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Ubiquity of Littlewood-Richardson Coefficients

The ubiquity of Littlewood-Richardson coefficients. Given three partitions A, p, 12 each with at most i
parts, there is a combinatorial definition for a number ¢ i which is nonzero if and only if any of the
44 following statements are true:

+ There exist Hermitian matrices A, B, C whose eigenvalues are A, p1, v, respectively and
A+ B = C (one can also replace Hermitian by real symmetric)

+ The irreducible representation of GL,, (C) with highest weight 17 is a subrepresentation of the
tensor product of those irreducible representations with highest weights A and g.

+ Indexing the Schubert cells of the Grassmannian Gr(d, C™) (where d > n.and . — d is at
least as big as any part of A, i, i) by o appropriately, the cycle o, appears in the intersection
product o\o .

+ There exists finite Abelian p-groups A, B, C and a short exact sequence
0—+A— B—C— 0suchthat B2~ P, Z/p", A= @, Z/p", and C = P, Z/p*.

And probably many mare things.

share cite improve this answer answered Feb 8'10 at 5:54 community wiki
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Defining LR Coefficients

Combinatorial Definition of LR Coefficients

Definition (Paritions and Young diagrams)

A partition of n € N, is a weakly decreasing integer sequence

A= (A1 =Xy >---) that sums up to n, i.e. > ; \j = n. Denoted
A n. Define |A| = >3 Ai.

A Young diagram is a collection of finitely many “top-left aligned”
boxes.

{Paritions of n} <= {Young diagrams with n boxes}.
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‘—Defining LR Coefficients

Combinatorial Definition of LR Coefficients

A=(53,2) 10 «—

p=-c = X Xt =
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‘—Defining LR Coefficients

Combinatorial Definition of LR Coefficients

We can also fill in numbers

©O©
[o0)
~
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Let «, 3,7 be Young diagrams (or partitions).
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Defining LR Coefficients

Combinatorial Definition of LR Coefficients

Let «, 3,7 be Young diagrams (or partitions).
Definition (Littlewood-Richardson Coefficients)

The LR coefficients cgﬁ is defined as follows.

m If @ € and [7y\a| = [B], then c] 4 is the number of ways to
fill numbers into 4\« such that:

each row is weakly increasing, each column is strongly
increasing;

the number i appears 3; times; and

if we concatenate the rows of v\« (start from the bottom row,
end at top row), read the numbers from right to left, then a
larger number should not appear less often or as often than a
smaller number (i.e. a “lattice word").

(A filled diagram following these rules is called a LR tableau.)
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‘—Defining LR Coefficients

Combinatorial Definition of LR Coefficients

Definition (Littlewood-Richardson Coefficients)

. T
m Otherwise set Cop = 0.
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o=l 1p=331).7=
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‘—Defining LR Coefficients

Example

o=l 1p=331).7=

Fill {1,1,1,2,2,2,3} in Y\a =
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‘—Defining LR Coefficients

Example

1[1]1]

212 is an LR tableau:

2]3
v’ each row is weakly increasing, each column is strongly

increasing;
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‘—Defining LR Coefficients

Example

1[1]1]

212 is an LR tableau:

2]3
v’ each row is weakly increasing, each column is strongly

increasing;

v’ the number i appears (; times (8 = (3,3,1);
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‘—Defining LR Coefficients

1[1]1]
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‘—Defining LR Coefficients

1[1]1]
2|2 wo[2]3]2]2]1]1]1]
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‘—Defining LR Coefficients

1[1]1]
2|2 wo[2]3]2]2]1]1]1]
2]3

Read from right to left:

1

11

111
2111
22111
322111
2322111
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‘—Defining LR Coefficients

Example

a=(2,1),8=331),y=(532).
It's easy to see that

1/1]1]
2[2
2]3

is the only LR tableau of our triple («, 8,7). Therefore C;[a =1.




Ubiquity of Littlewood-Richardson Coefficients

‘—Decomposing Representations of GL,

Table of Contents

Decomposing Representations of GL,



Ubiquity of Littlewood-Richardson Coefficients

‘—Decomposing Representations of GL,

History of LR coefficients

Historically the LR coefficients are not defined combinatorially, but
actually in representation theoretic context. Littlewood and
Richardson proved the combinatorial characterization of these

coefficients.
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‘—Decomposing Representations of GL,

Representations

A representation of a group G is a (finite dimensional) vector
space V on which G acts by linear automorphisms.
For example, any vector space V is a representation of GL(V).
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Examples of Representations

We've seen V is a representation of GL(V/). It's irreducible.
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‘—Decomposing Representations of GL,

Examples of Representations

We've seen V is a representation of GL(V/). It's irreducible.
V®9 is also a representation of GL(V):

A ® vy =(An)® - (Avp).

Not irreducible
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‘—Decomposing Representations of GL,

Examples of Representations

We've seen V is a representation of GL(V/). It's irreducible.
V®9 is also a representation of GL(V):

A ® vy =(An)® - (Avp).

Not irreducible
Sym?V = Cley, ..., &imv]d, A? V, both irreducible
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‘—Decomposing Representations of GL,

Irreducible Representations of GL(V/)

‘«W\»“(Sym3 V) A (Sym? V)“?

“(A\ V) Sym(/\ V) Sym(/\ V)“?
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‘—Decomposing Representations of GL,

Irreducible Representations of GL(V/)

There's a correct way to jazz up Sym and A.

| w539 V.

A e S\ V.

Called Schur modules.
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‘—Decomposing Representations of GL,

Irreducible Representations of GL(V/)

Theorem

Irreducible polynomial representations of GL(V) are exactly the
S\V's, as X\ ranges over partitions of length < dim V (i.e.
A=A 22 Mimv 202>--+)).
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LR Coefficients in Representations of GL(V/)

We can tensor two irreps. This will in general result in a reducible
representation.
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‘—Decomposing Representations of GL,

LR Coefficients in Representations of GL(V/)

We can tensor two irreps. This will in general result in a reducible
representation.

o S,V @ 55V = (5,V)%0
v
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‘—Decomposing Representations of GL,

LR Coefficients in Representations of GL(V/)

We can tensor two irreps. This will in general result in a reducible
representation.

o S,V @ 55V = (5,V)%0
v

Theorem

The multiplicities d;, 5 equals the LR coefficients c] 5. In other

words, ¢! 5 Is exactly the number of times S,V appears in
S5.V® 55 V.
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‘—Decomposing Representations of GL,

LR Coefficients in Representations of GL(V/)

Using this, we can go back and forth between results on cgﬁ and
results about the S5, V's.
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‘—Decomposing Representations of GL,

LR Coefficients in Representations of GL(V/)

Using this, we can go back and forth between results on cgyﬁ and
results about the 5, V's.
For example, because 5,V ® SgV = S5V ® 5.V, we know

5 = CB This is not obvious from the definition of ¢’ 0
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Eigenvalues of Hermitian Matrices

We know that given an n x n Hermitian matrix A, it's eigenvalues
are necessarily real. Let « = (g = ap = -+ = «) be its
eigenvalues.
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‘—Eigenvalues of Hermitian Matrices

Eigenvalues of Hermitian Matrices

We know that given an n x n Hermitian matrix A, it's eigenvalues
are necessarily real. Let « = (g = ap = -+ = «) be its
eigenvalues.

Question

Given descending sequences «, 3, of length n, are there Hermitian
matrices A, B, C with eigenvalues «, 3,7y so that A+ B = C?
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‘—Eigenvalues of Hermitian Matrices

Necessary Conditions

m Obviously: > vi = > i + > Bi.
m More than a century ago: 71 < a1 + (1.
m H. Weyl, 1912: Vi+j—1<n, vipjo1 < o + 5.
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‘—Eigenvalues of Hermitian Matrices

Necessary Conditions

Obviously: > . vi = >} ai + >; Bi.
m More than a century ago: 71 < a1 + (1.
H. Weyl, 1912: Vi+j—1<n, yiyjm1 < a; + G;.

(These three conditions above are also sufficient when the
matrices are 2 x 2.)
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m More than a century ago: 71 < a1 + (1.
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‘—Eigenvalues of Hermitian Matrices

Necessary Conditions

Obviously: > . vi = >} ai + >; Bi.
m More than a century ago: 71 < a1 + (1.
H. Weyl, 1912: Vi+j—1<n, yiyjm1 < a; + G;.

(These three conditions above are also sufficient when the
matrices are 2 x 2.)

K. Fan, 1949: Vi< n, >, 7 < i<, i + 2, Bi
m V. B. Lidskii, 1950, and H. Wielandt, 1955: VI < {1,...,n},
Qi Vi S 2ijer @i + 2i<y Bi-
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‘—Eigenvalues of Hermitian Matrices

Necessary Conditions

m Obviously: > vi =2 ai + >.; Bi.

m More than a century ago: 71 < a1 + (1.

m H. Weyl, 1912: Vi+j—1<n, vipjo1 < o + 5.

m (These three conditions above are also sufficient when the
matrices are 2 x 2.)

K. Fan, 1949: Vi< n, >, 7 < i<, i + 2, Bi

m V. B. Lidskii, 1950, and H. Wielandt, 1955: VI < {1,...,n},
Qi Vi S 2ijer @i + 2i<y Bi-

m A. Horn, 1962: All conditions above, plus

Y2 + 73 < a1 + az + B1 + B3, are also sufficient for 3 x 3

matrices.
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Necessary Conditions

Observe that all necessary conditions above have the form

IR DINEDN: (*1k)

keK iel jed

for certain subsets /, J, K of {1,...,n}.
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‘—Eigenvalues of Hermitian Matrices

Necessary Conditions

Observe that all necessary conditions above have the form

IR DINEDN: (*1k)

keK iel jed

for certain subsets /, J, K of {1,...,n}.
A. Horn, 1962: If we “collect” all conditions in the above form, do
we get a necessary and sufficient condition?
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‘—Eigenvalues of Hermitian Matrices

Of course we have to carefully collect (#/)'s. Horn conjectured
that the collection | J,_, T works, where T, is defined inductively:
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‘—Eigenvalues of Hermitian Matrices

Of course we have to carefully collect (#/)'s. Horn conjectured
that the collection | J,_, T works, where T, is defined inductively:

To={(LJK) D I+DI=> K+1}

YI+Y =YK+
T, =<3 (I,J,K) | ‘v’p<r,V(F,G,H)ETp,

- ) 41
DireF if T Dgecle < Dper kn + p(pz )
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Eigenvalues of Hermitian Matrices

Horn's Conjecture

Horn's Conjecture (proven by A. Knutson and T. Tao)

A triple («, 8,7) occurs as eigenvalues of Hermitian matrices A, B
and C = A + B iff. the following two conditions hold

Y vi=>,;0+>,;06 and

m the inequalities

DD ai+ Y6 (*1k)

keK i€l jed

holds for all (/,J,K) in T, for all r < n.
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Eigenvalues of Hermitian Matrices

Connections with LR Coefficients

At the level of combinatorics, the connection is:
Theorem (A. Knutson, T. Tao:)

If o, 3,7 are partitions, then Cgﬁ’ > 0 iff.

D vi=2,0i+ >, 06 and

m the inequalities

Z Yk <Za;+2ﬁj (*1k)

keK i€l jed

holds for all (I,J,K) in T, for all r < n.



Ubiquity of Littlewood-Richardson Coefficients

Eigenvalues of Hermitian Matrices

Connections with LR Coefficients

At the level of combinatorics, the connection is:
Theorem (A. Knutson, T. Tao:)

If o, 3,7 are partitions, then Cgﬂ > 0 iff.

D vi=2,0i+ >, 06 and

m the inequalities

Z Yk <Za;+2ﬁj (*1k)

keK i€l jed

holds for all (I,J,K) in T, for all r < n.

The problem of Hermitian matrices can be related to Schubert
calculus. I'll try to explain this later.
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‘— Extensions of Finite Abelian p-Groups

An Exercise from Hatcher

Exercise 2.1.14 from A. Hatcher's Algebraic Topology:

Exercise

Determine whether there exists a short exact sequence

0—)Z/4—>Z/8@Z/2—)Z/4—>0.
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‘— Extensions of Finite Abelian p-Groups

An Exercise from Hatcher

Exercise 2.1.14 from A. Hatcher's Algebraic Topology:

Exercise

Determine whether there exists a short exact sequence

0—)Z/4—>Z/8@Z/2—)Z/4—>0.

Let Z/4 — 7Z/8 ® Z/2 be defined by 1 — (2,1).
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An Exercise from Hatcher

Exericse (continued)

More generally, determine which abelian groups A fit into a short
exact sequence

0—Z/p" — A—Z/p" — 0.
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‘— Extensions of Finite Abelian p-Groups

An Exercise from Hatcher

Exericse (continued)

More generally, determine which abelian groups A fit into a short

exact sequence

0—Z/p" — A—Z/p" — 0.

Some homological algebra = A =Z/p™*" or
Z/p? ®Z/p™+" P, where a < min{m, n}.
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Extensions of Finite Abelian p-Groups

An Exercise from Hatcher

Exericse (continued)
More generally, determine which abelian groups A fit into a short

exact sequence

0—Z/p" — A—Z/p" — 0.

Some homological algebra = A =Z/p™*" or
Z/p? ®Z/p™+" P, where a < min{m, n}.
A is called an extension of Z/p" by Z/p™.
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Extensions of Finite Abelian p-Groups

Extension Problem

A more general question is:
Question

Given finite abelian p-groups @; Z/p%i, @, Z/p”, which abelian
group A can be the extension of them? In other words, for which A
can we have a short exact sequence

0— Pz/p —>A—>€|—>Z/p'8" —07
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Extensions of Finite Abelian p-Groups

Extension Problem

A more general question is:

Question

Given finite abelian p-groups @; Z/p%i, @, Z/p”, which abelian
group A can be the extension of them? In other words, for which A
can we have a short exact sequence

0— Pz/p —>A—>€|—>Z/pﬂ" —07

(One can easily compute Ext},(D; Z/p%, @, Z/p%), which
classifies all abelian group extensions. But this doesn't tell us what
those extensions are.)
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‘— Extensions of Finite Abelian p-Groups

Observations

Let's make some first step observations.

0— Pz/p* —>A—>€|—>Z/p6" —0

m By counting elements, we know A is necessarily a p-group. So
A=@,Z/p" for some 7.
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‘— Extensions of Finite Abelian p-Groups

Observations

Let's make some first step observations.

0— Pz/p* —>A—>€|—>Z/p6" —0

m By counting elements, we know A is necessarily a p-group. So
A=@,Z/p" for some 7.

m Any finite abelian p-group determines, and is determined by a
partition:

My = @Z/p" e y=mzrnz)

7y is called the type of M,.
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Observation 1

Let G;ﬁ(p) denote the number of non-isomorphic extensions.

0— My —M,— Mz —0
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‘— Extensions of Finite Abelian p-Groups

Observation 1

Let Glﬁ(p) denote the number of non-isomorphic extensions.

0— My —M,— Mz —0

m The trivial observation: M, < M,
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‘— Extensions of Finite Abelian p-Groups

Observation 1

Let Glﬁ(p) denote the number of non-isomorphic extensions.

0— My —M,— Mz —0

m The trivial observation: M, < M,
Ga3(p) >0 = acr.
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‘— Extensions of Finite Abelian p-Groups

Observation 2

0— My —M,— Mz —0
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‘— Extensions of Finite Abelian p-Groups

Observation 2

0— My —M,— Mz —0

m The length of these groups must add up:
U(M,) = £(My) + £(Mp).
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‘— Extensions of Finite Abelian p-Groups

Observation 2

0— My —M,— Mz —0

m The length of these groups must add up:
UM,) = €(My) + (M),
One way to compute length:

(M) = dimg,,(p" T M/p'M).

izl
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‘— Extensions of Finite Abelian p-Groups

Observation 2

0— My —M,— Mz —0

m The length of these groups must add up:
UM,) = €(My) + (M),
One way to compute length:

(M) = dimg,,(p" T M/p'M).

izl

In fact, dimZ/p(pi_lMa/piMa) =a].
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‘— Extensions of Finite Abelian p-Groups

Observation 2

0— My —M,— Mz —0

m The length of these groups must add up:
UM,) = €(My) + (M),
One way to compute length:

(M) = dimg,(p" *M/p'M).
i>1
In fact, dimZ/p(pi_lMa/piMa) =a].
Gaglp) >0 = [T =[aT|+|8T] = Il=lol+8].
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‘— Extensions of Finite Abelian p-Groups

Observations

These conditions is the same as & € v and |[y\a| = |5], a
necessary condition for cgﬁ to be nonzero.
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Extensions of Finite Abelian p-Groups

Relation to LR Coefficients

By manipulating lengths (which involves long combinatorial
calculation) and some group theory (e.g. Pontryagin duality), one
can show:

Theorem

Given an extension 0 — M, — My — Mg — 0, for each i = 0, let
~) be the type of M., /p'M,,. Then the sequence

(where p"M,, = 0) corresponds to an LR tableau for the triple

(o, B,7).
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m Think of ¥(O7 < 40T < ... < ~(0T a5 Young diagrams
contained successively into the next.
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‘— Extensions of Finite Abelian p-Groups

Relation to LR Coefficients

m Think of ¥(O7 < 40T < ... < ~(0T a5 Young diagrams
contained successively into the next.

m Each difference 4(?T\7(~DT has only one box at each
column.
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‘— Extensions of Finite Abelian p-Groups

Relation to LR Coefficients

m Think of ¥(O7 < 40T < ... < ~(0T a5 Young diagrams
contained successively into the next.

m Each difference 4(?T\7(~DT has only one box at each
column.
= filling in / in v(i)T\fy("_l)T gives us a tableau whose
rows are weakly increasing, columns are strongly increasing.
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Extensions of Finite Abelian p-Groups

As a result

Corollary

¥y Ny vy _
(CaT,ﬁT —)caﬁ =0 = Gaﬂ =0.
In fact, more is true:

Theorem

For any triple o, 3,7, 3 !ggﬁ € Z|t|, such that Ggﬁ(p) = ggﬁ(p).
In fact, if cgﬁ =0 then ggﬁ = 0; otherwise,

for some aj € Zxy.
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Extensions of Finite Abelian p-Groups

As a result

Corollary
T

(CZTﬁT z)cgﬂ =0 = G;ﬂ =0.

In fact, more is true:
Theorem

For any triple o, 3,7, 3 !ggﬁ € Z|t|, such that GZﬁ(p) = ggﬁ(p).
In fact, if cgﬁ =0 then ggﬁ = 0; otherwise,

gg,ﬁ( )=¢ ,,g(t - 1) +an_1(t — 1)N*1 4+ .-+ a9
for some aj € Zxy.

Therefore ¢ ; >0 <= G, 4(p) > 0 for some p
= G, 4(p) >0 for all p.
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‘— Extensions of Finite Abelian p-Groups

Generalizations

This theorem is still true if we instead consider finite length
modules over a discrete valuation ring.
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‘— Intersection of Schubert Cells

Grassmannians

Definition (Grassmannian)

Let V be an n-dimensional vector space (say over C), 0 < r < n.
The Grassmannian Gr,(V) is the set of r-dimensional subspaces of

V.
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Intersection of Schubert Cells

Grassmannians

Definition (Grassmannian)

Let V be an n-dimensional vector space (say over C), 0 < r < n.
The Grassmannian Gr,(V) is the set of r-dimensional subspaces of
V.

There is a way to give this an analytic structure. With this
structure Gr,(V) is a compact complex manifold of dimension
r(n—r).
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Schubert Decomposition

There are some nice subspaces in Gr, (V). Fix a basis

E = {e1,...,en} of V. For any strictly increasing sequence
P=(1<py <pr<--<p;<n), define the Schubert cell
corresponding to P to be

X(E)p :={Le Gr.(X) | Vi,dim(L nspan{es,...,e}) = i}.

In general these subspaces have singularities.
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Intersection of Schubert Cells

Schubert Decomposition

There are some nice subspaces in Gr, (V). Fix a basis

E = {e1,...,en} of V. For any strictly increasing sequence
P=(1<p <pr<---<p,<n), define the Schubert cell
corresponding to P to be

X(E)p :={Le Gr.(X) | Vi,dim(L nspan{es,...,e}) = i}.

In general these subspaces have singularities.

As before, we want to parametrize these objects using partitions.
Letting \ji=n—r+j—pi, A=A =X == )\)isa
partition. Let X(E)y := X(E)p.
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These subspaces are nice because of the following. GL(V) C V,
so B = {upper-A matrices} € GL(V) & Gr,(V), and Gr, (V) is a
disjoint union of orbits under the action of B.

Theorem

Schubert Decomposition For each X, there is an orbit X(E)$
isomorphic to C"="=IAl such that X(E)3 = X(E)y.
Also, Gr (V) = [ (n-r) XX
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Schubert Decomposition

These subspaces are nice because of the following. GL(V) C V,
so B = {upper-A matrices} € GL(V) & Gr,(V), and Gr, (V) is a
disjoint union of orbits under the action of B.

Theorem

Schubert Decomposition For each X, there is an orbit X(E)$
isomorphic to C"("="=I\ sych that X(E)$ = X(E)x.
Also, Gr.(V) = ]_[)\Erx(n—r) X)(\)'

In topological point of view, this gives us a CW structure on
Gr.(V), and X(E)y is a 2(r(n —r) — |A|)-cell. One can compute
cohomologies using this decomposition.
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X(E)A = HHgAX(E)Z = UMgAX(E)M'
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Therefore the intersection of two Schubert cells will be a union of
smaller cells. So intersections are easier to compute.



Ubiquity of Littlewood-Richardson Coefficients

Intersection of Schubert Cells

Intersections

People want to understand the intersection between the cells. A
basic result is:

Proposition
X(E)x = I,ex X(E)}s = Uer X(E)u.

Therefore the intersection of two Schubert cells will be a union of
smaller cells. So intersections are easier to compute.

What we want to understand is when the two cells X(E), and
X(F)u are defined using different bases E # F.
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Intersections

People want to understand the intersection between the cells. A
basic result is:

Proposition
X(E)A = HHgAX(E)Z = UMgAX(E)H'

Therefore the intersection of two Schubert cells will be a union of
smaller cells. So intersections are easier to compute.

Question

Given two distinct bases E, F of V and two partitions
A\, i € rx (n—r) of length r, what's the intersection
X(E)xn X(F)u?
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To study this question, we need to translate it to something we
can work on.
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To study this question, we need to translate it to something we
can work on.

Remember that each X(E)y is a 2(r(n—r) — |A|)-cell in Gr, (V).
Therefore it gives a class [X)] in

Ha(r(n=r)—p (GFr(V)) = H2A(Gr (V). This class doesn't
depend on the choice of basis E.
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To study this question, we need to translate it to something we
can work on.

Remember that each X(E)y is a 2(r(n—r) — |A|)-cell in Gr, (V).
Therefore it gives a class [X)] in

Ha(r(n=r)—p (GFr(V)) = H2A(Gr (V). This class doesn't
depend on the choice of basis E.

Things are easier to compute here, because @®; H'(Gr,(V)) is not
just a group, but also a ring (under the cup product).
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Intersection of Schubert Cells

Cohomology

To study this question, we need to translate it to something we
can work on.

Remember that each X(E)y is a 2(r(n—r) — |A|)-cell in Gr, (V).
Therefore it gives a class [X)] in

Ha(r(n=r)—p (GFr(V)) = H2A(Gr (V). This class doesn't
depend on the choice of basis E.

Things are easier to compute here, because @®; H'(Gr,(V)) is not
just a group, but also a ring (under the cup product).

Theorem
If E and F are different bases of V/, then

[Xa] ~ [Xul = [X(E)x 0 X(F),]-
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Connection with LR Coefficients

Theorem

Xal < [Xs] = >, caslX]

yErx(n—r)

What this means is that, for generic choice of distinct bases
E,F,G of V, the intersection

X(E)a 0 X(F)5 0 X(G)

consists of ¢, ; many points.
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Reps of GL(V) <~~~ Schubert Cells

A connection between these two areas is via the proof of the
theorem

Theorem

Xl = Xsl= 3 aslX]

yErx(n—r)

It goes as follows:
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Proof of the theorem

m For each S, V, we can get a polynomial:
sy = Trpydiag(xy, ..., xn)

(where any A€ GL(V) acts on S,V by the matrix p)A),
called the character of S, V.
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Proof of the theorem

m For each S, V, we can get a polynomial:
sy = Trpydiag(xy, ..., xn)

(where any A€ GL(V) acts on S,V by the matrix p)A),
called the character of S, V.

SA\VeSs,V = @(S,,V)EBCK,M W S\ S, = 2 CK,HSV'

m {5y}, form a basis of the ring A of all symmetric polynomials
with integer coefficients (i.e. A = C[xi,...,x,]>").
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m Show that {[X)]} satisfies the same product rule as {sy}
does.

m Show that A — H*(Gr,(V)), sy — [Xy] is a ring
isomorphism.



Ubiquity of Littlewood-Richardson Coefficients

‘—Underlying Connections

Proof of the theorem

m Show that {[X)]} satisfies the same product rule as {sy}
does.

m Show that A — H*(Gr,(V)), sy — [Xy] is a ring
isomorphism.

PolyRep(GL(V)) s A s H* (Gr, (V).



Ubiquity of Littlewood-Richardson Coefficients

‘—Underlying Connections

Reps of GL(V) <~~~ Schubert Cells

One would expect a connection without going through the
combinatorics, since we have a natural action

B < GL(V) < Gr, (V).
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Reps of GL(V) <~~~ Schubert Cells

One would expect a connection without going through the
combinatorics, since we have a natural action

B < GL(V) & Gr,. (V).

But such a connection (that's at the same time conceptually
satisfying) will use some higher machineries. There isn't a easy
way to describe this.
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Schubert Cells «-~~~» Hermitian Matrices

The key to relating these two areas is Rayleigh trace. If A is an
n x n Hermitian matrix, then for any subspace L € C”, the
Rayleigh trace is defined to be

Ra(L) :=Tr(L—>C" A " & ).
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Schubert Cells <~~~ Hermitian Matrices

The key to relating these two areas is Rayleigh trace. If A is an
n x n Hermitian matrix, then for any subspace L € C”, the
Rayleigh trace is defined to be

Ra(L) :=Tr(L—>C" A " & ).

Let o = (ay = ap = -+ = «,) be eigenvalues of A and vi,..., v,
the corresponding eigenvectors. The v;'s form an ordered basis
E(A) of C".
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Schubert Cells <~~~ Hermitian Matrices

Theorem (J. Hersch and B. Zwahlen)
For any subset P = {py < --- < p,} € {1,...,n},

Dlaj=min  Ra(L).
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Schubert Cells <~~~ Hermitian Matrices

Theorem (J. Hersch and B. Zwahlen)
For any subset P = {py < --- < p,} € {1,...,n},

Dlaj=min  Ra(L).

Using this result one can go back and forth between the two areas.
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Measure of Multiplicities

The LR coefficients measure some kind of “multiplicity” in Rep
theory, Schubert calculus and p-group extensions problems. Is
there a similar interpretation in Hermitian eigenvalue problems?
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Measure of Multiplicities

The LR coefficients measure some kind of “multiplicity” in Rep
theory, Schubert calculus and p-group extensions problems. Is
there a similar interpretation in Hermitian eigenvalue problems?
Knutson: c; 4 is the asymptotic “volume” of {(A,B,C = A+ B) |
A, B, C have respective eigenvalues Na,, N3, Ny} as N — co.
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