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Defining LR Coefficients

Combinatorial Definition of LR Coefficients

Definition (Paritions and Young diagrams)

A partition of n P N� is a weakly decreasing integer sequence

λ � pλ1 ¥ λ2 ¥ � � � q that sums up to n, i.e.
°

i λi � n. Denoted

λ $ n. Define |λ| �
°

i λi .

A Young diagram is a collection of finitely many “top-left aligned”

boxes.

tParitions of nu
�
ÐÑ tYoung diagrams with n boxesu.
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Combinatorial Definition of LR Coefficients

λ � p5, 3, 2q $ 10 ÐÑ

µ � � � λù λzµ � .



Ubiquity of Littlewood-Richardson Coefficients

Defining LR Coefficients

Combinatorial Definition of LR Coefficients

We can also fill in numbers

1 6 9 4 3
9 8 7
6 1
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Combinatorial Definition of LR Coefficients

Let α, β, γ be Young diagrams (or partitions).

Definition (Littlewood-Richardson Coefficients)

The LR coefficients cγα,β is defined as follows.

If α � γ and |γzα| � |β|, then cγα,β is the number of ways to

fill numbers into γzα such that:

1 each row is weakly increasing, each column is strongly

increasing;

2 the number i appears βi times; and

3 if we concatenate the rows of γzα (start from the bottom row,

end at top row), read the numbers from right to left, then a

larger number should not appear less often or as often than a

smaller number (i.e. a “lattice word”).

(A filled diagram following these rules is called a LR tableau.)
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Combinatorial Definition of LR Coefficients

Definition (Littlewood-Richardson Coefficients)

Otherwise set cγα,β � 0.
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Defining LR Coefficients

Example

α � , β � p3, 3, 1q, γ � .

Fill t1, 1, 1, 2, 2, 2, 3u in γzα � .
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Defining LR Coefficients

Example

1 1 1
2 2

2 3
is an LR tableau:

X each row is weakly increasing, each column is strongly

increasing;

X the number i appears βi times (β � p3, 3, 1q;
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1 1 1
2 2

2 3

ù 2 3 2 2 1 1 1

Read from right to left:

1

11

111

2111

22111

322111

2322111
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Defining LR Coefficients

Example

α � p2, 1q, β � p3, 3, 1q, γ � p5, 3, 2q.

It’s easy to see that
1 1 1

2 2
2 3

is the only LR tableau of our triple pα, β, γq. Therefore cγα,β � 1.
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Decomposing Representations of GLn

History of LR coefficients

Historically the LR coefficients are not defined combinatorially, but

actually in representation theoretic context. Littlewood and

Richardson proved the combinatorial characterization of these

coefficients.
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Decomposing Representations of GLn

Representations

A representation of a group G is a (finite dimensional) vector

space V on which G acts by linear automorphisms.

For example, any vector space V is a representation of GLpV q.
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Decomposing Representations of GLn

Examples of Representations

We’ve seen V is a representation of GLpV q. It’s irreducible.

Vbd is also a representation of GLpV q:

A � pv1 b � � � b vmq � pAv1q b � � � b pAvmq.

Not irreducible

Symd V � Cre1, . . . , edimV sd ,
�d V , both irreducible
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Decomposing Representations of GLn

Irreducible Representations of GLpV q

Sym5 V ú

5©
V ú .
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Decomposing Representations of GLn

Irreducible Representations of GLpV q

ú“pSym3 V q ^ pSym2 V q“?

“p
2©

V qSymp
2©

V qSymp
1©

V q“?
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Irreducible Representations of GLpV q

There’s a correct way to jazz up Sym and
�

.

ú Sp3,2qV .

λú SλV .

Called Schur modules.
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Irreducible Representations of GLpV q

Theorem

Irreducible polynomial representations of GLpV q are exactly the

SλV ’s, as λ ranges over partitions of length ¤ dimV (i.e.

λ � pλ1 ¥ � � � ¥ λdimV ¥ 0 ¥ � � � q).
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Decomposing Representations of GLn

LR Coefficients in Representations of GLpV q

We can tensor two irreps. This will in general result in a reducible

representation.

ù SαV bC SβV �
à
γ

pSγV q
`dγα,β

Theorem

The multiplicities dγα,β equals the LR coefficients cγα,β. In other

words, cγα,β is exactly the number of times SγV appears in

SαV b SβV .
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Decomposing Representations of GLn

LR Coefficients in Representations of GLpV q

Using this, we can go back and forth between results on cγα,β and

results about the SλV ’s.

For example, because SαV b SβV � SβV b SαV , we know

cγα,β � cγβ,α. This is not obvious from the definition of cγα,β.
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Eigenvalues of Hermitian Matrices

We know that given an n � n Hermitian matrix A, it’s eigenvalues

are necessarily real. Let α � pα1 ¥ α2 ¥ � � � ¥ αnq be its

eigenvalues.

Question

Given descending sequences α, β, γ of length n, are there Hermitian

matrices A,B,C with eigenvalues α, β, γ so that A� B � C?



Ubiquity of Littlewood-Richardson Coefficients

Eigenvalues of Hermitian Matrices

Eigenvalues of Hermitian Matrices

We know that given an n � n Hermitian matrix A, it’s eigenvalues

are necessarily real. Let α � pα1 ¥ α2 ¥ � � � ¥ αnq be its

eigenvalues.

Question

Given descending sequences α, β, γ of length n, are there Hermitian

matrices A,B,C with eigenvalues α, β, γ so that A� B � C?



Ubiquity of Littlewood-Richardson Coefficients

Eigenvalues of Hermitian Matrices

Necessary Conditions

Obviously:
°

i γi �
°

i αi �
°

i βi .

More than a century ago: γ1 ¤ α1 � β1.

H. Weyl, 1912: @ i � j � 1 ¤ n, γi�j�1 ¤ αi � βj .

(These three conditions above are also sufficient when the

matrices are 2� 2.)

K. Fan, 1949: @ i   n,
°

i¤r γi ¤
°

i¤r αi �
°

i¤r βi .

V. B. Lidskii, 1950, and H. Wielandt, 1955: @ I � t1, . . . , nu,°
iPI γi ¤

°
iPI αi �

°
i¤|I | βi .

A. Horn, 1962: All conditions above, plus

γ2 � γ3 ¤ α1 � α3 � β1 � β3, are also sufficient for 3� 3

matrices.
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Eigenvalues of Hermitian Matrices

Necessary Conditions

Observe that all necessary conditions above have the form

¸
kPK

γk ¤
¸
iPI

αi �
¸
jPJ

βj (�IJK )

for certain subsets I , J,K of t1, . . . , nu.

A. Horn, 1962: If we “collect” all conditions in the above form, do

we get a necessary and sufficient condition?
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Eigenvalues of Hermitian Matrices

Of course we have to carefully collect p�IJK q’s. Horn conjectured

that the collection
�

r n Tr works, where Tr is defined inductively:

T1 :� tpI , J,K q |
¸

I �
¸

J �
¸

K � 1u

Tr :�

$'&
'%
pI , J,K q |

°
I �
°

J �
°

K � rpr�1q
2 ;

@p   r ,@pF ,G ,Hq P Tp,°
f PF if �

°
gPG jg ¤

°
hPH kh �

ppp�1q
2

,/.
/-
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Eigenvalues of Hermitian Matrices

Horn’s Conjecture

Horn’s Conjecture (proven by A. Knutson and T. Tao)

A triple pα, β, γq occurs as eigenvalues of Hermitian matrices A,B

and C � A� B iff. the following two conditions hold°
i γi �

°
i αi �

°
i βi , and

the inequalities

¸
kPK

γk ¤
¸
iPI

αi �
¸
jPJ

βj (�IJK )

holds for all pI , J,K q in Tr for all r   n.
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Eigenvalues of Hermitian Matrices

Connections with LR Coefficients

At the level of combinatorics, the connection is:

Theorem (A. Knutson, T. Tao:)

If α, β, γ are partitions, then cγα,β ¡ 0 iff.°
i γi �

°
i αi �

°
i βi , and

the inequalities

¸
kPK

γk ¤
¸
iPI

αi �
¸
jPJ

βj (�IJK )

holds for all pI , J,K q in Tr for all r   n.

The problem of Hermitian matrices can be related to Schubert

calculus. I’ll try to explain this later.
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Extensions of Finite Abelian p-Groups

An Exercise from Hatcher

Exercise 2.1.14 from A. Hatcher’s Algebraic Topology :

Exercise

Determine whether there exists a short exact sequence

0 ÝÝÑ Z{4 ÝÝÑ Z{8` Z{2 ÝÝÑ Z{4 ÝÝÑ 0.

Let Z{4 ãÑ Z{8` Z{2 be defined by 1 ÞÑ p2, 1q.
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Extensions of Finite Abelian p-Groups

An Exercise from Hatcher

Exericse (continued)

More generally, determine which abelian groups A fit into a short

exact sequence

0 ÝÝÑ Z{pm ÝÝÑ A ÝÝÑ Z{pn ÝÝÑ 0.

Some homological algebra ùñ A � Z{pm�n or

Z{pa ` Z{pm�n�b, where a ¤ mintm, nu.

A is called an extension of Z{pn by Z{pm.
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Z{pa ` Z{pm�n�b, where a ¤ mintm, nu.

A is called an extension of Z{pn by Z{pm.
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Extensions of Finite Abelian p-Groups

Extension Problem

A more general question is:

Question

Given finite abelian p-groups
À

i Z{pαi ,
À

i Z{pβi , which abelian

group A can be the extension of them? In other words, for which A

can we have a short exact sequence

0 ÝÝÑ
à
i

Z{pαi ÝÝÑ A ÝÝÑ
à
i

Z{pβi ÝÝÑ 0 ?

(One can easily compute Ext1
Zp
À

i Z{pαi ,
À

i Z{pβi q, which

classifies all abelian group extensions. But this doesn’t tell us what

those extensions are.)
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Extensions of Finite Abelian p-Groups

Observations

Let’s make some first step observations.

0 ÝÝÑ
à
i

Z{pαi ÝÝÑ A ÝÝÑ
à
i

Z{pβi ÝÝÑ 0

By counting elements, we know A is necessarily a p-group. So

A �
À

i Z{pγi for some γ.

Any finite abelian p-group determines, and is determined by a

partition:

Mγ :�
à
i

Z{pγi ú γ � pγ1 ¥ γ2 ¥ � � � q.

γ is called the type of Mγ .
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Observation 1

Let Gγ
α,βppq denote the number of non-isomorphic extensions.

0 ÝÝÑ Mα ÝÝÑ Mγ ÝÝÑ Mβ ÝÝÑ 0

The trivial observation: Mα � Mγ .

Gγ
α,βppq ¡ 0 ùñ α � γ.
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Extensions of Finite Abelian p-Groups

Observation 2

0 ÝÝÑ Mα ÝÝÑ Mγ ÝÝÑ Mβ ÝÝÑ 0

The length of these groups must add up:

`pMγq � `pMαq � `pMβq.

One way to compute length:

`pMq �
¸
i¥1

dimZ{ppp
i�1M{piMq.

In fact, dimZ{ppp
i�1Mα{p

iMαq � αT
i .

Gγ
α,βppq ¡ 0 ùñ |γT | � |αT | � |βT | ùñ |γ| � |α| � |β|.
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Observations

These conditions is the same as α � γ and |γzα| � |β|, a

necessary condition for cγα,β to be nonzero.
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Extensions of Finite Abelian p-Groups

Relation to LR Coefficients

By manipulating lengths (which involves long combinatorial

calculation) and some group theory (e.g. Pontryagin duality), one

can show:

Theorem

Given an extension 0 Ñ Mα Ñ Mγ Ñ Mβ Ñ 0, for each i ¥ 0, let

γpiq be the type of Mγ{p
iMα. Then the sequence

γp0qT � γp1qT � � � � � γprqT

(where prMα � 0) corresponds to an LR tableau for the triple

pα, β, γq.
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Extensions of Finite Abelian p-Groups

Relation to LR Coefficients

Think of γp0qT � γp1qT � � � � � γprqT as Young diagrams

contained successively into the next.

Each difference γpiqT zγpi�1qT has only one box at each

column.

ùñ filling in i in γpiqT zγpi�1qT gives us a tableau whose

rows are weakly increasing, columns are strongly increasing.
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As a result

Corollary

pcγ
T

αT ,βT �qc
γ
α,β � 0 ùñ Gγ

α,β � 0.

In fact, more is true:

Theorem

For any triple α, β, γ, D !gγα,β P Zrts, such that Gγ
α,βppq � gγα,βppq.

In fact, if cγα,β � 0 then gγα,β � 0; otherwise,

gγα,βptq � cγα,βpt � 1qN � aN�1pt � 1qN�1 � � � � � a0

for some ai P Z¥0.

Therefore cγα,β ¡ 0 ðñ Gγ
α,βppq ¡ 0 for some p

ðñ Gγ
α,βppq ¡ 0 for all p.
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Generalizations

This theorem is still true if we instead consider finite length

modules over a discrete valuation ring.
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Grassmannians

Definition (Grassmannian)

Let V be an n-dimensional vector space (say over C), 0 ¤ r ¤ n.

The Grassmannian Grr pV q is the set of r -dimensional subspaces of

V .

There is a way to give this an analytic structure. With this

structure Grr pV q is a compact complex manifold of dimension

rpn � rq.
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Intersection of Schubert Cells

Schubert Decomposition

There are some nice subspaces in Grr pV q. Fix a basis

E � te1, . . . , enu of V . For any strictly increasing sequence

P � p1 ¤ p1   p2   � � �   pr ¤ nq, define the Schubert cell

corresponding to P to be

X pE qP :� tL P Grr pX q | @ i , dimpLX spante1, . . . , eiuq ¥ iu.

In general these subspaces have singularities.

As before, we want to parametrize these objects using partitions.

Letting λj :� n � r � j � pj , λ � pλ1 ¥ λ2 ¥ � � � ¥ λr q is a

partition. Let X pE qλ :� X pE qP .
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Intersection of Schubert Cells

Schubert Decomposition

These subspaces are nice because of the following. GLpV q ýV ,

so B � tupper-∆ matricesu � GLpV q ýGrr pV q, and Grr pV q is a

disjoint union of orbits under the action of B.

Theorem

Schubert Decomposition For each λ, there is an orbit X pE q�λ
isomorphic to Crpn�rq�|λ| such that X pE q�λ � X pE qλ.

Also, Grr pV q �
²
λ�r�pn�rq X

�
λ .

In topological point of view, this gives us a CW structure on

Grr pV q, and X pE qλ is a 2prpn � rq � |λ|q-cell. One can compute

cohomologies using this decomposition.
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Intersections

People want to understand the intersection between the cells. A

basic result is:

Proposition

X pE qλ �
²
µ�λ X pE q

�
µ �
�
µ�λ X pE qµ.

Therefore the intersection of two Schubert cells will be a union of

smaller cells. So intersections are easier to compute.

Question

Given two distinct bases E ,F of V and two partitions

λ, µ � r � pn � rq of length r , what’s the intersection

X pE qλ X X pF qµ?
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Cohomology

To study this question, we need to translate it to something we

can work on.

Remember that each X pE qλ is a 2prpn � rq � |λ|q-cell in Grr pV q.

Therefore it gives a class rXλs in

H2prpn�rq�|λ|qpGrr pV qq � H2|λ|pGrr pV qq. This class doesn’t

depend on the choice of basis E .

Things are easier to compute here, because
À

i H
i pGrr pV qq is not

just a group, but also a ring (under the cup product).

Theorem

If E and F are different bases of V , then

rXλs! rXµs � rX pE qλ X X pF qµs.
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Intersection of Schubert Cells

Connection with LR Coefficients

Theorem

rXαs! rXβs �
¸

γ�r�pn�rq

cγα,βrXγs.

What this means is that, for generic choice of distinct bases

E ,F ,G of V , the intersection

X pE qα X X pF qβ X X pG qγ_

consists of cγα,β many points.
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Underlying Connections

Reps of GLpV qú Schubert Cells

A connection between these two areas is via the proof of the

theorem

Theorem

rXαs! rXβs �
¸

γ�r�pn�rq

cγα,βrXγs.

It goes as follows:
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Underlying Connections

Proof of the theorem

For each SλV , we can get a polynomial:

sλ � Tr ρλ diagpx1, . . . , xnq

(where any A P GLpV q acts on SλV by the matrix ρλA),

called the character of SλV .

SλV b SµV �
à
ν

pSνV q
`cνλ,µù sλ � sµ �

¸
ν

cνλ,µsν .

tsλuλ form a basis of the ring Λ of all symmetric polynomials

with integer coefficients (i.e. Λ � Crx1, . . . , xns
Sn).
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Underlying Connections

Proof of the theorem

Show that trXλsuλ satisfies the same product rule as tsλuλ
does.

Show that Λ Ñ H�pGrr pV qq, sλ ÞÑ rXλs is a ring

isomorphism.

PolyReppGLpV qqú Λú H�pGrr pV qq.
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Reps of GLpV qú Schubert Cells

One would expect a connection without going through the

combinatorics, since we have a natural action

B � GLpV q ýGrr pV q.

But such a connection (that’s at the same time conceptually

satisfying) will use some higher machineries. There isn’t a easy

way to describe this.
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Schubert Cellsú Hermitian Matrices

The key to relating these two areas is Rayleigh trace. If A is an

n � n Hermitian matrix, then for any subspace L � Cn, the

Rayleigh trace is defined to be

RApLq :� TrpL ãÑ Cn A
ÝÑ Cn pr

ÝÑ Lq.

Let α � pα1 ¥ α2 ¥ � � � ¥ αnq be eigenvalues of A and v1, . . . , vn
the corresponding eigenvectors. The vi ’s form an ordered basis

E pAq of Cn.
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Schubert Cellsú Hermitian Matrices

Theorem (J. Hersch and B. Zwahlen)

For any subset P � tp1   � � �   pru � t1, . . . , nu,

¸
iPI

αi � min
LPX pEpAqqP

RApLq.

Using this result one can go back and forth between the two areas.
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Underlying Connections

Measure of Multiplicities

The LR coefficients measure some kind of “multiplicity” in Rep

theory, Schubert calculus and p-group extensions problems. Is

there a similar interpretation in Hermitian eigenvalue problems?

Knutson: cγα,β is the asymptotic “volume” of tpA,B,C � A� Bq |

A,B,C have respective eigenvalues Nα,Nβ,Nγu as N Ñ8.
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The End
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