
COMPARISON OF GEOMETRIC AND LANGLANDS CLASSIFICATIONS

QIXIAN ZHAO

These notes are written for the Representation Theory Student Seminar at the University of
Utah in Spring 2022.

CONTENTS

1. Translation to Langlands orbits 1
1.1. Langlands orbits and real parabolics 1
1.2. Intertwining functor: translation to Langlands orbit 3
Digression on transversality 4
Back to our story 5
2. Induction in stages 9
2.1. First stage: limit of discrete series of the Levi 9
2.2. Second stage: parabolic induction 12
3. Comparison of classifications 15
References 16

Let G = Int(g). Let φ : K → Int(g) be morphism. Let (g0, K0) and (g, K) be as usual. Assume
K is connected. Let σ denote the Cartan involution on g compatible with K. Let X denote the
flag variety of g. In these notes we compare two classifications of irreducible admissible (g, K)‑
modules: the geometric classification due to Beilinson‑Bernstein and Knapp‑Zuckerman’s ver‑
sion of Langlands classification [KZ77].
Both geometric classification andLanglands classification realize irreducible objects as unique

irreducible submodules of certain standard modules. Therefore, to obtain a comparison, it is
enough to identify the standard modules from the two sides.
These talks are based on communication with Dragan Milicic, and I would like to thank him

for these discussions. Any mistakes in these notes are mine.

1. TRANSLATION TO LANGLANDS ORBITS
1.1. Langlands orbits and real parabolics. Recall that associated to each K‑orbit Q is a K‑
conjugacy class of Cartan subalgebra:

{K‑orbits in X}→ { K‑conjugacy class of
Cartan subalgebras in g

}
(1.1)

K ¨ x Þ→ AdK ¨ c (1.2)
where c is aσ‑stableCartan subalgebra contained in bx. The preimage overAdK¨c is parametrized
byWK‑conjugacy classes of choices of positive roots in R(g, c). That is, after fixing c, we have a
bijection

{K‑orbits attached to c} ∼−→ { WK‑conjugacy classes of
choices of positive roots in R(g, c)

}
. (1.3)
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Definition 1.4. ALanglands orbit attached to c is an orbit attached to c havingmaximal possible
dimension. A Zuckerman orbit attached to c is one of minimal possible dimension.

The upshot is that, from a Langlands orbit, we can obtain a cuspidal parabolic which nec‑
essarily comes from a real parabolic of g0. To achieve this, we need to characterize Langlands
orbits in terms of root systems in terms of the bijection (1.3).
LetQ be any orbit attached to c = t ‘ a, with x P Q so that bx Ě c. Let Sx be the stabilizer of x

in K. Then Q – K{Sx and
dimQ = dimK{Sx = dim k − dim sx. (1.5)

We know that
‚ k is the span of t, gα’s for α compact imaginary, and (gα ‘ gσα)

σ for α real and complex.
‚ bx is the span of t ‘ a, and gα’s for α positive.

Hence
‚ sx = k X bx is the span of t, gα’s for α compact imaginary, and (gα ‘ gσα)

σ for α complex
positive so that σα is also positive.

Following the notation in [Hec+], write RQ,CI, RQ,NI, RQ,I, RQ,R, RQ,C for the set of compact imag‑
inary, noncompact imaginary, imaginary, real, complex roots in R = R(g, c), respectively (so in
fact they depend only on c, not on Q). Write R+

Q for the set of positive roots determined by bx
(this does depend on Q). Write

D+(Q) = {α P R+
Q,C | σα P R+

Q}. (1.6)
Then

dimQ = dim k − dim sx (1.7)

=
(
dim t + |RQ,CI|+

1

2
|RQ,R|+

1

2
|RQ,C|

)
−
(
dim t + |R+

Q,CI|+
1

2
|D+(Q)|

)
(1.8)

=
1

2

(
|RQ,CI|+ |RQ,R|+ |RQ,C|− |D+(Q)|

)
. (1.9)

Therefore a Langlands orbitQL corresponds to a choice of positive roots R+
QL such that |D+(Q

L)|

is minimal.

Lemma 1.10 ([Hec+, 5.1, 5.10]). For any σ‑stable Cartan subalgebra c, there exists a choice of positive
roots R+

QL such that D+(Q
L) = ∅. Moreover, for any such choice, R+

QL Y RQL,I is a parabolic set of roots
in R.

Sketch of proof. First choose a positive direction in the subspace c˚|σ=−1. Then choose a posi‑
tive root system of R such that the positive direction is “aligned” with the positive direction of
c˚|σ=−1.
Any complex root will have nonzero component in c˚|σ=−1 (along c˚|σ=1). This component

will be negated when we apply σ, and the other component (the component in c˚|σ=1) will be
fixed. The resulting root will be negative. Hence no complex root will belong to D+.
After such R+

Q is chosen, imaginary roots are precisely the positive roots that stay inside R+
Q

under the action of σ. So a sum of two positive roots is (positive) imaginary if and only if the
σ‑image of both roots are positive, if and only if both roots are imaginary. ‚

Let p Ě b = bx Ě c be a parabolic and a Borel corresponding to R+
QL Y RQL,I and R+

QL , respec‑
tively. Let σ 1 denote the anti‑involution of g defining g0.

Lemma 1.11. Suppose c is also stable under σ 1. Then p is the complexification of a parabolic subalgebra
p0 of g0.
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Proof. It is enough to show that p is σ 1‑stable. Since σ 1 acts on the roots by −σ, σ 1gα = gσ 1α =
g−σα. If α is positive imaginary, gα ‘ g−α = gα ‘ σ 1gα is σ 1‑stable; if α is positive real, gα = σ 1gα
is σ 1‑stable; if α is positive complex, gα ‘ g−σα = gα ‘ σ 1gα is also σ 1‑stable. Since p is the span
of c and the above σ 1‑stable subspaces, p is σ 1‑stable. ‚

Such a parabolic p is said to be cuspidal (by, I think, Harish‑Chandra) or σ‑split. There are
analogous statements for Zuckerman orbits QZ: those correspond to sets of positive roots R+

QZ

where D+(Q
Z) = R+

Q,C, and R+
QZ Y RQZ,R is a parabolic set of roots, and the corresponding para‑

bolic q is σ‑stable.
By [Vog83, Proposition 2.1] (which in turn cites [Mat79]), for each K‑conjugacy class of σ‑

stable Cartan subalgebras, there is a Cartan c that is also σ 1‑stable. So we can choose c to be
so at the beginning. In fact, if I’m not mistaken, all real parabolic complexifies into a σ‑split
parabolic.
Combined with the Duality Theorem [Hec+87] and induction in stages, we obtain the follow‑

ing description. Let τL be a connection onQL compatible with λ+ρ, let x P QL so that b = bx Ě c,
and let s = dim(k X [b, b]) = 1

2
|RQL,CI|,

Hp(X, I(QL, τL))∨ = Rs−pI(g,K)(b,T)

(
(Txτ

L)∨ b
C
TxωX

)
(1.12)

= Hs−pRI(g,K)(p,KXP)RI
(p,KXP)
(b,T)

(
(Txτ

L)∨ b
C
TxωX

)
. (1.13)

(Here I should’ve written φ−1(P) instead of KXP since K is not a subgroup of G, but KXP is so
muchmore intuitive and I’m reluctant to change this notation). Here RI denotes cohomological
induction. In Part II of these talks we will recognize the first stage induction as the limit of
discrete series, and the second stage induction as the usual parabolic induction. But first let’s
take care of what happens for non‑Langlands orbits.

1.2. Intertwining functor: translation to Langlands orbit. Intertwining functor relates stan‑
dard modules on non‑Langlands orbits to those on Langlands orbits.
Recall that diagonal G orbits on X ˆ X are parameterized by W, where the orbit Zw corre‑

sponding tow consists of pairs (x1, x2) such that bx2 is in relative positionwwith respect to bx1 .
This means that for any common Cartan c of bx1 and bx2 , the set of position roots R+

2 of (g, c)
defined by bx2 can be obtained by R+

1 by R+
2 = wR+

1 . Denote the projections by

X
p1←− Zw

p2−→ X. (1.14)
The main tool is

Definition 1.15. Given w P W, the intertwining functor is

LIw : Db(Dλ) −→ Db(Dwλ), F Þ→ q1+

(
q˚
1OX(ρ−wρ) b

OZw

q+
2 F

)
(1.16)

where Db is the category of all Dλ‑modules. It restricts to a functor between full subcategories
of complexes with quasi‑coherent cohomologies.

Theorem 1.17 ([Mil, 3.3.23]). If λ is antidominant w.r.t. roots in Σ+
w (defined in (1.25), then RΓ ˝LIw –

RΓ on Dλ‑modules.

Upshot 1.18. For any orbit Q there is a Langlands orbit QL attached to the same Cartan and a certain
choice of w such that LIwI(Q, τ) = I(QL, τL).

In general, SuppLIwF Ď p1(p
−1
2 (SuppF)), and the latter set has dimension less than or equal

to dimSuppF + ℓ(w). Also, strict containment can hold.
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Digression on transversality. If dimp1(p
−1
2 (Z)) = dimZ+ ℓ(w), we say w is transversal to Z.

Example 1.19. G0 = SL(2,R), (g, K) = (sl(2,C),C˚), X = P1. The K‑orbits {0}, {∞} correspond
to the compact Cartan, and C˚ Ă X = P1 corresponds to the split Cartan. So {0} is a Langlands
orbit. α is a non‑compact imaginary root on the compact Cartan, and sα is transversal to {0}. In
this case p1(p

−1
2 ({0})) = C˚ Y {∞}which contains an orbit attached to a different Cartan.

Example 1.20. G0 = SL(2,C), (g, K) = (sl(2,C)ˆ sl(2,C), ∆SL(2,C)), X = P1 ˆP1. There is only
one K‑conjugacy class of Cartan: the one of c = c0 ˆ c0 = t‘ awhere c0 is a Cartan in g0, t = ∆c0
and a = ∇c0 (skew diagonal). Both K‑orbits ∆P1 and (P1 ˆP1) −∆P1 correspond to this Cartan.
α is now a complex root on h and sα is transversal to ∆P1 with p1(p

−1
2 (∆P1)) = (P1 ˆ P1) −∆P1.

In general, if sα is simple and transversal to an orbitQ, then it is eitherQ‑non‑compact imag‑
inary or Q‑complex. We give a proof of this. The geometry discussed here will be useful later.
Let α P Σ Ă h˚ (note that now α R c˚). Let c be a σ‑stable Cartan in g, Q a K‑orbit attached to

c, and x P Q. Let ΣQ,CI,... be the pullback of RQ,CI,... along the specialization map sx : h
˚ → c˚ at

x. ΣQ,CI,... depends on Q be does not depend on x P Q. In the same way we denote σQ be the
involution on h˚ obtained as the pullback of σ along sx. The set D+(Q) defined before also has
an analogue in Σ+ which we still call D+(Q). Namely

D+(Q) = {α P Σ+
Q,C | σQα P Σ+}. (1.21)

Consider the Cartesian diagram

Zsα Y ∆X X

X Xα

q2

q1

pα

pα (1.22)

where Xα is the partial flag variety corresponding to α. Write O = pα(Q). Then q1(q
−1
2 (Q)) =

p−1
α (pα(Q)) = p−1

α (O). So sα is transversal toQ iff. dimQ+1 = dimp1(p
−1
2 (Q)) = dimq1(q

−1
2 (Q)) =

dimp−1
α (O) = dimO+ 1 iff. dimQ = dimO, i.e. Q is transversal to fibers of pα. This condition

can be checked on fibers of pα: if y = pα(x), then we can extend the above diagram to

Q Q X p−1
α (y)

X p−1
α (O) p−1

α (y)

Xα O {y}

pα

. (1.23)

SinceQ→ p−1
α (O)→ O is K‑equivariant, dimQ = dimO iff. dimQXp−1

α (y) = 0 iff. QXp−1
α (y)

is a finite union of points. In general Q X p−1
α (y) is a Sy = StabK(y)‑orbit in p−1

α (y). So we need
to study the Sy‑orbit structure on p−1

α (y).
Let Py = StabG(y) and Bx = StabG(x). Then p−1

α (y) – Py{Bx – P1 and can be viewed as the
flag variety of a quotient Py{Ry – PSL(2,C). The Sy‑orbit structure is then determined by the
image of Sy in Sy → Py → Py{Ry – PSL(2,C).

Lemma 1.24 ([Hec+, 6.5]).
(1) Ifα is compactQ‑imaginary, then the map Sy → PSL(2,C) is surjective, and Sy acts transitively

on XO.
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(2) If α is noncompact Q‑imaginary, the image of Sy → PSL(2,C) is the diagonal subgroup (a
torus), and Q X p−1

α (y) is one or two points.
(3) If α isQ‑real, the image of Sy → PSL(2,C) is the diagonal subgroup (a torus), andQ X p−1

α (y)
is isomorphic to C˚.

(4) If α isQ‑complex and α P D+(Q), the image of Sy → PSL(2,C) has one dimensional unipotent
radical whose Lie algebra is the image of (gα ‘ gσα)

σ, and Q X p−1
α (y) is a singleton.

(5) If α isQ‑complex and α R D+(Q), the image of Sy → PSL(2,C) has one dimensional unipotent
radical, and Q X p−1

α (y) is isomorphic to C.

The proof is done by analyzing the Lie algebra map k X py = sy → sl(2,C) by looking at root
subspaces corresponding to different types of roots. The details are left as exercise.
As a result, if we want sα to be transversal to Q, we need α to be noncompact Q‑imaginary

or Q‑complex with α P D+(Q).

Back to our story. To achieve our goal we will find aw = sαk
¨ ¨ ¨ sα1

that is a product of complex
simple reflections sαi

’s such that

α1 P D+(Q), α2 P D+(Qsα1
), α3 P D+((Qsα1

)sα2
), ...

There are two slight issues in this process. The first issue is to calculateD+(Qsα1
) since sα1

may
send complex roots to other types of roots. The second issue is that there may not exist a simple
root in D+(Q). The first task is left as an exercise.
Instead of finding simple reflections one at a time, we can actually find w directly.

Σ+
w = {α P Σ+ | wα R Σ+} = Σ+ X −w−1Σ+. (1.25)

Lemma 1.26 ([Hec+, 5.4]). For any set Σ+
Q of positive roots, there exists w P W such that w−1Σ+

Q is a
set of positive roots of Langlands type and

Σ+
Q,w X σQ(Σ

+
Q,w) = ∅, Σ+

Q,w Y σQ(Σ
+
Q,w) = D+(Q). (1.27)

Sketch of proof. First one chooses a set Σ+
QL of positive roots of Langlands type such that

Σ+
Q − Σ+

QL Ď D+(Q), (1.28)

i.e. for each pair of complex roots {α, σQα} in D+(Q), we include one of them in Σ+
QL and ex‑

clude the other one from Σ+
QL . We give an imprecise but intuitive description on how this can

be achieved. Write h˚ as (h˚)|σQ=1 ‘ (h˚)|σQ=−1. The set Σ+
Q determines a positive direction in

both (h˚)|σQ=1 and (h˚)|σQ=−1. If a pair of complex roots {α, σQα} is inD+(Q), then they are sym‑
metrical w.r.t. (h˚)|σQ=1. If we think of Σ+

Q and Σ−
Q as separated by a hyperplane H in h˚, we

can rotate H closer and closer to but does not overlap with (h˚)|σQ=1 (i.e. in a way that makes
the angle between (h˚)|σQ=1 and H is getting smaller and the angle between (h˚)|σQ=−1 and H is
getting bigger). Eventually α and σQα will be separated by the plane. The new set of positive
roots determined by the rotated satisfies our requirement.
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Look at the following example.

I+

C

R+

C

I

C

R

C

(1.29)
If Σ+

Q is determined by the dotted hyperplane, then we rotate it to the dashed hyperplane and
obtain Σ+

QL .
Let w−1 P W be such that w−1Σ+

Q = Σ+
QL . Then by construction, Σ+

Q,w = Σ+
Q X −w−1Σ+

Q =

Σ+
Q X Σ−

QL = Σ+
Q − Σ+

QL which consists of exactly half of D+(Q), one from each pair {α, σQα}. So
σQ(Σ

+
Q,w) consists of the other half of D+(Q), and (1.27) is clear. ‚

Note that suchw is a product of complex simple reflections: ifw = w 1sαwith ℓ(w) = ℓ(w 1)+1,
{α} = Σ+

Q,sα
Ď w−1Σ+

Q,w 1 Y Σ+
Q,sα

= Σ+
Q,w Ď D+(Q) Ă ΣQ,C (1.30)

where the second equality follows from [Bou02, Ch.VI §1 no.6, Cor.2 of Prop.17].
Under this choice of w, we have desired transverality.

Proposition 1.31 ([Hec+, 6.9]). Let Q be a K‑orbit attached to c and Σ+
Q. Let w P W be such that

Σ+
Q,w Ď D+(Q) and Σ+

Q,w X σQ(ΣQ,w)
+ = ∅. Let X p1←− Zw

p2−→ X be as before. Then
(1) p−1

2 (Q) is a K‑orbit in Zw.
(2) p1 : p

−1
2 (Q)→ Qw := p1(p

−1
2 (Q)) is an isomorphism of K‑orbits.

(3) Qw is attached to c and w−1Σ+
Q.

Proof. We prove this by induction on ℓ(w). Let x P Q.
Consider the base case where w = sα is a simple reflection. Since the map p2 : p

−1
2 (Q) → Q

is K‑equivariant, p−1
2 (Q) is a single K‑orbit iff. the fiber p−1

2 (x) over x is a single Sx‑orbit, where
Sx = StabK(x). If this is the case, then p1 : p−1

2 (Q) → p1(p
−1
2 (Q)) is a K‑equivariant map onto

another K‑orbit. This is an isomorphism iff. its restriction to a fiber of p1 is bijective.
Extend the previous Cartesian diagrams to

p−1
2 (x) Y {x} {x}

Zsα Y ∆X X

p−1
α (y) {y}

X Xα

p2YId

p1|p−1
2

(x)Y{x}

q2

q1

pα

pα
(1.32)

The squares on the front, top, bottom and back faces are Cartesian, and the vertical arrows on
the back square are isomorphisms.
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By our assumption, {α} = Σ+
Q,sα

Ď D+(Q). By 1.24(4), the image of Sy → PSL(2,C) has one‑
dimensional unipotent radical whose Lie algebra is the image of (gα ‘ gσα)

σ, and its orbits on
p−1
α (y) are {y} and p−1

α (y) − {y}. Since both α and σα are positive, the Lie algebra of Sx also
contains (gα ‘ gσα)

σ. Hence the image of Sx ↪→ Sy → PSL(2,C) also has a one‑dimensional
unipotent radical. So the orbits of Sx and Sy on p−1

α (y) are the same. By the Sx‑equivariant
isomorphism p−1

2 (x) Y {x} ∼−→ p−1
α (y), we see that p−1

2 (x) is a single Sx‑orbit. Thus p−1
2 (Q) is a

K‑orbit.
Also, from the same arrow p−1

2 (x) Y {x} ∼−→ p−1
α (y) we see that p1|p−1

2
(Q) is an isomorphism

when restricted to a point x P p−1
α (y) − {y} Ă p1(p

−1
2 (Q)). Hence p−1

2 (Q) → p1(p
−1
2 (Q)) is an

isomorphism. This proves (1) and (2) for w = sα.
It remains to show that p1(p

−1
2 (Q)) is attached to c. It is enough to show that there is a point

x 1 P Qα so that bx 1 Ě c. Define bx 1 to be the opposite Borel to bx Ě c. Then the orbit containing x 1

is attached to c and x 1 is in relative position sα w.r.t. x. But the above argument shows that x 1 is
a point in p1(p

−1
2 (Q)). Hence p1(p

−1
2 (Q)) is attached to c and by construction of x 1 corresponds

to sαR
+
Q

Now the inductive step. The detailed combinatorics will be omitted. We will only explain
what is required to prove. Write w = w 1sα with ℓ(w) = ℓ(w 1) + 1. By combinatorial properties
of Σ+

w, we know D+(Q) Ě Σ+
w Ě Σ+

sα
= {α}. So sα satisfies the conditions of the proposition

with respect to Q. We also need w 1 to satisfy conditions of the proposition w.r.t. Qsα . More
explicitly, we need

Σ+
Qsα ,w 1 Ď D+(Qsα) and Σ+

Qsα ,w 1 X σQsα
(Σ+

Qsα ,w 1) = ∅.
These can be proven by using the condition Σ+

Q,w X σQ(Σ
+
Q,w) = ∅ (which we did not use in the

base case) and doing combinatorial work.
Then, by inductive assumption, we have the following diagram with solid arrows

Zw

Zw 1 Zsα

X X X

ĄQsα ˆQsα

rQ

ĄQsα
rQ

(Qsα)w 1 Qsα Q

– –

(1.33)

To complete the proof, notice that we can fill in the dotted maps so that all squares facing in
the front or up‑right direction are Cartesian. Moreover, the two outside maps from Zw to X are
the usual ones. Thus ĄQsα ˆQsα

rQ is a subset in Zw which is the preimage ofQ under the second
projection Zw → X, and the map ĄQsα ˆQsα

rQ→ (Qsα)w 1 is an isomorphism. This completes the
proof. ‚
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On the level ofD‑modules, by a usual base change argument, it is easy to show the following.

Corollary 1.34. Under the assumption of the proposition,
(1) There is a bijection τ Þ→ τw between irreducible K‑homogeneous connections on Q compatible

with λ+ ρ and those on Qw compatible with wλ+ ρ.
(2) LIwI(Q, τ) = I(Qw, τw).

Proof. Consider the diagram

Qw p−1
2 (Q) Q

X Zw X

iQw

–

j

qw

iQ

p1 p2

(1.35)

where the square on the right is Cartesian. Identify Qw with p−1
2 (Q) via the isomorphism. By

base change
LIwI(Q, τ) = OX(ρ−wρ) b

OX

p1+p
+
2 iQ+τ (1.36)

= OX(ρ−wρ) b
OX

p1+p
!
2iQ+τ[m] (1.37)

= OX(ρ−wρ) b
OX

p1+j+q
!
wτ[m] (1.38)

= OX(ρ−wρ) b
OX

iQw+q
+
wτ (1.39)

= iQw+

(
i˚
Qw

OX(ρ−wρ) b
OQw

q+
wτ

)
(1.40)

= I(Qw, τw) (1.41)
where τw := i˚

Qw+OX(ρ −wρ) bOQw
q+
wτ. It remains to show that τ Þ→ τw is a bijection between

irreducible connections. By taking fiber over points x P Q, x 1 P Qw in the orbits, this map
corresponds to the map

Irrep(Sx)→ Irrep(Sx 1)
twist by a character−−−−−−−−−−→ Irrep(Sx 1) (1.42)

where the first map is the restriction along K X Bx 1 = Sx 1 Ă Sx = K X Bx. Both Sx and Sx 1 are
solvable, so their irreducible representations are determined by characters on maximal torus.
Since both Q and Qw are attached to c = t ‘ a, (some conjugate of) T (the subgroup of K corre‑
sponding to t) is a common maximal torus of Sx and Sx 1 . So (1.42) is a bijection. This completes
the proof. ‚

Combined with 1.26, we see that

Corollary 1.43. For every K‑orbit Q, there exists a w P W transversal to Q such that
‚ Qw = QL is a Langlands orbit, and
‚ LIwI(Q, τ) = I(QL, τL), where τL is some K‑homogeneous connection on QL.

More precisely, w can be chosen such that w−1Σ+
Q is a set of positive roots of Langlands type,

Σ+
Q,w X σQ(Σ

+
Q,w) = ∅, Σ+

Q,w Y σQ(Σ
+
Q,w) = D+(Q) (1.27)

holds, QL is determined by w−1Σ+
Q, and

τL = τw = i˚
Qw+OX(ρ−wρ) b

OQw

q+
wτ (1.44)

as in the proof of 1.34.
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If λ is antidominant regular to start with, then

H0(X, I(Q, τ))∨ =
(
H0RΓI(Q, τ)

)∨ (1.45)

–
(
H0RΓ LIwI(Q, τ)

)∨ (1.46)
= H0(X, I(QL, τL))∨ (1.47)

= HsRI(g,K)(p,KXP)RI
(p,KXP)
(b,T)

(
(Txτ

L)∨ b
C
TxωX

)
(1.48)

where s = 1
2
|RQL,CI|, b Ě c corresponds to a point in QL, and p is the σ‑split parabolic corre‑

sponding to RQL,I Y R+
QL .

2. INDUCTION IN STAGES
Recall that x P QL and b is the corresponding Borel subalgebra which we require to contain

the σ‑stable Cartan subalgebra c. Write E = (Txτ
L)∨ bC TxωX which is a (b, T)‑module on which

n acts trivially.
The module

HsRI(g,K)(p,KXP)RI
(p,KXP)
(b,T) E (2.1)

can be computed by the Grothendieck spectral sequence. As it will turn out, RI(p,KXP)
(b,T) E is in fact

concentrated in degree s and is a limit of discrete series representation of a Levi factor of P, and
I(g,K)(p,KXP) is the same as parabolic induction and is exact. Hence the spectral sequence collapses.

2.1. First stage: limit of discrete series of the Levi. In this section we will show that RI(p,KXP)
(b,T) E

is concentrated in degree s and is a limit of discrete series representation.
Let

p = m ‘ a ‘ u (2.2)
= ([d̄, d̄] ‘ d) ‘ a ‘ u (2.3)
= ([d̄, d̄] ‘ t ‘ [d, d]) ‘ a ‘ u (2.4)

where
‚ c = t ‘ a is the decomposition into σ‑eigenspaces,
‚ p = (m ‘ a) ‘ u is the c‑stable Levi decomposition,
‚ m is the semisimple part of the Levi m ‘ a of p, spanned by t and imaginary root spaces.
‚ (p X k is spanned by t and compact imaginary root spaces. So p X k Ď m).
‚ d = m X b is a Borel subalgebra of m.

Our first goal is to insert our Levi into the game.

Lemma 2.5. For any (c, T)‑module E,

RI(p,PXK)
(b,T) E – RI(m‘a,PXK)

(d‘a,T) E (2.6)

in Db(p, P X K).

Proof. Consider the following diagram, where ForR
% denotes the forgetful functor from the cate‑

gory ofR‑modules to the category of%‑modules, and (−)n denotes the derived functor of taking
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n‑coinvariants. Similarly for (−)u.

Db(b, T) Db(p, P X K)

Db(c, T) Db(d ‘ a, T) Db(m ‘ a, P X K)

RI(p,PXK)
(b,T)

K

(−)n %

For(p,PXK)
(b,T)

(−)u %For(b,T)
(c,T)

For(d‘a,T)
(c,T)

K

(−)[d,d]

RI(m‘a,PXK)
(d‘a,T)

K

For(m‘a,PXK)
(d‘a,T)

For(p,PXK)
(m‘a,PXK)

(2.7)

The module RI(p,PXK)
(b,T) For(b,T)(c,T) Ẽ−sb(wλ−ρ) is the image of C−sb(wλ) P Mod(c, T) along the top solid

path. Since [d, d] ‘ u = n, (−)[d,d] ˝ (−)u = (−)n. Hence the dotted arrows form a commutative
diagram. The two paths formed by solid arrows are right adjoints to the two paths formed by
dotted arrows, respectively. Hence the solid arrows also form a commutative diagram, from
which the desired identity follows. ‚

Lemma 2.8. Let E be a (d ‘ a, T)‑module on which a acts by µ P a˚. Then

RI(m‘a,PXK)
(d‘a,T) E –

(
RI(m,PXK)

(d,T) (E|(d,T))
)

b Cµ (2.9)

where Cµ is considered as an a‑module.

Proof. We first show the non‑derived version, i.e. that the following diagram commutes.

Mod(d ‘ a, T) Mod(m ‘ a, P X K)

Mod(d, T) Mod(m, P X K)

I(m‘a,PXK)
(d‘a,T)

−bCµ

I(m,PXK)
(d,T)

−bCµ (2.10)

By exactness of − b Cµ and composition of derived functors, we immediately get the commu‑
tative diagram.

Db(d ‘ a, T) Db(m ‘ a, P X K)

Db(d, T) Db(m, P X K)

RI(m‘a,PXK)
(d‘a,T)

−bCµ

RI(m,PXK)
(d,T)

−bCµ (2.11)

Since a ýE by µ, E – (For(d‘a,T)
(d,T) E)bCµ as (d‘a, T)‑modules. (2.11) applied to For(d‘a,T)

(d,T) E then
produces the desired identity.
Write U = For(d‘a,T)

(d,T) . To show that the diagram commutes, we use Yoneda lemma, i.e. we
show that there is an isomorphism

Hom(m‘a,PXK)(W, I(m‘a,PXK)
(d‘a,T) (U b Cµ)) – Hom(m‘a,PXK)(W, (I(m,PXK)

(d,T) U) b Cµ) (2.12)

for anyW P Mod(m ‘ a, P X K).
Consider the set on the right side. Since a is central in the pair (m ‘ a, P X K), we can define

the µ‑coinvariant of W as Wµ = W{(a − µ(a))w | a P a, w P Wy which is isomorphic to
Wµ|(m,PXK) b Cµ. Also because a is central, any map in the Hom set on the right must factor
throughWµ. Hence

Hom(m‘a,PXK)(W, (I(m,PXK)
(d,T) U) b Cµ) (2.13)
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=Hom(m‘a,PXK)(Wµ, (I(m,PXK)
(d,T) U) b Cµ) (2.14)

=Hom(m‘a,PXK)(Wµ|(m,PXK) b Cµ, (I(m,PXK)
(d,T) U) b Cµ) (2.15)

=Hom(m,PXK)(Wµ|(m,PXK), (I(m,PXK)
(d,T) U)) (2.16)

which, by adjunction, is equal to Hom(d,T)(Wµ|(d,T), U).
Now consider the Hom set on the left. By adjunction it is equal to Hom(d‘a,T)(W,U b Cµ).

Again since a is central in (d ‘ a, T), any map in this set factors through Wµ|(d,T) b Cµ. Hence
this Hom set is isomorphic to Hom(d,T)(Wµ|(d,T), U) as well. This completes the proof. ‚

As a result
RI(p,PXK)

(b,T) E – RI(m‘a,PXK)
(d‘a,T) E –

(
RI(m,PXK)

(d,T) (E|(d,T))
)

b Cµ. (2.17)
We want to identify the first factor on the right side with a limit of discrete series of m. We will
use the geometric criterion for limit of discrete series.

Theorem 2.18 ([Hec+, 12.5, 12.6]). Suppose rank g = rankK. Let λ be strongly antidominant (i.e.
Reα∨(λ) ď 0 for simple α’s),Q a closed K‑orbit, and τ an irreducible K‑homogeneous connection onQ

compatible with λ+ ρ. Then
‚ If λ is regular, then Γ(X, I(Q, τ)) is a discrete series representation.
‚ If λ is singular and Γ(X, I(Q, τ)) ‰ 0, then Γ(X, I(Q, τ)) is a limit of discrete series represen‑
tation.

In our situation, suppose λ P h˚ is strongly antidominant. Let
‚ Xm be the flag variety of m,
‚ σm = σ|m.

Then pX k is the fixed points of σm, and t is a commonmaximal torus in pX k andm, so rankm =
rankP X K.

‚ Qm be the P X K‑orbit in Xm containing a point z corresponding to the Cartan t and the
Borel d.

Since d X k is spanned by t and positive compact imaginary root spaces, which is a Borel subal‑
gebra in K. Hence Qm is a closed orbit. Let

‚ ρd P t˚ be the half sum of roots in R+ X RI,
‚ τm be a P X K‑homogeneous connection on Qm determined by T ýE∨ bC TzωXm .

Recall that E = (Txτ
L)∨ bC TxωX. Here c acts on Txτ

L by specialization sx(wλ+ ρ) ofwλ+ ρ to x

(because τL is compatible withwλ+ ρ) and on TxωX by the specialization sx(2ρ) of 2ρ. So c acts
on E by−sx(wλ+ρ)+sx(2ρ) = −sx(wλ−ρ). Therefore t acts on E∨bCTzωXm by sx(wλ−ρ)|t+2ρd.
Hence I(Qm, τm) is a Dsx(wλ−ρ)|t+ρd‑module on Xm.
By duality theorem again,

Hq(Xm, I(Qm, τm))
∨ = Rs 1−qI(m,PXK)

(d,T)

(
(E∨ b

C
TzωXm)

∨ b
C
TzωXm

)
= Rs 1−qI(m,PXK)

(d,T) E. (2.19)

Here s 1 = dim(p X k) X [d, d] = 1
2
|RCI| = dim k X [b, b] = s. So

Hq(Xm, I(Qm, τm))
∨ = Rs−qI(m,PXK)

(d,T) E. (2.20)

To use the criterion for limit of discrete series, we still need

Lemma 2.21. Assume that λ P h˚ is strongly antidominant. Then sx(wλ − ρ)|t + ρd is strongly
antidominant for the set of positive roots of (m, t) determined by d.
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Proof. Let xQ P Q denote a point which corresponds to a Borel subalgebra bQ containing c. Let
R+
Q, R

+
QL Ă R = R(g, c) be the sets of positive roots determined by bQ and b = bx, respectively.

We identify the root system R(m, t)with RI.
Then sx = sxQ ˝ w−1 and

sx(wλ− ρ)|t + ρd = sxQ(w
−1(wλ− ρ))|t + ρd = sxQ(λ)|t − (w−1sxQ(ρ))|t + ρd. (2.22)

We omit the |t from now. We want to show that for any β P R+
QL,I

,

Reβ∨(sx(wλ− ρ)|t + ρd) = Reβ∨sxQ(λ) + Reβ∨(−w−1sxQ(ρ) + ρd) ď 0. (2.23)

The term−w−1sxQ(ρ)+ρd is the half sum of roots inw−1R−
Q YR+

QL,I
. recall that by construction

R+
QL = w−1R+

Q. So −w−1sxQ(ρ) + ρd =
ř

(R−
QL Y R+

QL,I
) =

ř

(R−
QL − RI) which is a sum of roots

negative w.r.t. b or d. Hence β∨(−w−1sxQ(ρ) + ρd) is real and is ď 0.
It remains to show that Reβ∨sxQ(λ) ď 0. Since λ is strongly antidominant, sxQ(λ) is strongly

antidominant w.r.t. R+
Q. Therefore it suffices to show that all the β’s are in R+

Q, i.e. that R
+
QL,I

Ď

R+
Q. To see this, write

R+
QL,I

= R+
QL X RI = w−1R+

Q X RI (2.24)
and let β be in this set. Then wβ P R+

Q. Hence β = w−1(wβ) P R+
Q if and only if wβ R R+

Q,w−1 =

−wR+
Q,w, which happens if and only if −β R R+

Q,w. By our choice of w, R
+
Q,w Ď D+(Q) Ď RC. On

the other hand, β P RI, so −β is imaginary and cannot lie in R+
Q,w. As a result R

+
QL,I

Ď R+
Q and

Reβ∨sxQ(λ) ď 0 for all β P R+
QL,I

. This completes the proof. ‚

Assuming this, by 2.18, we see that if λ P h˚ is strongly antidominant(
RsI(m,PXK)

(d,T) E
)∨ (2.25)

is a (limit of) discrete series of m whenever it is nonzero, and Rs−qI(m,PXK)
(d,T) E = 0 for q ‰ 0.

Moreover, Harish‑Chandra duality sends a limit of discrete series to another. As a result, we
obtain

Proposition 2.26. Let λ P h˚ be strongly antidominant, Then

RI(p,PXK)
(b,T) E –

(
RI(m,PXK)

(d,T) E|(d,T)
)

b E|a (2.27)

is concentrated in degree s = 1
2
|RCI| and the first component is a limit of discrete series of m whenever it

is nonzero.

In particular the Grothendieck spectral sequence for (1.48) collapses at E2 page:

H0(X, I(Q, τ))∨ = HsRI(g,K)(p,KXP)RI
(p,KXP)
(b,T)

(
(Txτ

L)∨ b
C
TxωX

)
(2.28)

= I(g,K)(p,KXP)R
sI(p,KXP)

(b,T)

(
(Txτ

L)∨ b
C
TxωX

)
. (2.29)

2.2. Second stage: parabolic induction. Recall that our parabolic p is the complexification of
a parabolic p0 in g0. Let P0 denote the corresponding group in G0.
LetV denote the representation ofM0A0whose space ofP0XK0‑finite vectors equalsRI(m,PXK)

(d,T) E|(d,T)b

E|a, i.e.
V[P0XK0] = RI(m,PXK)

(d,T) E|(d,T) b E|a. (2.30)

Let IndG0

P0
V denote the classical (L2, smooth or continuous) parabolic induction of V , i.e. the

space of (L2, smooth or continuous) functions f : G0 → V so that f(pg) = p ¨ f(g) for any p P P0,
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g P G0. The G0‑action is given by g ¨ f(−) = f(−g). The corresponding (g, K)‑module is then(
IndG0

P0
V
)
[K]
. There is an obvious map of (p, P X K)‑modules(

IndG0

P0
V
)
[K]

−→ V, f Þ→ f(1) (2.31)

For a K‑finite element f on the left side, it is in particular P X K‑finite; since evaluation at 1 P G0

sends finite dimensional subspaces of IndG0

P0
V to finite dimensional ones, f(1) is P X K‑finite.

Hence this map lands into V[PXK]. By adjunction of cohomological induction, we obtain a map
of (g, K)‑modules

Ψ :
(
IndG0

P0
V
)
[K]

−→ I(g,K)(p,PXK)V[PXK]. (2.32)

Explicitly, ifwe view I(g,K)(p,PXK)V[PXK] as a subspace of algebraic functions fromK toHomp(U(g), V[PXK])

(using the definition of cohomological induction),

Ψ(f) =
[
k Þ→ [ξ Þ→ (ξ ¨ k ¨ f)(1)]

]
, k P K, ξ P g. (2.33)

Also, by [Hec+, 6.3(i)], g is spanned by k and p, Homp(U(g), V[PXK]) – HompXk(U(k), V[PXK]).
Under this identification, we only need ξ P k in the above formula. This will be used in the
following proof.

Lemma 2.34. The map Ψ :
(
IndG0

P0
V
)
[K]
→ I(g,K)(p,PXK)V[PXK] is injective.

Proof. Suppose f P
(
IndG0

P0
V
)
[K]

is sent to 0. By the explicit description of of Ψ(f) above, this
means that for any ξ P k, the map k Þ→ (ξ ¨ k ¨ f)(1) is zero. On the other hand, as ξ ranges over
a basis of k0,

K0 −→ C, k Þ→ (ξ ¨ k ¨ f)(1) =
d

dt
f
(
etξk

)∣∣∣
t=0

(2.35)

are the first order coefficients of the Taylor expansion of f|K0
. Since f is K‑finite, f|K0

is real‑
analytic. Hence these coefficients being zero for all ξ implies that f|K0

is identically zero. Since
G0 = P0K0 (by Iwasawa decomposition) and f is left P0‑linear, f = 0. Thus Ψ is injective. ‚

We will show that Ψ is an isomorphism by looking at K‑types.

Lemma 2.36. For any finite dimensional representation η of K,

HomK

(
η,

(
IndG0

P0
V
)
[K]

)
– HomPXK

(
η, V[PXK]

)
. (2.37)

Proof. First, by left P0‑linearity and G0 = P0K0, IndG0

P0
V = IndK0

P0XK0
V as representations of K0.

Hence
HomK

(
η,

(
IndG0

P0
V
)
[K]

)
– HomK

(
η, IndG0

P0
V
)

– HomK

(
η, IndK0

P0XK0
V
)

(2.38)

(where the first equality is because any image of η in IndG0

P0
V is automatically K‑finite). On the

other hand, by standard Frobenius reciprocity,

HomK

(
η, IndK0

P0XK0
V
)

– HomPXK(η, V) – HomPXK

(
η, V[PXK]

)
. (2.39)

The desired equality is then obtained by combining these identities. ‚

Lemma 2.40.
HomK

(
η, I(g,K)(p,PXK)V[PXK]

)
– HomPXK

(
η, V[PXK]

)
. (2.41)
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Proof. Consider the following diagram

Mod(p, P X K) Mod(g, K)

Mod(g, P X K)

Mod(p X k, P X K) Mod(k, K)

Mod(k, P X K)

I(g,K)
(p,PXK)

For(p,PXK)
(pXk,PXK)

pro(g,PXK)
(p,PXK)

For(g,K)
(k,K)

ΓK
PXK

For(g,PXK)
(k,PXK)

pro(k,PXK)
(pXk,PXK)

I(k,K)
(pXk,PXK)

ΓK
PXK

(2.42)

The restriction of I(g,K)(p,PXK)V[PXK] to K is then the image of V[PXK] from Mod(p, P X K) to Mod(k, K).
The triangles on the top and bottom commute by definition of I. For the middle‑right square,

the left‑adjoints to the two paths are respectively For(g,K)(g,PXK) ˝ ind(g,K)
(k,K) and ind(g,PXK)

(k,PXK) ˝ For(k,K)(k,PXK),
which are both equal to U(g) bU(k) −. Hence they agree. Therefore the middle‑right square
commutes. For the middle‑left square, the top path is the functor

For(g,PXK)
(k,PXK) pro

(g,PXK)
(p,PXK)(−) = For(g,PXK)

(k,PXK) Homp(U(g), (−))[PXK]. (2.43)

Since g = k + p, this is equal to

HompXk(U(k),For(p,PXK)
(pXk,PXK)(−))[PXK] = pro(k,PXK)

(pXk,PXK) For
(p,PXK)
(pXk,PXK)(−) (2.44)

which is the bottom path. Hence the middle‑left square commutes.
Therefore, the restriction of I(g,K)(p,PXK)V[PXK] to K is isomorphic to I(k,K)(pXk,PXK)V[PXK] and hence

HomK

(
η, I(g,K)(p,PXK)V[PXK]

)
– HomK

(
η, I(k,K)(pXk,PXK)V[PXK]

)
(2.45)

which equals

HomPXK

(
η, V[PXK]

)
(2.46)

by adjointness of I with forgetful functor. ‚

Corollary 2.47. The map Ψ :
(
IndG0

P0
V
)
[K]
→ I(g,K)(p,PXK)V[PXK] is an isomorphism.

Proof. By 2.34Ψ is injective. ThereforeΨ is an isomorphism if and only if for each K‑type has the
same multiplicity on both sides. Indeed, by 2.36 and 2.40, the multiplicity of η in both modules
is equal to dimHomPXK(η, V[PXK]). ‚

It was shown in a previous talk by Jack Cook that I(g,K)(p,PXK) is exact, although by previous dis‑
cussion (2.29) we have no need of this.
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3. COMPARISON OF CLASSIFICATIONS
Recall that E = (Txτ

L)∨ bC TxωX. Let U be the representation of M0 whose P0 X K0‑finite
vectors equals RI(m,PXK)

(d,T) E|(d,T), a (limit of) discrete series representation of M0. Therefore the
representation V in §2.2 is equal to U b E|a. Combining results in the previous section, we
obtain

Γ(X, I(Q, τ))∨ –
(
IndG0

P0
(U b E|a)

)
[K0]

. (3.1)

Using this, we finally obtain the following comparison of geometric classification and Lang‑
lands classification.

Comparison Theorem 3.2. Let
‚ λ be strongly anti‑dominant,
‚ Q a K‑orbit on X,
‚ xQ P Q,
‚ c Ď bxQ a σ‑stable Cartan subalgebra,
‚ τ a irreducible K‑homogeneous connection on Q compatible with λ+ ρ,
‚ w P W such that Σ+

Q,w X σQ(Σ
+
Q,w) = ∅ and Σ+

Q,w Y σQ(Σ
+
Q,w) = D+(Q),

‚ QL the Langlands orbit attached to c determined by w−1Σ+
Q =: Σ+

QL ,
‚ τL as defined in 1.43,
‚ x P QL such that bx contains c,
‚ E = (Txτ

L)∨ bC TxωX,
‚ p Ě c a σ‑split parabolic determined by ΣQ,I Y w−1Σ+

Q = Σ+
QL,I

,
‚ p0 Ď g0 the real form of p and P0 Ď G0 the corresponding group, and
‚ U the representation ofM0 whose P0XK0‑finite vectors equals RI(m,PXK)

(d,T) E|(d,T), a (limit of) discrete
series representation of M0 (see the beginning of §2.1 for notations on subalgebras of p).

Then
Γ(X, I(Q, τ))∨ –

(
IndG0

P0
(U b E|a)

)
[K0]

. (3.1)

If Γ(X,L(Q, τ)) ‰ 0, the irreducible admissible (g, K)‑module Γ(X,L(Q, τ))∨ corresponds to the Lang‑
lands datum

(P0, U, E|a) (3.3)
in Knapp‑Zuckerman’s Langlands classification [KZ77, Theorem 5].

Here E|a = −sxQ(λ−w−1ρ)|a = −sx(wλ− ρ)|a as calculated in the discussion preceding 2.21.

Proof. Since L(Q, τ) is the unique irreducible submodule of I(Q, τ), if Γ(X,L(Q, τ)) ‰ 0, it is
the unique irreducible submodule of Γ(X, I(Q, τ)). Taking contragradient, Γ(X,L(Q, τ))∨ is the
unique irreducible quotient of Γ(X, I(Q, τ))∨ and, by (3.1), the latter is a parabolically induced
module from a limit of discrete series ofM0 and a character of A0.
To fit this into Langlands classification, it remains to show that theA0‑characterE|a = −sxQ(λ−

w−1ρ)|a is strongly dominant with respect to the set of restricted roots in p0. The set of roots in
p0 restricted to a are either real roots α in Σ+

QL = w−1Σ+
Q or α − σQLα for complex roots α in

Σ+
QL = w−1Σ+

Q. In the latter case, note that α− σQLα is in the Q+ span of real roots in Σ+
QL .

Write
−sxQ(λ−w−1ρ) = −sxQ(λ) + sxQ(w

−1ρ) = −sxQ(λ) + sx(ρ). (3.4)
sx(ρ) is strongly dominant with respect to Σ+

QL . Consider −sxQ(λ). Argue in the same way as in
the last paragraph of the proof of 2.21 (with “imaginary” and “I” there replaced by “real” and
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“R”), one can show that
Σ+
QL,R Ď Σ+

Q. (3.5)
Since sxQ(λ) is strongly antidominant w.r.t. roots in the second set,

Reα∨(−sxQ(λ)) ě 0 (3.6)
whenever α belongs to the first set. The same holds if α is replaced by anything in the Q+ span
of Σ+

QL,R. Therefore
Re

(
α∨ + (−σQLα)∨

)
(−sxQ(λ)) ě 0 (3.7)

for any complex rootsα inΣ+
QL . Thus−sxQ(λ)|a, and hence−sxQ(λ−w−1ρ)|a is strongly dominant

for all restricted roots in p0, completing the proof. ‚

Remark 3.8 (Singular infinitesimal character). When λ is singular, it can happen that the global
section of a standard D‑module equals the direct sum of global sections of other standard D‑
modules. The same thing happens for the standard representations in the Knapp‑Zuckerman
classification (because the identification Γ(X, I(Q, τ))∨ –

(
IndG0

P0
(U b E|a)

)
[K0]

does not rely on
regularity of λ). In other words, there are more standard modules than there are irreducible
modules. Therefore, to obtain a classification of irreducibles in terms of standards, one needs
to discard redundant standard modules. Geometrically, [Hec+, 10.2] provides some clue on
how to do this.
However, to obtain a classification of irreducibles, it is easier (at least on the geometric side)

to simply classify irreducible D‑modules and classify those with zero global section, instead of
insisting on classifying irredundant standard modules first. This is done in op. cit. 9.1.
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