LINEARITY AND FUNCTORIALITY OF PARAMETER OF TWISTED DIFFERENTIAL
OPERATORS

QIXTAN ZHAO

These notes were written as a personal supplement to the first chapter of [Milb], and are
heavily based on results and notations in op. cit. The main tool for the arguments is Picard
Lie algebroid. Most of the properties of Picard algebroids are taken or expanded from first two
sections of [BeBe93].
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In §1 we introduce the main tool for these notes, the Picard Lie algebroids. In §2 we use this
to prove that the dotted arrow in the following commuting diagram is linear:

{htdo} ———— {tdo}

4 =

Consequences of this linearity result will be discussed in §5. In §3 we construct the pullback
of Picard algebroids along a morphism of varieties and use it to show the functoriality of the
htdo parameter w.r.t. variety morphisms. In §4 we discuss external tensor products of tdo’s
on a product space, and realize the addition of tdo parameters via pullback along the diagonal
immersion X — X x X (suggested by Dragan Mili¢i¢). In §6 we prove that the isomorphism
from the opposite algebra of Dx to (Dx,)* lifts to the anti-isomorphism —Id : g — g.

1. PicarD LIE ALGEBROIDS

Let X be a variety. Let tdo(X) denote the category of all tdo’s on X. By [Milb, 1.1.2] we see
that any morphism of tdo’s is an isomorphism. Hence tdo(X) is a groupoid.

Now take a tdo (D, 1). Then by [Milb, 1.1.1] there is a natural isomorphism GrD = Sym,, 7x.
The degree 1 part of this isomorphism is a short exact sequence

0— Ox -5 F,D -5 7y — 0.
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We want to show that F;D determines D completely. The first step is to formulate the category
of such F1D’s.

Definition 1.1. A Picard Lie algebroid, or simply a Picard algebroid on X is a quasi-coherent
Ox-module L equipped with

e a C-linear Lie bracket [—,—] on L, and
e a short exact sequence of Ox-modules

050k BT Tx =0

satistying the following requirements:
(1) Gris a Lie algebra morphism, i.e. it commutes with Lie brackets;
(2) for any f € Ox and any Li, L, € L, [y, flu] = f[ly, L] + (Grly)(f) L.
A morphism between Picard algebroids (L;, iy, Gry) and (L;, i, Gr;) is a commutative diagram

‘i.] GI‘]

0 —— Ox L Tx 0
|
0 —— Ox — L, /42 T 0

with the middle map commuting with Lie brackets. The category of Picard algebroids on X
is denoted by PA(X). By Five lemma any morphism of Picard algebroids is an isomorphism.
Hence PA(X) is a groupoid.

Definition 1.2. Let 0 —» Ox & L G, Tx — 0 be a Picard algebroid. We define the sheaf of
differential operators generated by L, denoted by D(L), by the sheafification of the quotient of
the free presheaf of C-algebra of L generated by the following relations:
(a) Ox — D(L) is a C-algebra homomorphism;
(b) L — D(L) is a Lie algebra homomorphism, where the bracket [—, —]p) in D(L) is given
by taking commutator;
(c) Vfe O, lel, werequire that theimage of f-1 € Lin D(L) agrees with the multiplication
of fe OxcD(L)andle L « D(L);
(d) VfeOx leL, werequire [l, flpr) = Gr(l)(f).

The assignment sending (D, 1) to Ox N FD S, Tx defines a functor of groupoids F; :
tdo(X) — PA(X).

Notation 1.3. From now on we will use Ox — L — 7x to denote a Picard algebroid. When deal-
ing with tdo’s, the map FiD — 7x will only ever be the map Gr, and Gr will always commute
with maps FiD — F;D’ induced by morphisms of tdo’s (D,1) — (D’,i’). Hence we will often
omit the “— 7x” part when representing a morphism of Picard algebroids. Let (Dx, iy) denote
the sheaf of ordinary differential operators.

Lemma 1.4. The functor Fy : tdo(X) — PA(X) is fully faithful.

Proof. Since PA(X) is a groupoid, any PA(X) is a disjoint union of isomorphism classes. Let
PA(X)’ be the union of those isomorphism classes that contains an image of F;. Then PA(X) is
a full subcategory of PA(X). We show that D(—) is a quasi-inverse of F; : tdo(X) — PA(X)'.

We show that D(L) is a tdo for L € PA(X)'. First consider the case L = F1Dx = Ox @ Tx. In this
case the definition of D(FDx) agrees with the alternative definition of Dx by generators and
relations, see for example [HTT07, 1.1.1]. Therefore D(F;Dx) = Dx. Now consider a general
algebroid L € PA(X)’. Choose a tdo D so that F;D =~ L. Since the construction of D(L) is
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functorial in L, D(L) = D(FyD). The natural inclusion F;D — D induces a morphism from the
free presheaf of k-algebras of F1D to D, and the defining relations of D(F;D) obviously vanish

in D, so we obtain a map D(F;D) — D. Wwe already know that locally over a chart DJy = Dy,
D(FiDy) — Dy is an isomorphism. Hence D(F;D) — D is a global isomorphism. This defines
a functor D : PA(X)" — D(L) with D o F; = Idi4o(x). The other isomorphism Fy o D = Idpa(x) is
also routine check. .

Remark 1.5. This functor is actually an equivalence of categories [BeBe93, 2.1.4], but we will not
need this.

A Picard algebroid L gives by definition a short exact sequence 0 — Ox — L — 7Tx — 0, and
hence a class in Exté)X (7x, Ox). Therefore we have the following set maps
H'(X, 2%) = Obtdo(X) — Ob PA(X) — Extg, (Tx, Ox).

The right hand side Ex’t}QX (Tx, Ox) has a natural C-linear structure. We want to show that the
composition of the above inclusions are C-linear. For this we first need to realize the C-linear

structure in Ext}oX (7x, Ox) in terms of operations on short exact sequences. This is done via the
standard Baer sum construction. We recall the details here for completeness.

Lemma 1.6. The set of equivalence classes of extensions of Tx by Ox
0—Tx —&—0x—0

of Ox-modules is in 1-1 correspondence with Ext}QX (Tx, Ox).

Here two extensions £ and £’ are equivalent if there is a commutative diagram

0 —— Ox £ Tx 0
l
0—»JX g’ 7H;< 0

Construction. Given an extension 0 — Ox — & — Tx — 0, apply RHomo, (7x, —) we obtain in
the resulting long exact sequence of cohomologies

Homo, (7x, Tx) — Exty (Tx, Ox)-

Then the extension £ corresponds to the image of Id 7, under the above map.
Conversely, suppose we are given a class 0 € Ext}QX (7x, Ox). Take any short exact sequence

0—O0Ox —7ZT —F—0
of Ox-modules with 7 injective, apply R Homo, (7x, —) to obtain a map
Homo, (Tx, F) — Exto, (Tx, Ox),
and take an lift ¢ € Homp, (7x,F) of 6. Then let £ be the fiber product £ := 7 x £, Tx and
define a map Ox — £ induced by Z + Ox % Tx resulting in a commutative diagram

0 —— Ox £ Tx 0
I
0 —— Ox z F 0

0 then corresponds to the extension £. This does not depend on a choice of a lift or a choice of
7 (up to equivalence of extensions). .
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The C-linear structure in Ext}QX (Tx, Ox) can be realized as follows.
The addition is the usual Baer sum construction. For 8,6’ € Ext' corresponds to Ox — &£ s

Tx and Ox i> E % Tx, respectively, take the fiber product £ x7, £’ and take the Ox-skew
diagonal A = {(—i(f),1'(f)) € € x5 &' | f € Ox}, and then take £”" := (€ x5, £')/A. Then the

extension

00
0 0 =0

corresponds to the sum 6 + 6.

E"—Tx —0

Notation 1.7. We will use £ +5 £’ to denote their Baer sum £”. We will also use A = Ay, to
denote the skew diagonal of the structure sheaf.

The C-action is given by “scaling the first arrow”. For 0 € C, 0-0 = 0 is just the split extension.
For ¢ € C¥, take a short exact sequence 0 — Ox — T — F — 0 with 7 injective as done
in the construction above. If ¢ € Homp,(7x, F) lifts 6, then 6 corresponds to Ox 5 & =
T xr.oTx 22 Tx. Now consider the class c0. Then c lifts c6, so c0 corresponds to the extension

i/ T‘Z . .
Ox = & =T xrco Tx P2, Tx. Moreover we have a commutative diagram

0 — Ox g 2L g 0
I

0 — Ox —o & S0 0 -
| e |

0 —— Ox —— & 2 Ty 0

Therefore, if 0 corresponds to Ox Leg oy Tx, then cO corresponds to Ox i> e Tx. One
can check that the Z < C-action agrees with the Baer sum.

Now consider Picard algebroids L, L’ € PA(X) and c € C*. We claim that the Baer operations
on short exact sequences preserves Picard algebroids, that is, there is a natural Lie bracket on
the resulting extensions L +g L’ and c - L making them into Picard algebroids. Since the Lie
brackets on L is C-linear, its clear that the C*-action on L results in a Picard algebroid. For
addition, define the component-wise Lie bracketon L +g L": for i e L, s; e L',

[(11 y $1 )) (lz, SZ)} = ([11 ) l2]) [51) 32]) .
This is well-defined on the quotient —/A: if f € Ox, then

[(_f> f), (Lo, 32)] = ([lb fl, —[s2, ﬂ) = _( — [, 1, [s2, ﬂ)>

and since 1,, s, have the same image & in 7x, [l,, f] and [s, f] are both equal to &(f), whence
(_ [IZ)f]) [Sz)f]) = O mOd A

2. LINEAR DEPENDENCE ON PARAMETER

Let B < G be algebraic groups, let X = G/B be the corresponding homogeneous paces, and
let b — g be the Lie algebras. Let I(b*) be the subspace of b* consists of fixed points under the
coadjoint action of B. Recall that htdo’s are parameterized by I(b*) [Milb, 1.2.4] (the class of Dx )
is A € I(b*)), and on a general variety X all tdo’s are parameterized by H'(X, Z}) [Milb, 1.1.3]
(the class of D is denoted by t(D)), where Z is the sheaf of closed 1-forms on X. We want to
prove the following.
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Proposition 2.1. The inclusion 1(6*) — H'(X, Z}) induced by {htdo}—{tdo} is C-linear.
First consider a general variety X.
Lemma 2.2. Let X be a variety. The inclusion H' (X, Z3) < Extl/)X (Tx, Ox) induced by sending (D, 1)
to the extension Ox 4 FD G, Tx is C-linear.
Proof. We claim that H'(X, Z3) — Ext}QX(’];(, Ox) commutes with C*-action. Let ¢ € C*. Take

a tdo (D,1i) and an atlas {D|y, by Dy, }i- Let {wy}i; be a Cech cocycle representative of the
class t(D). Let Uy := Ui n Uy, f € Ox, & € Tx. Then we have the following morphisms of
Picard algebroids (which are automatically isomorphisms) (recall that the ordinary differential
operators are denoted (Dx, iy)):

Oxlu; =———= Oxlu; =——— Oxlu, Oxlu Oxlu

lio lC7](¢iOi) lc*]i lc*1(¢joi) lio
FiDxluy <2 Dy, < FDly, —2— FDxly, —— 2 FDxly,
f+&+— ¢ F+E& C_]f+£—w1j(a) »—»f+£—cwij(£)

(check of commutativity of the “ S T partis omitted). Now {cwj;}; ; is a cocycle that represents
the class ct(D) € H'(X, Zy). Let (D’,1’) be the corresponding tdo. Then (F;D’,1’) is glued up
by the same gluing data as (F;D, ¢ '1), therefore isomorphic to each other. Therefore the action
of ¢ € C on the algebroid F;D corresponds to multipilcation by ¢ on t(D) € H' (X, Z}). This also
shows that the C-action preserves the image of F; : tdo(X) — PA(X).

Then we claim that H' (X, Z}) — Extgx (Tx, Ox) commutes with addition. Let (D, 1), (D’,1’) be

tdo’s with altases {Dly, b, Dy, }i, {D'|u, ﬂ> Dy, i over a same open cover, and cocycles {wj;}; j,
{wj}ij. Then we have the following morphisms of Picard algebroids locally on Uy (which are
automatically isomorphisms):

Ox =—— Ok Ox Ox Ox

lio l (10,0)=(0,ip) l (1,00=(0,i") l (10,0)=(0,i0) lio

(1,0 (dj,d5)
FiDx «— (FiDx x75 FiDx)/A <= (FyD x5, FiD')/A = (FyDx x7, F\Dx)/A — FyDx

fi+f+m — (fi+n,f2+n) FiD 45 D’ (fi +n,f2+m) — fi+f+7m

For f € Ox, & € Tx, the composition from left to right goes

f+&= (F+EE) = (f+E—wy(E), & — wi(E)) = f— (wy + wi)(E) + &
Therefore, if we let (D", 1") denote the tdo given by the cocycle {wy; +wj}i;, then (F;D”,1") have
the same gluing as FyD +g F;D’, whence isomorphic to F;D +5 FiD’. As a result H'(X, Z;) —
Ex’clgX (7x, Ox) commutes with addition, and is therefore a C-linear map. .

Now we return to the homogeneous setting. Let’s recall some notations and results from
[Milb, 1.2]. We have sheaves g° = Ox ®x g and U° = Ox ®c U(g), the latter equipped with a
filtration FI/° induced by the degree filtration on ¢/(g). With this filtration F;¢/° = Ox ® g°. We
have an identification TX =~ G x5 (g/b) induced by T.X = g/b. The natural projection g — g/b
induces a short exact sequence of homogeneous vector bundles

00— B—Xxg— Gxp(g/b)—0
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where B = {(xg8,&) € X x g | £ € Ad g(b)} = G x3 b is the bundle whose fiber at xgz is Ad g(b).
Let b° be the corresponding sheaf of 5. Then 7x = g°/b°.

Let A € I(b*). Then the linear map A : b — C induces a map of homogeneous vector bundles
B — X x C and hence a G-equivariant sheaf morphism o, : b° — Ox. J» < U° is the two-sided
ideal generated by {s — 0,(s) | s € b°}, and Dx = U°/J, is the htdo corresponding to A.

Lemma 2.3.
AN FU ={s—o0\(s)|seb’}

Proof. Denote the right hand side by S,. We have S, < 7. By the proof of [Milb, 1.2.3] we can
locally take amap w, : g° — Ox thatrestricts to 0y, : b° — Oy, so that the induced automorphism

®, on U° sends Jy to Jy and further induces an isomorphism Dx — Dx,. On F; this gives a
sheaf automorphism of F1U/° = Ox @ g° that sends Jy n FiU° to ]y n F1U°. We know that J, = b°,
since quotient by b° gives

Ox@go — Ox@(go/bo) = Ox@'];( :F]Dx.

As the isomorphism FyDx — F1Dx, is a quotient of @), the latter must send J, = b° onto J,.
But @,|7, = ®@ale = 0 and it sends s € b° to s — o (s), J, must only consists of sections of the
form s — o, (s), s € b°. .

With abuse of notation, we will also denote Fii/° n 7, by J,. From this construction we see
that o, is linear in A, that is ocy+ = co) + opu as maps b° — Ox forany c € C, A, p € I(b*).

From the construction of Dx ,, we see that F;Dx, = (Ox @ g°)/J». Quotient out the subsheaf
Ox in F1Dx will eliminate the factor Ox and also the subsheaf b° in g° via the ideal J,. The
extension F1Dx ) of Tx by Ox can be therefore rewritten as

00— Ox — (Ox®g")/ I — g°/b° — 0.
Lemma 2.4. The composition 1(b*) — H'(X, Z}) — Extéx(ﬁ(, Ox) induced by sending (Dx, 1r) to
the extension Ox FiDx S, Tx is C-linear.
- |
Proof. For c € C*, consider the map Ox ® g° £ ox, Ox @ g°. This is Ox-linear, sends o\ (s) —

c'oa(s) = oa(s) for s € b°, and fixes g°. Therefore it sends J.) to J, and induces the following
map of Picard algebroids (which is automatically an isomorphism)

Ox —— FiDxo = (Ox@g°)/ T

H lcq\ox
¢! Ido

Ox —— FiDxp = (Ox®¢°)/

The bottom algebroid coincides with the one obtained by the action of c on F;Dx . Therefore
the c-action on the parameter A agrees with the c-action on the extension.
For addition, take A, p € I(b*). Consider the diagram

Ox®g° —2 (Ox @ g°)/ T

l]@] lf/oX

(Ox D)/ T — L2 T
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It commutes because both compositions are quotients by Ox@®b°. Therefore we have an induced

map
oxor — (S25) o (B25) — (BF5) = (B7T) /2

where the first mapis f1 +f,®& — (fi +,®&, f,®&). For sections of the form s — oy, (s) € Trtpw
its image under this composition is

s = Oru(s) = (=onu(s) +5,8) = (—0als) —ouls) +s,5) = (s — oals), s — ou(s)) = (0,0) mod A.
Therefore the composition factors through
Ox®g° Ox®¢° Ox® g
—_ X
ae g )57

It’s straightforward to check that this is a morphism of Plcard algebroids. Therefore FiDx .,y =
FiDx\ +8 F1Dx -
Thus I(6*) — Ext' is C-linear. .

FiDxp+u =

) /A =FiDxy +5 FiDxe

Proof of 2.1. The inclusions 1(b*) — H'(X, Z}) — Extlgx(ﬂ, Ox) realize both spaces as linear
subspaces of Ext1, and an inclusion of linear subspaces is linear. .

3. FUNCTORIALITY OF HOMOGENEOUS PARAMETER

Let @ : X — Y be a morphism of varieties, and let D be a tdo on Y. By [Milb, 1.1.5] we

know that if {w;;}is a Cech cocycle of closed 1-forms that represents the class t(D), then {¢@™*w;}
represents the class t(D?). On parameter space this is a map

Z'(p) : H'(X, Zx) — H(Y, Zy).

We want to find an analogous map for htdo’s.
Let’s first convert the pullback operation for tdo’s into a pullback for Picard algebroids. Let
L be atdoon Y. Applying ¢* to the exact sequence

0— 0y LT —0
we obtain, by local freeness of these sheaves, an exact sequence
0— @*Oy — @*L — @*Ty — 0.
Now use the natural morphism d¢ : 7x — @*7y [Mila, IV.1.4] to define L? := @*L x g+, Tx,

and use the maps @*L «+ ¢*Oy 9, Tx to obtain Ox = @*Oy — L?. We then have the following
commuting diagram with exact rows

0 Ox L® Tx 0

R

0 — ¢*Oy —— ¢'L —— ¢TIy —— 0

Define a Lie bracket on L® by
[(Fi® L, &), (@1, &)] == (i@, Ll + & (f) @L — &(f) ® L, [&, &)
for fi € Ox, Li e @ 'L and &; € Tx with Gr(L;) = d@(&;). Then L? is a Picard algebroid.
Definition 3.1. We call L the pullback of L.
In particular we have the algebroid (F;D)¢ as the pullback of F;D.
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Lemma 3.2. Let (D,1i) bea tdoon Y. Then F1(D®) =~ (F;D)°.

Proof. Since any morphism of Picard algebroids is an isomorphism, it suffices to construct a
morphism F;D? — (F;D)?. Consider the diagram

DY — s Ty
|-0en | - (3.3)

¢*HD —— 0"y

We want to show that this commutes. Locally this is

Fi(Dy?) —2— Tx

|-en ld@ : (34)
©*FDy —— ¢*Ty
Now invoke the isomorphism y : Dx = Dy?. It's clear that Grp,» oy = Grp,. On the other
side, the composition

—(1 1
Ox @ Tx = FiDx 5 F1(Dy?) —" o*FiDy = Ox @ ™ Ty

sendsfe Oxtof-(1®1) = f®1and & € Tx to (by [Mila, IV.1.5]) Y(&)- (1®1) = £(1)®@1+de (&) =
de(&). Therefore diagram (3.4) is isomorphic to

Ox®Ty —2— Ty
l1@d(p ld@

Ox® @*Ty —— @*Ty

which obviously commutes. Therefore the local diagram (3.4) commutes. By the discussion pre-
ceding [Milb, 1.1.5], we know that the diagram (3.3) is glued up from (3.4), whence commutes.
As a result we obtain a map of sheaves

F]D(p — (p*F1D X o*Ty 7;( = (F]D)(p

It’s straightforward to check that this commutes with the inclusions of Ox and quotients to 7Ty,
i.e. that this is a morphism of Picard algebroids. Thus F,D¢ =~ (F;D)¢. .

The lemma can be rephrased in the following way.

Corollary 3.5. The following diagram commutes

H' (X, 2}) —=— tdo(X) —— PA(X)

Z‘(m)[ (*)“’[ (*)“’T

HI(Y, 2]) —=— tdo(Y) —— PA(Y)

In particular, if we endow Ob PA(X) and Ob PA(Y) with C-vector space structures inherited from the
inclusions to Ext}QX(’R, Ox) and Extéy(ﬂ, Oy), respectively, then (—)® : ObPA(Y)" — Ob PA(X)’
is C-linear, where PA(X)’, PA(Y)" are the images of F; : tdo(X) — PA(X), F; : tdo(Y) — PA(Y),
respectively.
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Remark 3.6. Since F; : tdo(X) — PA(X) isin fact an equivalence, (—)¢ is linear on the full category
Ob PA(Y). In fact, (—)® can be viewed as the restriction from a linear map Extlgy(ﬂ, Oy) —
Extggx(%(, Ox), constructed as follows. Take injective resolutions Oy — Z*, Ox — J°*, then the
isomorphism ¢*Oy = Ox induces a map ¢*Z* ~ J°*. We can then form the composition

Homo, (7v,Z%) — Homo, (¢* Ty, ¢*Z*) — Homo, (¢* Ty, J*) — Homo, (7x, JT*),
where the last map is induced by d¢ : Tx — @*7Ty. The H' of this composition is the desired
map

Exty, (v, Oy) — Exty, (Tx, Ox).

One can check that the diagram

tdo(X) —— PA(X) —— Ext}, (Tx, Ox)

()@[ (w[ [

tdo(Y) —— PA(Y) —— Exth, (77, Oy)
commutes.

Now consider the homogeneous setting. Let By < G;, B, © G, be algebraic groups, let
® : Gy — G; be an algebraic group morphism that sends B; into B,, let ¢ : X = G;/B; —
G,/B; =Y be the induced G;-equivariant map on the quotient, and let res : b5 — b} be defined
as res = — o d®|,,. Write e; € Gy, e, € G, for the identity elements, and write x4,5, € X for a
point corresponding to the left coset g;B; € G;/B;.

Let A € I(b}). Recall that the extension Oy — FiDy, — Ty is the same as

00— 0Oy — (Oy®g;)/ I — g5/65 — 0.

The pullback construction for Picard algebroid gives the commutative diagram with exact rows:

g

0 Ox (FiDyp)® b° 0
‘ 1
0 0Oy ©*(Oy ® g3) ® gi 0
©* I @*b3

Before proceeding, we want to describe the arrows in this diagram.

Claim. The following diagram commutes

97 =
— Tx
b X
l]@d(l) |dcp )
©*g; = *
= T
@*b3 (A

where the left vertical arrow is induced by 1® d® : g7 — ¢@*g5, f® & — f®@ dD(§).

Proof. Both vertical arrows are G;-homogeneous, so both are induced by the maps at the fiber
of Ye,8,, which are both d® : g; — g,. .
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The sheaf map (1 ® dd))lg;: : by — @*b3 can be better described in terms of bundles. g =

Ox ®x g1 is the sheaf of the trivial bundle X x g1; @*g5 = ©*(Oy ®x 92) = Ox Qx g2 is the trivial
bundle X x g;; b] is the G;-homogeneous bundle G; xg, by; ¢*b3 is the G;-homogeneous bundle
X xvy (G; xp, by), where G; acts by g7 - (X, g2, &) = (g1 - x, ©(g1)92, &2). The diagram

by ——— g7
l l@w
P —— ©*g;

corresponds to the diagram of bundles

Gy xp, by — X x gy (g1, &) (xg,8,, Ad g1(&1)
l l]xd(D I I
X xy (G xp, b)) —— X x g, (Xg,By, @(g1), dD(&)) —— (x4,8,, Ad D(g;)(dD(&;)))

We also need to understand the sheaf @*7, and its relation to the ideal sheaf Jiesx = Ox @ g5.
By the definition of res, we have a commuting triangle

b] res A C
“}i /
b,

which induces a commuting diagram

C oxi Y xC

et

Gz XB, bz

Ores A
Gy x3, by

X x
E(]) A\
(19d0)[7} oy

T X xy (G, Xp, 02)

and hence a triangle of sheaves

Ores A

b Oy
o )
(]@d(p)z]j\A 407\
1

and ¢*J, is generated by sections of the form s’ — @*o(s’), s’ € @*b5. This will be used later.
We are ready to prove

©*b3

Proposition 3.7. The following diagram commutes:

I(b3) —— H'(Y, Z})

resl lf((p) .

I(b7) —— H(X, 2%)

In other words,
(Dyn)? = Dxresa
for any A € 1(b3).
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Proof. 1It's easy to check that res sends I(b3) into I(b}). We have a commutative diagram

(e}

01
Ox @y & %
1
10(1Qd0) l@d@ .
e (Oy@g;) —/e*ov @*g5
©* ©*b3
It induces a map
@*(Oy @ g5) 97
@ T ————%0 X 0 — = (F1Dyy ).
x D g o i (FiDyp)

We want to show that this map factors through Jesa. Jresa is generated by sections of the form
S — Oresa. Under this map,

S — Gresy\(s) — ((] ® d(D)(S) - O-res?\(s)vs)
= ((1®d0)(s) — *or((1® dD)(s)), ).

Here the first component is of the form s’ — @*o,(s’), s’ € @*b3, therefore lies in ¢*J, which is
zero in (F;Dy,)?. Similarly, the second component s is an element in b}, again equaling zero in
(FiDy,))®. Therefore Jresx is sent to zero in the right hand side, and we have an induced map

x®a | ¢(OvDg) e 1
u7res7\ (P*jA (p*b% bo
One easily checks that this map commutes with inclusions of Ox and quotients to 7x. Combining

with 3.2 we get isomorphisms of Picard algebroids FiDx resa = (FiDy)? = Fi(Dy,?). Thus 1.4
implies that Dxesn = Dy, as desired. .

F1Dx resh = = (FiDyy)®.

4. EXTERNAL TENSOR PRODUCT AND GEOMETRIC REALIZATION OF PARAMETER
ADDITION

Let X and Y be varieties and X ¢ X x Y 2% Y the projections from the product. For any
modules Ox C F, Oy C G, define the external tensor product to be
FREG = Oxxy @t 0@l oy (PTX'F @k Ty G).
If 7 and G are quasi-coherent, then so is 7 ] G. There is a natural map
FRG — PriF Qoxy PYY, f®(s@s) = - (10s)@(1®5).

For affine open sets U < X, V < Y, this map is an isomorphism on U x V. Since both sides are
quasi-coherent over Oxy, this map is a global isomorphism.

Now take tdo’s D, D’ on X, Y, respectively. Then D [x] D’ has a natural C-algebra structure
making it into a tdo on X x Y. Write Gr : D — 7Tx for the quotient-by-Ox map, and similarly

for D'. For f € Oxxy, L € pry ' FiD and s € pry'FiD’, define their multiplications by
fRI1I®N)-(1Rl®s)=fRrl®s,
(1 ®1®1) FR11) =felel+Grl)(f@1®1,
1®1®s)-fR1N)=f®1®s+Gr(s)(Hl®T®1,
1L - (101®s) = (1®1®s) 11®1)=101®s.
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Since both D and D’ are generated as C-algebras by their degree < 1 parts by the following
lemma, respectively, this defines a multiplication on D x]D’.

Lemma 4.1. Let D be a tdo on X. Then as a C-algebra it is generated by FiD.

Proof. Since GrD = Sym,, 7Tx is generated by Gr<;D = Ox @ 7Tx, the same is true for D by
induction on degree. .

We want to show the following.
Proposition 4.2. Let D, D’ be tdo’s on X, Y, respectively. Then
F(DXD’) = (FD)"™ +5 (D)™,
Before proving this, let’s examine two consequences.
Corollary 4.3. Let D, D’ be tdo’s on X, Y, respectively. Then
t(DXD') = (D) + t(D"™)
mH' (X <Y, Z}.\).

Proof. Apply the fully faithful functor F; : tdo(X) — PA(X) to both sides, the left hand side
is Fi(D X D'), and the right hand side is F;(D?™x) 4+ F;(D'?"Y) by linearity 2.2, which equals
(FiD)P™* +g (FD’)P™ by 3.2. Hence the equation holds by the proposition. .

Corollary 4.4 (Geometric realization of addition). Let D, D’ be tdo’s on X. Then
t(DRD)?) = t(D) + t(D")

in H'(X, Z3), where A : X — X x X is the diagonal immersion.

Proof.
F(PR D) = (R(DRD))* (3.2)
= ((FD)™ +5 (D))" (4.2)
= (FD)P™ 45 (FD')P2 (3.5)
= (FiD)AP™ 5 (FyD/)AP™Y (easily checked)
= (FD)* 45 (F D)X
—FD4sFD.

The left hand side is the image of t((DXID’)*) under the injections H' (X, Z}) — tdo(X) — PA(X);
by linearity of parameters 2.2 the right hand side is the image of t(D) + t(D’). The corollary
thus follows.

We prove 4.2. First, by the definition of multiplication on D [x] D’, it’s easy to see that F;(D
D') = DX Oy + Ox X ;D' = priFD 4 priFiD’, where the sum takes place inside D [x] D’.
Moreover the intersection FiD X] Oy n Ox X FiD’ is Ox X] Oy = Oxxy. Hence F;(D [x] D’) is fiber
coproduct

F(DED') = priFiD +o, , priFD’ = (pr;;ﬁp @ pr¢F]D’> /Aoy,
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On the other hand, (Fy D)™ +g (FyD’)P' fits in the following commuting diagram
(FID)P™ x 75,y (F1D')PTY

li/AOXxY
(FiD)prx (FiD)P™> 45 (K D')PTY (FiD')pry
/ \ / \ y
pT';k(FfD / Txxy \ PY$F1D/
oy priT:

where all squares are Cartesian. By the isomorphism dprx @ dpry : Txxy — prx7Tx @ pryTy, this
diagram is the same as

prxFiD @ priFi D’

PERD@PYTy  (PERD@PHRD) /A PO prRD’

pTI PT2 ,
priGrl 1@priGr
D

P @ Py pr{FI D’

PriTx PriTy

prih

and the Lie bracket on (pr;k(F]D @pryFiD’ ) /A inherited from (FyD)P™ —+5 (FyD’)P"™ is given by

(@l h ®s1), (@1, ®s,)]
Z(ﬂ f,® [L, L] + (f1Gr(L) + i Gr(s))(f2) @ L — (f,Gr(1,) + hyGr(s,)) (f1) @ Ly,

hqhz ® [S], Sz] + (f1 Gl‘(l]) + h] GI'(S1 ))(hz) ® Sy — (szI‘(lz) + thl‘(Sz))(h]) ® S]) .
Therefore, we have an isomorphism
(FyD)P™ 45 (F D)™ = (pr;ﬁp@pmm’) /A=F(DRD)

and the Lie bracket on the two sides agree. One easily check that this isomorphism commutes
with inclusions from Ox,y and projections to 7xxy, so this is a morphism of Picard algebroids,
whence an isomorphism. This concludes the proof of 4.2. .

5. CONSEQUENCES OF LINEAR DEPENDENCE

Let A € I(b*), x = xg € X with stabilizer B.

Proposition 5.1. Let u € I(b*) be the differential of a character of B, let G xg C,, be the corresponding
homogeneous line bundle on X, and O(n) the invertible sheaf. Then

Do) = Dxp-
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Proof. We first calculate the bo-action on O(p). Recall thatg & O(u) by &-s = 4| _o(etbosoe ).
Letxe Vc X, &eby, seO(uly. Then

d d| 4
T Gl (e =4

Since s(xo) € k,, this is equal to 0 if & € ny, and is w(&)s(xo) if & € ho.

The action g ¢ O(u) gives us a map g — Dy, that extends to U° — D). We want to show
that the kernel is equal to J,..

The above computation says that, for & € by, the section 1® ¢, : [x — &] of g° satisfies ((1 ®E)-
s) (x0) = 1(&)s(xo). Take the section s = [g - xo — Ad g(&)]. Then 1 ® & — s¢ is zero in the fiber
of xo, whence its value on s is 0 on the fiber of x,. This implies that

(sg - 8)(x0) = ul&)s(xo). (5.2)

This argument can be done for another choice of point x = g - xo € X with & € b, replaced by
Ad g(&), and the section s; doesn’t change under this replacement. Therefore (5.2) holds when
xo replaced by any other x € X. As a result, s; - s = p(&)s. Thus s — p(&) acts as zero on
O(u), and the map U° — Dy, factors through 7. Then one checks on a chart for O(p) that the
induced map Dx,, — Doy is an isomorphism. .

e' - s(xo) = & - s(xo).
t=0

(&-s)(x0) =

(e osoe™)(xo) =

t=0

Corollary 5.3. Let P < 1(b*) be the subset consisting of differentials of characters of B. Then the
following diagram commutes:

P —— H'(X,0%)

e

I(6*) —— H'(X, 2y)

Proof. This is just a restatement of the lemma. .
Corollary 5.4. Let u € I(b*) be the differential of a character of B. Then for any A € 1(b*),
(DxA)°™ = Dyxapp

Proof. Let t(D) be the image of D in H'(X, Zy). Then by [Milb, 1.1.8], the proposition and linear
dependence on parameter,

t((Dxa)™) = t(Dxa) + t(Dog) = t(Dxa) + t(Dx ) = A+ 1 = t(Dxar)- .

Notation 5.5. If Ais a sheaf of algebras, we use A°P to denote the opposite algebra. This intuitive
notation is slightly different then the one in [Milb] (where the opposite algebra is denoted by
A°).

Corollary 5.6. Let A € I(b*). Suppose b & A4™X(g/b)* by 2p € 1(b*). Then wy =~ O(2p) and

(Dxp)°P = Dx,—at20-

Proof. wy is the sheaf of sections of AUMXT*X. We know that TX =~ G xp (g/b), so T*X =
G x5 (g/b)*, whence A4™XT*X =~ G x5 AY™X(g/b)* = G xp C,, and wx = O(2p).
Let t(D) be the image of D in H'(X, Z}). By [Milb, 1.1.13]

t((Dxp)") = —t(Dxp) + t(Dwy) = —t(Dxp) + t{Dogp))-
By the proposition and linear dependence on parameter, this equals to

—t(Dxp) + t(Dx2p) = —A+2p = —A+2p = t(Dx,r+20)- .
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6. OPPOSITE ALGEBRAS

Let X = G/B be a homogeneous space of G, and let b — g be the Lie algebras of B — G,
respectively. The next proposition is a follow up to 5.6.

Proposition 6.1. Let A € I(b*). Suppose wx = O(2p) for some p € 1(b*). Let A : U(g)°? — U(g) be
the isomorphism induced by —1d : g — g. Then the following diagram commutes:

U(g)P Ul(g)

l |

(Dx2)P —— Dx a2

where the bottom arrow is the one from 5.6, and the vertical arrows are from the definition of htdo’s.

To prove this, we reconstruct the isomorphism from 5.6 in the homogeneous setting. The
construction will automatically imply the proposition.

First consider the case where A = 0. We need some preparations on the Lie algebra action on
wyx.

Notation 6.2. For 1 € 7x, set L,, € FiD,, to be the Lie derivative, as defined in the discussion
preceding [Milb, 1.1.12]. Let t: g — 7x be the natural Lie algebra homomorphism induced by
the action g & Ox. In other words,

_ d —t&
T(&)(f) = dt(fo e ) R
where (f o e7)(x) = f(e™* - x). Recall that this is the map that induces the isomoprhism
g°/b° = Tx.

Now consider the natural action g & wy induced by G & AY™*T*X. To avoid confusion,
we construct the action here. For g € G and x € X, translation by g gives a map

TX — TgX,  w(x) = g- w(x) with (g w(x),n) = (w(x),n(—og),

forn € Txgx. Heren(—o g~') € Txx is a vector field that sends f € Ox, to the function fo g~ :
x — f(g~'-x) near g - x and ton(fo g~') € C. This defines a group action G & T*X. Now let
G & A%™X diagonally. The induced action g  w), is given by

d

(&-w)(x) = &t

(e w(e* - x))

t=0

for &£ e gand w € wy.

Notation 6.3. Let x : g — D, denote the map induced by the action g C wy, thatis, «(&)(w) =
E-w.

Lemma 6.4. The following diagram commutes:

g:g

ol

7;( i’ F] DU)X

Here, for & € g, a(&) € F1 Dy, is defined by the natural action of g on wy.
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Proof. Using the analytic definition of Lie derivative, this is more or less a tautology. Let & € g.
The flow of the vector field t(&) on X is given by 0 ((x) = e * - x. The Lie derivative L) as
defined in the discussion preceding [Milb, 1.1.12] agrees with the analytic definition, that is, for
we wyxand x € X,

0 (wle™ X)) —w(x)
Ly (@)(x) = lim - .
Here 05 , is the pullback of tensor fields along 0; ;. It’s easy to show that 07 ,w(x') = et w(x’)
with the right side given by the group action of G on T*X. Hence

. 0F (w(ex))—w(x) d
lim —= =
t—0 t dt

This is true as x ranges over points on X and w ranges over all top differential forms. Therefore
Leg) = «(&).

One can also prove this without using the analytic definition of Lie derivative, or without
using any differentiation at all — the proof boils down to checking equality between some de-
terminantal expressions. We omit the details. -

— (e w(e ™ x))

= «(&)(w)(x).

t=0

Lemma 6.5. Suppose wx = O(2p) for some p € 1(b*). Then the following diagram of sheaves of vector
spaces commutes

. 1®(-1) o Tox+Bly ]
OxDg Ox@g . Ox®g
lf/bO lf/h":]@(]@"r) l1®(x )
1o, ®(—1)| 1oy, ®L(_]
FDx — > , Dy — >, £,

where oc and 3 are defined by
B:g° = Ox@g’, f®E—TREFT(E)(T),
x:g° — Dy, T®E— fax(E).
Moreover the map 1 + 3 is a Lie algebra homomorphism.

oy ®L
Remark 6.6. This does NOT imply that Dx =~ D, as tdo’s because the map F;Dx M)
Fi1Dy, is not Ox-linear.

Proof. The left square obviously commutes. Commutativity for elements in Ox < Ox @ g° is
obvious. By the previous lemma, we know that the diagram commutes with elements of the
form 1® & € g°, & € g. For elements of the form f ® & € g°, one checks that

(M@)o (1T@R))(f®E)
=1@x)(f®&+T(E)(F))
=fo(&) + T(E)(f) = flyg) +T(E)(f) = Lygyf
=Lte) = ((Tloy ®Lyln) e (1@ T1® 7)) (f® E),

showing the commutativity of the second square. The fact that § commutes with Lie bracket is
a direct check and is omitted. .

Corollary 6.7. Suppose wx = O(2p) for some p € 1(b*). Let s = Z fi® & € b° < g°. Then

02 Zf ®‘(—,1 — ZT

i
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Proof. Consider the diagram in 6.5, and view s as an element in Ox @ g° in the top left. Under
the bottom path s is sent to 0 since the first map is quotient by b°. Therefore

Z (fi @ & + (&) (f) = (Tloy + Blee)(s) € ker(1 ® ).
From the proof of 5.1 we know that ker(1® «) = J,, which is equal to the Ox-module generated
by {8’ — 02,(s’) | s’ € b°}. Therefore, for some s;,...,s, € b° and hy,..., h € Ox, we have

1
Zﬂ@& —l—ZT(E,i) Zf) — 02(s

j=1
Write s’ = Z}:1 fjs;, the above equation becomes
Zfi ®&—s' = —ZT(ai)(fi) — 0g,(s).

The left hand side has degree 1 while the right hand side 0. Therefore we must have s’ =
> fi®& and
ZT(Ei)(fi) = _GZQ(Z fi ® &). .

We are ready to prove the general case. Equip Ox@®g° with a right Ox-module structure given
by
f®& h=fh®E&+ ft(E)(h)
for f ® & € g° and h € Ox. In this way Ox @ g° is an Ox-bimodule.

Lemma 6.8. Let A € I(b*). Suppose wx = O(2p) for some p € 1(b*). Consider the composition

]‘OX+B‘QO
R

d)xiox@gOMOx@go Ox®g°

(see 6.5 for the definition of 3). With the left Ox-action on the left hand side and the right Ox-action
on the right hand side, §, is an Ox-linear Lie algebra anti-homomorphism that descends to a Ox-linear
anti-isomorphism

$r: FiDxa = (Ox @ g°) /T — (Ox D 8°)/T-rs20 = FiDx A1 20

Proof. From 6.5 we know that 1 4 (3 is a Lie algebra homomorphism. Therefore ¢, is an anti-
homomorphism. It is an isomorphism of sheaves because Grdp, = 1@ (—1) is an isomorphism.
To check linearity, one computes, for f ® & € g° and h € Ox,

PrA(h-FRE) = PrA(hf® E) = —hf® & — T(&)(hf)
=-hf®&—T(&)(flh—fr(&)(h) = —fR®E - h—1(E)(f) - h
=—Pr(f®E)-h
We want to check that 7, is sent to J_»;2, on the right hand side. Take s = } . fi ® &; € b°.
Then
s—on(s) 2 —Z(ﬂ ® &) — ZT(ii)(fi) — oa(s)
= —s+ 02p(8) — OoA(s) = (—8) — 0 r120(—8) € T r12p-

So J, is sent onto J_j12,. Therefore ¢, descends to the isomorphism .
The rest of the statements are obvious. .

We want to use ¢, to generate an algebra isomorphism Dy = (Dx _r120)°-
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Definition 6.9. Let 0 — Ox - L <% Tx — 0 be a Picard algebroid. Define its opposite Picard
algebroid L°P as follows. Let L°? = L as abelian sheaves. Define an Ox-module structure by
fopop L= f- 1+ Gr(1)(f) for f € Ox and 1 € L°P. Define a Lie bracket on L°? by [L;, L,]ier = [lp, L.
Lastly, fit L°P into the extension

0— Oy -1 =S 70 0.

It’s easy to check that L°P satsifies the requirements of a Picard algebroid.

Remark 6.10. The sheaf isomorphism L°P 1, Lis a C-linear Lie algebra anti-isomorphism, but it
is not Ox-linear.

Corollary 6.11. The composition
Ox : FiDx\ o, F1Dx,a+20 Ll (F1Dx,—a120)"
is an isomorphism of Picard algebroids.

Proof. First, 0, is an Ox-linear Lie algebra homomorphism because ¢, is an Ox-linear Lie algebra
anti-homomorphism. It obviously commutes with the inclusion from Ox. It also commutes with
quotients to 7x because the desired commuting diagram descends from the following one

_/bo

Ox®g” —— g°/b° h+fRE — fRE
|o | I I
Ox® g — g /b’ h—f@®E—T(&)f) — fOE
Therefore 0, is a morphism of Picard algebroids, and hence an isomorphism. .

We can then apply D(—) (see 1.2 for the definition) to 6,. Then by 1.4 we obtain the following
result.

Corollary 6.12. The following diagram commutes

—1

g g

l I

0
Dxp —=— D((FiDx,r120))

where the vertical maps are induced from g — Ox ® g° — FiDxp and g — Ox @ g° — Fi1Dx _a120 —
(F1Dx, a120)°F, respectively.

Lemma 6.13. Let L be a Picard algebroid. Then the identity map L°° — L induces an isomorphism of
sheaves of C-algebras

D(L) = D(L)*

Proof. The map L°P 4L L) & D(L)°P induces a map from the sheaf of free C-algebra of
L°P to D(L)°P. We want to show that it descends to D(L°P). Therefore we need to check that the
relations in the definition 1.2 of D(L) are satisfied in the image D(L)°P. We write #p(1), #p(Ljor for
the multiplications in D(L), D(L)°?, respectively.

For 1.2(a): this is satisfied because L°P 14 L commutes with inclusion of Oxand Ox — L —
D(L) is a C-algebra homomorphism because D(L) itself satisfies 1.2(a).
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For 1.2(b): for 1y, 1, € L°?, the map L°? — D(L)°P sends
L, Ller = [y Ul — [y Ul = [y Ulpwy = L #py i — L #py) L
=1 #pryer Lo — Ly #pyer Li = L1, Lalp(Lyor,

therefore a Lie algebra homomorphism.

For 1.2(c): for f € Ox, 1 € L°?, under L°? — D(L)°P,

foor =1 L4+ Gr(1)(f) — f+pr) L+ Gr(l)(f)
=1 *D(L) f + [f, l]p(]_) + Gl‘(l) (f) =T *D(L)op 1— Gl‘(l)(f) + Gl‘(l) (f) =T *D(L)oP 1.

For 1.2(d): [, flpwyer = [f, Upr) = —Gr(1)(f) = (—Gr)(1)(f) for f € Ox and | € L°P (recall that
the quotient L°? — 7x in the definition of L°? is given by —Gr, not Gr).

Therefore we have a map D(L°?) — D(L)°P of sheaves of C-algebras. This map can also be
constructed reversely, namely that we can construct a map of algebras D(L) — D(L°P)° from

the composition L 19, Lop — D(LoP) 1 D(LoP)or by the same argument, and apply (—)°P to get
a map of algebras D(L)°? — D(L°P) which is inverse to D(L°?) — D(L)°? by universal property
of D(—). Thus D(L°) =~ D(L)°. .

Combining 6.12 and 6.13, we get
Corollary 6.14. The following diagram commutes

Ul(g) U(g)r U(g)°P

| l l

0
DX,A — ((F1DX,4\+2p)°p) = (Dx,7>\+2p)°p

~

Id

This proves 6.1.
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