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ABSTRACT. Let g be a complex semisimple finite dimensional Lie algebra, and consider a category of repre‑
sentations of gwhere a Kazhdan‑Lusztig algorithm exists for integral regular infinitesimal characters. In this
talk, wewill discuss a potential approach for extending the integral algorithm to arbitrary non‑integral regular
infinitesimal characters, using intertwining functors. We will then apply this approach to Whittaker modules
and demonstrate the non‑integral algorithm there using an explicit example.
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Thank you very much for the introduction and for inviting me to speak here.
So what I want to talk about is a Kazhdan‑Lusztig algorithm for Whittaker modules for non‑integral

infinitesimal characters, which is an extension of the integral algorithm proven by Anna Romanov. His‑
torically there are a few ways of extending integral KL type results to the non‑integral case. The method
I’m about to explain is different from the well‑known ones, and it uses intertwining functors due to
Beilinson‑Bernstein. The idea of this method was already present in the literature, for example in David
Vogan’s papers on KL algorithm for real groups, but I think it deserves more attention and more use. So
I’ll spend the first half of the talk describing how this method works, phrasing everything in a slightly
general language, and then in the second half, we will apply this method to Whittaker modules.

1. GENERAL SCHEME

Notation 1.1. Let
‚ g = complex semisimple Lie algebra; G = corresponding group.
‚ h = universal Cartan algebra;
‚ λ P h˚ is regular, giving rise to a regular infinitesimal character.
‚ X = flag variety of g.
‚ Dλ = tdo on Xwith infinitesimal character λ.
‚ Cλ = the category of reps we are doing KL algorithm in. For simplicity we will consider
Modfg(U(g)λ,N) (highest weight modules) and Modfg(U(g)λ,N, η) (Whittaker modules).

‚ Cλ = localization of C, i.e. Modcoh(Dλ,N) or Modcoh(Dλ,N, η).
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‚ L(Q) = irreducible objects in C (Q denotes an N‑orbit in X, and τ is a K‑equivariant connection
on Q compatible with the infinitesimal character). In the cases we are considering, there is only
one connection on each orbit, so we may abbreviate L(Q).

‚ I(Q) = I(Q) = iQ˚OQ = standard objects, containing L(Q) as its unique irreducible sub.
‚ W =Weyl group of g;
‚ H =Hecke algebra ofW. Let {Tw} be the standard basis and {Cw} be the Kazhdan‑Lusztig basis.

Goal of KL Algorithm 1.2. is to write [L(Q)] as a linear combination of the [I(Q)]’s in the Grothendieck group
KC.

1.1. Integral case. Before we discuss the non‑integral case, let’s first recall the argument for integral
infinitesimal characters and setup the notations. A lot of you are probably already familiar with this, so
please bear with me. There are a few different formulations of the algorithm. I will follow the version
that I’m most comfortable with.

It’s easy to see that KC is actually a free abelian group, and the [I(Q)]’s form a basis:

C

KC Z ¨ {T(Q)}QPN\X

[I(Q)] T(Q)

[−]

This is not enough to find the images of irreducibles. The first step is to construct a Z[q˘1]‑module that
enriches the Grothendieck group.

Z[q˘1]‑module. The enriched version is a free Z[q˘1]‑module over the same basis. We also want to lift
the bottom map to a comparison map which we denote by ν, defined as follows. Let iQ : Q ↪→ X be the
inclusion map of an N‑orbit. Then for any V P C, the D‑module theoretic pullback i!Q is a semisimple
complex (is a direct sum of connections at various degrees), so we may take its generating function in
variable q, denoted by χq(i

!
QV). Then the comparison map may be defined as

C ν−→ E ,

V Þ→ÿ

Q

χq(i
!
QV)T(Q) ,

I(Q) Þ→ T(Q),

L(Q) Þ→ C(Q).

At q = −1, each χq(i
!
Q 1L(Q)) is additive on short exact sequences, and hence ν factors through the

Grothendieck group, as desired. χq(i
!
Q 1L(Q)) is then the coefficient of T(Q 1) in C(Q), i.e. Kazhdan‑

Lusztig polynomials.

C E

KC Z ¨ {T(Q)}

ν

[−] q=−1

–

.

Geometric Hecke action. In order to obtain an algorithm, one also need an H‑action on E and lift this
action to a ”geometric action” on C on standard and irreducible objects. In the highest weight case, E = H
and the action H ý H is just the (right) regular action. In general, the action E ý H is modeled based
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on the geometric action of H on standard modules: For each w P W, let Zw be the diagonal G‑orbit in
X ˆ X corresponding to pairs of Borels in relative position w, with projection maps

X
p1←−− Zw

p2−−→ X.

Definition 1.3 (Beilinson‑Bernstein). The intertwining functor LIw (due to Beilinson‑Bernstein) is de‑
fined by pulling‑pushing along the projection maps:

LIw : Db(Dλ)→ Db(Dwλ),

V‚ Þ→ p1+

(
p˚
1OX(ρ−wρ) b

OZw

p+
2 V

‚
)
.

Here the twist p˚
1OX(ρ − wρ) is to ensure the functor lands into the correct category. As the notation

suggests, LIw is the left derived functor of Iw := H0LIw. In fact, LIw is an equivalence of (derived)
categories.

One than defines E ý H by

T(Q) ¨ Tw := ν
(
OX(λ−wλ) b LIwI(Q)

)
.

In the Grothendieck group (at q = −1) this is the coherent continuation representation ofH|q=−1 = C[W].
One can verify that the the action of the KL basis elements Csα

P H can also be lifted geometrically:

T(Q) ¨ Csα
= ν

(
UαI(Q)

)
where Uα is defined by pulling‑pushing along the natural map X → Xsα

to the partial flag variety of
type sα.

Algorithm. With these actions, one can findC(Q) as follows by induction on dimQ. L(Q) is either equal
to I(Q) (in which case C(Q) = T(Q) is known) or reducible. In the latter case, there is a simple root α
and anN‑orbitQ 1 Ă Q so thatQ 1 is closed in p−1

α (pα(Q
1)) andQ is open in it, and the connection τ 1 on

Q 1 is so that L(Q) appears inUαL(Q 1), with dimQ 1 = dimQ− 1 (we say that α is transversal toQ 1 and
non‑transversal to Q).

Q p−1(p(Q)) X

Q 1

p(Q) Xα

op

p

cl

One shows (possibly nontrivially, also by induction) that

C(Q 1) ¨ Csα
= ν(L(Q 1)) ¨ Csα

= ν(UαL(Q 1)).

Since by induction assumption C(Q 1) is known, the left side can be computed explicitly in E . For the
right side, by the (deep) Decomposition Theorem, UαL(Q 1) is a direct sum of irreducible objects with
dimSupp ď dimQ, and L(Q) is the only one with Supp = Q. Therefore the equation above together
with known information on the C(Q 1)’s allows us to solve for C(Q).

For other categories of representations (for example (g, K)‑modules), this last step may require more
work, but the process should be the similar.
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1.2. Non‑integral case. Now assume λ is regular but not necessarily integral. Let
‚ Wλ = the integral Weyl group (as a subgroup ofW);
‚ Hλ = Hecke algebra ofWλ.
‚ To emphasize the infinitesimal character we write Cλ = C and Eλ = E .
‚ Standard and irreducible objects will be written as I(Q, λ) and L(Q, λ).

In this case the action E ý H should be replaced by Eλ ý Hλ, which can be defined in the same way
as before since the intertwining functors are still defined. In order to run the same argument, one would
like to realize right multiplication of Csα

geometrically for any simple reflection sα inWλ. However, sα
in Wλ may be non‑simple in W, and in this case we can’t define Uα as before (because there is no Xsα

anymore).

Non‑integral reflection. To remedy this, observe that

Observation 1.4. Suppose sα is simple in Wλ and

sα = sβ1
¨ ¨ ¨ sβk

sγsβk
¨ ¨ ¨ sβ1

is a reduced expression in W, then
‚ Each sβi

is non‑integral to sβi−1
¨ ¨ ¨ sβ1

λ, and
‚ sγ is (simple and) integral to sβk

¨ ¨ ¨ sβ1
λ.

The idea then is to “apply” the sβi
’s, translate everything from λ to sβk

¨ ¨ ¨ sβ1
λ, applyUα, and trans‑

late back. In order to do this geometrically, we need

Proposition 1.5 (Beilinson‑Bernstein). If sβ is simple and is non‑integral to λ, then the 0‑th intertwining
functor

Isβ
= H0LIsβ

: Mod(Dλ)→Mod(Dsβλ)

is an equivalence of categories. Its inverse is Isβ
.

We will call Isβ
a non‑integral intertwining functor. Moreover, it is not hard to show that Isβ

sends
standard modules to standard modules. We denote the image by

Isβ
: I(Q, λ) Þ→ I(Qsβ, sβλ).

Since Isβ
is an equivalence of categories, it sends the unique irreducible sub L(Q, λ) of I(Q, λ) to the

unique irreducible sub L(Qsβ, sβλ) of I(Qsβ, sβλ):

Isβ
: L(Q, λ) Þ→ L(Qsβ, sβλ).

Moreover, the Kazhdan‑Lusztig polynomials are also preserved under Isβ
, namely

χqi
!
Q 1sβ

L(Qsβ, sβλ) = χqi
!
Q 1L(Q, λ).

We may summarize these in the following diagram

Cλ Eλ
À

j Eλ,j T(Q, λ) C(Q, λ)

Csβλ Esβλ

À

j Esβλ,j T(Qsβ, sβλ) C(Qsβ, sβλ)

ν

Isβ–

ν

where the vertical maps on the middle and on the right intertwines the actions of

Hλ
∼−→ Hsβλ, Tw Þ→ Tsβwsβ

.

The arrow on the left also intertwines the geometric lifts of the Hecke actions.
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Geometric Hecke action. For a reflection sα simple in Wλ and a reduced expression sα =

sβ1
¨ ¨ ¨ sβk

sγsβk
¨ ¨ ¨ sβ1

inW, the action of Tsα
on T(Q, λ) before can be rewritten as

T(Q, λ) ¨ Tsα
:= ν

(
OX(λ− sαλ) b LIsα

I(Q, τ)
)

= ν
(
OX(λ− sαλ) b Isβ1

¨ ¨ ¨ Isβk
LIsγ

Isβk
¨ ¨ ¨ Isβ1

I(Q, τ)
)
.

Multiplication by Csα
P Hλ can now be lifted to

T(Q, τ) ¨ Csα
= ν

(
Isβ1

¨ ¨ ¨ Isβk
UγIsβk

¨ ¨ ¨ Isβ1
I(Q, τ)

)
.

Algorithm. At this point it’s clear how the algorithm should be modified to the non‑integral situation.
Suppose by induction we know how to compute C(Q 1, λ 1) for all dimQ 1 ă dimQ and all λ 1 P W ¨ λ.
ConsiderC(Q, λ). If it is not equal to a standardmodule, then there is a simple reflection s not transversal
to Q. If s = sα is integral to λ, then one proceeds as in the integral case with Uα. If s = sβ is non‑
integral to λ, then one applies Isβ

and L(Q, λ) = Isβ
L(Qsβ, sβλ) where dim(Qsβ) ă dimQ = k. Since

the Kazhdan‑Lusztig polynomials of L(Qsβ, sβλ) are known by induction, we know those of L(Q, λ)

because Isβ
preserves KL polynomials as well.

1.3. Features of this method.
(1) This is an entirely D‑module theoretic argument that does not seem to have parallels in the per‑

verse sheaf language. Because of this, this method can be applied to categories of representations
where the corresponding D‑modules are holonomic but not regular holonomic (for example,
Whittaker modules).

(2) Because the non‑integral intertwining functors are equivalences of categories between all quasi‑
coherentD‑modules (not just equivariant/holonomic ones), they have the potential to be applied
to other categories of representations of g for extending integral results to non‑integral infinites‑
imal characters.

However, this method does not give us a block decomposition of the category at non‑integral infini‑
tesimal character, nor does it give you a character formula for the irreducibles in each block. What it does
give you is an algorithm allowing you to compute examples. Once the pattern is found an a conjecture
of block decomposition and character formula is written down, this method can be run again to prove
them.

2. APPLICATION TO WHITTAKER MODULES

2.1. Backgrounds and the integral case. Nowwe apply this argument toWhittaker modules. Let’s first
recall the basic facts of this category.

Let n be the Lie algebra of N, let η : n→ C be a representation, and let

Cλ = Nλ,η = {f.g. g‑modules with inf. char. λ and n acts by generalized character η}.

This is a highest weight category (Brown‑Romanov). If η = 0, we get back the highest weight modules.
In general, write

Θ = {simple roots α so that η is nonzero on the α‑root space in n},

then the standard objects and irreducible objects are parameterized byWΘ\W. For a coset D P WΘ\W,
the corresponding standard module is

M(Dλ, η) = U(g) b
U(pΘ)

(
U(lΘ)Dλ+(ρ‑shifts) b

U(nΘ)
Cη

)
(McDowell),
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and its unique irreducible quotient is denoted by L(Dλ, η) (McDowell).
Regarding [M(Dλ, η) : L(Eλ, η)],

‚ λ integral: Miličić‑Soergel.
‚ λ non‑integral: Backelin (using ideas of Soergel modules).

In order to get an algorithm for the KL polynomials themselves, we need to localize. The localization
ofNλ,η is the category Cλ = Modcoh(Dλ,N, η) consisting of weaklyN‑equivariant coherentDλ‑modules
so that the n Ă Dλ‑action differs from differential of N‑action by η. These modules are

‚ holonomic but not regular holonomic;
‚ M(Dλ, η) is localized to M(D, λ, η) := iC(wD)!Oη

C(wD)
, where wD is the longest element in D

w.r.t. Bruhat order, C(wD) is the Schubert cell of wD, and Oη

C(wD)
is the unique irreducible

connection onC(wD) in this category. There is no connection on Schubert cells not of the formC(wD).
‚ Standard modules are denoted by I(D, λ, η) and L(D, λ, η), respectively. The duality D of holo‑
nomic D‑modules sendsM to I and preserves L. So it suffices to find KL polynomials between
L and I.

‚ The module E = HΘ = Z[q, q−1] ¨ (WΘ\W) ý H.

Using the approach outlined in the first half of the talk, Romanov showed

Theorem 2.1 (Int WKL, Romanov). If λ is integral regular, there is a KL algorithm for Nλ,η. The WKL poly‑
nomials are the antispherical parabolic KL polynomials.

Example 2.2 (A2). g = sl(3,C), Θ = {α}, λ = −ρ. There are three rightWΘ‑cosets

‚ ‚

‚ ‚

‚ ‚

α γ

β

sγ

sαsβ sβsα

sα sβ

1

T(sα) T(sαsβ) T(sγ)

C(sα) 1

C(sαsβ) q 1

C(sγ) q 1

2.2. Non‑integral case. Now consider non‑integral λ. Because of the non‑integrality of λ, our category
is broken down into a direct sum of smaller blocks, and it turns out that the blocks are parameterized
by doulbe cosets WΘ\W{Wλ. The KL polynomials in each block are the same as antispherical PKL
polynomials for an integral block.

To describe these integral blocks, we need some combinatorial facts of the double cosets.

Combinatorics of double cosets. The first fact we need is

‚ Each double cosetWΘuWλ contains a unique shortest element uw.r.t. Bruhat order.



A NON‑INTEGRAL KAZHDAN‑LUSZTIG ALGORITHM AND APPLICATION TO WHITTAKER MODULES 7

Then left multiplication by u defines

Wλ uWλ WΘuWλ

Ů

Wλ X u−1WΘv
Ů

(uWλ X WΘv)
Ů

WΘv

u¨−

–

–

‚ Each u determines a subset Θ(u, λ) of simple reflections in Wλ so that the partition
Ů

Wλ X

u−1WΘv is the same as the partition given by right cosetsWλ,Θ(u,λ)\Wλ.

WriteHΘ(u,λ) = Z[q, q−1]¨(Wλ,Θ(u,λ)\Wλ). Then Romanov’swork tells us that there is a rightHλ‑action
onHΘ(u,λ), and we know how to write down KL basis elements inHΘ(u,λ). From the bottom row of the
above diagram, each coset D P WΘ\W gives rise to a unique coset D|λ P Wλ,Θ(u,λ)\Wλ. So if D and E

are in the same double cosetWΘuWλ, we can talk about the WKL polynomial Pu,λ
D|λ,E|λ

inHΘ(u,λ).

Theorem 2.3 (Non‑int WKL, Z.). If λ is regular, there is a KL algorithm forNλ,η. InHΘ, the following expres‑
sion holds

C(D, λ, η) =
ÿ

EPWΘ\WΘuWλ

E|λďu,λD|λ

Pu,λ
D|λ,E|λ

(q)T(E, λ, η)

where Pu,λ
D|λ,E|λ

(q) are theWKL polynomials. Specializing at q = −1, we get the character formula for irreducibles.

At the end, let us demonstrate how the algorithm works in the non‑integral case.

Example 2.4 (A2). g = sl(3,C), Θ = {α}, λ P W(−1
2
α).

Ä

‚

‚ ‚

‚
Ä

α γ

˚

β

sγ

sαsβ sβsα

sα sβ

1

‚
Ä

‚ ‚

Ä

‚

α γ

˚

β

sγ

sαsβ sβsα

sα sβ

1
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‚ ‚

Ä Ä

‚ ‚

α γ

˚

β

sγ

sαsβ sβsα

sα sβ

1

A detailed description of how the algorithm runs in this example can be found in my Ph.D. thesis,
Appendix A.1.

https://www.math.utah.edu/~zhao/pdfs/phd_thesis.pdf
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