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These notes were written as a personal supplement to the first chapter of [Milb], and are
heavily based on results and notations in op. cit. The main tool for the arguments is Picard
Lie algebroid. Most of the properties of Picard algebroids are taken or expanded from first two
sections of [BeBe93].

CONTENTS

1. Picard Lie algebroids 1
2. Linear dependence on parameter 4
3. Functoriality of homogeneous parameter 7
4. External tensor product and geometric realization of parameter addition 11
5. Consequences of linear dependence 13
6. Opposite algebras 15
References 19

In §1 we introduce the main tool for these notes, the Picard Lie algebroids. In §2 we use this
to prove that the dotted arrow in the following commuting diagram is linear:

{htdo} {tdo}

I(b˚) H1(X,Z1
X)

–– .

Consequences of this linearity result will be discussed in §5. In §3 we construct the pullback
of Picard algebroids along a morphism of varieties and use it to show the functoriality of the
htdo parameter w.r.t. variety morphisms. In §4 we discuss external tensor products of tdo’s
on a product space, and realize the addition of tdo parameters via pullback along the diagonal
immersion X ↪→ X ˆ X (suggested by Dragan Miličić). In §6 we prove that the isomorphism
from the opposite algebra of DX,λ to (DX,−λ)

ωX lifts to the anti‑isomorphism − Id : g→ g.

1. PICARD LIE ALGEBROIDS
Let X be a variety. Let tdo(X) denote the category of all tdo’s on X. By [Milb, 1.1.2] we see

that any morphism of tdo’s is an isomorphism. Hence tdo(X) is a groupoid.
Now take a tdo (D, i). Then by [Milb, 1.1.1] there is a natural isomorphismGrD – SymOX

TX.
The degree 1 part of this isomorphism is a short exact sequence

0 −→ OX
i−−→ F1D

Gr−−−→ TX −→ 0.
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We want to show that F1D determines D completely. The first step is to formulate the category
of such F1D’s.

Definition 1.1. A Picard Lie algebroid, or simply a Picard algebroid on X is a quasi‑coherent
OX‑module L equipped with

‚ a C‑linear Lie bracket [−,−] on L, and
‚ a short exact sequence of OX‑modules

0→ OX
i−→ L

Gr−→ TX → 0

satisfying the following requirements:
(1) Gr is a Lie algebra morphism, i.e. it commutes with Lie brackets;
(2) for any f P OX and any l1, l2 P L, [l1, fl2] = f[l1, l2] + (Grl1)(f)l2.

A morphism between Picard algebroids (L1, i1,Gr1) and (L2, i2,Gr2) is a commutative diagram

0 OX L1 TX 0

0 OX L2 TX 0

i1 Gr1

i2 Gr2

with the middle map commuting with Lie brackets. The category of Picard algebroids on X

is denoted by PA(X). By Five lemma any morphism of Picard algebroids is an isomorphism.
Hence PA(X) is a groupoid.

Definition 1.2. Let 0 → OX
i−→ L

Gr−→ TX → 0 be a Picard algebroid. We define the sheaf of
differential operators generated by L, denoted by D(L), by the sheafification of the quotient of
the free presheaf of C‑algebra of L generated by the following relations:

(a) OX ↪→ D(L) is a C‑algebra homomorphism;
(b) L ↪→ D(L) is a Lie algebra homomorphism, where the bracket [−,−]D(L) in D(L) is given

by taking commutator;
(c) @ f P OX, l P L, we require that the image of f¨l P L inD(L) agrees with themultiplication

of f P OX Ă D(L) and l P L Ă D(L);
(d) @ f P OX, l P L, we require [l, f]D(L) = Gr(l)(f).

The assignment sending (D, i) to OX
i−→ F1D

Gr−→ TX defines a functor of groupoids F1 :
tdo(X)→ PA(X).
Notation 1.3. From now onwewill useOX → L→ TX to denote a Picard algebroid. When deal‑
ing with tdo’s, the map F1D → TX will only ever be the map Gr, and Gr will always commute
with maps F1D → F1D 1 induced by morphisms of tdo’s (D, i) → (D 1, i 1). Hence we will often
omit the “→ TX” part when representing a morphism of Picard algebroids. Let (DX, i0) denote
the sheaf of ordinary differential operators.

Lemma 1.4. The functor F1 : tdo(X)→ PA(X) is fully faithful.

Proof. Since PA(X) is a groupoid, any PA(X) is a disjoint union of isomorphism classes. Let
PA(X) 1 be the union of those isomorphism classes that contains an image of F1. Then PA(X) 1 is
a full subcategory of PA(X). We show that D(−) is a quasi‑inverse of F1 : tdo(X)→ PA(X) 1.
We show thatD(L) is a tdo for L P PA(X) 1. First consider the case L = F1DX = OX ‘TX. In this

case the definition of D(F1DX) agrees with the alternative definition of DX by generators and
relations, see for example [HTT07, 1.1.1]. Therefore D(F1DX) = DX. Now consider a general
algebroid L P PA(X) 1. Choose a tdo D so that F1D – L. Since the construction of D(L) is
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functorial in L, D(L) – D(F1D). The natural inclusion F1D ↪→ D induces a morphism from the
free presheaf of k‑algebras of F1D to D, and the defining relations of D(F1D) obviously vanish
in D, so we obtain a map D(F1D)→ D. Wwe already know that locally over a chart D|U

∼−→ DU,
D(F1DU) → DU is an isomorphism. Hence D(F1D) → D is a global isomorphism. This defines
a functor D : PA(X) 1 → D(L) with D ˝ F1 – Idtdo(X). The other isomorphism F1 ˝ D – IdPA(X) 1 is
also routine check. ‚

Remark 1.5. This functor is actually an equivalence of categories [BeBe93, 2.1.4], but we will not
need this.

A Picard algebroid L gives by definition a short exact sequence 0 → OX → L → TX → 0, and
hence a class in Ext1OX

(TX,OX). Therefore we have the following set maps

H1(X,Z1
X)

∼−→ Ob tdo(X) ↪→ ObPA(X) ↪→ Ext1OX
(TX,OX).

The right hand side Ext1OX
(TX,OX) has a natural C‑linear structure. We want to show that the

composition of the above inclusions are C‑linear. For this we first need to realize the C‑linear
structure in Ext1OX

(TX,OX) in terms of operations on short exact sequences. This is done via the
standard Baer sum construction. We recall the details here for completeness.

Lemma 1.6. The set of equivalence classes of extensions of TX by OX

0 −→ TX −→ E −→ OX −→ 0

of OX‑modules is in 1‑1 correspondence with Ext1OX
(TX,OX).

Here two extensions E and E 1 are equivalent if there is a commutative diagram

0 OX E TX 0

0 OX E 1 TX 0

.

Construction. Given an extension 0 → OX → E → TX → 0, apply RHomOX
(TX,−) we obtain in

the resulting long exact sequence of cohomologies

HomOX
(TX, TX)→ Ext1OX

(TX,OX).

Then the extension E corresponds to the image of IdTX under the above map.
Conversely, suppose we are given a class θ P Ext1OX

(TX,OX). Take any short exact sequence
0 −→ OX −→ I −→ F −→ 0

of OX‑modules with I injective, apply RHomOX
(TX,−) to obtain a map

HomOX
(TX,F) −→ Ext1OX

(TX,OX),

and take an lift φ P HomOX
(TX,F) of θ. Then let E be the fiber product E := I ˆF ,φ TX and

define a map OX → E induced by I ← OX
0−→ TX, resulting in a commutative diagram

0 OX E TX 0

0 OX I F 0

φ .

θ then corresponds to the extension E . This does not depend on a choice of a lift or a choice of
I (up to equivalence of extensions). ‚
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The C‑linear structure in Ext1OX
(TX,OX) can be realized as follows.

The addition is the usual Baer sum construction. For θ, θ 1 P Ext1 corresponds to OX
i−→ E Gr−→

TX and OX
i 1

−→ E Gr 1

−−→ TX, respectively, take the fiber product E ˆTX E 1 and take the OX‑skew
diagonal ∆‑ = {(−i(f), i 1(f)) P E ˆTX E 1 | f P OX}, and then take E 2 := (E ˆTX E 1){∆‑ . Then the
extension

0 −→ OX

(i,0)=(0,i 1)−−−−−−→ E 2 −→ TX −→ 0

corresponds to the sum θ+ θ 1.

Notation 1.7. We will use E +B E 1 to denote their Baer sum E 2. We will also use ∆‑ = ∆‑OX
to

denote the skew diagonal of the structure sheaf.

TheC‑action is given by “scaling the first arrow”. For 0 P C, 0¨θ = 0 is just the split extension.
For c P Cˆ, take a short exact sequence 0 → OX → I → F → 0 with I injective as done
in the construction above. If φ P HomOX

(TX,F) lifts θ, then θ corresponds to OX
i−→ E :=

IˆF ,φTX
pr2−−→ TX. Now consider the class cθ. Then cφ lifts cθ, so cθ corresponds to the extension

OX
i 1

−→ E 1 := I ˆF ,cφ TX
pr2−−→ TX. Moreover we have a commutative diagram

0 OX E TX 0

0 OX E TX 0

0 OX E 1 TX 0

c−1i

c

pr2

i

(1,c−1)

c−1pr2

i 1 pr2

.

Therefore, if θ corresponds to OX
i−→ E Gr−→ TX, then cθ corresponds to OX

c−1i−−→ E Gr−→ TX. One
can check that the Z Ď C‑action agrees with the Baer sum.
Now consider Picard algebroids L, L 1 P PA(X) and c P Cˆ. We claim that the Baer operations

on short exact sequences preserves Picard algebroids, that is, there is a natural Lie bracket on
the resulting extensions L +B L 1 and c ¨ L making them into Picard algebroids. Since the Lie
brackets on L is C‑linear, its clear that the Cˆ‑action on L results in a Picard algebroid. For
addition, define the component‑wise Lie bracket on L+B L

1: for li P L, si P L 1,[
(l1, s1), (l2, s2)

]
:=

(
[l1, l2], [s1, s2]

)
.

This is well‑defined on the quotient −{∆‑ : if f P OX, then[
(−f, f), (l2, s2)

]
=

(
[l2, f],−[s2, f]

)
= −

(
− [l2, f], [s2, f]

)
,

and since l2, s2 have the same image ξ in TX, [l2, f] and [s2, f] are both equal to ξ(f), whence(
− [l2, f], [s2, f]

)
” 0 mod ∆‑ .

2. LINEAR DEPENDENCE ON PARAMETER
Let B Ă G be algebraic groups, let X = G{B be the corresponding homogeneous paces, and

let b Ă g be the Lie algebras. Let I(b˚) be the subspace of b˚ consists of fixed points under the
coadjoint action of B. Recall that htdo’s are parameterized by I(b˚) [Milb, 1.2.4] (the class ofDX,λ

is λ P I(b˚)), and on a general variety X all tdo’s are parameterized by H1(X,Z1
X) [Milb, 1.1.3]

(the class of D is denoted by t(D)), where Z1
X is the sheaf of closed 1‑forms on X. We want to

prove the following.
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Proposition 2.1. The inclusion I(b˚) ↪→ H1(X,Z1
X) induced by {htdo}↪→{tdo} is C‑linear.

First consider a general variety X.

Lemma 2.2. Let X be a variety. The inclusion H1(X,Z1
X) ↪→ Ext1OX

(TX,OX) induced by sending (D, i)

to the extension OX
i−→ F1D

Gr−→ TX is C‑linear.
Proof. We claim that H1(X,Z1

X) ↪→ Ext1OX
(TX,OX) commutes with Cˆ‑action. Let c P Cˆ. Take

a tdo (D, i) and an atlas {D|Ui

ϕi−→ DUi
}i. Let {ωij}i,j be a Čech cocycle representative of the

class t(D). Let Uij := Ui X Uj, f P OX, ξ P TX. Then we have the following morphisms of
Picard algebroids (which are automatically isomorphisms) (recall that the ordinary differential
operators are denoted (DX, i0)):

OX|Uij
OX|Uij

OX|Uij
OX|Uij

OX|Uij

F1DX|Uij
F1DX|Uij

F1D|Uij
F1DX|Uij

F1DX|Uij

f+ ξ c−1f+ ξ c−1f+ ξ−ωij(ξ) f+ ξ− cωij(ξ)

i0 c−1(ϕi˝i) c−1i c−1(ϕj˝i) i0

c|OX ϕi ϕj c|OX

(check of commutativity of the “ Gr−→ TX” part is omitted). Now {cωij}i,j is a cocycle that represents
the class ct(D) P H1(X,Z1

X). Let (D 1, i 1) be the corresponding tdo. Then (F1D 1, i 1) is glued up
by the same gluing data as (F1D, c−1i), therefore isomorphic to each other. Therefore the action
of c P C on the algebroid F1D corresponds to multipilcation by c on t(D) P H1(X,Z1

X). This also
shows that the C‑action preserves the image of F1 : tdo(X)→ PA(X).
Thenwe claim thatH1(X,Z1

X) ↪→ Ext1OX
(TX,OX) commuteswith addition. Let (D, i), (D 1, i 1) be

tdo’s with altases {D|Ui

ϕi−→ DUi
}i, {D 1|Ui

ϕ 1
i−→ DUi

}i over a same open cover, and cocycles {ωij}i,j,
{ω 1

ij}i,j. Then we have the following morphisms of Picard algebroids locally on Uij (which are
automatically isomorphisms):

OX OX OX OX OX

F1DX (F1DX ˆTX F1DX){∆‑ (F1D ˆTX F1D 1){∆‑ (F1DX ˆTX F1DX){∆‑ F1DX

f1 + f2 + η (f1 + η, f2 + η) F1D +B F1D 1 (f1 + η, f2 + η) f1 + f2 + η

i0 (i0,0)=(0,i0) (i,0)=(0,i 1) (i0,0)=(0,i0) i0

(ϕi,ϕ
1
i
) (ϕj,ϕ

1
j
) .

For f P OX, ξ P TX, the composition from left to right goes
f+ ξ Þ→ (f+ ξ, ξ) Þ→ Þ→ (f+ ξ−ωij(ξ), ξ−ω 1

ij(ξ)) Þ→ f− (ωij +ω 1
ij)(ξ) + ξ.

Therefore, if we let (D2, i2) denote the tdo given by the cocycle {ωij+ω 1
ij}i,j, then (F1D2, i2) have

the same gluing as F1D +B F1D 1, whence isomorphic to F1D +B F1D 1. As a result H1(X,Z1
X) ↪→

Ext1OX
(TX,OX) commutes with addition, and is therefore a C‑linear map. ‚

Now we return to the homogeneous setting. Let’s recall some notations and results from
[Milb, 1.2]. We have sheaves g˝ = OX bk g and U˝ = OX bC U(g), the latter equipped with a
filtration FU˝ induced by the degree filtration on U(g). With this filtration F1U˝ = OX ‘ g˝. We
have an identification TX – G ˆB (g{b) induced by TeX = g{b. The natural projection g � g{b
induces a short exact sequence of homogeneous vector bundles

0 −→ B −→ X ˆ g −→ G ˆB (g{b) −→ 0
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where B = {(xgB, ξ) P X ˆ g | ξ P Adg(b)} – G ˆB b is the bundle whose fiber at xgB is Adg(b).
Let b˝ be the corresponding sheaf of B. Then TX – g˝{b˝.
Let λ P I(b˚). Then the linear map λ : b→ C induces a map of homogeneous vector bundles

B → X ˆ C and hence a G‑equivariant sheaf morphism σλ : b
˝ → OX. Jλ Ă U˝ is the two‑sided

ideal generated by {s− σλ(s) | s P b˝}, and DX,λ = U˝{Jλ is the htdo corresponding to λ.

Lemma 2.3.
Jλ X F1U˝ = {s− σλ(s) | s P b˝}.

Proof. Denote the right hand side by Sλ. We have Sλ Ď Jλ. By the proof of [Milb, 1.2.3] we can
locally take amapωλ : g

˝ → OX that restricts toσλ : b
˝ → OX, so that the induced automorphism

Φλ on U˝ sends J0 to Jλ and further induces an isomorphism DX
∼−→ DX,λ. On F1 this gives a

sheaf automorphism of F1U˝ = OX ‘g˝ that sends J0 XF1U˝ to Jλ XF1U˝. We know that J0 = b˝,
since quotient by b˝ gives

OX ‘ g˝ −−� OX ‘ (g˝{b˝) – OX ‘ TX = F1DX.

As the isomorphism F1DX → F1DX,λ is a quotient of Φλ, the latter must send J0 = b˝ onto Jλ.
But Φλ|J0

= Φλ|b˝ = σλ and it sends s P b˝ to s − σλ(s), Jλ must only consists of sections of the
form s− σλ(s), s P b˝. ‚

With abuse of notation, we will also denote F1U˝ X Jλ by Jλ. From this construction we see
that σλ is linear in λ, that is σcλ+µ = cσλ + σmu as maps b˝ → OX for any c P C, λ, µ P I(b˚).
From the construction of DX,λ, we see that F1DX,λ = (OX ‘ g˝){Jλ. Quotient out the subsheaf

OX in F1DX,λ will eliminate the factor OX and also the subsheaf b˝ in g˝ via the ideal Jλ. The
extension F1DX,λ of TX by OX can be therefore rewritten as

0 −→ OX −→ (OX ‘ g˝){Jλ −→ g˝{b˝ −→ 0.

Lemma 2.4. The composition I(b˚) ↪→ H1(X,Z1
X) ↪→ Ext1OX

(TX,OX) induced by sending (DX,λ, iλ) to
the extension OX

iλ−→ F1DX,λ
Gr−→ TX is C‑linear.

Proof. For c P Cˆ, consider the map OX ‘ g˝
c−1|OX−−−−→ OX ‘ g˝. This is OX‑linear, sends σcλ(s) Þ→

c−1σcλ(s) = σλ(s) for s P b˝, and fixes g˝. Therefore it sends Jcλ to Jλ and induces the following
map of Picard algebroids (which is automatically an isomorphism)

OX F1DX,cλ (OX ‘ g˝){Jcλ

OX F1DX,λ (OX ‘ g˝){Jλ

c−1|OX

c−1 IdOX

.

The bottom algebroid coincides with the one obtained by the action of c on F1DX,λ. Therefore
the c‑action on the parameter λ agrees with the c‑action on the extension.
For addition, take λ, µ P I(b˚). Consider the diagram

OX ‘ g˝ (OX ‘ g˝){Jµ

(OX ‘ g˝){Jλ TX

0‘1

1‘1 −{OX

−{OX

.
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It commutes because both compositions are quotients byOX‘b˝. Thereforewe have an induced
map

OX ‘ g˝ −→ (OX ‘ g˝

Jλ

)
ˆTX

(OX ‘ g˝

Jµ

)
−−�

(OX ‘ g˝

Jλ

)
ˆTX

(OX ‘ g˝

Jµ

)M

∆‑

where the first map is f1+f2bξ Þ→ (f1+f2bξ, f2bξ). For sections of the form s−σλ+µ(s) P Jλ+µ,
its image under this composition is
s−σλ+µ(s) Þ→ (−σλ+µ(s) + s, s) = (−σλ(s) −σµ(s) + s, s) ” (s−σλ(s), s−σµ(s)) = (0, 0) mod∆‑ .
Therefore the composition factors through

F1DX,λ+µ =
OX ‘ g˝

Jλ+µ

−→ (OX ‘ g˝

Jλ

)
ˆTX

(OX ‘ g˝

Jµ

)M

∆‑ = F1DX,λ +B F1DX,µ.

It’s straightforward to check that this is a morphism of Picard algebroids. Therefore F1DX,λ+µ –

F1DX,λ +B F1DX,µ.
Thus I(b˚) ↪→ Ext1 is C‑linear. ‚

Proof of 2.1. The inclusions I(b˚) ↪→ H1(X,Z1
X) ↪→ Ext1OX

(TX,OX) realize both spaces as linear
subspaces of Ext1, and an inclusion of linear subspaces is linear. ‚

3. FUNCTORIALITY OF HOMOGENEOUS PARAMETER
Let φ : X → Y be a morphism of varieties, and let D be a tdo on Y. By [Milb, 1.1.5] we

know that if {ωij} is a Čech cocycle of closed 1‑forms that represents the class t(D), then {φ˚ωij}

represents the class t(Dφ). On parameter space this is a map

Z1(φ) : H1(X,Z1
X) −→ H1(Y,Z1

Y).

We want to find an analogous map for htdo’s.
Let’s first convert the pullback operation for tdo’s into a pullback for Picard algebroids. Let

L be a tdo on Y. Applying φ˚ to the exact sequence

0 −→ OY
i−−→ L

Gr−−−→ TY −→ 0

we obtain, by local freeness of these sheaves, an exact sequence
0 −→ φ˚OY −→ φ˚L −→ φ˚TY −→ 0.

Now use the natural morphism dφ : TX → φ˚TY [Mila, IV.1.4] to define Lφ := φ˚L ˆφ˚TY TX,
and use the maps φ˚L ← φ˚OY

0−→ TX to obtain OX – φ˚OY → Lφ. We then have the following
commuting diagram with exact rows

0 OX Lφ TX 0

0 φ˚OY φ˚L φ˚TY 0

– dφ .

Define a Lie bracket on Lφ by[
(f1 b l1, ξ1), (f2 b l2, ξ2)

]
:=

(
f1f2 b [l1, l2] + ξ1(f2) b l2 − ξ2(f1) b l1, [ξ1, ξ2]

)
for fi P OX, li P φ−1L and ξi P TX with Gr(li) = dφ(ξi). Then Lφ is a Picard algebroid.

Definition 3.1. We call Lφ the pullback of L.

In particular we have the algebroid (F1D)φ as the pullback of F1D.
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Lemma 3.2. Let (D, i) be a tdo on Y. Then F1(Dφ) – (F1D)φ.

Proof. Since any morphism of Picard algebroids is an isomorphism, it suffices to construct a
morphism F1Dφ → (F1D)φ. Consider the diagram

F1Dφ TX

φ˚F1D φ˚TY

Gr

−¨(1b1) dφ . (3.3)

We want to show that this commutes. Locally this is

F1(DY
φ) TX

φ˚F1DY φ˚TY

Gr

−¨(1b1) dφ . (3.4)

Now invoke the isomorphism γ : DX
∼−→ DY

φ. It’s clear that GrDY
φ ˝ γ = GrDX

. On the other
side, the composition

OX ‘ TX = F1DX
γ−→ F1(DY

φ)
−¨(1b1)−−−−→ φ˚F1DY = OX ‘ φ˚TY

sends f P OX to f¨(1b1) = fb1 and ξ P TX to (by [Mila, IV.1.5]) γ(ξ)¨(1b1) = ξ(1)b1+dφ(ξ) =
dφ(ξ). Therefore diagram (3.4) is isomorphic to

OX ‘ TY TY

OX ‘ φ˚TY φ˚TY

pr2

1‘dφ dφ

pr2

which obviously commutes. Therefore the local diagram (3.4) commutes. By the discussion pre‑
ceding [Milb, 1.1.5], we know that the diagram (3.3) is glued up from (3.4), whence commutes.
As a result we obtain a map of sheaves

F1Dφ −→ φ˚F1D ˆφ˚TY TY = (F1D)φ.

It’s straightforward to check that this commutes with the inclusions of OX and quotients to TY ,
i.e. that this is a morphism of Picard algebroids. Thus F1Dφ – (F1D)φ. ‚

The lemma can be rephrased in the following way.

Corollary 3.5. The following diagram commutes

H1(X,Z1
X) tdo(X) PA(X)

H1(Y,Z1
Y) tdo(Y) PA(Y)

– F1

Z1(φ)

–

(−)φ

F1

(−)φ .

In particular, if we endow ObPA(X) and ObPA(Y) with C‑vector space structures inherited from the
inclusions to Ext1OX

(TX,OX) and Ext1OY
(TY,OY), respectively, then (−)φ : ObPA(Y) 1 → ObPA(X) 1

is C‑linear, where PA(X) 1, PA(Y) 1 are the images of F1 : tdo(X) → PA(X), F1 : tdo(Y) → PA(Y),
respectively.
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Remark 3.6. Since F1 : tdo(X)→ PA(X) is in fact an equivalence, (−)φ is linear on the full category
ObPA(Y). In fact, (−)φ can be viewed as the restriction from a linear map Ext1OY

(TY,OY) →
Ext1OX

(TX,OX), constructed as follows. Take injective resolutions OY → I‚, OX → J ‚, then the
isomorphism φ˚OY – OX induces a map φ˚I‚ » J ‚. We can then form the composition

HomOY
(TY, I‚)→ HomOX

(φ˚TY, φ
˚I‚)→ HomOX

(φ˚TY,J ‚)→ HomOX
(TX,J ‚),

where the last map is induced by dφ : TX → φ˚TY . The H1 of this composition is the desired
map

Ext1OY
(TY,OY) −→ Ext1OX

(TX,OX).

One can check that the diagram

tdo(X) PA(X) Ext1OX
(TX,OX)

tdo(Y) PA(Y) Ext1OY
(TY,OY)

F1

(−)φ

F1

(−)φ

commutes.

Now consider the homogeneous setting. Let B1 Ă G1, B2 Ă G2 be algebraic groups, let
Φ : G1 → G2 be an algebraic group morphism that sends B1 into B2, let φ : X = G1{B1 →
G2{B2 = Y be the induced G1‑equivariant map on the quotient, and let res : b˚

2 → b˚
1 be defined

as res = − ˝ dΦ|b1 . Write e1 P G1, e2 P G2 for the identity elements, and write xg1B1
P X for a

point corresponding to the left coset g1B1 P G1{B1.
Let λ P I(b˚

2). Recall that the extension OY → F1DY,λ → TY is the same as
0 −→ OY −→ (OY ‘ g˝

2){Jλ −→ g˝
2{b

˝
2 −→ 0.

The pullback construction for Picard algebroid gives the commutative diagramwith exact rows:

0 OX (F1DY,λ)
φ

g˝
1

b˝
1

0

0 φ˚OY

φ˚(OY ‘ g˝
2)

φ˚Jλ

φ˚g˝
2

φ˚b˝
2

0

– .

Before proceeding, we want to describe the arrows in this diagram.

Claim. The following diagram commutes

g˝
1

b˝
1

TX

φ˚g˝
2

φ˚b˝
2

φ˚TY

1bdΦ

–

dφ

–

,

where the left vertical arrow is induced by 1 b dΦ : g˝
1 → φ˚g˝

2, f b ξ Þ→ f b dΦ(ξ).

Proof. Both vertical arrows are G1‑homogeneous, so both are induced by the maps at the fiber
of ye1B1

, which are both dΦ : g1 → g2. ‚
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The sheaf map (1 b dΦ)|
g˝
1

b˝
1
: b˝

1 → φ˚b˝
2 can be better described in terms of bundles. g˝

1 =

OX bk g1 is the sheaf of the trivial bundle X ˆ g1; φ˚g˝
2 = φ˚(OY bk g2) = OX bk g2 is the trivial

bundle Xˆg2; b˝
1 is theG1‑homogeneous bundleG1 ˆB1

b1;φ˚b˝
2 is theG1‑homogeneous bundle

X ˆY (G2 ˆB2
b2), where G1 acts by g1 ¨ (x, g2, ξ2) = (g1 ¨ x,Φ(g1)g2, ξ2). The diagram

b˝
1 g˝

1

φ˚b˝
2 φ˚g˝

2

1bdΦ

corresponds to the diagram of bundles

G1 ˆB1
b1 X ˆ g1

X ˆY (G2 ˆB2
b2) X ˆ g2

1ˆdΦ

(g1, ξ1) (xg1B1
,Adg1(ξ1)

(xg1B1
,Φ(g1), dΦ(ξ1)) (xg1B1

,AdΦ(g1)(dΦ(ξ1)))

.

We also need to understand the sheaf φ˚Jλ and its relation to the ideal sheaf Jres λ Ă OX ‘ g˝
1.

By the definition of res, we have a commuting triangle

b1 C

b2

res λ

dΦ λ

which induces a commuting diagram

G1 ˆB1
b1 X ˆ C Y ˆ C

X ˆY (G2 ˆB2
b2) G2 ˆB2

b2
(1bdΦ)|

g˝
1

b˝
1

σres λ φˆ1

φ˚σλ

pr2

σλ

and hence a triangle of sheaves

b˝
1 OY

φ˚b˝
2

(1bdΦ)|
g˝
1

b˝
1

σres λ

φ˚σλ

,

and φ˚Jλ is generated by sections of the form s 1 −φ˚σλ(s
1), s 1 P φ˚b˝

2. This will be used later.
We are ready to prove

Proposition 3.7. The following diagram commutes:

I(b˚
2) H1(Y,Z1

Y)

I(b˚
1) H1(X,Z1

X)

res Z1(φ) .

In other words,
(DY,λ)

φ – DX,res λ

for any λ P I(b˚
2).
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Proof. It’s easy to check that res sends I(b˚
2) into I(b˚

1). We have a commutative diagram

OX ‘ g˝
1

g˝
1

b˝
1

φ˚(OY ‘ g˝
2)

φ˚Jλ

φ˚g˝
2

φ˚b˝
2

0‘1

1‘(1bdΦ)
1bdΦ

−{φ˚OY

.

It induces a map

OX ‘ g˝
1 −→ φ˚(OY ‘ g˝

2)

φ˚Jλ

ˆφ˚g˝
2

φ˚b˝
2

g˝
1

b˝
1

= (F1DY,λ)
φ.

We want to show that this map factors through Jres λ. Jres λ is generated by sections of the form
s− σres λ. Under this map,

s− σres λ(s) Þ→ (
(1 b dΦ)(s) − σres λ(s), s

)
=

(
(1 b dΦ)(s) −φ˚σλ((1 b dΦ)(s)), s

)
.

Here the first component is of the form s 1 −φ˚σλ(s
1), s 1 P φ˚b˝

2, therefore lies in φ˚Jλ which is
zero in (F1DY,λ)

φ. Similarly, the second component s is an element in b˝
1, again equaling zero in

(F1DY,λ)
φ. Therefore Jres λ is sent to zero in the right hand side, and we have an induced map

F1DX,res λ =
OX ‘ g˝

1

Jres λ
−→ φ˚(OY ‘ g˝

2)

φ˚Jλ

ˆφ˚g˝
2

φ˚b˝
2

g˝
1

b˝
1

= (F1DY,λ)
φ.

One easily checks that thismap commuteswith inclusions ofOX andquotients to TX. Combining
with 3.2 we get isomorphisms of Picard algebroids F1DX,res λ – (F1DY,λ)

φ – F1(DY,λ
φ). Thus 1.4

implies that DX,res λ – DY,λ
φ, as desired. ‚

4. EXTERNAL TENSOR PRODUCT AND GEOMETRIC REALIZATION OF PARAMETER
ADDITION

Let X and Y be varieties and X
prX←−− X ˆ Y

prY−−→ Y the projections from the product. For any
modules OX ýF , OY ýG, define the external tensor product to be

F b G := OXˆY bpr−1
X

OXbkpr
−1
Y

OY
(pr−1

X F bk pr
−1
Y G).

If F and G are quasi‑coherent, then so is F b G. There is a natural map

F b G −→ pr˚
XF bOXˆY

pr˚
YG, f b (s b s 1) Þ→ f ¨ (1 b s) b (1 b s 1).

For affine open sets U Ă X, V Ă Y, this map is an isomorphism on U ˆ V . Since both sides are
quasi‑coherent over OXˆY , this map is a global isomorphism.
Now take tdo’s D,D 1 on X, Y, respectively. Then D b D 1 has a natural C‑algebra structure

making it into a tdo on X ˆ Y. Write Gr : F1D → TX for the quotient‑by‑OX map, and similarly
for D 1. For f P OXˆY , l P pr−1

X F1D and s P pr−1
Y F1D 1, define their multiplications by

(f b 1 b 1) ¨ (1 b l b s) = f b l b s,

(1 b l b 1) ¨ (f b 1 b 1) = f b l b 1+Gr(l)(f) b 1 b 1,

(1 b 1 b s) ¨ (f b 1 b 1) = f b 1 b s+Gr(s)(f) b 1 b 1,

(1 b l b 1) ¨ (1 b 1 b s) = (1 b 1 b s) ¨ (1 b l b 1) = 1 b l b s.
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Since both D and D 1 are generated as C‑algebras by their degree ď 1 parts by the following
lemma, respectively, this defines a multiplication on D b D 1.

Lemma 4.1. Let D be a tdo on X. Then as a C‑algebra it is generated by F1D.

Proof. Since GrD – SymOX
TX is generated by Grď1D = OX ‘ TX, the same is true for D by

induction on degree. ‚

We want to show the following.

Proposition 4.2. Let D,D 1 be tdo’s on X, Y, respectively. Then

F1(D b D 1) = (F1D)prX +B (F1D 1)prY .

Before proving this, let’s examine two consequences.

Corollary 4.3. Let D,D 1 be tdo’s on X, Y, respectively. Then

t(D b D 1) = t(DprX) + t(D 1prY)

in H1(X ˆ Y,Z1
XˆY).

Proof. Apply the fully faithful functor F1 : tdo(X) → PA(X) to both sides, the left hand side
is F1(D b D 1), and the right hand side is F1(DprX) +B F1(D 1prY) by linearity 2.2, which equals
(F1D)prX +B (F1D 1)prY by 3.2. Hence the equation holds by the proposition. ‚

Corollary 4.4 (Geometric realization of addition). Let D,D 1 be tdo’s on X. Then

t((D b D 1)∆) = t(D) + t(D 1)

in H1(X,Z1
X), where ∆ : X→ X ˆ X is the diagonal immersion.

Proof.

F1((D b D 1)∆) = (F1(D b D 1))∆ (3.2)

=
(
(F1D)prX +B (F1D 1)prY

)∆
(4.2)

= (F1D)prX,∆ +B (F1D 1)prY ,∆ (3.5)

= (F1D)∆˝prX +B (F1D 1)∆˝prY (easily checked)
= (F1D)1X +B (F1D 1)1X

= F1D +B F1D 1.

The left hand side is the image of t((DbD 1)∆)under the injectionsH1(X,Z1
X)→ tdo(X)→ PA(X);

by linearity of parameters 2.2 the right hand side is the image of t(D) + t(D 1). The corollary
thus follows. ‚

We prove 4.2. First, by the definition of multiplication on D b D 1, it’s easy to see that F1(D b

D 1) = F1D b OY + OX b F1D 1 = pr˚
XF1D + pr˚

YF1D 1, where the sum takes place inside D b D 1.
Moreover the intersection F1D b OY X OX b F1D 1 is OX b OY = OXˆY . Hence F1(D b D 1) is fiber
coproduct

F1(D b D 1) = pr˚
XF1D +OXˆY

pr˚
YF1D 1 –

(
pr˚

XF1D ‘ pr˚
YF1D 1

)
L

∆‑OXˆY
.
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On the other hand, (F1D)prX +B (F1D 1)prY fits in the following commuting diagram

(F1D)prX ˆTXˆY
(F1D 1)prY

(F1D)prX (F1D)prX +B (F1D 1)prY (F1D 1)prY

pr˚
XF1D TXˆY pr˚

YF1D 1

or˚
XTX pr˚

YTY

−{∆‑OXˆY

,

where all squares are Cartesian. By the isomorphism dprX ‘ dprY : TXˆY
∼−→ pr˚

XTX ‘ pr˚
YTY , this

diagram is the same as

pr˚
XF1D ‘ pr˚

YF1D 1

pr˚
XF1D ‘ pr˚

YTY

(
pr˚

XF1D ‘ pr˚
YF1D 1

)
L

∆‑ pr˚
XTX ‘ pr˚

YF1D 1

pr˚
XF1D pr˚

XTX ‘ pr˚
YTY pr˚

YF1D 1

pr˚
XTX pr˚

YTY

−{∆‑OXˆY

1‘pr˚
Y
Gr pr˚

X
Gr‘1

pr1

pr˚
X
Gr‘1 1‘pr˚

Y
Gr

pr2

pr˚
X
Gr pr1 pr2 pr˚

Y
Gr

,

and the Lie bracket on
(
pr˚

XF1D ‘ pr˚
YF1D 1

)
L

∆‑ inherited from (F1D)prX +B (F1D 1)prY is given by[
(f1 b l1, h1 b s1), (f2 b l2, h2 b s2)

]
=
(
f1f2 b [l1, l2] + (f1Gr(l1) + h1Gr(s1))(f2) b l2 − (f2Gr(l2) + h2Gr(s2))(f1) b l1,

h1h2 b [s1, s2] + (f1Gr(l1) + h1Gr(s1))(h2) b s2 − (f2Gr(l2) + h2Gr(s2))(h1) b s1

)
.

Therefore, we have an isomorphism

(F1D)prX +B (F1D 1)prY –

(
pr˚

XF1D ‘ pr˚
YF1D 1

)
L

∆‑ – F1(D b D 1)

and the Lie bracket on the two sides agree. One easily check that this isomorphism commutes
with inclusions from OXˆY and projections to TXˆY , so this is a morphism of Picard algebroids,
whence an isomorphism. This concludes the proof of 4.2. ‚

5. CONSEQUENCES OF LINEAR DEPENDENCE
Let λ P I(b˚), x = xB P Xwith stabilizer B.

Proposition 5.1. Let µ P I(b˚) be the differential of a character of B, let G ˆB Cµ be the corresponding
homogeneous line bundle on X, and O(µ) the invertible sheaf. Then

DO(µ) – DX,µ.
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Proof. Wefirst calculate the b0‑action onO(µ). Recall that g ýO(µ) by ξ¨s = d
dt
|t=0

(
etξ˝s˝e−tξ

)
.

Let x P V Ă X, ξ P b0, s P O(µ)|V . Then

(ξ ¨ s)(x0) =
d

dt

∣∣∣
t=0

(
etξ ˝ s ˝ e−tξ

)
(x0) =

d

dt

∣∣∣
t=0

(
etξ ˝ s

)
(x0) =

d

dt

∣∣∣
t=0

etξ ¨ s(x0) = ξ ¨ s(x0).

Since s(x0) P kµ, this is equal to 0 if ξ P n0, and is µ(ξ)s(x0) if ξ P h0.
The action g ýO(µ) gives us a map g→ DO(µ) that extends to U˝ → DO(µ). We want to show

that the kernel is equal to Jµ.
The above computation says that, for ξ P b0, the section 1b ξ : [x Þ→ ξ] of g˝ satisfies

(
(1b ξ) ¨

s
)
(x0) = µ(ξ)s(x0). Take the section sξ = [g ¨ x0 Þ→ Adg(ξ)]. Then 1 b ξ− sξ is zero in the fiber

of x0, whence its value on s is 0 on the fiber of x0. This implies that

(sξ ¨ s)(x0) = µ(ξ)s(x0). (5.2)

This argument can be done for another choice of point x = g ¨ x0 P X with ξ P b0 replaced by
Adg(ξ), and the section sξ doesn’t change under this replacement. Therefore (5.2) holds when
x0 replaced by any other x P X. As a result, sξ ¨ s = µ(ξ)s. Thus sξ − µ(ξ) acts as zero on
O(µ), and the map U˝ → DO(µ) factors through Jµ. Then one checks on a chart forO(µ) that the
induced map DX,µ → DO(µ) is an isomorphism. ‚

Corollary 5.3. Let P Ă I(b˚) be the subset consisting of differentials of characters of B. Then the
following diagram commutes:

P H1(X,O˚
X)

I(b˚) H1(X,Z1
X)

d log .

Proof. This is just a restatement of the lemma. ‚

Corollary 5.4. Let µ P I(b˚) be the differential of a character of B. Then for any λ P I(b˚),

(DX,λ)
O(µ) – DX,λ+µ.

Proof. Let t(D) be the image ofD inH1(X,Z1
X). Then by [Milb, 1.1.8], the proposition and linear

dependence on parameter,

t((DX,λ)
O(µ)) = t(DX,λ) + t(DO(µ)) = t(DX,λ) + t(DX,µ) = λ+ µ = t(DX,λ+µ). ‚

Notation 5.5. IfA is a sheaf of algebras, weuseAop to denote the opposite algebra. This intuitive
notation is slightly different then the one in [Milb] (where the opposite algebra is denoted by
A˝).

Corollary 5.6. Let λ P I(b˚). Suppose b ý
ŹdimX(g{b)˚ by 2ρ P I(b˚). Then ωX – O(2ρ) and

(DX,λ)
op – DX,−λ+2ρ.

Proof. ωX is the sheaf of sections of
ŹdimXT˚X. We know that TX – G ˆB (g{b), so T˚X –

G ˆB (g{b)˚, whence
ŹdimXT˚X – G ˆB

ŹdimX(g{b)˚ = G ˆB C2ρ andωX – O(2ρ).
Let t(D) be the image of D in H1(X,Z1

X). By [Milb, 1.1.13]

t((DX,λ)
op) = −t(DX,λ) + t(DωX

) = −t(DX,λ) + t(DO(2ρ)).

By the proposition and linear dependence on parameter, this equals to

−t(DX,λ) + t(DX,2ρ) = −λ+ 2ρ = −λ+ 2ρ = t(DX,−λ+2ρ). ‚
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6. OPPOSITE ALGEBRAS
Let X = G{B be a homogeneous space of G, and let b Ă g be the Lie algebras of B Ă G,

respectively. The next proposition is a follow up to 5.6.

Proposition 6.1. Let λ P I(b˚). Suppose ωX – O(2ρ) for some ρ P I(b˚). Let A : U(g)op → U(g) be
the isomorphism induced by − Id : g→ g. Then the following diagram commutes:

U(g)op U(g)

(DX,λ)
op DX,−λ+2ρ

A

–

,

where the bottom arrow is the one from 5.6, and the vertical arrows are from the definition of htdo’s.

To prove this, we reconstruct the isomorphism from 5.6 in the homogeneous setting. The
construction will automatically imply the proposition.
First consider the case where λ = 0. We need some preparations on the Lie algebra action on

ωX.

Notation 6.2. For η P TX, set Lη P F1DωX
to be the Lie derivative, as defined in the discussion

preceding [Milb, 1.1.12]. Let τ : g → TX be the natural Lie algebra homomorphism induced by
the action g ýOX. In other words,

τ(ξ)(f) =
d

dt
(f ˝ e−tξ)

∣∣∣
t=0

,

where (f ˝ e−tξ)(x) = f(e−tξ ¨ x). Recall that this is the map that induces the isomoprhism
g˝{b˝ – TX.

Now consider the natural action g ýωX induced by G ý
ŹdimXT˚X. To avoid confusion,

we construct the action here. For g P G and x P X, translation by g gives a map

TxX −→ Tg¨xX, ω(x) Þ→ g ¨ ω(x)with xg ¨ ω(x), ηy = xω(x), η(− ˝ g−1)y,

for η P TX,g¨x. Here η(− ˝ g−1) P TX,x is a vector field that sends f P OX,x to the function f ˝ g−1 :
x Þ→ f(g−1 ¨ x) near g ¨ x and to η(f ˝ g−1) P C. This defines a group action G ýT˚X. Now let
G ý

ŹdimX diagonally. The induced action g ýω1
X is given by

(ξ ¨ ω)(x) =
d

dt

(
etξ ¨ ω(e−tξ ¨ x)

)∣∣∣
t=0

for ξ P g andω P ωX.

Notation 6.3. Letα : g→ DωX
denote themap induced by the action g ýωX, that is, α(ξ)(ω) =

ξ ¨ ω.

Lemma 6.4. The following diagram commutes:

g g

TX F1DωX

τ α

L(−)

.

Here, for ξ P g, α(ξ) P F1DωX
is defined by the natural action of g on ωX.
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Proof. Using the analytic definition of Lie derivative, this is more or less a tautology. Let ξ P g.
The flow of the vector field τ(ξ) on X is given by θξ,t(x) = e−tξ ¨ x. The Lie derivative Lτ(ξ) as
defined in the discussion preceding [Milb, 1.1.12] agrees with the analytic definition, that is, for
ω P ωX and x P X,

Lτ(ξ)(ω)(x) = lim
t→0

θ˚
ξ,t(ω(e−tξ ¨ x)) −ω(x)

t
.

Here θ˚
ξ,t is the pullback of tensor fields along θξ,t. It’s easy to show that θ˚

ξ,tω(x 1) = e−tξ ¨ω(x 1)
with the right side given by the group action of G on T˚X. Hence

lim
t→0

θ˚
ξ,t(ω(e−tξ ¨ x)) −ω(x)

t
=

d

dt

(
etξ ¨ ω(e−tξ ¨ x)

)∣∣∣
t=0

= α(ξ)(ω)(x).

This is true as x ranges over points on X andω ranges over all top differential forms. Therefore
Lτ(ξ) = α(ξ).
One can also prove this without using the analytic definition of Lie derivative, or without

using any differentiation at all – the proof boils down to checking equality between some de‑
terminantal expressions. We omit the details. ‚

Lemma 6.5. SupposeωX – O(2ρ) for some ρ P I(b˚). Then the following diagram of sheaves of vector
spaces commutes

OX ‘ g˝ OX ‘ g˝ OX ‘ g˝

F1DX F1DX F1DωX

−{b˝

1‘(−1)

−{b˝=1‘(1bτ)

1|OX
+β|g˝

1bα

1|OX
‘(−1)|TX 1|OX

‘L(−)|TX

,

where α and β are defined by

β : g˝ −→ OX ‘ g˝, f b ξ Þ→ f b ξ+ τ(ξ)(f),

α : g˝ −→ DωX
, f b ξ Þ→ fα(ξ).

Moreover the map 1+ β is a Lie algebra homomorphism.

Remark 6.6. This does NOT imply that DX – DωX
as tdo’s because the map F1DX

1|OX
‘L(−)|TX−−−−−−−→

F1DωX
is not OX‑linear.

Proof. The left square obviously commutes. Commutativity for elements in OX Ă OX ‘ g˝ is
obvious. By the previous lemma, we know that the diagram commutes with elements of the
form 1 b ξ P g˝, ξ P g. For elements of the form f b ξ P g˝, one checks that(

(1 ‘ α) ˝ (1 ‘ β)
)
(f b ξ)

=(1 ‘ α)
(
f b ξ+ τ(ξ)(f)

)
=fα(ξ) + τ(ξ)(f) = fLτ(ξ) + τ(ξ)(f) = Lτ(ξ)f

=Lfτ(ξ) =
(
(1|OX

‘ L(−)|TX) ˝ (1 ‘ 1 b τ)
)
(f b ξ),

showing the commutativity of the second square. The fact that β commutes with Lie bracket is
a direct check and is omitted. ‚

Corollary 6.7. Suppose ωX – O(2ρ) for some ρ P I(b˚). Let s =
ř

i fi b ξi P b˝ Ă g˝. Then

σ2ρ(
ÿ

i

fi b ξi) = −
ÿ

i

τ(ξi)(fi).
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Proof. Consider the diagram in 6.5, and view s as an element in OX ‘ g˝ in the top left. Under
the bottom path s is sent to 0 since the first map is quotient by b˝. Therefore

ÿ

i

(
fi b ξi + τ(ξi)(fi)

)
= (1|OX

+ β|g˝)(s) P ker(1 ‘ α).

From the proof of 5.1 we know that ker(1‘α) = J2ρ which is equal to theOX‑module generated
by {s 1 − σ2ρ(s

1) | s 1 P b˝}. Therefore, for some s1, . . . , sl P b˝ and h1, . . . , hl P OX, we have
ÿ

i

fi b ξi +
ÿ

i

τ(ξi)(fi) =
l

ÿ

j=1

fj(sj − σ2ρ(sj)).

Write s 1 =
řl

j=1 fjsj, the above equation becomes
ÿ

i

fi b ξi − s 1 = −
ÿ

i

τ(ξi)(fi) − σ2ρ(s
1).

The left hand side has degree 1 while the right hand side 0. Therefore we must have s 1 =
ř

i fi b ξi and
ÿ

i

τ(ξi)(fi) = −σ2ρ(
ÿ

i

fi b ξi). ‚

We are ready to prove the general case. EquipOX‘g˝ with a rightOX‑module structure given
by

f b ξ ¨ h = fh b ξ+ fτ(ξ)(h)

for f b ξ P g˝ and h P OX. In this way OX ‘ g˝ is an OX‑bimodule.

Lemma 6.8. Let λ P I(b˚). Suppose ωX – O(2ρ) for some ρ P I(b˚). Consider the composition

ϕλ : OX ‘ g˝ 1‘(−1)−−−−→ OX ‘ g˝
1|OX

+β|g˝

−−−−−−→ OX ‘ g˝

(see 6.5 for the definition of β). With the left OX‑action on the left hand side and the right OX‑action
on the right hand side, ϕλ is an OX‑linear Lie algebra anti‑homomorphism that descends to a OX‑linear
anti‑isomorphism

ϕ̄λ : F1DX,λ = (OX ‘ g˝){Jλ −→ (OX ‘ g˝){J−λ+2ρ = F1DX,−λ+2ρ.

Proof. From 6.5 we know that 1 + β is a Lie algebra homomorphism. Therefore ϕλ is an anti‑
homomorphism. It is an isomorphism of sheaves becauseGrϕλ = 1 ‘ (−1) is an isomorphism.
To check linearity, one computes, for f b ξ P g˝ and h P OX,

ϕλ(h ¨ f b ξ) = ϕλ(hf b ξ) = −hf b ξ− τ(ξ)(hf)

= −hf b ξ− τ(ξ)(f)h− fτ(ξ)(h) = −f b ξ ¨ h− τ(ξ)(f) ¨ h

= −ϕλ(f b ξ) ¨ h.

We want to check that Jλ is sent to J−λ+2ρ on the right hand side. Take s =
ř

i fi b ξi P b˝.
Then

s− σλ(s)
ϕλ

Þ−−→ −
ÿ

i

(fi b ξi) −
ÿ

i

τ(ξi)(fi) − σλ(s)

= −s+ σ2ρ(s) − σλ(s) = (−s) − σ−λ+2ρ(−s) P J−λ+2ρ.

So Jλ is sent onto J−λ+2ρ. Therefore ϕλ descends to the isomorphism ϕ̄λ.
The rest of the statements are obvious. ‚

We want to use ϕ̄λ to generate an algebra isomorphism DX,λ
∼−→ (DX,−λ+2ρ)

op.
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Definition 6.9. Let 0 → OX
i−→ L

Gr−→ TX → 0 be a Picard algebroid. Define its opposite Picard
algebroid Lop as follows. Let Lop = L as abelian sheaves. Define an OX‑module structure by
f ¨Lop l := f ¨L l+Gr(l)(f) for f P OX and l P Lop. Define a Lie bracket on Lop by [l1, l2]Lop := [l2, l1]L.
Lastly, fit Lop into the extension

0 −→ OX
i−−→ Lop −Gr−−−→ TX −→ 0.

It’s easy to check that Lop satsifies the requirements of a Picard algebroid.

Remark 6.10. The sheaf isomorphism Lop Id−→ L is a C‑linear Lie algebra anti‑isomorphism, but it
is not OX‑linear.

Corollary 6.11. The composition

θλ : F1DX,λ
ϕ̄λ−→ F1DX,−λ+2ρ

Id−→ (F1DX,−λ+2ρ)
op

is an isomorphism of Picard algebroids.

Proof. First, θλ is anOX‑linear Lie algebra homomorphismbecause ϕ̄λ is anOX‑linear Lie algebra
anti‑homomorphism. It obviously commuteswith the inclusion fromOX. It also commuteswith
quotients to TX because the desired commuting diagram descends from the following one

OX ‘ g˝ g˝{b˝ h+ f b ξ f b ξ

OX ‘ g˝ g˝{b˝ h− f b ξ− τ(ξ)(f) f b ξ

ϕλ

−{b˝

−{b˝

.

Therefore θλ is a morphism of Picard algebroids, and hence an isomorphism. ‚

We can then applyD(−) (see 1.2 for the definition) to θλ. Then by 1.4 we obtain the following
result.

Corollary 6.12. The following diagram commutes

g g

DX,λ D((F1DX,−λ+2ρ)
op)

−1

θλ

–

,

where the vertical maps are induced from g ↪→ OX ‘ g˝ � F1DX,λ and g ↪→ OX ‘ g˝ � F1DX,−λ+2ρ →
(F1DX,−λ+2ρ)

op, respectively.

Lemma 6.13. Let L be a Picard algebroid. Then the identity map Lop → L induces an isomorphism of
sheaves of C‑algebras

D(Lop) ∼−→ D(L)op

Proof. The map Lop Id−→ L ↪→ D(L)
Id−→ D(L)op induces a map from the sheaf of free C‑algebra of

Lop to D(L)op. We want to show that it descends to D(Lop). Therefore we need to check that the
relations in the definition 1.2 ofD(L) are satisfied in the imageD(L)op. We write ˚D(L), ˚D(L)op for
the multiplications in D(L), D(L)op, respectively.
For 1.2(a): this is satisfied because Lop Id−→ L commutes with inclusion of OX and OX ↪→ L ↪→

D(L) is a C‑algebra homomorphism because D(L) itself satisfies 1.2(a).
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For 1.2(b): for l1, l2 P Lop, the map Lop → D(L)op sends
[l1, l2]Lop = [l2, l1]L Þ→ [l2, l1]L = [l2, l1]D(L) = l2 ˚D(L) l1 − l1 ˚D(L) l2

= l1 ˚D(L)op l2 − l2 ˚D(L)op l1 = [l1, l2]D(L)op ,

therefore a Lie algebra homomorphism.
For 1.2(c): for f P OX, l P Lop, under Lop → D(L)op,

f ¨Lop l = f ¨L l+Gr(l)(f) Þ→ f ˚D(L) l+Gr(l)(f)
= l ˚D(L) f+ [f, l]D(L) +Gr(l)(f) = f ˚D(L)op l−Gr(l)(f) +Gr(l)(f) = f ˚D(L)op l.

For 1.2(d): [l, f]D(L)op = [f, l]D(L) = −Gr(l)(f) = (−Gr)(l)(f) for f P OX and l P Lop (recall that
the quotient Lop → TX in the definition of Lop is given by −Gr, not Gr).
Therefore we have a map D(Lop) → D(L)op of sheaves of C‑algebras. This map can also be

constructed reversely, namely that we can construct a map of algebras D(L) → D(Lop)op from
the composition L

Id−→ Lop ↪→ D(Lop)
Id−→ D(Lop)op by the same argument, and apply (−)op to get

a map of algebras D(L)op → D(Lop)which is inverse to D(Lop)→ D(L)op by universal property
of D(−). Thus D(Lop) – D(L)op. ‚

Combining 6.12 and 6.13, we get

Corollary 6.14. The following diagram commutes

U(g) U(g)op U(g)op

DX,λ D((F1DX,−λ+2ρ)
op) (DX,−λ+2ρ)

op

A Id

θλ

– –

.

This proves 6.1.
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