
IRREDUCIBILITY CRITERION FOR STANDARD MODULES
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These notes arewritten for the Representation Theory Seminar at theUniversity ofMelbourne inApril,
2022. They are mostly based on [Hec+].
Be careful: in these notes I tried to translate notations and conventions from [Hec+] to [DV], which is

a daunting task. There are potentially a lot of mistakes, especially on “positive” versus “negative” and
on various ρ‑shifts. Please refer to the original paper if you want to apply the statements.
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Set:
‚ G ‑ a connected semisimple algebraic group over C with Lie algebra g.
‚ θ ‑ an involution of g (the Cartan involution in the classical setting).
‚ K ‑ a reductive algebraic subgroup of G such that its Lie algebra k is the fixed point of θ.

In the classical setting, one starts with a real connected linear semisimple Lie group G0 with a choice of
maximal compact subgroup K0 and a Cartan involution Θ. Then G and K will be the complexifications
of G0 and K0, and θwill be the differential of Θ.

Remark 0.1. To study non‑linear groups, one instead require K to be an algebraic group over C with an
isogeny to Int g.

Geometric objects and weights will have the following conventions:
‚ X = B ‑ the flag variety of g. For x P X, bx denotes the corresponding Borel subalgebra in g.
‚ h ‑ abstract Cartan algebra of g. Φ Ě Φ− denote the root system and negative roots corresponding
to roots in the Borel.

‚ DX,λ ‑ G‑homogeneous twisted sheaf of differential operators corresponding to λ P h˚ parame‑
terized such that DX = DX,0 and DωX

= DX,−2ρ.
‚ If Q Ă X is a K‑orbit with inclusion map jQ, and if τ is a K‑equivariant connection on Q, the
standard module on Q is I(Q, τ) = jQ˚τ, and the irreducible on Q is L(Q, τ) = jQ!˚τ.
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The main goal of these talks is to present an irreducibility criterion for standard modules I(Q, τ).
It can be shown that Γ(X, I(Q, τ))∨ are equal to the standard representations in Knapp‑Zuckerman’s
version of Langlands classification [KZ77, Theorem 5], and the reducibility of those modules for regular
infinitesimal characters were classified by Speh‑Vogan [SV80]. Speh‑Vogan covered the singular case to
certain degree (only a necessary condition was explicitly written down) but it is much more complicated
compared to the regular case. Milicic suspected that this could be aD‑module result, and went ahead to
prove it together with other people in [Hec+, 8.8].

The statement of the result is a bit involved. I plan to first discuss some special cases. The general case
will be a merge of the special cases. The argument is mostly taken from op. cit.

1. PRELIMINARIES
First I want to recall some basic facts on different types of roots and how they are related to K‑orbits

on X.

1.1. Different types of roots. Let c Ď g be a Cartan subalgebra stable under the Cartan involution θ.
Then c decomposes as t ‘ a where t = cθ (the toroidal/compact part) and a = c−θ (the split part). Also θ

acts on the root systemΦc = Φ(g, c). A root α is called
‚ imaginary if θα = α (equivalently α|a = 0);
‚ real if θα = −α (equivalently α|t = 0);
‚ complex in all other cases.

We can subdivide the imaginary roots into two subcases: an imaginary root α is called
‚ compact imaginary if the root space gα is contained in k, i.e. θ ýgα by 1;
‚ noncompact imaginary if the root space gα is not contained in k. Then necessarily θ ýgα by −1.

Let
Φc,CI, Φc,NI, Φc,R, Φc,C (1.1)

denote the sets of compact imaginary, noncompact imaginary, real and complex roots, respectively.
Although all Cartan subalgebras of g are conjugate under AdG, in order to fix θ one is only allowed

to conjugate by K. Then there are in general several K‑conjugacy classes of θ‑stable Cartans. There is a
unique conjugacy class such that dim t (resp. dim a) is maximal among all conjugacy classes. A Cartan
in this classes is said to be a maximally compact Cartan (resp. maximally split Cartan).

Remark 1.2. By a theorem of Kostant‑Sugiura [War72, Theorem 1.3.1.10], the set of K‑conjugacy classes
of (θ‑stable) Cartans are parameterized by “conjugacy classes of strongly orthogonal systems of positive
restricted roots” for a maximally split a.

When c is changed from one conjugacy class to another, different types of roots inΦc will also change.
heuristically, the bigger the t part (resp. a part), the more imaginary roots (resp. real roots) there will be.

Example 1.3. G0 = SL(2,R), (g, K) = (sl(2,C),SO(2,C)). In this case there are two conjugacy classes of
Cartans: one is compact (i.e. cc = tc ‘ 0), the other is split (i.e. cs = 0 ‘ as). For the compact Cartan, the
only root is noncompact imaginary; for the split Cartan, the only root is real.

Example 1.4. G0 = SU(2, 1), (g, K) = (sl(3,C),GL(2,C)). In this case there are two conjugacy classes of
Cartans: the maximally compact Cartan cc = tc ‘ 0 is compact.

Φcc :

‚ ‚

‚ ‚

‚ ‚

CI NI

NI NI

NI CI

. (1.5)
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θ fixes all roots. The maximally split Cartan c 1 = t 1 ‘ a 1 is not split: dim t 1 = dim a 1 = 1.

Φc 1 :

‚ ‚

‚ ‚

‚ ‚

C C

R R

C C

. (1.6)

θ acts by reflection by the dotted line.

Example 1.7. G0 = SL(3,R), (g, K) = (sl(3,C),SO(3,C)). In this case there are two conjugacy classes of
Cartans. The maximally compact Cartan c = t ‘ a is not compact.

Φc :

‚ ‚

‚ ‚

‚ ‚

C NI

C C

NI C

. (1.8)

θ acts by reflection across the NI‑plane. The maximally split Cartan cs = 0 ‘ as is split:

Φcs :

‚ ‚

‚ ‚

‚ ‚

R R

R R

R R

. (1.9)

θ acts by −1.

1.2. K‑orbits in X. How are these roots related to geometry? For each K‑orbit Q, one can attach a K‑
conjugacy class of θ‑stable Cartan AdK ¨ c in the following way:

Q Q x bx Ě c AdK ¨ c (1.10)
that is, take x P Q, take the corresponding Borel bx, take a θ‑stable Cartan c in bx (which can be done, see
[Mil93, 5.3]), and then take the conjugacy class of c. Multiple orbits can be attached to the same Cartan c,
and the preimage of c is parameterized by the set ofNK(c)‑conjugacy classes of choices of negative roots
in Φc, where NK(c) is the normalizer of c in K:

NK(c)\
{choices of
Φ−

c Ď Φc

}
AdK ¨ c

K\X AdK\{θ‑stable Cartans c Ď g}

. (1.11)

For x P Q, we have a involution θQ on h˚ and a set of negative rootsΦ− Ď Φ obtained by pulling back
θ along the natural map h˚ ∼−→ (bx{nx)

˚ ∼−→ c˚. Write Φ−
Q,R for the set of Q‑real (i.e. real with respect to

θQ) roots in the set of negative roots determined by x in Q. In a similar way write Φ−
Q,C, Φ

−
Q,NI, Φ

−
Q,CI.

Remark 1.12. Φ− is determined on x up to G‑conjugacy; the induced involution θ on h˚ is determined
on c up to K‑conjugacy. So the pair (Φ−, θ) is determined on x up to G X K‑conjugacy, i.e. on the orbit
K ¨ x = Q.



4 QIXIAN ZHAO

Knowing the root system data allows us to compute dimensions of the orbits. If x P Q, then dimQ =
dim k{(k X bx) = dim k − dim k X bx which can be calculated by using root spaces. With some work one
obtains

dimQ =
1

2

(
|ΦQ,CI|+ |ΦQ,R|+

1

2
|ΦQ,C|+ |D−(Q)|

)
(1.13)

where

D−(Q) =
{
α P Φ−

Q,C | θQα R Φ−
Q

}
. (1.14)

Therefore, among all orbits attached to c, the maximal ones have maximal possible |D−(Q)|, and the
minimal ones have minimal possible |D−(Q)|.

Definition 1.15. Given a θ‑stable Cartan c, a Zuckerman orbit (resp. Langlands orbit) attached to c is
an orbit attached to c with D−(Q) = ∅ (resp. D−(Q) = Φ−

Q,C).

In particular Zuckerman (resp. Langlands) orbits are the minimal (maximal) ones attached to c. It is
an easy combinatorial exercise that Zuckerman orbits and Langlands orbits always exist [Hec+, 5.1].

Example 1.16. G0 = SL(2,R). We have three orbits: {0}, {∞}, C˚ in X = P1 attached to two conjugacy
classes of Cartans cc, c 1:

C˚ c 1

{0} {∞} cc

. (1.17)

If {α,−α} are the roots, {0} and {∞} corresponding to choosingα and−α as the negative root, respectively.

Example 1.18. G0 = SU(2, 1). There are six orbits:

O
c 1

Q+ Q−

C+ C0 C− cc

, (1.19)

where the three closed orbits are attached to cc and the other three attached to c 1. Φ−
C0

has two noncom‑
pact roots as simple roots, while one of the simple roots in Φ−

C+
or Φ−

C−
is compact. Both Φ−

Q+
and Φ−

Q−

have a real root as part of the simple roots, while the simple roots of Φ−
O are both complex.

Example 1.20. G0 = SL(3,R). There are four orbits:

O cs

Q+ Q−

c

Q0

, (1.21)

where O is attached to cs and the other three attached to c. Φ−
Q0

has two complex roots as simple roots,
andΦ−

Q+
, Φ−

Q−
both have one imaginary root as part of the simple roots.
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2. SPECIAL CASES
Slogan 2.1.

‚ Existence of I(Q, τ) is determined by the behavior of τ along all imaginary roots;
‚ Irreducibility of I(Q, τ) is determined by the behavior of τ along complex and real roots.

Let us examine irreducibility of I(Q, τ)when there is only one type of root in ΦQ.

2.1. Imaginary roots only. If there is only imaginary roots, then the corresponding Cartan c is compact,
c = t, and is a Cartan subalgebra of k. So k is spanned by t and compact imaginary root spaces. The
stabilizer k X bx of a point is spanned by c = t and negative compact imaginary root spaces in, which is
a Borel in k. Therefore Q – K{(K X Bx) is the flag variety of K and is closed in X.

By Kashiwara’s equivalence, I(Q, τ) is automatically irreducible. However existence of τ implies that
λmust lift to a character of T .

Remark 2.2. In fact in this case I(Q, τ) is a (limit of) discrete series.

2.2. Complex roots only. Suppose Q is attached to the Cartan c.

Fun Exercise 2.3. Show that ifΦc contains only complex roots, then the pair (g, K) comes from a complex group,
that is there is a complex group G0 (viewed as a real group) such that (g, K) = (g0 ˆ g0, ∆G0).

Write X0 for the flag variety of g0. Then the categories
Mod(DX0ˆX0,λ 1 , ∆G0) and Mod(DX0,λ, B0) (2.4)

are equivalent when λ 1 P (h0 ˆ h0)
˚ and λ P h˚

0 are integral (by descent, see [BB85, 3.10]). Let’s look
at Mod(DX0,λ,N0) instead in order to allow non‑integral λ’s. Here we know exactly which standard
modules are irreducible. Let Cw denote the Schubert cell of w. Then Γ(X, I(Cw, λ)) = M(wλ)∨.

Irreducibility Criterion: Verma Modules 2.5. Let λ be integrally antidominant with respect to roots in N0.
Then M(wλ) is irreducible if and only if wλ is integrally antidominant as well.

Localizing and possibly translating to other chambers, we get

Irreducibility Criterion: Standard Highest Weight Modules 2.6. Let
Φ−

w =
{
α P Φ− | wα R Φ−

}
, (2.7)

Φλ =
{
α P Φ | α∨(λ) P Z

}
. (2.8)

I(Cw, λ) is irreducible if and only if Φ−
w X Φλ = ∅.

2.3. Real roots only. Real roots produce new phenomenon that is not present in complex groups. Con‑
ceptually, the main part of the irreducibility criterion is the study of this special case.

In this case Q must be attached to a split Cartan c = 0 ‘ a, and by the dimension formula (1.13) Q is
an open orbit. A typical example is

Example 2.9. G0 = SL(2,R), K = SO(2,C) = C˚ which acts on the open orbit C˚ Ă P1 by multiplicaiton
by the square, i.e. c1 ¨ c2 = c21c2 for ci P C˚. The stabilizer of a point is

M = {1,m} – Z{2. (2.10)
There are two representations eπiε of M, the trivial representation (corresponding to ε = 0) and the
sign representation (ε = −1). They determine two K‑equivariant connections τε on C˚ and hence two
standard modules I(C˚, τε) on X.

I(C˚, τε) is reducible if and only if some sections can be extended to the closed orbits, or more pre‑
cisely, the monodromy opertor around either {0} or {∞} has eigenvalue 1. By explicit calculation, this
condition can be seen equivalent to 1

2
(ε+α∨(λ)) P Z or 1

2
(ε−α∨(λ)) P Z, or equivalently, α∨(λ)+ε P 2Z.

Therefore, I(C˚, τε) is irreducible if and only if

α∨(λ+ ρ) + ε R 2Z+ 1 (2.11)
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This is called the parity condition. This can be rephrased as

eπiα
∨(λ+ρ) ‰ −eπiε(m). (2.12)

Remark 2.13. In the above example, themonodromic condition for {0} and {∞} agree. This is special to lin‑
ear groups. When considering non‑linear covers of PSL(2,R) (for example the 3‑fold cover of PSL(2,R))
it can happen that sections of I(C˚, τε) extends to {0} but not to {∞}.

In general, the Lie algebra of the stabilizer of a point x P Q in K is trivial: kXbx = 0 (this can be seen by
considering root spaces). Therefore the stabilizer T = KXBx is a finite group. K‑equivariant connections
on Q are parameterized by representations of T .

Inside this T there are a bunch of elementsmα’s analogous to the elementm P M in the SL(2,R) case.
For each negative (real) root α, take α∨ P c, and let mα = exp(πiα∨) which is either the identity or has
order 2. Hence for any representationω of K X Bx,ω(mα) = ˘1. The generalized parity condition with
respect to α is

eπiα
∨(λ+ρ) ‰ −ω(mα). (2.14)

Lemma 2.15. Let (g, K) be a split pair and letQ be the open orbit in X attached to the split Cartan c. Then I(O, τ)
is irreducible if and only if the parity condition holds for all roots of c.

A sketch of proof will be given at the end of the talk.

Example 2.16. G0 = SL(3,R). K is the subgroup of orthogonal matrices. The split Cartan subgroup C is
the diagonal subgroup, and the Borel subgroup Bx of upper‑triangular matrices corresponds to a point
x in the open orbit O. In this case

K X Bx =
{(

1
1
1

)
,mα =

(
−1

−1
1

)
,mβ =

(
1
−1

−1

)
,mγ =

(
−1

1
−1

)}
– (Z{2)2 (2.17)

wheremγ = mαmβ. It has four irreducible representations

ωtrv,trv, ωtrv,sgn, ωsgn,trv, ωsgn,sgn, (2.18)

each one of those gives rise to a connection τ that is compatible with any λ (because K X Bx is discrete).
Take τtrv,sgn corresponding toωtrv,sgn. In order for I(O, τtrv,sgn) to be irreducible, we need

eπiα
∨(λ+ρ) ‰ −ωtrv,sgn(mα) = −1 =⇒ α∨(λ) R 2Z; (2.19)

eπiβ
∨(λ+ρ) ‰ −ωtrv,sgn(mβ) = 1 =⇒ β∨(λ) R 2Z+ 1; (2.20)

eπiγ
∨(λ+ρ) ‰ −ωtrv,sgn(mγ) = 1 =⇒ γ∨(λ) R 2Z. (2.21)

(2.22)

Other choices representations can be analyzed similarly.

3. STATEMENT OF CRITERION
In this section we state the precise criterion for irreducibility of I(Q, τ). Let x P Q and let c Ă bx be a

θ‑stable Cartan to whichQ is attached. Let T Ă K X Bx corresponding to t. Recall that, for each real root
in Φ−

Q, there is an elementmα P T defined by

mα = exp(πiα∨) (3.1)

where α∨ P c.

Irreducibility Criterion: Zuckerman orbits 3.2. I(Q, τ) is irreducible if and only if

‚ For each α P Φ−
Q,R, e

πiα∨(λ+ρ) ‰ −τ(x)(mα).
Here τ(x) is the geometric fiber of τ at x, viewed as a representation of K X Bx.
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The general parity condition involves complex roots. Recall that

D−(Q) = {α P Φ−
Q,C | θQα R Φ−} (3.3)

= {α P Φ−
Q,C | −θQα P Φ−

Q,C} (3.4)

The −θQ‑orbits in D−(Q) consists of pairs {α,−θQα}. Let C Ă G be the Cartan subgroup of c.

Definition 3.5. Let A be a set of representatives of −θQ‑orbits in D−(Q). For β P A, let eβ be the corre‑
sponding character of C.

For each real root α P Φ−
Q, we say that τ satisfies the SL2‑parity condition with respect to α if

eπiα
∨(λ+ρ) ‰ −τ(x)(mα)

ź

βPA

eβ(mα). (3.6)

Irreducibility Criterion 3.7. ([Hec+, 8.8]) I(Q, τ) is irreducible if and only if
‚ D−(Q) X Φλ = ∅, and
‚ For each α P Φ−

Q,R, τ satisfies the SL2‑parity condition with respect to α.

On Zuckerman orbits, D−(Q) = ∅, so we recover the criterion 3.2.
Here the conditionD−(Q) X Φλ = ∅ should be thought of the analogous of the conditionΦ−

w X Φλ =
∅ for irreducibility of Verma modules. In fact, if G0 is complex, D−(Cw) = Φ−

w. The extra bit in the
definition of the parity condition is formulated so that the statement is uniform for all orbits. It is the
translation of the parity condition by simple reflections. The precise meaning of “translation” will be
made clear in the next section.

Example 3.8. G0 = SU(2, 1). Standard modules on closed orbits are clearly irreducible (if they exist).
The other three orbits are attached to the maximally split Cartan

c 1 =
{(

a b
−2a

b a

)
| a, b P C

}
. (3.9)

The orbit Q+ is determined by the roots

α = 3a− b (C) (3.10)
β = 2b (R) (3.11)
γ = 3a+ b (C). (3.12)

If x P Q+ so that bx Ě c, then after some calculation one can see that

K X Bx =
{(

z bz
z−2

z

)
| z P C˚, b P C

}
– C˚ ˙ C (3.13)

whose irreducible representations are just those ofC˚, which are parameterized by integers n P Z. Write
τn for the corresponding connection. In order for I(Q+, τ) to be a DX,λ‑module, one needs

λ
(

1
−2

1

)
= n. (3.14)

The only real root is βwith

β∨ =
(

1
0

1

)
P c andmβ =

(
−1

1
−1

)
. (3.15)

The parity condition says

eπiβ
∨(λ+ρ) ‰ −τn(mβ) = −(−1)n =

{
−1 n even
1 n odd

. (3.16)

Here ρ = −γ = −(3a+ b), so β∨(ρ) = −1. The above condition is equivalent to

λ
(

1
0

1

)
is either not an integer, or its parity is different than λ

(
1
−2

1

)
. (3.17)
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This can be rewritten as

Either
1

2
λ
(

1
−2

1

)
−

1

2
λ
(

1
0

1

)
R Z, or λ

(
1

0
1

)
R Z. (3.18)

But α∨ = 1
2

((
1
−2

1

)
−
(

1
0

1

))
. So the above condition is equivalent to either α∨(λ) R Z or β∨(λ) R Z,

i.e. to non‑integrality of λ.
The orbit Q− can be analyzed in a similar way.
Now consider the open orbit O. Then

K X Bx =
{(

z
z−2

z

)
| z P C˚

}
= T. (3.19)

Connections on O are again parameterized by n P Z, with the same requirement (3.14). The parity
condition says

eπiβ
∨(λ+ρ) ‰ −τn(mβ)e

−α(mβ) = (−1)n. (3.20)

Here ρ = −β, so β∨(ρ) = −2. The parity condition is again equivalent to (3.17) and hence to non‑
integrality of λ.

The other condition D−(O) X Φλ = {−α, γ} X Φλ = ∅ can also be shown to be equivalent to non‑
integrality of λ.

Proposition 3.21. Let Q be a K‑orbit in the case of G0 = SU(2, 1). Then
‚ Standard modules on closed orbits are irreducible (whenever they exist);
‚ Standard modules on non‑closed orbits are irreducible if and only if λ is not integral.

4. OUTLINE OF PROOF
4.1. Main tool: intertwining functors.

Definition 4.1. Forw P W, let Zw denote the G‑orbit in XˆX corresponding tow, with projection maps

X
p1←− Zw

p2−→ X. (4.2)

The intertwining functor is

Iw : Db(DX,λ)→ Db(DX,w¨λ), F Þ→ p1˚

(
p˚
1Lwρ−ρ b

OZw

p˚
2F

)
. (4.3)

See [DV] for a definition using convolution.
Theorem 4.4 ([Mil, Section 3.3]).

‚ Iw is the left derived functor of H0Iw.
‚ Iw is an equivalence of derived categories.
‚ If Φ−

w X Φλ = ∅, then

H0Iw : Mod(DX,λ)→Mod(DX,w¨λ) (4.5)

is an equivalence of abelian categories with inverse H0Iw−1 .

In the framework of localization, we know there is a geometric realization of U(g){λ for each Weyl
group translate of λ. Intertwining functors is a geometric construction that allows one to move from one
realization to another.

The main use of intertwining functors is their ability to increase the dimension of supports without
loosing too much information.
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4.2. Reduction to Zuckerman orbits. The first usage of intertwining functors is the reduction to Zuck‑
erman orbits, i.e. reducing 3.7 to 3.2 [Hec+, 8.5]. The idea is exactly the same as Verma module case.

Geometric proof of 2.6. We prove the irreducibility criterion for standard highest weight modules using
intertwining functors.

First, the module at a point I(C1, w ¨ λ) is certainly irreducible. Then, one shows that

H0Iw−1I(C1, w ¨ λ) = I(Cw, λ). (4.6)

To see this, look at the following diagram

Cw C1

X Zw−1 X

jw

p2|Cw

j1

p1

p2

(4.7)

Here, by definition of Zw−1 , Cw = p−1
2 (C1), i.e. the right square is Cartesian. Also, the arrow Cw → X is

the same as the usual inclusion. Hence by base change and definition of Iw−1 ,

Iw−1I(C1, w ¨ λ) = L b
OX

p1˚p
˚
2 j1˚τ (4.8)

= L b
OX

jw˚(p2|Cw)
˚τ (4.9)

= I(Cw, λ). (4.10)

Finally, ifΦ−
wXΦλ = ∅, thenH0Iw is an equivalence of abelian categoriesMod(DX,λ,N) ∼−→Mod(DX,w¨λ,N).

Its inverse H0Iw−1 is also an equivalence. Thereefore I(Cw, λ) is irreducible by irreducibility of I(C1, w ¨

λ).
The other direction is more involved and proceeds by induction on ℓ(w). Write w = w 1sα. If α is

integral, one analyzeH0Isα andH1Isα carefully and find a nonzero proper submodule in I(Cw, λ). Hence
α is forced to be non‑integral to λ, H0Isα is an equivalence and we are reduced to the case for w 1 with
smaller length. ‚

The exact same idea works in the Harish‑Chandra setting. For any orbitQ, one can find a Zuckerman
orbitQZ attached to the same Cartan and a Weyl group element w such that we have the same diagram

Q QZ

X Zw−1 X

jQ

p2|Q

j
QZ

p1

p2

(4.11)

with the property that the right square is Cartesian and the map Q → X is the usual inclusion. The
precise condition for w is

Φ−
w X (−θQΦ

−
w) = ∅ and D−(Q) = Φ−

w Y (−θQΦ
−
w). (4.12)

From this one can also show that Φ−
w X Φλ = ∅ is equivalent to D−(Q) X Φλ = ∅. Therefore the same

strategy goes through (although one needs to replace the analysis of integral simple intertwining functor
Isα by something else).

Assuming 3.2, then one can obtain a criterion for general orbits by translating the SL2‑parity condition
along intertwining functors. The extra part in the SL2‑parity condition for general orbits is the result of
translation.
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4.3. Reduction to split pairs. To prove the result on Zuckerman orbits, wewant to reduce to open orbits
for split pairs, which we had considered in §2.3.

A special property of Zuckerman orbitsQZ is that the set of negative rootsΦ−
QZ it corresponds can be

extended to a parabolic set of roots given byΦ−
QZ Y ΦQZ,R, which corresponds to the subset Θ of simple

roots consisting of real simple roots. If πΘ : X → XΘ is the projection to the corresponding partial flag
variety, then πΘ(Q

Z) is a closed orbit. So the preimage

π−1
Θ (πΘ(Q

Z)) Ă X (4.13)

is a smooth closed subvariety. By Kashiwara’s equivalence, irreducibility of I(QZ, τ) can be analyzed in
the category of Dπ−1

Θ
(πΘ(QZ)),λ‑modules.

Let y P πΘ(Q
Z). Since we are over a K‑orbit πΘ(Q

Z), descent says that pulling back to π−1(y) is an
equivalence of categories of equivariant D‑modules:

Mod(Dπ−1
Θ

(πΘ(QZ)),λ, K) – Mod(Dπ−1(y),λ, Ky) (4.14)

where Ky := im(K X Py → Py → (Py{ radPy){Z(Py{ radPy)), in the same way that K‑equivariant D‑
modules on an orbit are equivalent to representations of the stabilizer of a point. But π−1(y) is the flag
variety of [ly, ly] (here ly is the Levi of py), the latter category is the category of Harish‑Chandra modules
for the split pair ([ly, ly],Levi(K X Py)), and our module I(QZ, τ) becomes the standard module on the
open orbit in π−1(y). So we are reduced to studying standard modules on the open orbit for split pairs.

Example 4.15. G0 = SU(2, 1). If we consider the Zuckerman orbit Q+, then Θ is the real simple root,
π−1
Θ (πΘ(Q+)) = Q+ Y C+ Y C0, and π−1

Θ (y) – P1 on which Levi(K X Py) acts with three orbits. I(Q+, τ)

becomes one of the standard modules on the open orbit in P1. So we are reduced to SL(2,R) calculation.

4.4. Proof for split pairs.

Lemma 4.16. Let (g, K) be split. Let O be the open K‑orbit in X and let τ be a K‑equivariant connection on O.
Then I(O, τ) is irreducible if and only if τ satisfies the SL2‑parity condition for all roots α.

Idea of proof. Suppose I(O, τ) is not irreducible. Then it has a irreducible quotient K. Its support is nec‑
essarily irreducible, and is hence the closure of a K‑orbit.

First consider the case where SuppK has codimension 1 in X. Then we can detect this quotient in a P1

slice. In more detail, for a simple root α, write πα : X → Xα for the projection to the partial flag variety.
There exists a choice of α transversal to SuppK, i.e. so that π−1

α (πα(SuppK)) is dense in X. Any fiber
π−1
α (y) of πα is P1 and the induced action of Levi(K X Py) looks like the SL(2,R) or PSL(2,R)‑situation.

After restriction to the fiber, K|π−1
α (y) is supported on the closed orbits, and I(O, τ)|π−1

α (y) is a standard
module on the open orbit that contains K|π−1

α (y) as a quotient. So the parity condition for I(O, τ)|π−1
α (y)

must fail, which contradicts our assumption. Hence such K cannot exist.
If SuppK has codimension greater than 1, then there is aw P W so thatH0Iw SuppK has codimension

1 in X. If the SL2‑parity condition holds for all roots, then for each sα appearing in a reduced expression
of w, H0IsαI(O, τ) = I(O, τ 1) for some connection τ 1, and τ 1 also satisfies all parity conditions (this can
be proven by reducing to the SL(2,R) case where the intertwining functor can be calculated explicitly).
Hence H0IwI(O, τ) = I(O, τw) for some connection τw. As H0Iw is right exact, we see that H0IwK is a
nonzero quotient of I(O, τw) supported in a codimension 1 subset and we are reduced to the previous
case. ‚
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