Ho(un)

Isﬁl (—)'sﬁl |0 t=-s

(=)I
MOdcoh(DsB?\/ N,n) E He & @HG(r,sB?\)

(Proposition 2.4.8, 3.2.11, and 3.2.12; we only prove this for irreducible Whittaker modules, but
extension to other Whittaker modules is straightforward). The push-pull operation together with
non-integral intertwining functors allows the induction argument to run. In the actual proof, one
prove (A.2) and (A.3) first at each inductive step and use them two prove the remaining statements.

The remaining technical difficulty lies in the proof of (A.4). It requires us to find & € TI) so
that Csy <y,» C and (W.2) holds. If o can be chosen to be also simple in £, then (W.2) simply
follows from (A.2). But there are examples where this cannot be done. The strategy then is to apply
non-integral intertwining functors so that « becomes simple in both the integral Weyl group and in
W, and that C is translated to a coset of smaller length so that (A.2) holds by induction assumption.
(W.2) is obtained by translating (A.2) back via inverse intertwining functors. The existence of such

a chain of intertwining functors is guaranteed by Lemma 2.5.1.
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1.5 Outline of the dissertation

The dissertation is organized as follows. §2 is devoted to studying the structure of left W)-cosets
and double (Wg, W5 )-cosets in the Weyl group. In §3 we study intertwining functors and the
U-functor, and also the effect of non-integral intertwining functors on irreducible D-modules. §4
contains the statement and the proof of the algorithm. The character formula is established in §5.
Lastly, in Appendix §A, we apply the main theorems to two small examples.

I would like to comment on some choices of inclusions (or omissions) of known results in this
dissertation. The main principle is to write down details without impairing readability. §2 includes
all details modulo facts on Weyl group actions on root systems, even though most results there
are already known or could be left as exercises. The structures of double cosets have applications
outside the current context. For example, they come up in the study of 8-stable parabolics of real
reductive groups. In the first half of §3, I have included a streamlined argument for the structural
results of the U-functor on certain irreducible modules. As a key part of the theory, they are in-
cluded in the body of the dissertation, rather than in the appendices. Similar statements also apply
to real groups with more or less the same proof. Although these results were proven in detail
in [Mil], the argument there uses preliminary results that are more general than needed and are
scattered in different places in op. cit. The only “new” part of that chapter is §3.2, even though the
tools and techniques there were also known to experts. In §4, I have chosen not to present back-
grounds on the story of Kazhdan-Lusztig polynomials because there already exists a vast literature

on this subject. I hope the explanations in §1.4 make up for this omission.



Chapter 2

Double cosets in the Weyl group

In this section, we collect some known results on the integral root subsystem and examine the
structure of double (Wg, Wy )-cosets in W. Most results on here are either known or not hard. We
include the proofs for completeness.

In §2.1 we define a cross-section of W /W, and examine the restriction of Bruhat order to each
coset. §2.2 sets notations and collects known facts on Wg\W. In §2.3, we construct a cross-section
Ag,\ of Wo\W/W, consisting of the unique shortest elements in each double coset (Corollary
2.3.3). Next, we show in §2.4 that, if one looks at the partition of Wg\W given by double cosets
We\W/W,, then each block in this partition corresponds to a right coset in W, of a parabolic
subgroup of W5. As mentioned in §1, the Whittaker Kazhdan-Lusztig polynomials for (W5, TT,)
with respect to this parabolic subgroup describes the multiplicities of Whittaker modules indexed
by right Wg-cosets in this double coset. Lastly, in §2.5, we prove a lemma which enables a key
induction step in §4.6.

Recall that A € h*, Iy = {x € £ | aY(A) € Z}is subsystem of integral roots, W) = {w € W |
WA —A € Z-1}is its Weyl group. Here I do not claim that 2 is closed under addition in X, but
this will not concern us. £ = T N £, is the set of positive roots and Ty C I3 the set of simple
roots. Write <, for the Bruhat order on W) determined by IT). © is a subset of T, Lg C X is the
subsystem generated by @ and Wg C W is the Weyl group of g, identified with the subgroup of
W generated by reflections of roots in Lg.

The readers can compare theses results with the examples in §A.

2.1 Left W)-cosets and Bruhat order
For any u € W, define the set

f={aert june —rt}=sn(—u'ch),

15
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i.e. the set of positive roots « so that e is not positive. Write
Ay={uew|rinz, =2k

The following is well-known.

Lemma 2.1.1. A, is a cross-section of W/Wh,.

Proof. This proof is copied verbatim from Mili¢i¢’s unpublished notes. Observe that

SFns =t n(—u )N, (by definition of L))
=(ZtNZyN (—u_] ) (rearranging terms)
=Iin (—u~Tzh) (by definition of £} ).

Hence i NI\ =0 < £ C u 1Lt and

Ay={ueW|zf Cu st}

2.1.2)

We first show that any left W/ -coset has a representative in Ay. Take any w € W. Then w— £+

is a set of positive roots in £. Hence I, Nw~'LT is a set of positive roots in I. So there is an

element v € W), such that v(Z, Nw™121) = Z;\r, or equivalently X, N wlzt = Z; (because

vI\ = Z,). In particular Z;\“ Cvw 1t and hence (vw= 1) =wv! € A, by the above alternative

description of A). As aresultw € Ayv C A\W,. This shows W = A\ W,, and any left W) -coset

has a representative in A;.

Now suppose uj,uy € Aj are in the same left Wy -coset, i.e. there isv € W, with u; = uyv.

This implies
Iy =nnuy st (since u; € Ay and because of (2.1.2))
=5 nv iy et (since 7 = uyv)
=v 1 (ZxN u? ) (using v 1Ey =2, and factoring v out)
=vy! Z;\r (since uy € A) and because of (2.1.2)).

Since W), acts simply transitively on the set of sets of positive roots of X, we have v = 1 and

u; = uy. Thus A, is a cross-section of W/W,.

O

), Wy and A, satisfy the following elementary properties. The proof is an easy exercise.

Lemma 2.1.3. Let {3 be a simple root and let w € W. Write sg for the reflection of 3.

(ﬂ) LLZ)\ = Zu)\;
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() ifue Ay uly =5,

(c) ifu e Ay, ully =TTy,

(d) uWHAu ™! = Wy,

(e) ifsp € Ayandu € Ay, usp € Ag .
(f) sg € Axifand only if B € TT—TI,.

Proof. (a): for any o« € I, (ue)V (uA) = a¥(u"Tud) = «Y(A) € Z. Hence uax € I, and
uZy C Xy by the definition of X,;. Since both sets have the same size, equality holds.

(b): from (2.1.2), we know uZX C £T. Hence
uZ;\“ = LLZ)\ N It = Zu?\ N It = ZI)\

(c): elements in ITy and TIT,,» can be characterized by not being sums of other elements of Z;\L
and I, , respectively. Since u: £} — £, commutes with sums, it must send TTj to My.

(d): for any w € W;,
(uwwu DA —uAd =uwA—A) eu(Z-£)=2Z- 3.

Hence uWu~! € W, by definition of W,;,. Since both sides have the same size, equality holds.

(e): observe

Sisp NZspn = (ET N (—(usp) ™ 'Z7)) N Egn (by definition of £,
=(ZtnN ZSB)\) N (—(usﬁ)’1 ) (rearranging terms)
= Ziﬁ?\ N(—(usg )1z (by definition of Z:ﬁ}\)
=sp I N(—(usg)'2™) (by part (b)).
Hence
usp € Agpn = Zf[sﬁ NIsgr =9 (by definition of A ;)
= spIiN(—(usp) 2N =o (by the above observation)

& spIy C (U,sfg)’])fr = sr51f]Z+
= ury Crt (multiplying both sides by usg)

e uE A, (by (2.1.2))

which is true by assumption.
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(f): if sg € A, then since A is a cross-section of W/W) and 1 is already in W), we must have
sg & Wy. Hence
—BYNB=A-BY(NB)—A=spA-AEZ-T,

and BV (M) € Z. Therefore p & TT. On the other direction, suppose 3 & TT,. Since the only positive
root moved out of ' by sg is B, and {3 is not in X, we see that SBZ;\_ C I*. This implies sg € Aj

by (2.1.2). m

In particular, (c) and (d) imply that conjugation by u € A sends simple reflections in W, to

simple reflections in W,,. This implies:

Corollary 2.1.4. Let u € Aj,. Then conjugation by u is an isomorphism of posets
(W, <a) — (W, <)

We want to show that A, consists of unique shortest elements in left cosets. We in fact have a
stronger statement: left multiplication by an element in A, is a map from W, to W that preserves

the Bruhat orders.

Lemma 2.1.5. Let w, sq € W with « € L*. Let w € W such that ux € It. Let u be a regular

antidominant integral weight. Then
USGW < UW = USGWH < UWLL.

Here the left hand side is the Bruhat order, and the right hand side means that uwp — us W is nonzero

and is a non-negative sum of simple roots.

Proof. We rewrite

usewp = uwp — oY (wpue = uwp — (W)Y (p)ue.
Hence
USEWHL < UWHL <> (w™! o) (Wua >0
= wla)Y(n) >0 (because ux € ™)
= w'lx grt (because p is antidominant regular)
= (uw) Nux) ¢ £t
— Usyouw) < L(uw) (by [Bou02, VI.1.6 Proposition 17(ii)])

= syuquUw < uw (by definition of Bruhat order).
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1

Finally, observe that s, quw = usqu™'uw = usqw by Lemma 2.1.3(4). Thus usawu < uwp is

equivalent to us,w < uw, as desired. O
Lemma 2.1.6. Let w, s € W), with o« € £, and let w € Ay. Suppose sqw <p w. Then usow < uw.

Proof. Consider the projection h* — span X, along the subspace Nycy, ker«. For an element
1 € h*, we write fi for its image under this projection.

By the preceding lemma 2.1.5, an inequality in W with respect to Bruhat order can be checked
by a regular antidominant integral weight. That is, if p is such a weight in h*, then us,w < uw if
and only if usgwp < uwp. Similarly, sqw < w if and only if sgW[ <) W

Therefore, if we write v=p— i,

SaW <)\ W = SqWL <) wii

= sewit+ Z aiy = wit for some a; € Z>( not all zero
i €TT)

&= sqwi+v+ Z ajoiy = wii+ v for some a; € Z>( not all zero
o €TT)

& sqewn+ Z aixy = wu for some a; € Z>( not all zero
o €TTy

where the last step is because v is annihilated by all coroots in £Y. Applying u to both sides we get

Us xWH + Z ajux; = uwp for some a; > 0 not all zero.
o €T

Since each ue; is positive (uxy € uZ;\L C 1), we have uswp < uwp. Thus usew < uw as

desired. 0
Corollary 2.1.7. Let v,w € Wy and v <; w. Then for any u € Ay, uv < uw.

Proof. If equality holds, then the statement is trivial. Otherwise, by the definition of Bruhat order,

there exist ay, ..., o € £ such that
V=Sx " SoqW <) <) Sag W <p WL
Apply Lemma 2.1.6 to each inequality, we see
UV =USq ~ " SoyW < -+ < USg, W < UW
as desired. O

In particular,
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Corollary 2.1.8. For any u € Aj, u is the unique shortest element in uW5 with respect to the restriction

of Bruhat order to uAj;,.

Remark 2.1.9. Note that the proof of 2.1.7 only uses the fact that 2, is a subsystem of I (again I
do not claim that £, is closed under addition in £) and Z;\L is defined as the intersection £, N X .
Therefore the same argument can be applied to other root subsystems such as Zg. The same holds

for the next lemma 2.1.10. This will be used in §2.2.

The next lemma is analogous to a similar statement for parabolic subgroups (Lemma 2.2.3),
which we will need in a few occasions. The proof is a standard argument using the lifting property

[BBO5, 2.2.7].
Lemma 2.1.10. Let o« € TT, and u € A,. Then either squ € Ay, or seu € UW),.

Proof. Suppose squ & uW,. Then sy is in a different left W) -coset, i.e. squ = 1v € TW), for some
v € W, and r € A, with r # u. So there exists some v € W), such that squ = rv. We need to show
thatv =1.

Write w1 << wy when wy < wj and {(wq) = {(w3) — 1. From the relation squ = rv, either

1 1

v duorrv > u Alsosquv™ ' =71,s0eitherr <uv™' orr > uv~!. From Corollary 2.1.8, we also

know 1 < rvand u < uv—!. We have the following four possibilities.

T D> u\F1

(@) A v s impossible since it implies u > u.
v g u
> ouv) 1 .
(b) A v Ifrv > r, then fromrv > r > uw™' > u we see that {(rv) > {(u) + 2, which
™V > u

violates rv > u. Therefore we must have rv = r and hencev = 1.

LR LL\I*]

(c) A v Same argument as in (b) shows that v = 1.
™o u
-1
T <1 uv o —1y
(d) A v Letk =£f(uv ") —£(u). Then
™voD> ou
L(rv) = (r)
=uw ) —1
=L(u)+k—1
=Lrv)—1+k—1
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and 0 < k < 2. If k = 2, then {(r) = {(rv)and v = 1. If k = 0, then ¢(u) = ¢(uv— ') and
v = 1. Suppose k = 1. Applying the lifting property twice, weseer <uandu < r.Sor =1u,

contradicting our assumption for r. Therefore we must have v = 1.

Thus v = 1 in all cases, as desired. O]

2.2 Notations and preliminaries on Wg\W

We recall some well-known facts of right Wg-cosets and partial orders. Details these facts can be
found in [Mil] in the chapter on generalized Verma modules (see also [BB05, §2.5] for proofs of
these restuls for left Wg-cosets).

A similar proof as Corollary 2.1.7 shows that the set
CwW=wew|wlec -1t}

is a cross-section of Wg\W consisting of the longest elements in each coset. Write wg € Wg for
the longest element. Then

we®W=wew|w'leczt) (2.2.1)

is a cross-section consisting of the shortest elements in each coset. For a right Wg-coset C, we write
w¢ for the corresponding element in ®W. The restriction of Bruhat order on the set ©W defines
a partial order < on Wg\W. We will use “the length of C” and {(C) to refer to the length of the
element wC. If ©(u, A) is a subset of TTy defining a parabolic subgroup Wy g(ua) € Wi, we write

<u” for the partial order on Wy, g(1,2) \WA.

The following facts will be used throughout the rest of this chapter.
Lemma 2.2.2. Any element in W permuites positive roots outside L&, that is, it permutes the set £+ — L&,

Proof. Tt suffices to prove it for a simple reflection sg € Wg. sp permutes I+ —{£p} and also
permutes £ — £g, whence it permutes (£ —{+p}) N (£ — £g) which equals £+ — Zg. O
Lemma 2.2.3. Let C be a right Wg-coset and o« € T1. Then exactly one of the following happens.

C

(a) Cso > C. In this case wEs« = wCs,, and for any w € C, wsy > w.

(b) Csq =C.

C

(c) Csq < C. In this case wEs« = wCs,, and for anyw € C, wsy < w.

Moreover, the identity coset W is the only right Weg-coset C such that Csy > C for all o € TI.
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Proof. With minor modifications, the results in §2.1 can be translated to the case where we replace
I, by Zg, left Wj-cosets by right Wg-cosets, and A by ®W. Under these replacements, Lemmas
2.1.7 and 2.1.10 say the following;:

(i) Letv,w € Wg and v < w. Then for any C € Wg\W, wC > wwC.
(ii) Let « € TTand C € Wg\W. Then either w€s, = WS or wCs, € C.

The second case of (ii) (WCs € C) corresponds to (b). Suppose we are in the first case of (ii), that
iswCsy =wCsx. Then Csy # C, otherwise wCs, = W« = wC is impossible. Suppose Csy > C,
ie. wE&s« > wC. We want to show that wsy > w for any w € C.

Since C = W@wC, we can write w = vw€ for some unique v € Wg. We will do induction on

£(v). For the base case {(v) = 1, v = sg is simple. (i) implies sBWCS"c > wCsa and stC > wC.

C

Combined with the assumption w3« > w¢, we obtain

Csqy Csq

\%
C

SpwW < w

S|3VVC < w

If spwCsy < spw, then the chain of inequalities

Csq Csq

spw
A \Y

spwt < w©

w

Csqy

would imply that sgw©se and w have length difference > 3, which is impossible since their

lengths only differ by 1. Therefore wsy = srgwcstx > SBWC = w. This establishes the base case.
Now suppose v = sgr > 1 for some sg,r € Wg, with sg simple. Induction hypothesis says

rwCse > rwC. Invoking (i) again, we obtain the following inequalities

Csqy Csqy

SgTW < ™

V

C

SgTW < TWC

Arguing similarly as in the base case, it is impossible to have s Brwcsf’c <s Brwc. Therefore ws, =

sBrWCS‘X > sﬁrwc

= w. This proves the additional claim in case (a). An identical argument
establishes the claim in case (c).

It remains to prove the last statement. Suppose C satisfies Cso > C forall o« € TT. Letw € C
be an element of minimal length. If w # 1, then w > 1, and there is a simple reflection s, with

Wsy < W. By minimality of w, ws is in a different coset. This forces us to be in case (c), which

contradicts Csy > C. Sow =1and C = Wg. O
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This immediately implies
Corollary 2.2.4. Let C, D be two right Weg-cosets. Letv € D,w € C. Ifv < w, then D < C.

Proof. We can choose simple roots «;’s so that

WV
<

W:\)Stxk"'soczsoq >vs(xk...so‘2>...

By the lemma, this implies

2.3 A cross-section of Wg\W /W,

Define the set

Aer =AANWe®W)={ue W[zl Cu'tt, @ Cust}

We will show (in Corollary 2.3.3) that this is a cross-section of Wg\W /W, consisting of the unique
shortest elements in each double coset. Later results, as well as the main theorem of the thesis, will
often be formulated using this set.

We first show that elements in A, are concentrated on the lowest Wg-layers in the double

cosets.

Lemma 2.3.1. Letu, v € Aj. Suppose uand r are in the same (Wg, Wy )-coset. Then wand r are contained

in the same right Wg-coset.

Proof. The case u =  is trivial. Assume u # . By assumption, r = wuv~! for some w € Wg and
v € W,. We will do induction on £(w).

Consider the case {(w) = 1. Then w = sy for some @ € 0, and squ = v € TW,. By Lemma
2.1.10, squ is either in Ay or in uW,. But the second case is impossible because uWj is disjoint
from rW)y. So squ = 1v € A\ NTW,. Since A, is a cross-section of W/ W,, this intersection is equal
tor. Hence v =1, and r = wu € Wgu which is in the same right Wg-coset as u.

1

Consider {(w) = k > 1. Write w = sqw’ > w’ for some sy, w' € Wg. Thent = wuv~' can be

rewritten as w'u = (s«r)v. We have two possibilities.

(@) sqT € TW,, ie. sqr = 1V’ for some v/ € W,. So the equality w'u = (syT)v becomes

wu(v'v)~! = r with w’ € Wg and v/v € W,. Since {(w’) < k— 1, by the induction as-

sumption, u and r are in the same right Wg-coset.
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(b) sar & TWy. Then by Lemma 2.1.10, sqr € Ay. From the equation w'uv—! = sor, {(W') <
k — 1 and the induction assumption, we see that u and s« are in the same right Wg-coset.

Since s«r and r are in the same right Wg-coset, so are u and r. O

Proposition 2.3.2. Consider any double coset WowW,, in W.

(1) WowW, contains a unique smallest right Weg-coset C, in the sense that C < C’ for any C' €
W@\W@WW)\.

(b) A)\ N (W@WW)\) g C.
(c) The unique shortest element in C is in Aj.

Proof. By the preceding lemma 2.3.1, there exists a right Wg-coset C, contained in WgwW,, such
that Ay N (WgwW,) C C. Let y be the unique shortest element in C. y belongs to some left W5
coset, say to uW, for some u € A,. Then u < y by since u is shortest in uW, (Corollary 2.1.8). If
y # u, we will have u < y, and hence by minimality of y, w is in a different right Wg-coset than y,
contradicting the construction of C. Hence we must have y = u, i.e. the unique shortest element in
Cisin A,. Lastly, for any other right Wg-coset C’ in WgwW),, let y’ be its unique shortest element.
y’ is contained in one of the left Wy -cosets, say y’ € u/W, for some u’ € A). Then u’ < y’ by
Corollary 2.1.8. Also u’ # y’ (otherwise C' 5 y’ = u’ € C which would imply C = C’). Hence
u’ < y’. Therefore C < C’ by Corollary 2.2.4. Thus C is the unique smallest right Wg-coset in
WewW,. O

The above proof is based on the fact that A, consists of shortest elements in left W5-cosets.

Combined with the fact that wg@W consists of shortest elements in right Wg-cosets, we obtain:

Corollary 2.3.3. Aga = A N (we®PW) is a cross-section of We\W /W, consisting of the unique
shortest elements in each double coset. For each w € Ag\, Weu is the unique smallest right We-coset in

W@) uW)\ .

Proof. Take any double coset WgwW,. By Proposition 2.3.2(c), if we take the shortest element u in
the smallest right Wg-coset in this double coset, thenu € A,. Henceu € A N (we®W). Any other
element in this smallest right Wg-coset is not in A N (Wwe®W) because they are not in we®W. On
the other hand, by 2.3.2(b), any other right Wg-coset in WgwW, has empty intersection with Aj.
Therefore u is the unique element in A N (Wwe®W) N WewW,. This shows that Ay N (wg®W) is

a cross-section. O
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2.4 Integral models

By results of the previous section, for each double coset WguW, one can choose u to be in Ag ;.
Then uW, is contained in WguW, and it intersects with different right Wg-cosets. It will turn out
that these intersections produce a parabolic subgroup in W5, and the Whittaker Kazhdan-Lusztig
polynomials for W), that arise determine the coefficients in the character formula.

The first task is to show that there is actually a parabolic subgroup related to the intersections.
Lemma 2.4.1. Let u € Ag . Then g N Tl is a set of simple roots for the root system Lg N L.

Proof. Let p € Zg N Xy». Write  as a Z>-linear combination in terms of reflections of roots in
IMya. If one of the summands is from Iy, — XZg, then writing 3 as a sum of reflections of roots in
IT, there is a summand that comes from IT— ©. This implies 3 ¢ Xg, a contradiction. Hence 3 is a
sum of reflections of roots from Lg N T1y. Therefore Zg N Ty ) spans Zg N Zyx. Since g N TTyx
is a subset of simple roots in Z,,;, roots in Lg N Tl remain simple in Xg N Zy». Thus g NTTy,, is

a set of simple roots for Xg N Xyx. O

Write W\ zonm,, for the parabolic subgroup of Wy, corresponding to Zg N TTy,. Then

Wi, N, is the Weyl group of Zg N ;) and is a subgroup of Wg N Wy,,.

Proposition 2.4.2. For any u € Agx, Weo NWun = Wun sonm,,- 1 particular, We NWy,, is a

parabolic subgroup of Wi, x.

Proof. Wy 5o, is certainly contained in Wg NW\. Let w € Wg NWy,). Being in Wg, w
permutes roots in Lg; being in W;,, w permutes roots in X,;,. Hence w permutes roots in g N
Zua, and it sends the set T N (Zg N Z,a) of positive roots in Zg N Iy, to another set of positive
roots WL N (Zg N Zya). Since Wya s, is the Weyl group of Zg N Iy, there exists a unique
element v. € Wy 5o, that sends wit N (Zg N Zyy) back to I N (Zg N Zyy). Hence vw
permutes It N (Zg N Zyn) = £, NEZE. On the other hand, since vw € Wg, by Lemma 2.2.2 it
permutes LT — ZE:) ; vw is also in Wy, so it permutes ;). Hence, it permutes (X1 — Zg) NZp=

£r —Z&. Asaresult, vw permutes
(TANZG) U (Zin—L§) =i

Since Wy, acts simply transitively on the set of sets of positive roots in Z,,), we must have vw = 1.

Thereforew =v—! € WA, sontT - Thus We N Wi\ = Wi, 5o,y as desired. O

Foru € Ag,, write

O, =u ' (ZeNT) =u"'Zg NT,.
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Since Xg N Ty, is a subset of simple roots in X,,3, ©(u, A) is a subset of simple roots in u i =

I. Write W), g (1,1 for the parabolic subgroup of W), corresponding to ©(u, A).
Proposition 2.4.3. Let u € Ag . The left-multiplication-by-u map
W)\ = uW)\

induces bijections

W)\,@(u,A)\WA = {C NuW, | C € W@\W@‘LLW)\} - We\WeuW,
W;\,@(u,;\)v — uW;\,@(u/Mv = Wguv N uW, — Weuv.

Moreover, this map preserves the partial orders on cosets: if C', D’ € Wy g(,x)\Wa are sent to C N

uW, and D NuW,, respectively, then D’ <, C’ implies D < C.

Proof. Consider the smallest right Wg-coset Wgu of WguW,. Then

WounNuW, = (W NuWru Hu (factoring out u)
= WeNWgu (by Lemma 2.1.3(d))
= Wi sonm 4 (by Proposition 2.4.2)
=Wirueunl (by definition of O(u, A))
= (uWN@(uI;\)u’1 u (by Lemma 2.1.3(d))
= uW?\,@(u,M-

Hence left multiplication by u sends the identity coset W5 g ()1 to Weu NuW,. Since left mul-
tiplication by u commutes with right multiplication by elements of W), it sends right W), g(y,A)-
cosets in W5, to right Wi -translates of Wgu N uW,, which gives us C N uW, for various right
Weg-cosets C in WguW,. Moreover, any right Wg-coset C in WguW,, is obtained as a right W/ -
translation of Wgu, hence the intersection C N uW,, is necessarily the image of a right W), gy, )~
coset.

To show that this map is order preserving, take two right W gy, )-cosets C’ and D’ such that
D’ <y C’. This means that the <)-longest elements vD/, v€' of D’ and C’ satisfy VD’ <i ve'
Since left multiplication by u preserves Bruhat orders (Corollary 2.1.7), D > wP’ < wC e cC

Therefore D < C by Corollary 2.2.4. O

Corollary 2.4.4. As u ranges over Ag ), left multiplication by Wegu defines a bijection

ind;\ : U W)\,@(u,)\)\W)\ - W@\W, W)\,@(u,)\)v — W@uv

'LLEA@,)\
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which is order-preserving when restricted to each Wy g (y,n)\Wa and commutes with right multiplication

by Wi. The image of Wy g (u,n) \Wa equals We\WeuW,.

Notation 2.4.5. We write
(A :Wo\W = | Wiewa) \Wa
uEA@,)\
for the inverse map to ind). If C and D are both in WguW, (so that they are both sent to

Wy o) \Wa), we will write C <,z D for C[y <y a DIa, so that
C <y Disequivalent to C,D € Wg\WguW, and C|) <y x Dla.

By abuse of notation, we will write C £, D if C and D are not in the same (Wg, W )-coset, or if

they are in the same coset WguW), but C| %, DIa.

The map (—)Ix plays an important role towards our goal. As explained in the introduction,
standard and irreducible Whittaker modules in Ng , are parameterized by Wg\W, but compared
to the integral case, Np ,, is divided into smaller blocks. The map (—)|, reflects this division: on the
level of standard and irreducible modules, modules that correspond to C’s in the same (Wg, W3 )-
coset are in the same block, and each block looks like an integral Whittaker category (at least on the
level of standard and irreducible modules) modeled by W5 g (1,a) \WAa.

We also need to understand how (—), behaves under right multiplication by a non-integral sim-
ple reflection. This reflects the effect of non-integral intertwining functors which will be defined in
§3 and will be used in the algorithm. Roughly speaking, right multiplication by a non-integral sim-
ple reflection translates (Wg, W5 )-coset structures to (Wg, W B;\)-coset structures, while conjuga-
tion by the same reflection translates right Wy, gy, 2)-coset structures in W to W, sA,O(r,s)"COSEL

structures in W A

Lemma 2.4.6. Let u € Agy, B € TT—TI\. Then Wg(usg) is the smallest right Wg-coset in
We (usp)Wsa = (WouW,)sg.

Proof. By Lemma 2.1.3(e)(f), usg € As,a. Proposition 2.3.2 says that elements in A, are con-
centrated on the smallest right Wg-cosets. So the right coset Wg (usg) containing usg must be
the smallest in the double coset W (usg )W A containing usg. This proves the lemma. The final

identification simply follows from sg W pASB = W, by 2.1.3(d). O
Rephrasing slightly and using 2.3.2 again, we get

Corollary 2.4.7. Let u € Agy, B € TT—=TI\. Ifr € A©,spA denotes the unique representative of
W@(USE,)WSB)\, then Wgr = Weusg.
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Proposition 2.4.8. Let u € Ag, B € TT—TI,. Let 1 be the unique element in Ag,spa N WeusgWi .

Then conjugation by sg is a bijection

sp(=)sp : Wisgn),o(r,spn) \Wisgh) = Wao(uar) \Wa

that preserves the partial orders on right cosets. Moreover, the following diagram commutes

spl—Jsp
Wisgn),0(r,sgn) \Wisga) = Wa o) \Wa

ind, l lindx : (2.4.9)

(—)sp
We\W We\W

In particular, for any C, D in the image inds ;x (W(sﬁ?\)@(r,sﬁ?\)\w(sﬁ)\)),
D g‘r,sﬁ)\ C & DSB gug\ CSB'
Proof. By the preceding corollary, there exists w € Wg such that wr = usg. Therefore

spO(u,A) = sp (u™! Lo NTly) (by definition of ©(u, A))
= (usﬁ)_] Lo Nsglly
= (WT)qZ@ﬁﬂsB)\ (since wr = usp)
=r 1w 'Ze) N,
=T’_1Z®ﬂn557\ (sincew € Wg)

=0O(r,spA) (by definition of ©(r,sgA)).

Hence conjugation by sg sends W, sA,0(1spA) O Wa o) and therefore induces a bijection from
Wsﬁx,@(rrsﬁm\wsﬁ)\ to W) @) \Wa. Furthermore, since conjugation by sg preserves Bruhat
orders (Corollary 2.1.4), it also preserves the partial orders on right cosets.

To check that the diagram commutes, take any D’ € W/, sA),0(1,s BA)\W(S gA) Along the top-
right path, D’ is sent to

Weu-sgD’sg = WewrD'sg = WerD'sg,
which agrees with the image along the bottom-left path. O
2.5 A technical lemma

In the last part of this chapter, we prove a technical lemma that will be used in §4.6 in induction

process.
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Proposition 2.5.1. Let u € Ag ) and C € Wg\WeuW,. Suppose C # Weu. Then there exist o« € TTj,
s = 0and B1,...,Bs € Tsuch that, writing zo = 1,zy = sg, - - - sp, and z = zs, the following conditions

hold:
(a) forany 0 <1< s—1, Biyq is non-integral to 2;1 A
(h) z laeTIn TT,—1y;
(c) Csq <y G
(d) ifs>0,Cz<C;
(e) Csqz=Czs, 1, < Cz

This proposition is used in showing that the g-polynomials defined geometrically (by tak-
ing higher inverse images of irreducible D-modules to Schubert cells) agree with the Whittaker
Kazhdan-Lusztig polynomials for the parabolic system (W, TTx, ©®(u, A)). This is a proof by induc-
tion in the length of C. As mentioned in §1.4, one of the characterizing properties of the Kazhdan-
Lusztig basis C,, is a condition on the product C,,,Cs. An analogous characterization holds for their
Whittaker version. If the simple reflection s € W), happens to be simple in W, then multiplication
by Cs on C,, lifts to the geometric U-functor (push-pull along X — X;) which has been treated by
Romanov. However, if s is not simple in W, no such U-functor exists. The strategy in this situa-
tion is to use non-integral intertwining functors to translate everything (this is condition (a) of the
proposition) so that s becomes simple in both the integral Weyl group and in W (this is condition
(b)). On the W), level, these non-integral intertwining functors correspond to applying conjuga-

1

tions sp, (—)sg, by non-integral simple reflections so that s € W, is translated to z~'sz which is

simple in W,_1,. On the W level, they correspond to right multiplication on C by z = sg, - - - sg,.
Also, one needs to ensures that the length of C decreases after these non-integral reflections in or-
der to apply the induction hypothesis on C (this is condition (d)). The existence of such a chain of

non-integral reflections is guaranteed by the proposition.

Proof. Since C # Wgu, in particular C # Wg), there exists a simple reflection s such that Cs, < C.

If there exists a € TTNTT, such that Csi < C, then this « together with s = 0 satisfies the
requirement: (a) and (d) are void, while (b) and (e) are true by construction. We need to verify
(c). Since sy is simple in (W5, Ty ), we have three mutually exclusive possibilities: Csy) <y C,
Csq = C, or Csy >y,n C. Since the map ind, preserves the partial order, they imply Cs« < C,
Csq = Cand Csy > C, respectively. By our choice of «, the last two possibilities cannot happen.

Hence we must have Csy <,» C and (c) holds.
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Suppose such « does not exist. Then any simple reflection that decreases the length of C via
right multiplication must be non-integral to A. Let sg,, 31 € TT—TI,, be one of those. If there exists
o e [LERRI PPN with Csg, sy < Csg,, we claim that « := sg, &’ € spiMMsg,a =T, s =1 and 1
satisfy our requirements. (a) and (d) follows by our choice of sg,, (e) follows from the conditions
on «’. For (b),

z 'a=sp,sp,0' = €N, A

by definition of z and «’. For (c), arguing in the same way, we only need to rule out Csy > C,

which would imply {(C) —{(Csxsg,) € {—2,—1,0,1}. On the other hand,
C>Csp, >Csp sy = Csﬁ]s(sf31 «) = Csp;sp;sasp; = Csasp;-

So {(C) —£(Csxsp,) = 2 and (c) holds.

If such o’ does not exist, then we can find 8,,...,Bs € Tl such that Czi,; < Cz; forall 1T <
i < s — 1 until we get to a point where there exists a” € TTNTT, 1, with Czs,» < Cz (termination
of this process is proven in the next paragraph). We claim that « := za” € 2IT, 1, =TT, s and
B1,...,Bs satisfy our requirements. The verification is essentially the same as in the previous case.

(a), (b), (d) and (e) are satisfied by our choice of 3;’s and «”. For (c), we have an inequality
Cz> Czsqn =Czs, 1, = Czz 'sqz = Csqz (25.2)
where {(WE?) = L(w€z) = {(WC) —s. Also wEZSa” = wCzs,n = WwCsyz. Hence

LwWCsy) = LWCsqzz 1)
— gwCsezz 1)
<U(WESeF) 4
= 0w ) —1+s

={wS) =1 < ().

This rules out Cs,, > C and (c) is thus verified.

Lastly, let us show that this process of finding «” must terminate no later than when we get
to L(wCZ%) = {(wg) + 1. That is, we show that when ¢{(W€%) = (wg) + 1, such an «” must exist.
The condition {(w¢?) = L(wg) + 1 implies Cz = Wgsy > Wg for some simple reflection s.,. If
Y € =TI, thens, € A, 1,. Also, since Wgs, > Wg, any element of Wgs, must have
length > 1. Hence sy is the shortest element of Wgs,, i.e. sy, € wg®W. Therefore sy, € A,_1, N
(Wwe®W) = Ag 1. Since C = Wg syz~ !, by (repeatedly applying) Lemma 2.4.6, we see that C is

the smallest right Wg-coset in the (Wg, W) )-coset containing it, that is, C = Wgu. This contradicts



2.5. A technical lemma 31

our assumption on C. Therefore y € TTNTTy, and «” = v satisfies our requirement for «”. Thus

the process terminates. O
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Chapter 3

Intertwining functors and the U-functor

In this section, we study intertwining functors and the U-functor. §3.1 defines these functors and
presents a proof of the structure of U-functor on transversal irreducible modules. The proof is
streamlined from the one in [Mil] which was partially reproduced by Romanov in [Rom21]. §3.2
studies intertwining functors for non-integral reflections and show that they translate the Kazhdan-
Lusztig polynomials.

Readers can review §1.3 for the basic geometric setup and related notations. In the rest of the
paper, we will use facts about D-modules without citing references, including the distinguished
triangle for immersions of a smooth closed subvariety and its complement (also known as the
distinguished triangle for local cohomology), the base change theorem for D-modules, and Kashi-
wara’s equivalence of categories for closed immersions. These facts are contained in [BGK™87],

IV.8.3, 8.4 and 7.11, respectively.

3.1 Definitions of the functors and their action on irreducible modules

Write 0 for a Weyl group orbit in h*, and let A € 8. Write D®(Uy) = D?(Mod(Up)). For a twisted
sheaf of differential operators D on a space, write DP(D) = DP (Mod 4 (D)) for the bounded de-
rived category of quasi-coherent D-modules.! Recall that the localization theorem of Beilinson and

Bernstein - an equivalence of categories
Dx Zi? —:Mod(Up) = MOqu(’D)\) :T(X,—)
0

for antidominant regular A. For wA (w € W, still for A antidominant regular) at another Weyl
chamber, taking global sections is no longer exact, but its amplitude is controlled by w. Namely, for

any quasi-coherent D,,,\-module V, HY(X, V) can be nonzero only in degrees between 0 and £(w).

!When using derived functors, one needs to be careful of which derived category to work in. For example, one may
choose to instead work with the full subcategory of the derived category of all D-modules with quasi-coherent cohomologies
Dgc (Mod(D)), as is done in [HTT08]. These issues have been carefully cleaned up in [Mil, Chapter 3 §1].

33
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The above equivalence of categories of abelian categories now becomes an equivalence of derived
categories

D (Up) = D®(Dwn).

Therefore, we have an equivalence
D®(Dy) = D®(Up) = D®(Dya).

The intertwining functors LI,, are geometrically constructed functors that realize the above equiv-
alence without going through Up.

In more details, for any w € W, let Z,, denote the G-orbit in X x X labeled by w. This is the
subset of X x X consisting of pairs (x,y) such that the Borel subalgebras by and b corresponding
to x and y are in relative position w. Here by and by, are in relative position w if, for any common
Cartan subalgebra ¢, the sets of positive roots defined by by and by, differ by w. If w is fixed, we
write

X &z, P2x

for the two projections. For an integral weight u € h*, write Ox () for the G-equivariant line
bundle on X where the by-action on the geometric fiber at x € X is given by u. Tensoring with

Ox () is an equivalence of categories

~ © Ox(#):Modge(Dp) = Modge(Da1 )
X

which we simply denote by V ®p, Ox(un) =: V(u). Twisting by line bundles shares the usual
properties with respect to direct and inverse images (for example, the projection formula holds). It

will not play a substantial role for us other than book-keeping purposes.

Definition 3.1.1. Forw € W and A € h*, the intertwining functor LI,, is defined to be

LIy : D?(Dy) — D®(Dywa),

Oz,

where £ is the unique line bundle on Z,, that ensures we land in the correct category. Explicitly,

& =p70x(p—wp).
Write I, for HOLL,,,. It is shown in [Mil, L.3] that LL,,, is the left derived functor of I,.

Theorem 3.1.2 ([Mil, Ch.3 §3]). Let w € W be arbitrary. Then

(1) The left cohomological dimension of L1, is < £(w);
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(2) LI,y is an equivalence of categories;

(3) If A is antidominant, the functors I'(X, —) and RI'(X, —) o L1, from DP®(Dy) to D (Mod(Uy)) are

isomorphic;

(4) If B € T—TIy, L, is an equivalence of categories Modqc (D) = Modqc(Dsﬁ)\) whose quasi-

inverse is also given by Ls .

We will mainly look at intertwining functors for a simple reflection w = s4. The behavior of
LI, differs greatly depending on the integrality of «. We study the integral case in this section.
The non-integral case will be treated in the next section.

For the rest of this section, let o« € TTNTT,, i.e. a simple root integral to A. LI, is naturally
related to two other functors through the following diagram. The closure of Z;, in X x X is the

union Y := Ax U Z, which fits into the following commutative diagram

ZS‘x P2
NN

a2 (3.1.3)

Yo — X

b1 qll lp(x

X 2%, X,

where X is the partial flag variety of type s, and the square is Cartesian. Using the variety Y,
we define

Definition 3.1.4.

U : Modge(Dy) — DP(Ds 2

Ve qie (€ ® q3V),
Ovy
where £ is the unique line bundle that ensures we land in the correct category. Explicitly,

€ =qi0x ([’ (N) +1p— /(N ) 2 a30x ((a” (A) +1)p).

Since q; is flat and q; has relative dimension 1, H'UV can be nonzero only for —1 <j < 1.

We want to define a similar functor going through X instead. This requires the existence of a
twisted sheaf of differential operators Dx_» on X« whose pullback to X is D,. Such existence is
equivalent to oY (A) = —1. Since « is assumed to be integral to A, we can find an integral weight

I such that &Y (A + py) = —1.
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Definition 3.1.5. Let i1, € h* be an integral weight such that " (A + py) = —1. Write DX A1

for the twisted sheaf of differential operators on X determined by A + . Define Uy to be the

composition
*®OX(ch] P+ b
Modgc(Dy) ——————— Modqc(Da+p,) — Dge(Dxoa+iue)
+ _ —
P, D®(Dasyr,) —90x(~Ha), D®(Dy)
that is,

Uy : Modgc (D) — DP(Da),

Ve (PXPHV(M))(—M)-
This does not depend on the choice of p.

Since p« is flat and has relative dimension 1, HiU4 can be nonzero only if =1 < j < 1. By

base-changing using the Cartesian square in (3.1.3), we see that U is a twist of L.
Lemma 3.1.6. For any Dy-module V, and any o € TTy NTT, (Ua V) (—a¥ (A)ax) = UV.

Remark 3.1.7. HOUy is the geometric version of Vogan’s U-functor defined in [Vog79, Definition

3.8], but we will not need this fact.

The main result of this section is the following.

Theorem 3.1.8 ((Mil, Ch.5 Lemma 2.7], [Rom21, Lemma 17]). Let C € Wg\W and « € TT\ NTT such
that Csy < C. Then

(a) Forallp, HP UL L(WCsq, A\, 1) is a direct sum ofE(wD,A,n)’sfor some D < C,
(b) forallp #0, HPUs L(WEsq, A1) =0, and
(c) LWE,\n) is a direct summand ofHOU“E(wCs(X,A,n).

In particular, there exist integers cp’s for each D < C, depending on C and «, so that

U(X‘C(WCSO(/}\/T]) = @ E(WD/AIHJ®CD'
D<C

Remark 3.1.9. In Chapter 4 we will be able to obtain a more precise vanishing. Namely, irreducibles
L(wP,A,n) that are not in the same block as £(w¢, A, n) will not appear in Ug L(WCsq, A, 7). But

this is a consequence of the main algorithm and does not follow from looking at U itself.
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Because of the condition Cs, < C (we say that s is transversal to C(wCs)), the push-pull op-
eration enlarges the support of L(WEsq, A1) by one dimension. So part (c) is natural (modulo the
part that £(w®, A, 1) appears only in H®). Part (a) follows easily from the decomposition theorem.
Part (b) is more subtle.

To ease notation, we write w = w€

, and we omit writing 1 from now on in the proofs. We will
also stop writing the line bundle twists so long as the categories we are working with are clear.
Their appearances in the previous definitions is entirely for book-keeping purpose, and it is easy

to recover them in the proofs.

Proof of 3.1.8(a). Part (a) follows from the Decomposition Theorem for holonomic D-modules,
proven by Mochizuki [Moc11]. In more detail, Decomposition Theorem says that direct image of an
irreducible holonomic D-module along a proper morphism is a direct sum of irreducible modules
in various degrees. Applied to the proper morphism py : X — X4 and to the irreducible module
L(wsy, ), we see that HPp o4 L(ws, A) for any p € Z is a direct sum of irreducible D-modules
J’s on Xy. So HP U L(ws, A) is a direct sum of (line bundle twists of) p/, J’s (here we used the
fact that pZ, is exact and commutes with taking HP). We need to show that each p{ 7 is irreducible.

Since J is irreducible, it has irreducible support. Since p« is a locally trivial fibration, pjcj has
irreducible support, and locally it is irreducible or zero. Suppose p{; J has a proper submodule W,

SO p&j fits into a short exact sequence
0— W —ptd — (ptT)/W —0.

Then Supp p, J = Supp W USupp(p& J)/W. We claim that Supp W and Supp(p{; J) /W must be
disjoint. Assume otherwise, then we can take an open set U C X that contains a point of Supp W N

Supp(pd J)/W and so that (p{, J )|y is irreducible. But then we would have a short exact sequence
0 — Wlu — (peDNlu — (P& TN/ W)y — 0

with all terms nonzero irreducible, which is impossible. This proves the claim. On the other hand,
if Supp W and Supp(pL J)/W are disjoint, Supp piJ is now reducible, again a contradiction.
Therefore p{ J must be irreducible. As a result, HP U £(ws«, A) is a direct sum of irreducible mod-
ules. Since these modules are all n-twisted weakly N-equivariant, they all take the form £(wP,2).

It remains to show that modules that appear must satisfy D < C. This is again a support
argument. In view of the definition of U, twisting by a line bundle does not change the support,
while Supp HPp{p«+V is contained in p;] (p«(Supp V)) for any module V. In our case we are

looking at Supp V = Supp L(ws«,A) = C(wCs4), the closure of the Schubert cell labeled by w® s .
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By our assumption on C, wsy < (Wsg)sx = W. So px maps C(wsy) isomorphically onto its
image, and P (Pa(Clwsy))) equals the union C(wsy) U C(w) in which C(w) is open. Therefore

the support of HP Uy L(ws, A) is contained in the closure of C(w). This forces any direct summand

to be supported in C(w) and hence must have D < C. This proves (a). O

From this proof, we also see that any direct summand £ of HP Uy L(wsq, A) is of the form p{ 7.
So its support will be of the form pg ' (Supp J), which saturates any fiber of p, meeting it. We

record this as a lemma for later use.

Lemma 3.1.10. Let p € Z, let F be a fiber of p«, and let L be a direct summand of HPULL(WE sq, A 1).
Then either

* SuppLNF=,o0r
e SuppLNF=F

Part (b) is harder because it requires one to actually compute cohomologies of p g+ L(Wsq,A),
which is in general a difficult problem. We will get around this difficulty by first relating U to the
intertwining functor LI, and exploit the fact that the latter plays well with localization (namely
Theorem 3.1.2).

We first examine the relation between U, and LI, . Recall the diagram

Zso( P2
NN

a2 , (3.1.3)

Yo — X

P q1l lpoc

XLX@

As remarked in 3.1.6, U and U differ only by a twist. Hence the vanishing of HP U on £(wsq, A)
is equivalent to that of HPUL(wsy,A). On the other hand, U can be related to the intertwining
functor I, in the following way. Recall that the variety Yo = X x x_ X used to define the functor U

is the union Ax U Zg_ . So we have immersions

Ax 5 Y.z

Sa*
The distinguished triangle with respect to these immersions reads

it ——1Id
NS
)+)
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For a Dy-module V on X (which will be specified to V = L(ws, A) later), we can apply this triangle
to q3 V:

iyi'qV q3V

> ‘/
IS
j+irqV

Note that q; oi: Ax — Xis an isomorphism, and q; oj = p;. This triangle then simplifies to

i V[-T] q;V
BN e
_—
j+p2 V
Now apply q1.4, we get
q14i4 V=11 q1+43 V
E”\ ‘ N /
qi+j+pP3 V
in DY (Ds ), which simplifies to
V(= (A)o) [-1] uy
NG
LI,V

noting that q7 oi: Ax — X is an isomorphism and ¢ oj = p7 (the twist at the top left corner
comes from remembering all the line bundle twists we omitted). The long exact sequence of sheaf

cohomologies then splits into two sequences:
Proposition 3.1.11. Let V € Mod ¢ (D) and « € TINTIx. Then we have the following to exact sequences
0— H'uy — 1 ', ,V—0, (3.1.12)
0 — HOUY — I,V — V(—aV(Na) — H'UY — 0. (3.1.13)

The vanishing of H*'UV will result from information on LI )V, which we compute now for

V = L{wsq, A).

Proposition 3.1.14. Let V be an irreducible Dy-module. Then exactly one of the following happens: either
e I, V=00
e LI, V=0.

Proof. Since intertwining functors plays well with line bundle twists, without loss of generalities we

can assume A is antidominant regular, so that localization theorems can be used. Write V =T'(X, V).
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From Theorem 3.1.2 we know that RI'(X,LIs, V) = V. On the other hand, we have a spectral
sequence

EP'9 = HI(X, 191, V) = HPHIRT(X, LI, V) = HPHaV,

By Theorem 3.1.2, LI,V is concentrated in degrees —1 and 0, whose cohomologies are Dg_j-
modules. Also, cohomologies of D j-modules vanish outside degree 0 and 1. So the E;-page
is concentrated in degrees —1 < p < 0and 0 < q < 1, and so E; = E. The right hand side is

simply L for p + q = 0 and 0 otherwise. Hence the spectral sequence tells us
X, L', V) =H'(X, I, V) =0,
and by irreducibility of V, either
e H'(X, L 'I5, V) =0,T(X,Is,V) =V, or
e H'(X, LI, V) =V, (X, I, V) =0.

The first case implies RI'(X,L~'1I5, V) = 0. Since RI'(X, —) is an equivalence of categories between
Db(DS“;\) and D (Uy), this implies ! Is, V = 0. The second case implies I,V = 0 by the same

argument. These two cases cannot happen at the same time because LIs, is an equivalence of

S

categories. ]

We now show that the second case happens in our case (where V = L(wsy,A) and wsy < w).
Write O for the N-orbit p«(C(ws«)) = p«(C(w)) in Xy. Its preimage Xp := p;1 (O) is the union

C(wsy) U C(w). Write s : Xg — X for the inclusion map.
Lemma 3.1.15. s!LISaE(wCso(, A, M) is nonzero and is concentrated in degree 0.

Proof. Write

Zs,,0 = {(x,x') € Xo x Xg | bx and b, are in relative position sy }.
This naturally sits inside the preimage of Xp in Z;:

p; ' (Xo) = {(x,x") € X x Xq | bx and b, are in relative position sy }.

However, if x and x’ are in relative position sy, then they have the same image in X. Hence

x" € Xp implies p«(x) = p«(x’) € O, and this forces x € Xg. As a result

Py (Xo) = Zs, 0.
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Hence, we have the following diagram

7T 7T
Xo «— Zs,,0 — Xo

)

X P1 Zs P2 X

o

where both squares are Cartesian. Moreover, the preimage of C(wsy) C Xp under 7, is isomorphic

to C(w) through the first projection. So the above diagram can be extended to

Clw) == C(w) —2» C(wsq)
Lwl i} liw i} llws(x
Xo «—2— Zs. 0 2, Xo (3.1.16)

P1 Zs P2 X

where the top-right square is also Cartesian. We use this diagram and base change to compute

s!LIs(XL(ws(x,)\).

s!LISaﬁ(ws“,A)

= s!p1 +p§r£(wscx, A) (by definition of LI, , omitting twists)
=153 L(Wsa,A) (base changing)

=718 pyL(wse, A)[dx —dz, ] (since pJ = pjldx —dz, )
:7T1+7tlzslﬁ(wso¢,7\)[dx—dzm] (p2 0§ =somy). (3.1.17)

Here dx denotes the dimension of X; similarly for dz__ .
Now we notice that s' £(wsq, A) is supported on the closed subvariety C(wsy) in Xg. By Kashi-
wara’s equivalence for closed immersions,
s'L(ws, A) = LW5“+L;’NS“S!£(WS‘X, A)
- LWS‘X+iix\)sa£(WSCX/ }\)/
where the last equality follows from s, © s = s, the inclusion of C(wsy) in X.

Lemma 3.1.18. Forany C, A, andn,

iiNCE(VVCI 7\/11) = Og(

we)’
Proof of 3.1.18. Since T (wE, A1) is a direct image, it contains no section supported in 9C(wC)

except 0. The same holds for L(wWE, A1) being a submodule of Z(wS,An). Hence
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LW, An)Ix_sc(we) is a nonzero submodule of Z(wS, A\, n)lx_5c(we)- But ZwS,An)lx o (we)
is irreducible by Kashiwara’s equivalence of categories for the closed immersion C (W) — (X—

dC(w©)), so E(WC/A,ﬂNxfac(wC) = I(WC/}\/T])'X—BC( ), and their further pullback to Cw)

WC

M

is OC(WC)' O
Applied to Cs«, we see that i!WS(XE(ws“,?\) = OTc]t(wsa)' Hence s'£(wsq, A) = st“+(’)g(ws“)-

Therefore, continuing the calculation in (3.1.17),

s!LIS(XE(wsLX,?\)

= 7r1+7t!2sta+(92(ws“) [dx —dz,_]

=701 4 Ty QEZOE(WS“) [dx —dz,, | (base changing)

=1 b @5 OL () [dx —dz, +dew) — de(wsy)]  (since @5 = @3 [dew) — dewsy))

= LW+OT&(W)[dX —dz,, +dcow) —dciwsy)] (717 0 Ty = L)

= w1 O (w)’ (3.1.19)

where the last equality is because
dx —dz,, +dcw) —dc(wse) = dx — (dx + 1) +&w) — ({(w) —1) =0.

As aresult, s'LIs, £L(wsq,A) is concentrated in degree 0. O

What does this tell us about vanishing of L' I, £(ws«,A)? Suppose otherwise, then by Propo-
sition 3.1.14 LI L(wsg, A) = L! Is, L(wsg, A)[1]. On the other hand, the inclusion s : Xg — X

decomposes as

Xo =5 X — 0Xo —22 X

where 0Xp = X — X0 is the boundary of Xo, sop is open, and s, is closed. Hence si)p has zero

amplitude. By Kashiwara’s equivalence, s., has zero amplitude on complexes whose cohomologies

are supported in Xg. Our L! Is, L(wsq, A) is supported in the closure of py (pZ’1 (C(wsy))), which

equals C(w) = Xg. So cohomologies of 3!0p LI, L(wsq, M) are supported in Xo. As a result,
L

$'=5,0 slop has zero amplitude on L! Is, L(wsy). Therefore s'L! Is, L(wsq, A)[1] is either O or

concentrated in degree —1. This is a contradiction because by previous calculation

ST L Lwse N1] = 5L L(Ws o, N) = b+ OF

w)

is nonzero and concentrated in degree 0. Thus L~'I5, £(ws«, A) must vanish.
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Proposition 3.1.20. Let C € Wg\W and « € TINTTy so that Csy < C. Then

Isaﬁ(wcsa,)\,n) #£0, and

L', LwCsa,Am) =0.
We are ready to complete the proof of Theorem 3.1.8.
Proof of 3.1.8(b)(c). The exact sequence (3.1.12) for V = L(ws, A) says
0 — H UL (Wso, A) — LI, L(ws g, A) — 0.

By the preceding proposition 3.1.20, the second term vanishes. By exactness, the first term also
vanishes.

For H! UL (wsq,A), we look at the sequence (3.1.13):
0 — HOUL(Ws o, A) — Is L(Wsa, A) — L(Wsg, saA) — H'UL(Wse, A) — 0. (3.1.21)

Suppose H'UL(wsq,A) # 0, then the last map in the sequence must be an isomorphism because
L(ws«, s«A) is irreducible. In particular, H'UL(Wsg, A) is supported on C(wsg), and any fiber of
P« that meets C(ws) intersects it at a single point. On the other hand, recall that H'UL(wsq, A) is
a twist of H' Uy £ (wsq, A). By 3.1.10, any fiber of p, that meets its support must be fully contained
in the support. This is a contradiction. Thus H'UL(ws«, A) is also zero. This proves part (b).

It remains to prove part (c). From the calculation (3.1.19), we see that the support of
Is, L(wsy, A) contains C(w). From the definition of LI, the support of I, £L(ws,A) is contained
in C(w). So the support equals C(w). In view of the sequence (3.1.21), this forces the support
of HOUL (wsq,A) to also equal to C(w) since L(wsq, SoA) is supported in a subset with strictly
smaller dimension. On the other hand, we know from part (a) that HOUL (wsq, A) is a direct sum
of irreducible modules. So it contains a direct summand supported on C(w). This summand can

only be £(w, sqA). Identifying U with a twist of U, we see that £(w, ) is a direct summand of

HOU L(wsq, A). This proves (c) and completes the proof of 3.1.8. O

3.2 Non-integral intertwining functors

In this section, we study I, for a non-integral simple root f3.

We will use the following easy fact in a number of occasions which is mentioned in the intro-
duction and is proven in [MS14]. We include a proof for completeness. Recall that © C TTis defined
to be the subset of simple roots « so that n|g, # 0, and ©W is a cross-section of Wg\W consisting

of the unique longest elements in each coset.
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Lemma 3.2.1.
(@) Ifw & ®W, Modcon(Dc(w), N,n) =0;

®) Ifw € Ow, Modcon (D (w), N,n) is semisimple with a unique irreducible object, denoted by
Og(w), which has O ¢ () as its underlying O-module.

Proof. Let x,, € C(w), write N,,, = Staby (xy,) for the stabilizer, and write n,, for its Lie algebra.

Then C(w) = N xn,, {xw}. So by descent,
MOdcoh(DC(w)/ N,n) = Modcon(C, Nw, ).

Here, since Ny, C {x} trivially, C = Dy, ; naturally comes with the trivial action of Ny, and the
trivial map 0 : n,, — C. By definition, an object on the right side is a finite dimensional vector space
V equipped with a linear action N,, Cgrp V so that the differential n,, Cgrp V of the Ny, -action
differs from the action n.,, 9% c V by —l,,, thatis, n,, Cgrp Vis given by —m|,,,. Since N,,
is unipotent, n,, Cgrp V must be nilpotent. On the other hand, the action of any element & € n,,
given by —|y,, is semisimple. Hence, if V is nonzero, —|n,, must be zero and n,, Cgrp V must be
trivial.

The roots in n,, are L+ NwXI*. Hence n,,, = 01is equivalent to ® N WL ™ = @, or equivalently
w '@ C -1+, ie. w € ®W. So Modon (C, Ny, ) contains a nonzero object onlyifw € Ow.

Suppose w € OW and V € Mod.on(C, Nw,n) is nonzero. We have seen that n,,, Cgrp Vis
trivial. Hence Ny, Cgrp Vis also trivial.2 So the category Modon (C, Nw,m) is just the category
of finite dimensional vector spaces, which is semisimple with a unique irreducible object. Induc-
ing to N, we see that Mod¢on (D¢ (w), N,n) is semisimple with a unique irreducible object whose

underlying O-module is O¢ (- O

To use the intertwining functors for our purpose, we need to compute the action of intertwining
functors on standard and irreducible modules. Romanov computed the following result for Csg >
C. The main ingredients of the proof there are base change formula and projection formula for
D-modules. We reproduce the argument here.

As in the previous section, 1 will always be fixed, and we will omit writing 1 and line bundle

twists in the proofs.

2The representation n,, — gl(F(x.)) is the differentiation of N,,, — GL(F(x,)). Since the firs map is trivial, the image
of the second map must be a finite subgroup. But N,, is connected, so the image must be connected. This forces the image
of the second map to be trivial.
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Proposition 3.2.2 ([Rom21, Proposition 6]). Let 3 € TTand C € Wg\W such that Csg > C. Then for
any A € b¥,

LISﬁI(wC,A,n) = I(wcsﬁ, sgA,m).
Proof. Recall the variety Z;, C X x X defined at the beginning of the previous section, with pro-
jection maps p1, p2 : Zs, — X. Since Csg > C, the preimage of C(w®) under p; is isomorphic to

C(w€s ) viapy. So we have the following diagram

C(wCsp) =—— C(wCsp) —2> C(wC)
X P1 ZSD( P2 X

where the right square is Cartesian. Thus, by base change,

LI, Z(wS,A) = P14+P3 lwe 0L (e

_ ¥ + M

= p1+lwcs[5+®2 OC(WC)
m

OC(WCSB]

:I(wcsﬁ,sﬁk). O

- .wCsB—O-
Combined with 3.1.2, this implies
Corollary 3.2.3. Let 3 € TT =TTy and C € We\W such that Csg # C. Then
L Z(wWE, Am) =Z(wSsg, spA,m).

Proof. Suppose Csp > C, then the statement follows from 3.2.2. But since I, is an equivalence of

categories with inverse I 67

I(WE,N) =TI, Z(W sp, sph). O

It remains to consider the case Csg = C. This case requires a bit more care than the previous
case since the preimage of C(w®) under p; no longer has a very clean description.

Recall that, for a simple root 3, pg : X — Xp is the natural projection to the partial flag variety
of type B. This is a Zariski-local A'-fibration. x and y are contained in the same pp-fiber (i.e.

pp(x) = pp(y)) if and only if by and by are in relative position 1 (i.e. bx = by) or sg.
Lemma 3.2.4. Let C € Wo\W and 3 € Tl such that Csg = C. Set

S={lx,y) € C(w®) x C(W®) | by and by are in relative position sg} C Zs,.
Write C(w©) ﬂ S m> C(wC)for the projections. Then

(P1ls)+(P2ls) O ey = O ey
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Proof. For convenience, write w = w<, p1 = p1ls and p2 = p2ls. Set

§" = CW) Xpy(c(w)) COW) ={(x,y) € C(w) x C(w) | pp(x) =pp(y)}

Then S C SUA¢(w) =S’ C Zs,, where Ac(,,) denotes the diagonal. Write C(w) AL g7 925 ()
for the projections, and Ac () 14, 67 5§ for the inclusions. Then i A is a closed immersion with
relative dimension 1, and ig is open. We have the following diagram

P2

Si/s—\
N

§' —— C(w) (3.2.5)

Clw) —2 pg(Cw))

where the bottom-right square is Cartesian.

Applying the distinguished triangle for the immersions i and is to q; OF,,,, we get

. .|
1A+1qu+012:(w) qfo?:(w)
1s+15 43 OC(W)

Applying q1., we get

q1+iA+ilAq§rOT(]j(w) Q1+q§r02(w)
\ /

(1] L
q]+ls+1§qz+(9?;(w)
Applying base change to the bottom-right square in (3.2.5), 4193 Oc () = pgp[3+ OTc]t(w)' Here
PR+ (’)T(':(w) is an n-twisted Harish-Chandra sheaf on pg(C(w)). But pg(C(w)) is isomorphic to
C(wsg) as an N-variety via pg, and since wsg is not the longest element in Wgwsg = Wgw, we

know there is no n-twisted Harish-Chandra sheaf on C(wsg) except 0. Hence p[3+(92 (w) = 0 and

thus q14q3 Oc(w) = 0. As aresult,
q1+iS+i_s'_q;O?j(W) = q1+iA+i!Aq2_O?:(W)[”'
The left side simplifies to p1+p§r(’)g(w). For the right side, q14ia+ = (g1 0ia)+ and gy 0ia is
the projection Ac(,,) — C(w) along the first coordinate which is an N-equivariant isomorphism.
Moreover,
iA43 OF (1 =123 OF () 111

= (qZ o IA)+OTC](W)/
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and q; o i, is the projection Ac(,,) — C(w) along the second coordinate, also an N-equivariant

isomorphism. Thus
P13 OC( = (1 01a)+ (42 01a) 7 OG () = Oy -

Lemma 3.2.6. Let sg € ITand C € We\W such that Csg = C. Write 1 : CwC) = CcwC)u C(WCSB)

for the inclusion. Then for any F € MOdCOh(DC(wC)UC(WCSB)/N/T])/

F = L+L!.7: = (L+O?;( )e{arankL!F

w€)
where rank stands for the rank as a free O-module.

Proof. Writew = wC. The assumption implies that wsg € C, wsg < w, and that C(w) and C(wsg)

are open and closed in C(w) U C(wspg), respectively.

Since the category of n-twisted Harish-Chandra sheaves on C(w) is semisimple, ' F is a direct
sum of copies of O} (w)- This implies the second equality. For the first equality, adjunction gives a

map

F ol F (3.2.7)

whose kernel and cokernel are supported on C(wsg ), which are equal to direct images of n-twisted
Harish-Chandra sheaves on C(wsg) by Kashiwara’s equivalence. But wsp is not the longest ele-
ment in C, so there is no such module on C(wsg) except zero. Hence (3.2.7) is an isomorphism,

which establishes the first equality. O

Proposition 3.2.8. Let C € Wg\W, B € TTsuch that Csg = C. Then

LI, ZwS A n) = Z(wE, spA,n).

S
Proof. Write w =wC. Let
F=2Zs, Xp, xin CW) ={(x,y) € X x C(W) | bx and by are in relative position sg }.

and let S be as in 3.2.4. Then S is a subvariety of F. It’s easy to see that

p1(F) ={x € X| 3y € C(w) such that by and by, are in relative position sg }

= Cw)UC(wsg).
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So we have the following diagram

N
N NN e

Cw) U C(wsp)

\/ \/

The right-most square is Cartesian by definition of F. The top-left square is also Cartesian, i.e. S is

iw

the preimage of C(w) along pq : F — C(w) U C(wsg). By definition of intertwining functors and

base change,

LISﬁI(W/ A) =pi +p3_iw+02(w)

=Pr+irt (leF)JrO?:(W)

=t (P11F)+ (P2lF)F O - (3:210)

We claim that (p; \F)+(p2\F)+(92(w) = LW+02(W). By 3.2.6,

(P11F)+ (P2lF) TOR ) = tw b (P11F)+ (p2lF) T O

Apply base change using the top-left square in (3.2.9),

Uy (P1IF)+ (P2l ) TOL () = (P1ls)+as (palr) TO ) = (p1ls)+ad (palr) TOL

Note that p,|r 0o as = pzls. Hence, by 3.2.4, the sheaf in the above equation equals Og(w). This

proves the claim. As a result,

= :LWJFO?:

(w)

=Z(w,sgAm)
which proves the proposition. O
Corollary 3.2.11. Let p € TT—TTy. Let C € Wo\W. Then

Lsp Z(wS,Am) = Z(wEs8, 55, m),

Sp

ISB‘C(WCl 7\/11) = ‘C(WCS[S/ SB)\/TIJ

(note that we have w&S# instead of wEsp on the right hand sides).
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Proof. The statement about standard modules is the combination of 3.2.3 and 3.2.8. Since I, is
an equivalence of categories, it must send the unique irreducible submodule of Z(w®,A, 1) to the
unique irreducible submodule of Z(wEss, sgA,m), i.e. it must send L(WE, A1) to LWEsse, spA,M).

O

Next, we show that non-integral intertwining functors also preserves pullback of irreducible

modules to strata.

Proposition 3.2.12. Let 3 € TT—TT), C,D € Wo\Wand p € Z. Then
rank Hpi‘!ND LW, A1) = rank Hpi‘ENDSB L(wEss, sgA1).

The proof we give below uses the same tools as in the previous proposition. There is an al-
ternative proof which we briefly mention. One can show that rank HP i!WD LWE, A7) equals the
dimension of the p-th D)-module Ext group of MWE, A1) and L(wWE, A1) using facts on de-
rived categories of highest weight categories (Brown-Romanov [BR22, Theorem 7.2] showed that
Mod¢on(Da, N,n) is a highest weight category). The proposition follows from the fact that I, is

an equivalence of categories and induces an isomorphism on Ext-groups.

Proof. Writew = wD.,

There are two cases, Dsg # D or Dsg = D. Consider the first case. Assume Dsg < D. Then
wDse :WDSB = wsp. Let

F = C(wsp) Xipsy X P1 Zs, = {(x,y) € C(wsg) x X | bx and by, are in relative position sg}.

Then the second projection p;|r : F — X induces an isomorphism of F onto C(w), and we have the

following commuting diagram

C(wsp)

W\/ \/

where the left square is Cartesian. Using the preceding proposition and base change,

rankaiiNDSBE( wCss ,spAM) —rankatwsﬁl BE(WC,?\,n)

= rank HP 1WS P14P; FLwC LA M) (3.2.13)

= rank HP (p1/p)+ (p2lp)' i LWE, A, ) [-1]. (3.2.14)
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Since Mod¢on (D¢ (w), N, M) is semisimple, i, L(w€,A,n) is a direct sum of (’)TC' (w) ’s at different de-
grees. So (p2l) i, L(WE, A\ 1) is a direct sum of (’)E’s at different degrees (p2|r is an isomorphism),
and the rank at a degree is the same as that of i}, £L(w®,A,1). It is therefore enough to compute
(p1lr)+Op. For this, we use the fact that a map of homogeneous spaces of a unipotent group is
isomorphic to a coordinate projection of affine spaces, that is, we have the following commutative
diagram where all maps are N-equivariant, for some N-actions on A' x A!(Wss) and A(Wss):

F Ll Clwsp)

Al x Allwsg) P11 PT1 Allwsg)
So it suffices to compute pry; O"

A1 XAZ(WSB
O X (9 (w ) (we remark that, without the assumption of Dsg # D, wsp and w can be in the

Since pry is a coordinate projection, pr] (9” twsp) =

b

same rlght We-coset, in which case O" does not exist). On the other hand, pri O" isa
Alwsp) 1C ptwsg)

WSB

rank one n-twisted sheaf, which can only be (92 . We conclude that

]XAE(WSB)

M _ n
OA1 XAK(WSB) - OA1 X OAE(WSB]'

As a result, writing p : A" — {x} for the unique morphism to a point,

erOleN(wsﬁ) =(p+Op1) K ((1d e(WSBJ)JrOZuwsB))
n
CNXO s
— O WSE, “]'

Therefore (p1|r)4+OF = Og(wsﬁ)[ﬂ and hence
rankailesﬁﬁ(wCSﬁ,sBA,n) =(3.2.14) = rankai‘!N,C(wC,?\,n).

Dsg — WD

Now consider the case Dsg = D. In this case w = w. Set

F=C(w) Xi, x,p, Ls, = {(x,y) € C(w) x X[ by and by, are in relative position sg }

and set S as in 3.2.4, viewed as a subvariety of F. Then the following diagram commutes

/Y'S
V\/W/

I

iw
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where the leftmost square and the top-right square are Cartesian. By the preceding proposition and

base change,
U 0sy LW, 5pA,m) = iy, I, LW, A1)
= (P1lF)+ (P2lF) T LOWE, A ) (=11, (32.15)
By 3.2.6, I LWE, AN = i tyit L(WE, A1), Hence

(3.2.15) = (p1lF)+ (P2lF) b Ly LW S, A1) 1]
= (p1lF)+ sy (p2ls) L, LWE, A ). (3.2.16)
Here p1lr o bs = p1ls. Also i‘!,\,ﬁ(wc, A1) is a direct sum of OT(‘:(W) in various degrees. Hence by

3.24,
rank Hpi‘!WDS{5 L(wEss, spA,m) =rank HP (3.2.16) = rank HPi, L(wS, A, m). O
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Chapter 4

Main algorithm

In this section, we formulate and prove an algorithm for computing a set of polynomials in q
indexed by pairs of right Wg-cosets whose evaluation at ¢ = —1 leads to the character formula
for irreducible modules. This is in the same spirit as the ordinary Kazhdan-Lusztig algorithm for
category O. The algorithm we will prove is suggested by Mili¢i¢ and is modified from the ones
in [Rom21], [Mil].

In §4.1, we define the Whittaker Kazhdan-Lusztig polynomials, the module Hg, and related
notations. The statement of the algorithm is contained in §4.2. Proof of the algorithm is divided

into sections that follow.

4.1 Whittaker Kazhdan-Lusztig polynomials

In this section we define the Whittaker Kazhdan-Lusztig polynomials. Since there already exists
a vast literature on Kazhdan-Lusztig theory, I have chosen not to present too much background.
Readers can look at [Rom21, §6] for comparisons with other versions of Kazhdan-Lusztig polyno-
mials.

Recall the sets Agx € W and ©(u,A) C T (u € Ag,)) defined in §2.3 and §2.4. Recall also
that we have a partial order on Wg\W inherited from the Bruhat order on OW, denoted by <.
Similarly, we have a partial order on W), gy, ) \W) which we denote by <, . By our convention
2.4.5, C <,» D means that C and D are both in WguW),, and C| <, Dla. So, C £,,» D means
either C and D are not in the same (Wg, W )-coset, or they are in the same coset WguW, but

Clx Zu Dla. Here (—)|y is the bijection

(DA :Wo\W = | Wremar) \Wa

LLEA@,)\
defined in 2.4.5.

53
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Let He be the free Z[q, q']-modules with basis 5c, C € Wg\W. For any « € T, define a
Zlq, q” ]-linear operator on Hg by

qdc +0cs, if Cso > C;
Ta(dc) =<0 if Cso = C;
q '8c +8cs, ifCse <C.

The module Hg is a module of the full Hecke algebra H, and T« encodes the action of the Kazhdan-
Lusztig basis elements in H.

For an element u in Aga, let Hg(y ) be the free ZI[q,q ']-module with basis 6g, E €
Wy o) \Wa. Define the operator T in the same way as Ty, replacing & € TTby a € Tl, C
by E, and >, < by >, 5, <y, respectively. Namely,

qdg + dgs, if Esy >un B
TUASg) =40 ifEsq = E;
q '8F +8gs, if Esq <yn E.

We will use a left action of W on Hg defined by w - ¢ = §,, ¢. Similarly, a right action of W on
He is defined by d¢ - w = 8¢y We will simply write woc, 6 cw for the actions, omitting the dots.
w(—)w~! then denotes the simultaneous action of w on the left and w—! on the right. By 2.4.8,

sp(—)sp defines a bijection

sg(—=)sg - Waoua) \Wa —= W ror,spn) \Wsaa
wherer € Ag ¢ A is the unique element representing the coset Wgusg W A We extend this to an
isomorphism

sp(—)sp i Homar) — H@(mﬁ;\), OF 2 BsgEsg-
We also extend (—)|) to a map

(Fr:He = B Hownr), OS¢ dcj,-

LLEA@,A

The following theorem, proven in [Rom21, Theorem 11], defines a set of polynomials indexed
by pairs of right cosets, called Whittaker Kazhdan-Lusztig polynomials. It is verified in op. cit.
that these polynomials are dual to the parabolic Kazhdan-Lusztig polynomials. More details of
these comparisons can be found in op. cit. For a right coset E € Wg\W, we write (W@ \W) <E for

the set of those cosets F such that F < E.

Whittaker Kazhdan-Lusztig polynomials for (W,TT,0) 4.1.1. For any E € Wg\W, there exists a

unique set of polynomials {Pcp} C qZlq] indexed by

{(C,D) |C,D € (Wo\W)_g;D < C}

<B
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such that the function

¥: (Wo\W)_ — He, Crdc+ ) Pepdp
D<C

satisfies the following property: for any C € We\W with C # W, there exist o« € Tl and cp € Z such
that Cso < C and

Ta(W(Csa)) = D cpb(D).

D<C

Moreover, the polynomials Pcp do not depend on the choice of E, and they satisfy the parity condition

Pcp € Zlg?, q 2]

The elements \(C)’s will be referred to as (Whittaker) Kazhdan-Lusztig basis elements. 1

Here {(C) means £(wC).

We apply the same definition to (W5, Ty, ©(u, A)):

Whittaker Kazhdan-Lusztig polynomials for (W, 1Ty, ©(u,A)) 4.1.2. For any E € Wy, g, 2)\Wa,

there exists a unique set of polynomials {P}*’G)‘} C qZlq] indexed by

{(F.6)IF,G € Wromn\Wa)e, £6 <un F}

such that the function

A
Yup: Waowa)\Wa) e e — Howay, Frode+ Y Pidse

G<u,)\F

satisfies the following property: for any F € Wy @) \Wa with F # W) g(,n), there exist o« € Ty and

cGg € Z such that Fso <y Fand

Te M Wua(Fsa)) = D cabual(G). (4.13)

G gu,?\ F
Moreover, the polynomials P}‘GA do not depend on the choice of E, and they satisfy the parity condition
A — _
U ¢ Ziq?, q~21qA (O —t(D),
The elements Py, A (C)’s will be referred to as (Whittaker) Kazhdan-Lusztig basis elements.

Here {5 (C) = &, (wE€), the length of the longest element in C[,.

We will write Plé’é instead of PICL’Ii\\,DI;\ for convenience. Set P‘E*Ff‘ =1forall E € Wy g(i,n)\Wa.

Romanov actually denotes the map by @. We reserve the notation ¢ to be used in the main algorithm 4.2.2.
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4.2 Main algorithm

Recall that the category Modcoh(Dc(wD )/ N, n) is semisimple. Therefore, any complex V* of mod-

ules in this category is a direct sum of O?; (wD ’s at various degrees. We write x qV*® for its generat-

)
ing function (or g-Euler characteristic), i.e.

XqV* = Z (rank HPV*)qP.
pEZ

Define the comparison map

v : ObjMod¢on (Dy,N,n) — He,
V(F)= > (xqioF)p= > ) (rankHPil ,F)qPop.
DeWg\W DeWg\W peZ
Here i,,0 : C(wP) — Xis the inclusion map. Clearly, this map can be extended to suitable derived
categories.

The following easy property of v is immediate:

Lemma 4.2.1.

V(Z(WE, A1) = b¢.

Proof. Let D € Wg\W. Then i ,Z(WS, A1) = ileiwC+OrC](w |

by Kashiwara’s theorem. Otherwise, this is O by base change. Hence the claim follows by the

¢y If C =D, thisis O ¢

definition of v. O

Theorem 4.2.2 (Kazhdan-Lusztig Algorithm for Whittaker modules). Fix a charactern : n — C. For

any A € b*, there exists a unique map
or: We\W — He

such that for any C € We\W, if we write u for the unique element in Ag such that C is contained in

WeuW,, the following conditions hold:

(1) for some P& € qZIq],

eA(C)=8c+ Y  P&hop.
DeWg\W
D<u,)\C

(2) for any o € TINTI, with Cs« < C, there exist cp € Z such that

Tal@r(Csa))= Y cpea(D)

DeWg\W
Dgu,?\c
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(3) forany 3 € TT—TIy such that Csg < C,

©s5A(Csp) = @a(Clsp
(recall that the right action He O W is given by d¢c - w = dcw).

(4) The polynomials PICL’S are Whittaker Kazhdan-Lusztig polynomials for (W, TTx, ©(u, A)) defined in
4.1.2.

Moreover, the map @ is given by
@A(C) = (LW, A ).

If A is integral, this reduces to the main theorem of Romanov [Rom21, Theorem 11].

A few remarks are in order.

First, if we ignore the last part of the theorem (that ¢, (C) = v(L(wWE,A,1))), then the theorem
becomes completely combinatorial. The main content of the theorem is that ¢, is given by the
comparison map v. In other words, this theorem says that the relations between standard and
irreducible modules in the category Mod.on(Da, N, 1) are captured by various Hg,,)’s. More
precisely, in view of the geometric picture §1.4, the theorem says that the composition

ObjModcon (Da, N,n) — He B, P Hown
UEAQ
sends irreducible modules to Whittaker Kazhdan-Lusztig basis elements and standard modules to
the standard basis. Therefore, when specialized to g = —1 and passed to the Grothendieck group,
the coefficient of a standard module in an irreducible module is given by Whittaker Kazhdan-
Lusztig polynomials. Details can be found in Chapter 5.

Second, parts (1) through (3) of the theorem provides an algorithm for computing the coeffi-
cients PE”S’S without referring to their original definition as Whittaker Kazhdan-Lusztig polyno-
mials. We will demonstrate how to run this algorithm in §A.1.

Third, all parts of the theorem have simple geometric intuitions. (1) comes from the fact that
L(wWE,A,n)is supported on the closure of C(w©), so the pullback of L(wE€, 1) to a cell is nonzero
only if that cell is on the closure of C (wC). Of course, (1) says more than this: inD L(wWE, A1) can
still be zero if C(WP) C m This happens if the modules on C (w€) and C(wP) are not in
the same block. (2) reflects the action of the U-functor on irreducible Whittaker modules. See the
comment after 3.1.8. (3) reflects the fact that non-integral intertwining functor is an equivalence of
categories. So information of irreducibles in one category is fully translated to another category.
Because of the usage of these intertwining functors, A will be mapped to different chambers. There-

fore it is necessary that the theorem is stated in a way that works for any A. Once the theorem is
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established, one can choose A to be antidominant so that localization can be used. For (4), the reader
should refer to §2.5 for the idea behind the proof.

Let us begin the proof of the theorem. As in Chapter 3, we omit writing 11 in the proofs. Unique-
ness is determined by (1), (4), and the uniqueness of Whittaker Kazhdan-Lusztig polynomials. For
existence, we will show that ¢, (C) = v(L£(wE,\)) satisfies the requirements (1)-(4) by induction
on ¢{(wC).

Consider the base case {(w€) = {(wg), that is, C = Wg, w€ = wg. The argument for this case
in the same as in [Rom21]. We include the details because it is short. Any composition factor of
the standard module Z(wg, A) is supported on cells C(w) in the closure of C(wg). But any such w
are in Wg with w < wg. In particular, w is not the longest element in its right Wg-coset unless
w = wg. So there is no module supported on C(w) unless w = wg. Hence the only composition
factors are supported on C(wg). By pulling back to C(wg), we see that there is only one such

factor, namely £L(wg,A). Thus Z(wg,A) = L(wg,A). As a result
v(L(we,A) = v(Z(we,A)) = dwy

by 4.2.1. Therefore, the function ¢, (C) satisfies (1) for C = Wg. The conditions (2)-(4) are void.
This completes the base case.
Now consider the case {(W€) = k > {(wg). The verification of (1)-(4) for C is divided into

subsections.

4.3 Proof of 4.2.2(3)

Assume 3 € TT—TT, is such that Csg < C. By definition,

(P)\(C)S[s:( Z (Xqi!WDE(WC,M)5D)S(5
DeWg\W

= Y (Xql,p£WE,N)dps,
DeWwpg\W

and

@spa(Csp) = D> (Xqil,nLWE®®,55)0))8p
DeWe\W

= > (xql s LW, 550)) 8D,
DeWg\W

where in the last equality we rearranged the sum by the bijection Wg\W = Wg\W, D — Dsg.

Hence it suffices to show that

Xqtun LW, A) = XqL b LWEF, 552
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for any D € Wg\W, which amounts to
rank HPi' 5 £(wS,A) = rank HP{' », E(WCSB,SBA)
w w B

for any p € Z. This follows by 3.2.12.

4.4 Proof of 4.2.2(2)
Writing ¢, (C) = v(L(WE,N)), 4.2.2(2) reads

(Ta o V)(LWSsa,A) = Y epv(LWP,N), (4.2.2(2))

D <u,)\ C

which resembles

UsLWEsa, A) = @ L(wP, )
D<C

from Theorem 3.1.8. We are going to show that

(T 0 VI(LWE 56, A)) = (v o Ua) (LW s, A)). (4.4.1)
Showing this will take up most of the work. Combined with the above equation for Uy, it leads to

(Ta o VI(LW s, N) = Y epV(L(WP,A)
D<C

after applying v. This is close to what we wanted. Of course, 4.2.2(2) has fewer terms on the right
hand side, but this will automatically follow from the proof of (4.4.1). This part of the argument is
very similar to the ones in [Rom21] and [Mil]. The only modification is a little extra care in order to
obtain the restricted sum on the right side of 4.2.2(2). Familiar readers can skip to the next section.

Let us start proving (4.4.1). For simplicity, we write £ = £(w s4,A). By induction assumption,

4.2.2(1)(4) applies to £, which reads

OA(Csa) = V(L) =bcs, + Y P& Lop.

D<u/7\CS(x

Compared with the definition of v(L£), we see that PEL’S = xqi‘!NDE whenever D <, 5 C, and

0=xq inD L whenever D %, 5 C. We record this as a separate lemma for later use.

Lemma 4.4.2. Suppose 4.2.2(1) holds for Cs. Then

w,A
PCso(,D D gu,?\ C

1 C
i o LWwh sy, AN =
Xqi,,0 LW s, A1) {0 D Zun C.
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Therefore, the left side of the desired equation can be rewritten as
Ta(V(£) =Tades, + D (Xqly,n L) Tadp.
D<u,)\CSD(
We regroup the sum as
Talv(L) = Y ((Xqﬂst“c)T“stsﬁ(Xqi’WDL)T(XsD).
Dsy<D
DguJ\C
The right side of the desired equation can also be rewritten:
V(UaL) = Y (Xqi,oUaL)dp
Dsy=D
. .l
(Y + ) ((aihog UaL)bps, + (xatlyoUal)dp ). (4.4.3)
Dsy<D Dsg<D

DgAC D C

To show that this is the same as T (v(L£)), it is enough to show that the first two sums are zero, and

that
(Xatywos, £)TadDs + (Xal,o £)TadD = (Xatyos, Ual)Dsy + (Xatyo Ual)dD  (444)

for those D’s in the third sum. To achieve this, we need to relate i' Uy £ with i' L.
Let D € Wg\W be arbitrary for now. Before pulling back to C(wP ), we want to first pull back to
Pa’ (Pa(CWP))). Write O = po(C(WP)) and Xo = p4 ' (O). We then have the following diagram

XO*S>X

e | lp“.

0 —— Xu«
By base change,
s'Ug L[] = 7'[ix7'roc+s!£. (4.4.5)

Suppose Dsy = D, then wPsy < wP (because wP is the longest element in D), so 7t restricts

to an N-equivariant isomorphismi: C (WPsy) = O. Because wP

s« isnot the longest element in D,
there is no nontrivial n-twisted sheaf on C(wPsy), and the same is true for O. Hence . s' L =0,
and s'Us £ = 0. Further pulling back to C(wP) from X, we see that i;'WD Uy L = 0. As aresult, the
first sum in (4.4.3) vanishes.

Suppose Dsy < D. Xg is the inclusion of two cells, which form the following diagram

CwP) — Xo <~ C(WPsy)

ol
O
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where 1 is closed and j is open. We will write the pullbacks of UL to the cells in terms of the
pullbacks of £. This is achieved by examining the distinguished triangle for the immersions i and

j, post composed with 7tk 7ty -

|
Tl T+

7'(!“7'[“4_ i...il
\ /

[]} ! . .l
Mo Tot)+)

On the top-left corner, o414+ = it; on the bottom vertex, my+j+ = qg+. So

7'(!“7'[0(+
~ - . (4.4.6)

L .
T Qot)

L
T+l

Further applying i', then i'rt), is isomorphic to the identity map on C(wPs4). So we get
. <1
V' T Tt

N

qoc+j!

Its long exact sequence on cohomologies reads
oo — HP — HPi' o — HP oy jt — -+ -

Note that q : C(WP) — O is isomorphic to a coordinate projection between affine spaces of

relative dimension 1 (see the proof of 3.2.12). So q«+ sends O?; (wD) to Og ( [1]. The same can

wPsy)
be said for qj', namely

-1

rank HP g4 j' = rank HP+'j
on n-twisted sheaves since their images under j' are direct sums of (92 (WD)’S at various degrees.

So (by slight abuse of notation) the above long exact sequence becomes

. . p+15!
oo — HP — HPi' T, e — (’)&WDSD‘)@raI‘kH Y (4.4.7)

If we instead apply j' to (4.4.6), we get

il Mo
T
Jadot)

Y
ot

where we have used the fact that q}, = j'7t}, to rewrite some terms. We again take the long exact
sequence on cohomologies. Using the property of q discussed above, q, = q&[1], and qhqa+ =

[2] on n-twisted sheaves on C(wP). So the sequence becomes

RN Og(wo)@fa“k‘*"“i! — HPj e gy — HP 25— (4.4.8)
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Now we apply these two long exact sequences to s'L. Then i'mh s 8'L = ilWDS“U“EH] (see
(4.4.5)), and the same thing but for j' is equal to i!WDU(XE[T]. Suppose D is in the second sum of
(4.4.3), i.e. suppose D %, a C. Then by lifting property of Bruhat order [BB05, 2.2.7], we see that
D,Dsy %uar C Csy. Hence i;'VVDE = i;'vaSaE = 0 by Lemma 4.4.2. As a result, the long exact
sequences force the vanishing of the pullback of UL to the two cells, and the second sum in (4.4.3)
vanishes.

It remains to examine the case D <, C. In this case iﬁ!/vD L is governed by PE’S (Lemma 4.4.2),

which satisfies parity condition (see Definition 4.1.2):
Hpi‘!/vpﬁ = 0 whenever p # {)(Csy) — (D).

As a result, the long exact sequences (4.4.7) (4.4.8) alternate between three consecutive vanishing
terms and three possibly non-vanishing terms forming a short exact sequence. Taking ranks of

these three-term sequences, we obtain

rankai!wDS“Uocﬁ — rankHP*H‘!NDS(Xﬁ+rankai‘!ND£

rank HPi, p UL = rank HPi o £+ rankHP i o L.
Hence the right side of (4.4.4) is

(Xatyos, Ual)dps, + (Xqiy,pUal)dD
= Z (rank Hpi‘!NDSCchXE) qPops,
P
+ Z (rank HpiiND Uaﬁ) qPép

P
= Z (rank HP~! i«!sto(E +rank HPiLVD L)qPdps,
)
+ (rankailesaﬁ—i—rankaHi:'WDE)qpéD.
P

Here the first equality is by definition of x4, and in the last equation we have rewritten the ranks
of pullbacks of Uy L in terms of those of L. The left side of (4.4.4) is
(Xatyps, £)TadDse + (Xalyyn £) TadD
=Y ((rankHPil 5 £) (4" 8ps, " 0D)
P

+ (rank HPi,5 £) (4"8ps,47 ' 80))

= Z (rank HP—! ilWDS“E +rank Hpi!wD L)qP8ps,
P
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+ Z (rankaiiWDS“E +rankHP 1! [ £)qPop.

wD
P

Here the first equality is by definition of x4 and Ty, and the second equation is obtained by rear-
ranging the sum according to the basis elements qPdps, and qPdp. Thus the two sides of (4.4.4)
equal. Consequently Ty (v(£)) = v(Ux L), and (4.4.1) holds.

In the course of this proof, we have seen that the first two sums in (4.4.3) vanish. This necessarily
implies the same restriction for Uy L. Recall that Uy L is a direct sum of L(wWP,A)’s (Theorem
3.1.8). If L(wP,A) appears in Uy L, then ii/vD LWP,A) = OT(]t(wD) appears in ile U L. This cannot
happen if D %,, 5 C because they contribute to the first two sums of (4.4.3). Hence such D’s will

not appear in Uy L. We record this as a corollary.

Corollary 4.4.9. Suppose x € TINTI) and Cso < C. There exist cp € Z depending on C and o so that

u(XE(WCS(X/A/n) = @ 'C(WD/)\/T])EBCD‘
Dgu,?\c

In particular, i;'VVDU(XE(wCs(x,?\,n) = 0 whenever D %, C.

Thus

Dgu,)\c
= Y cpv(LmP,N)
Dgu,?\c
= )  cpealD)
Dgu,?\c

4.2.2(2) is now verified for C.

4.5 Proof of 4.2.2(1)

The idea is to find a simple reflection s so that Cs < C, and deduce information of C from that of
Cs. If s is non-integral, we can use non-integral intertwining functor I to translate properties of
Cs to C. If s is integral, we then use information about the U-functor.

Again we omit writing the n’s.

Suppose there exists 3 € TT—TT, such that Csg < C. By induction hypothesis, 4.2.2(1) applies
to Csg, which says

(PS[;?\(CSﬁ) :6CSB+ Z QDéD/
D<r,5‘37\C5[5
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for some polynomials Qp € ¢Z[q], where 7 is the unique element in Ag ;) such that Csg is
contained in WerWs5\. Applying 4.2.2(3) for C,
@A(C) = @5 a(Csplsp =8c+ ) Qpdps,-
D <rs B ACs B
We want to rewrite the subscript of the sum. By 2.4.6 and its corollary, there exists w € Wg with

Wr =usg. Hence

WerWs\ = (Wew)r(sgWysp)
= W@(WT’)SBW)\SB
= W@(USﬁ)SBW)\Sﬁ

= WeuW,sg,
and we see that D € W@\W@rWSB;\ if and only if Dsg € Wg\WeuW,. By 2.4.8,
D <r,5pA Csp & Dspg <ya C.
Hence

eA(C)=38c+ > Qpdps,
DSB<ul)\C

=8c+ ) Qoo

E<yaC
for some Qp € qZ[ql], and 4.2.2(1) holds for C in this case.

If such 3 does not exist, then there exists a simple integral root « with Csy < C. From The-
orem 3.1.8, we know L£(w¢,A) is a direct summand of U4 L(Csq,A). So the coefficients of the
polynomial XqileE(wC,A) (which are non-negative integers) must be dominated by those of
Xq ileU(XE(wCs(X,M. On the other hand, we know from Corollary 4.4.9 that the latter polyno-

mial vanishes for D %, 5 C. So the former also vanishes for those D’s. Hence

eAlC) = > (XalnLWS,N)op

Dewpg\W
= > (XqilyoLWE,N)op.
Dgu,?\c
It suffices to compute the remaining coefficients. The case D = C is treated in 3.1.18:

i;'/vcﬁ(wc,h,n) = Og(wc Hence the coefficient of 6c is 1. For D < C, we know Hoi‘!ND

)
takes sections supported in C (wP). We also know that £(w®,A) has no section supported in
9C(wC) O C(wP). Hence Hoi!WDE(wC,A) = 0 and the coefficient of dp has no constant term.

Thus 4.2.2(1) holds for C.
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4.6 Proof of 4.2.2(4)

Based on our definition of parabolic Kazhdan-Lusztig polynomials 4.1.2, we need to find o € TTy

such that Csy <y, 5 C and equation (4.1.3) holds for the function

YA (Cla) == @A (C)Ia.

See §2.5 for an explanation of the geometric idea behind this proof.

If oc can be chosen to be in TT N Ty, then by the following lemma, (4.1.3) follows from 4.2.2(2) for
C.

Lemma 4.6.1. Let & € TTNTIy. Then for each u € Ag »
(=)0 To = Ta 0 (=)Ia

as maps from indy A € He to ) (the maps indy and (—)|» are defined in §4.1). In other
p ind) He () H Ho(un) (th ps ind d (—) defined in §4.1). In oth

words, the following diagram commutes

-
Heo =

(*)le l(f)u

W T
P Hown © P Hown-

LLEA@/)\ LLGA@/)\

The proof is straightforward. It consists of unwrapping definitions and using the fact that ind;
preserves partial orders on right cosets 2.4.3.

If such « cannot be found, we will need to use non-integral intertwining functors to move « to
some simplerootsg, - - - sp, & =z~ cand move L£(w®, A, 1) to some irreducible module supported
on a smaller orbit where 4.2.2(2) is known to hold, and then translate the induction assumption
there back. The messiness of the argument below are merely the result of careful bookkeeping. The
translation step requires the following lemma. The proof is similar to the previous one, using 2.4.8

instead of 2.4.3.

Lemma 4.6.2. Let x € TINTI), B € TT—TT. Foranyu € Ag, let r € A@,spA be the unique element
such that WQuS[SWsB)\ = W@TWSB)\. Then

LS A
(sp(—)sp) o TeM =Tr k" o (sp(—)sp)

as maps from Heg ) to ’H@(T,SB;\), where sg(—)sp denotes conjugation by sg. In other words, the
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following diagram commutes

TYA
Ho(unr) He(un)
Sra(*)sfsl g lsfi(*)sﬁ
SBO(
H@(r,sﬁ)\) H@(T‘/SBM'

Choose « € TTy, s > 0 and fB1,...,Bs € ITsuch that if we write zo = 1, z; = sg, -+ -sp, and

z = zg, the following conditions hold:
(a) forany 0 < i< s—1, i1 is non-integral to zi_] A
(b) z7 la eTINTT,1;
() Cso <un G
(d) ifs>0,Cz<C;
(e) Csqz=Czs,—1, < Cz

Such a choice exists by 2.5.1. Combining the lemmas with the diagram (2.4.9), we obtain a commu-

tative diagram
He

l(—)zu

D Hown . (463

TeA@,zf] A

Since Cz < C, the induction assumption applies to Cz and z~'A. In particular, if we apply

4.2.2(2) to Czs,-1, < Czand z~ '\, we obtain the equation

Toa(@.1a(Czs, 1)) = ) cp@,1,(D) (4.6.4)
D< Cz

Nrz— 1A

where 1 is the unique element in Ag , -1, such that Cz € We\WgtW, 1,.

Claim 4.6.5. If we apply z(=)z7 Vo (=) .—1 to both sides, (4.6.4) becomes

T M Wua(Ca) = D cobualER).

Egu,?\ C



4.6. Proof of 4.2.2(4) 67

Consequently, « € TTj is such that Csy <, C and equation (4.1.3) holds for Csy. By 4.1.2, the
polynomials PICL’S are parabolic Kazhdan-Lusztig polynomials for (W5, Ty, ©(u, A)). Thus 4.2.2(4)
holds for C.

It remains to prove the claim. If we view ¢,-1,(Czs,-1,) as an element in the middle-top Hg
in the diagram, then after applying (—)|,-1, and z(—)z "', the left side of (4.6.4) lands in Ho ) at

the bottom middle position of the diagram through the rightmost path. Going through the leftmost

path instead, this element in Hg,, ) becomes

Tcle'}\ ((szl A(Czs - cx)zil |?\)
Rewrite Czs,-1, = Csxz and use 4.2.2(3) repeatedly for Cs, the above quantity becomes

TEA (A (Csalla) = TE M (W (Chh).

Viewing the right side of (4.6.4) as an element in the middle-top Hg in the diagram, (—)[,-1,
and z(—)z~! sends it to He(u,) at the bottom-left along the middle path. Going through the

leftmost path instead, this element becomes

Y oAz = ) cpbual(DzTR).

D< Cz D< Cz

rz— 1A rz= 1A

As in the first half of §4.5, we can rewrite the subscript of the sum. There is an element w € Wg

such that wr = uz by 2.4.6. Hence

WerW, 1, = W@wrz’1W>\z
= W@LLZZi] Wiz

= WeuW,z,
and D € Wg\WgrW,_1, if and only if Dz~ ! € Wo\WguW,. Moreover, by 2.4.8,
D<,, 1, Cz & Dz ' < C
Hence the right side of (4.6.4) becomes

> cpbual@z )= ) cpbualER).

Dz-! <uaC E<uaC

This proves the claim.

The proof of 4.2.2 is now complete.
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Chapter 5
Character formula for irreducible modules

5.1 Regular case
By standard arguments, the algorithm 4.2.2 leads to a character formula for irreducible Whittaker

modules with regular infinitesimal characters.
Let A € h* be antidominant regular. As explained in §1.3, Beilinson-Bernstein’s localization

and holonomic duality are equivalences of categories which send Whittaker modules to n-twisted

D-modules. Combined with the maps v and (—)|_», we obtain the composition
rX—) D v (—)l-a
Non Modcon(Da,N,n) = Modeon(D_x,N,n) = Ho — P How-r)
UEA@,—a
(5.1.1)
under which

LWEAN) = LWE,AM) = LWS,—An) = @ A(C) = @_A(C)l_a,

MWEAN) 4 MWEAN) = Z(WS,—An) = §¢ = d¢|,-
Since X qlq=—1 is the usual Euler characteristic, the coefficients x 4 ii/vD]-' in the definition of v are
additive with respect to short exact sequences. So v factors through the Grothendieck group

Vlg=—1: KModcon (D, N,m) — Helg=—1

which is an isomorphism by 4.2.1. Therefore we have an isomorphism of abelian groups

@ H@(u,fkﬂq:—

KNoy —
'LLGA@/,)\

[LwWCAM)] PA(C)lalg=—1

M(WEAT)] - d¢c| ,lq=—1-

Hence 4.2.2(1) and (4) imply
Y PEGMEDIMWPAN)]

[LwSAM)] =
Dgu,f?\c

69
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in KNg . Note that 5 = X_, as subsets of Z and W) = W_, as subgroups of W. Hence all
the combinatorial structures defined based on A and —A are canonically identified. In particular,
D <y, Cifand only if D <y C, and P = PEy. Further applying the character map, we

thus obtain

Theorem 5.1.2 (Character formula: regular case). Let A € b* be antidominant and reqular. Letn : n —
C be any character. For any C € Wg\W, let u € Ag ) be the unique element such that C C WguW,.
Then
chLwAm) = Y PEL(-1)chMmPAn), (5.1.3)
DeWe\W

D <u,7\ C

where the Plé];‘ s are Whittaker Kazhdan-Lusztig polynomials for (W5, T, ©(u, A)) as defined in 4.1.2.
When A is integral, we have a simpler description, which we state separately.

Corollary 5.1.4 (Character formula: regular integral case). Let A € b* be antidominant, regular, and
integral. Let n : n — C be any character. For any C € Wg\W,
chL(wAm) = > Pcp(—1)chMwPAn),
DeWp\W
D<C

where the Pcp’s are Whittaker Kazhdan-Lusztig polynomials for (W, T1, ©) as defined in 4.1.1.

Inverting the matrix (Pcp(—1))c,p, we recover the description in [MS97] and [Rom21] of mul-
tiplicities of irreducible Whittaker modules in standard Whittaker modules with antidominant reg-
ular integral infinitesimal characters.

At another extreme, whenn = 0 (i.e. © = &), we recover the well-known non-integral Kazhdan-

Lusztig conjecture for category O.

Corollary 5.1.5 (Kazhdan-Lusztig conjecture for category O). Let A € h* be antidominant and regular.
Foranyw € W,
ch L(wA) Z P 1) ch M(vA),
vew
v W
where the P\,,’s are Kazhdan-Lusztig polynomials for (W, Ty, &) as defined in 4.1.2, M(VA) is the Verma
module of highest weight vA — p, and L(wWA) is the unique irreducible quotient of M(WA) (recall that p is the

half sum of roots in £).

5.2 Singular case

The singular case can be deduced from the regular case easily.
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Let A € b* be antidominant and singular. We still have the maps in (5.1.1), but the
exact functor I'(X,—) is no longer an equivalence of categories and only descends to a sur-
jection KMod¢on (D, N,n) — KNe,n on Grothendieck groups. However, the identification
I'(X, M(wP,A,n)) = M(wPA, 1) still holds [Rom21, Theorem 9]. Therefore, the argument for regu-
lar case produces the equality

chI(X, LwS,Am) = Y PE(=1)chMWPAn). (5.2.1)
Dgu,?\(:

However, I'(X, £L(w<,A, 1)) may be zero, and the M(wPA,n)’s may coincide for different D’s. It
remains to describe which M(wPA,1)’s coincide and which I'(X, £(wS, A, 1))’s are zero.

The first question has an easy answer. Recall that for C,D € Wg\W, MWPA, M) = M(WEA, ) if
and only if WegwPA = WewEA (§1.1). Let W be the stabilizer of A in W. Then the above condition

is equivalent to WeowP WA = WogwC WA ie. that C and D are in the same (Wg, W?)-coset.
Lemma 5.2.2. Let A € h* be antidominant and let n : w — C be a character. The following are equivalent:
(@) M(wEA M) = M(WPA,n);
(b) T(X, M(WE,A,m)) = T(X, M(WP,A,n));
(c) Cand D are in the same double (Wg, W)-coset.

Therefore, for a fixed standard Whittaker module M, there is a unique double coset WevWA
such that I'(X, M(wP,A,n)) = M if and only if D € Wg\WgvWA.

The following proposition answers the second question.

Proposition 5.2.3. Let A € b* be antidominant and let | : w — C be a character. Let v € W. Then the set

Weo \WevWA of right Weg-cosets contains a unique smallest element C. Furthermore,
(@) T(X, L(WS,An)) = L(wCA,n) # 0, and
(b) T(X, LWP,A,n)) =0 forany D € Wg\WevW? not equal to C.

In other words, for a fixed standard Whittaker module M, among all the costandard Dj-
modules that realize M, the irreducible quotient of the one with the smallest support realizes the

unique irreducible submodule of M.

Proof. Write M. = M(vA, 1) and L = L(vA,n).
First, there is one and at most one D in Wg\W with (X, £L(wP,A,1)) = L. This is because, by

the theory of localization, there is a unique irreducible D)-module V with I'(X, V) = L (see [Mil,
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Chapter 3 §5 Proposition 5.2]; in fact, V is the unique irreducible quotient of Dy ®y, L). By the
classification of irreducible twisted Harish-Chandra sheaves, V equals to L(WP, A1) for a single
D € Wg\W.

Since £(wP,A,n) is the unique irreducible quotient of M (WP, A, n) and TI'(X, —) is exact on Dy-
modules, L = T'(X, L(WP,A,n)) equals the unique irreducible quotient L(wPA, 1) of M(wPA,1).
This forces M = M(wPA,n). Hence, by the preceding lemma, D is contained in the double coset
WeovWA,

It remains to show that such a D is minimum in Wg\WgvW?. Let C be a minimal element in
Weo \WgvW?. The composition factors of M (W€, A, 1) consist of certain £(wE,A,1)’s with E < C.
Taking global sections, we see that the composition factors of M = T'(X, M(WE,A,n)) consist of
some I'(X, £(wE, A, 1))’s that are nonzero and with E < C. On the other hand, L = I'(X, £(wP, A, 1))
is a composition factor of M. Hence I'(X, LWP, A1) =T(X, L(wE, A 1)) for some E < C. By the
same uniqueness statement appeared in the preceding paragraph, £(wP,A,n) = £(wF, A, 1) and
hence D = E < C. By the minimality of C, D = C. Thus C = D is the minimum element in
Wo\WevW? and I'(X, L(wE,A,1)) = L. O

We can pick a scalar ¢ € C so that WA = W,.». Then by 2.3.3, the set
AY = AN (we®W)

is a cross-section of W \W/W? consisting of the unique shortest elements in each double coset.

5.2.3 can be rephrased as follows.

Corollary 5.2.4. Let A € h* be antidominant and let 1 : n — C be a character. Let C € We\W. The

following are equivalent:
(a) C=Wgv forsomev € AY;
(®) T(X, LW, Am)) #0;
(©) T(X,L(wS,\m)) =L(wEAn).

Using these observations, we can write down a character formula for general infinitesimal char-

acters.

Theorem 5.2.5 (Character formula: general case). Let A € h* be antidominant. Let 1 : n — C be any

character. Foranyv € A)C:), let C = Wgv, and let u € Ag ) be the unique element such that C C WguW,,.
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Then
chL(vA,n) = chLwCA,n) = > > PES(—1) [ chM(zA,m),  (5.2.6)
ZEARN(WeuW,) | DEWg\WgzW?
D<A C

where the P‘é’é s are parabolic Kazhdan-Lusztig polynomials for (W, Ty, ©(u, A)) as defined in 4.1.2. As

Vv ranges over A}é, L(vA,m) exhausts all irreducible objects in Ng .

Proof. The right hand side is obtained by grouping the right side of (5.2.1) based on 5.2.2. In more
detail, the cosets WgvW? that are contained in WgouW5 partition WguW,, and Az:) N (WeuW,)
is a cross-section for this partition. We are simply grouping those standard modules within the
same (Wg, W?)-cosets together. The left hand side and the last statement (that those L(vA,1)’s
exhaust all irreducibles) follows from 5.2.4 and Beilinson-Bernstein’s equivalence of categories in

the singular case. O
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Appendix A

Examples

A1 An A; example

Let us demonstrate the Kazhdan-Lusztig algorithm 4.2.2(1)(2)(3) in an A, example.
Figure A.1 through Figure A.3 describe the A; root systems the A, Weyl group combinatorics
for © = {«} and three different choices of A’s. These three figures are related by non-integral inter-

twining functors:

I I,
Figure A.1 «———; Figure A.2 «——*—; Figure A.3.

For example, in Figure A.3, the right Wg-cosets are pairs of elements connected by dou-
ble lines: Wg = {1,s4}, Wosg = {sasg,sp} Wesgsa = {Sy,5psa). The double (Wg, W) )-
cosets are identified by looking at whether the Weyl group elements are underlined: elements
in WgW, = {1,s4,5p,5«5p} are underlined, and elements in WgsgsqaWx = {sgS«, sy} are not.
For the single line connecting sysg and sy, this indicates the fact that E(sasﬁ,f%ﬁ,n) is a di-
rect summand of Ug L(sq, —% 3,m), which is the geometric counterpart of the Tg part of the algo-
rithm; after applying I, this relation between L(s«sg, —%B,n) and E(s(x,—%ﬁ,n) is translated
to a relation between E(sy,—%y,n) and £(sa,—%y,n), which is indicated by the dotted line in
Figure A.2 connecting s, and s«. Finally, if we look at all three diagrams, the elements s, in
Figure A.3, sysp in Figure A.2, and s in Figure A.1 are all circled, which indicates the fact that
E(sy,—%ﬁ,n) = Isaﬁ(sasﬁ,—%y,n) = IS“ISBE(S(X,—%(X,T]),’ similarly for the boxed and hexed
elements.

Note that the A’s in these diagrams are in the same Weyl group orbit 0, and only A = —%y in
Figure A.2is antidominant. In fact, if we only want to write down character formulas of irreducible
modules in Ny ,, based on Theorem 5.1.2, it is enough to look at Figure A.2 alone. However, if one
wants to run the Kazhdan-Lusztig algorithm 4.2.2, we need to look at all three diagrams.

Let us run the algorithm on these examples. First, we look at the smallest right Wg-cosets. The
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x Y

56

Figure A.1: The A; root system, © = {a}, A = f%oc

o Y
AN
, SpS«
B
:

Figure A.2: The A; root system, © = {a}, A = f%y

1

Figure A.3: The A; root system, © = {a}, A = f% B

Sp

[od Y

\/ B
The diagrams on the left depict the root systems. The simple roots are o and 3. © = {o} which is
indicated by a double line. A is marked by *. Roots in X, are marked by (©, and roots not in 2 are
marked by e.
The diagrams on the right describe the Weyl group and combinatorics of double cosets. Nodes con-
nected by double lines are in the same right Wg-coset. Nodes that are surrounded by a shape are
the longest elements in right Wg-cosets. These are the elements that parametrize irreducible mod-
ules on X. Each diagram contains two double (Wg, W) )-cosets, one has four elements (underlined)
and the other has two elements (not underlined). A single solid line indicates a pair of elements re-
lated by a U-functor. A single dotted line means that, after applying some non-integral intertwining
functors, the pair of Weyl group elements are related by the U-functor for some other A. Across all

three diagrams, if two elements are surrounded by the same shape, then the irreducible/standard
modules they correspond are sent to each other under some non-integral intertwining functors.
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irreducible modules corresponding to the longest elements in these right cosets are equal to the

standard modules containing them:

¢ in Figure A.1,

¢ in Figure A.2,

L(so, —5v,M) =ZL(sa,— 5V, M),

1. (Wesa) = dwgsy,
2Y

@
chL(—Isav,m) = chM(—Fsay,M);

¢ in Figure A.3,

E(SCX/*%B/T]) = I(SCX/*%B/T])/

© 1,(Wesa) =0wgsy-

2B
Now we look at the second-to-smallest right Wg-cosets. Depending on the situation, we either

apply U-functor or non-integral intertwining functor.

* Looking at sysp in Figure A.1, sg is the only simple reflection that descreases the length of
the right coset Wgsqasp sp: Wesa = Wesasp - sp < Wesasg. Since sg is non-integral to

A= —%oc, we apply Is, and we get
ISBE(Salf%Y/n) = E(Sasﬁ/i%o‘/n)

by Corollary 3.2.11. This can be read off from the diagrams by noting that both sy sg in Figure
A.1 and s, in Figure A.2 are hexed. Since s« in Figure A.2 is in the lowest right Wg-coset,
the corresponding standard module is irreducible. Hence the same is true for the standard
module corresponding to sysp in Figure A.1. More precisely, since we already know that
L(sq, —%y,n) =7 (sa,—%y,n) and Is; is an equivalence of categories, the same relation is

true for their images under I sps i€

L(sasp,—5%M) =ZL(sasp, —5,M),

¢ 1 (Wesasp) =dwgsqsg-

N =

Alternatively, one can find ¢ N (Wesasp) purely combinatorially by using 4.2.2(3):
2

© 1 (Wesasp)=¢ 1 (Wesa) g =dwesys " Sp = OWesasy-
-2« -2y
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* Looking at sysp in Figure A.2, sg is non-integral to A = f%y and Wesq = Wesasp - sp <

Wesasp. Hence we apply I, which moves sqsp in Figure A.2 to s« in Figure A.1

L(sasg, —3V,M) =I5, L(sa, —F M)
- ISBI(SOCI_%OC/T])

=Z(saSp, —3V,M).
Hence
<P_%Y(W®Scx5[5) = dWesasp/
chL(—%saspy,m) =chM(—Jsaspy,m).

This can be read off from the diagram: both sysg in Figure A.2 and sy in Figure A.1 are

circled. Again, ¢ 1 N (Wesasp) can be found combinatorially by using 4.2.2(3):
-2

© 1 (Wesasp) =9 1 (Wesa) Sp =dwes, " Sp = dWesasp-
2Y -2«

Looking at sysp in Figure A.3, sp is integral to A = —%[5 and Wgsy = Wesasp - sg <

Weasusp. Hence
ﬁ(sasﬁ,—%ﬁ,n) is a direct summand of Uﬁﬁ(s“,—%ﬁ,n).

This is also indicated by the single solid line connecting s, and sysg. By Theorem 4.2.2(2),

there are integers cs, and ¢ s 6 such that

Tele ;

(Wesa)) = Cso @ 1 ﬁ(Wesoc) +Cs“s[3 (o

5 B B(W®5a56)~

N
N
N|—=

Using the fact that ¢ 1  (Wes«) = dwgs, and using the definition of Tg, this equation

B

N

becomes

q5W@sfx +5W@sfxsﬁ = TB(6W®S[X) = Csaéweso( +Csas[5 (o ﬁ(W@SocSﬁ).

N—=

Also, from Theorem 4.2.2(1), ¢ 1 B(WQSO(S[S) = dWesasp T POWesa for some P € qZlq].
-2

The above equation then becomes

q§W@sfx + 6W@so¢sﬁ = (Cs‘x + P)5W@stx + Csasp 6W@scx~

Comparing coefficients on both sides, we see that ¢s, =0, P = g, and ¢s,s, = 1. Hence

(P (W@Stxsﬁ) :6W@SD(S[3 +q6W@S,_-x/

1
[L(sasp, —3B,M)] = [Z(sasp, —2B,M)] — [Z(sa, —5B,M).
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Now we look at the largest right Wg-cosets.

¢ Looking at s, in Figure A.1, E(sy,—%oc,n) is a direct summand of U(xﬁ(s“sB,—%oc,n).

Hence,

q6W@SD¢SB + 6W(E.)S'y = TO((SW@SaSﬁ)

=Tale 1 (Wesasp))

04

N =

=Cso @

(WG)Soc)"‘Cscst(Pil (W(BSocSBJ'f'Csy(P 1 (WG)SV)

[0 Z(X 720(

=

= Csaéw@stx T Csusp 5W@s“s[5 + Csy(éw@sy + PéWsasﬁ)

for some integers c’s and some polynomial P € qZ[q]. Here the first equality is by definition
of Ty; the second equality is because ¢ % (X(W@sasﬁ) = dWgsas N which was computed
before; the third equality is by 4.2.2(2); the last equality follows from replacing ¢ % ‘X(W@s(x)
and @ % “(W@sasﬁ) by their expressions in the §’s (which were already computed before)

and rewriting ¢ 1 (Wesy) by 4.22(1). Comparing the coefficients on both sides, we see

N

(04
thatcs, = Csasp 0,¢s, =1,and P = q. Hence

@7%0((W@Sy) = dWes, T AdWesasps-
[L(sy, —Fo,m)] = [Z(sy, —F o) — [L(sasp, —F o, n)l:
¢ For sy in Figure A.2, by applying I,
L(sy,—3v,m) =I5, L(sasp, —7B,M).
Hence, using 4.2.2(3),

W =
@7%y( esy) ®_1p

[L(sy,— 3V, M)] = [Z(sy,— 5y, W] — L(se, —3v,M)],

(W@S(XSB)S(X = 5\/\/95y + qéwes(x,

chL(=3syy,m) = chM(=Jsyy,n) —ch M(=Fsay,n).
¢ For s, in Figure A.3, again by using 4.2.2(3),

©_1p

[L(sy,—3B,m)] = [Z(sy, —5B,1)l.

(Wegsy) = @7%y(W98<xS[3)S<x = dWesy/

A.2 An Az example

The A3 root system is the smallest example in which all nontrivial phenomena appear. Let us apply

the character formula 5.1.2 to this example.
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The root system, integral roots, and roots in © are shown in Figure A.4 on the facing page. Here
the integral subsystem is of type A,. Figure A.5 on the next page is a diagram of the A3 Weyl
group, arranged in a way so that elements in the same right Wg-coset are grouped together and
are connected by double lines. There are two double (Wg, Wy )-cosets: Wgsysg Wy and WegW,.
Elements in Wgs sg W) are underlined.

Let’s first look at the double coset Wgsysg Wy, with u = sy sg € Ag . It equals a single left

Wi -coset s sg W) and a single right Wg-coset Wgs, sg. Hence

O(sysp,A) =TI\, Wye =W,,

(syspg.A)
and (Wgsysg)lx = Wi 1, the unique right Wi -coset in W). Therefore

(p)\(W@S'YSB) = 6W@SYSB/

chL(sysgA,m) =chM(sysgA,n).
Now let’s look at the other double coset WgW,,, with u =1 and

6(]/A) :{‘X—i_ B}/ W)\,@(],?\] :{]/S(X—O—B}‘

For convenience, we write

We =W o(,1):

The root system X, and the Weyl group for (W, 1Ty, 0(1,7)) is shown in Figure A.6 on page 82.
The map (—)[» restricted to Wg\WgW,, can be visualized as in Figure A.7 on page 82, where a
coset on the right hand side is sent to the coset on the left with the same shape.

The Whittaker Kazhdan-Lusztig polynomials for (W, 1T, ©(1,A)) are shown in Table A.1 on

this page.
Per Wesarp WeSaipSy WeSarpiy
W. S(X+ rS ] O
WeSx+pSy q 1 0
W.S o+ |’5 +,y 0 q 1

Table A.1: Whittaker Kazhdan-Lusztig polynomials for (W5, Ty, ©(1,7))
Hence, our Theorem 4.2.2(1)(4) says

_plLA
PAWesaspsa) = P(W.s“+ﬁ),(W.soﬁ_ﬁ)SW@S(xSBS(X
1,A 5
(Wasorp), (Wasoppsy) " Wesaspsasy

1,A

_|_
+ (Wosoc+ﬁ )r(W'Soc+[5+y)6W®WO
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Figure A.4: The A3 root system.

The set of simple roots is TT = {e, 3,v}. ©® = {«, f}, indicated by double lines. Roots in I, are
marked by (©, and those not in X, are marked by e. To make the picture more readable, only the
positive roots are connected to the origin.

Here A is chosen to be A = —mp + c(—a + 23 + ) for any nonzero number c transcendental over Q
and any large enough integer m so that A is antidominant regular (note that —oc+ 23 4y is a vector
perpendicular to the plane spanned by « + 3 and ).

s(stﬁscx SBSaSySpSa w
—— 7

s“ws‘x SBSYSESwx sw);%csY SaSpSySp SBSaSySp
N7 7\ =
SySpS« SaSESa SxSpSy SpSaSy SaSySp SESySp
R —— N 7
SaSp SpSx SaSy SpSy SvySp

|
S

=< \/
5B

\/

Figure A.5: Double cosets in the A3 Weyl group.

Elements surrounded by various shapes are the longest elements in right Wg-cosets. Elements that
are crossed out are those in W,. Elements in Wgs, sg W5 are underlined.
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Figure A.7: (—)|x on right cosets
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83

= 5W@S[xs[350(/
_plA
PAWosaspsasy) =Py s, sy),(Wesa g DWosaspsa
+pl 5
(Wosoc+|35Y]/(Woscx+ﬁsyJ W®SO‘SBSD‘SV
+plA

5
(W05a+[557)/(w05a+[5+y) Wewo

= q‘SW@sasBs“ + 6W@s“sﬁs“sY1

__ pl,A
PA(Wewp) = P(W.s,_-,(+|3+y),(W.so(H3)6W®50¢5[550(

1,A
(W05a+[5+y)r(wts(x+BSY)6W@S°‘SBS°‘SY
1,A

(Wesatpiy) (Wesaipiy)

+P
+P

6W@)Wo

= q§W@sD¢sBso¢sy + 5W@wo‘
Specializing to q = —1, we get

chL(sasgsaA, M) =chM(sxspsaA M),
chl(sqsgsasyAn) = —chM(sasgsaA,n) +chM(sxsgsasyA M),

chL(woA,n) = —chM(sxspsasyA,n) +ch M(woA,n).
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