GEOMETRIC AND LANGLANDS CLASSFICATION FOR $SL(2, \mathbb{R})$

QIXIAN ZHAO

These notes are written for the representation theory student seminar at University of Utah, Fall 2021, which aims to achieve the following

- Present the geometric classification of irreducible admissible representations of SL(2, ℝ) and compare it to Langlands classification.
- Realize (non-unitary) principal series representations of SL(2, R) geometrically and demonstrate/verify Casselman's Subrepresentation Theorem for SL(2, R).

The calculation is mostly based on [Hec+, 4].

If you find any mistakes in the notes, please let me know. It would be much appreciated.

Contents

General notations	1
1. Principal series	2
2. Geometric classification	4
2.1. \mathcal{D} -modules on closed orbits	6
2.2. Modules on the open orbit	7
2.3. Geometric classification	9
3. The Subrepresentation theorem	10
4. Comparison with Langlands classification	11
References	11

GENERAL NOTATIONS

•
$$G_0 = SL(2, \mathbb{R}),$$

• $B_0 = \left\{ \begin{pmatrix} * & * \\ & * \end{pmatrix} \in SL(2, \mathbb{R}) \right\},$
• $M_0 = \{\pm I \in SL(2, \mathbb{R})\},$
• $A_0 = \left\{ \begin{pmatrix} r & \\ & r^{-1} \end{pmatrix} \in SL(2, \mathbb{R}) \mid r > 0 \right\},$
• $N_0 = \left\{ \begin{pmatrix} 1 & * \\ & 1 \end{pmatrix} \right\},$
• $K_0 = \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \mid \theta \in \mathbb{R} \right\};$
• $G = SL(2, \mathbb{C}),$
• $B = \left\{ \begin{pmatrix} * & * \\ & * \end{pmatrix} \in SL(2, \mathbb{C}) \right\},$
• $M = \{\pm I \in SL(2, \mathbb{C})\},$
• $K = \left\{ \begin{pmatrix} * & \\ & * \end{pmatrix} \in SL(2, \mathbb{C}) \right\};$

Date: September 17, 2021.

- \mathfrak{g}_0 = Lie G_0 , etc, and $\mathfrak{h} = \mathfrak{k}$;
- *W* Weyl group of the root system of (\mathfrak{g} , \mathfrak{h});
- λ an element of \mathfrak{h}^* ; $\theta = W \cdot \lambda$;
- *U*(g) the universal enveloping algebra of g; *Z*(g) the center of *U*(g); S(h) the symmetric algebra of h;
- $\chi_{\lambda} : \mathcal{Z}(\mathfrak{g}) \to \mathbb{C}$ the infinitesimal character determined by $\lambda; \mathcal{U}_{\theta} = \mathcal{U}(\mathfrak{g}) / \ker \chi_{\lambda} \mathcal{U}(\mathfrak{g});$
- $\rho \in \mathfrak{h}^*$ is the half sum of positive roots determined by \mathfrak{b} ;

•
$$H_r = \begin{pmatrix} -i \\ i \end{pmatrix}, E_r = \frac{1}{2} \begin{pmatrix} -i & 1 \\ 1 & i \end{pmatrix}, F_r = \frac{1}{2} \begin{pmatrix} i & 1 \\ 1 & -i \end{pmatrix};$$

• $H = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, E = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, F = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$

1. Principal series

We first look at what principal series are and their structure.

Definition 1.1. A **(non-unitary) principal series representation** is a representation (L², continuously, or smoothly) induced from an irreducible finite dimensional representation of a minimal parabolic subgroup.

Principal series are useful because of their structures are easier to understand and because of the following theorem.

Theorem 1.2 (Casselman's Subrepresentation Theorem). *Any irreducible admissible representation* of $(\mathfrak{g}_0, \mathsf{K}_0)$ on a Banach space can be embedded $((\mathfrak{g}_0, \mathsf{K}_0)$ -linearly) into a principal series.

In the case of $G_0 = \mathbf{SL}(2, \mathbb{R})$, $B_0 = M_0 A_0 N_0$ is a minimal parabolic subgroup. An irreducible representation of B_0 necessarily takes the form ($\varepsilon \otimes \nu, \mathbb{C}$) where $\varepsilon = 0$ or 1 (identified with the trivial or the sign representation of M_0 by abuse of notation) and $\nu \in \mathbb{C}$ (identified with the weight $\nu : \mathfrak{a}_0 \cong \mathbb{R} \to \mathbb{C}$, $r \mapsto \nu r$) with

$$(\varepsilon \otimes \nu)(\pm I) = (\pm 1)^{\varepsilon} \text{ for } \pm I \in M_0, \tag{1.3}$$

$$(\varepsilon \otimes \mathbf{v})(\mathbf{a}) = e^{\mathbf{v} \log \mathbf{a}} \text{ for } \mathbf{a} \in \mathcal{A}_0, \tag{1.4}$$

$$(\varepsilon \otimes \nu)(n) = 1 \text{ for } n \in \mathbb{N}_0. \tag{1.5}$$

Its continuous induction to G_0 is

 $\operatorname{Ind}_{B_0}^{G_0}(\varepsilon \otimes \nu) = \{ f : G_0 \to \mathbb{C}_{\varepsilon,\nu} \mid f \text{ is continuous; } \forall p \in B_0, f(pg) = (\varepsilon \otimes \nu)(p) \cdot f(g) \}.$ (1.6)

This is also frequently denoted by $I_{B_0,\epsilon,\nu-1}$ (the parameter $\nu - 1$ is what people called the *normalized* parameter).

Taking K₀-finite vectors, we obtain a $(\mathfrak{g}_0, \mathsf{K}_0)$ -module $\left(\operatorname{Ind}_{\mathsf{B}_0}^{\mathsf{G}_0}(\varepsilon \otimes \nu)\right)_{[\mathsf{K}_0]'}$ where the \mathfrak{g}_0 -action is given by

$$(\xi \cdot \mathbf{f}_n)(g) = \frac{\mathrm{d}}{\mathrm{dt}} \mathbf{f}_n(g e^{\mathrm{t}\xi}) \Big|_{\mathbf{t}=0}$$
(1.7)

(convergence is automatic by K_0 -finiteness). We want to describe the structure of this module.

Let η_n ($n \in \mathbb{Z}_{\geq 0}$) be the 1-dimensional representation of K_0 with

$$\eta_n \left(\begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix} \right) \cdot \nu = e^{in\theta}\nu.$$
(1.8)

By Iwasawa decomposition $G_0=N_0A_0K_0,$ restriction to K_0 defines a K_0 -equivariant linear isomorphism

$$\operatorname{Ind}_{B_0}^{G_0}(\varepsilon \otimes \nu) \cong \operatorname{Ind}_{M_0}^{K_0} \varepsilon, \tag{1.9}$$

and the right side encodes all information on K₀-types. Combined with Frobenius reciprocity,

$$\operatorname{Hom}_{\mathsf{K}_{0}}(\mathfrak{\eta}_{\mathfrak{n}},\operatorname{Ind}_{\mathsf{B}_{0}}^{\mathsf{G}_{0}}(\varepsilon\otimes\nu))\cong\operatorname{Hom}_{\mathsf{K}_{0}}(\mathfrak{\eta}_{\mathfrak{n}},\operatorname{Ind}_{\mathsf{M}_{0}}^{\mathsf{K}_{0}}\varepsilon)\cong\operatorname{Hom}_{\mathsf{M}_{0}}(\mathfrak{\eta}_{\mathfrak{n}},\varepsilon). \tag{1.10}$$

 $\operatorname{Hom}_{M_0}(\eta_n, \varepsilon)$ consists of linear maps $\varphi : \mathbb{C} \to \mathbb{C}$ satisfying $\varphi((-1)^n \nu) = (-1)^{\varepsilon} \varphi(\nu)$. This space is 1-dimensional if $n \equiv \varepsilon \mod 2$ and is 0 otherwise. Hence,

$$\dim \left(\operatorname{Ind}_{B_0}^{G_0}(\varepsilon \otimes \nu) \right)_{[K_0],\eta_n} = \dim \operatorname{Hom}_{K_0}(\eta_n, \left(\operatorname{Ind}_{B_0}^{G_0}(\varepsilon \otimes \nu) \right)_{[K_0]})$$
(1.11)

$$= \dim \operatorname{Hom}_{\mathsf{K}_0}(\eta_{\mathfrak{n}}, \operatorname{Ind}_{\mathsf{B}_0}^{\mathsf{G}_0}(\varepsilon \otimes \nu)) \tag{1.12}$$

$$=\begin{cases} 1 & n \equiv \varepsilon \mod 2, \\ 0 & n \not\equiv \varepsilon \mod 2, \end{cases}$$
(1.13)

where the η_n subscript denotes the corresponding isotypic component. Let $\omega_{-n} \in (Ind_{B_0}^{G_0}(\epsilon \otimes \nu))_{[K_0],\eta_n}$ be a nonzero vector. Then since $(Ind_{B_0}^{G_0}(\epsilon \otimes \nu))_{[K_0]}$ is the sum of all K₀-types,

$$\{\omega_{-n} \mid n \in \eta + 2\mathbb{Z}\}$$
(1.14)

is a basis for $\left(Ind_{B_0}^{G_0}(\epsilon \otimes \nu)\right)_{[K_0]}$. Explicitly, we can take

$$\omega_{-n}|_{K_0} : K_0 \to \mathbb{C}, \quad \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix} \mapsto e^{in\theta}$$
(1.15)

and extend it to G_0 by left N_0A_0 -linearity. One computes (using (1.7) and Iwasawa decomposition) that

$$H_{\rm r} \cdot i^{\frac{n}{2}} \omega_{\rm n} = {\rm n} i^{\frac{n}{2}} \omega_{\rm n}, \qquad (1.16)$$

$$E_{r} \cdot i^{\frac{n}{2}} \omega_{n} = -\frac{i}{2} (n+\nu) i^{\frac{n+2}{2}} \omega_{n+2}, \qquad (1.17)$$

$$F_{r} \cdot i^{\frac{n}{2}} \omega_{n} = -\frac{i}{2} (n - \nu) i^{\frac{n-2}{2}} \omega_{n-2}.$$
(1.18)

To match the geometric calculation in §2, we set $\nu = \lambda + \rho = \lambda + 1$. Then the structure of $\left(\operatorname{Ind}_{B_0}^{G_0}(\varepsilon \otimes \nu)\right)_{[K_0]}$ can be described diagrammatically as

We also pre-compose the action $(\mathfrak{g}_0, \mathsf{K}_0) \subset (\operatorname{Ind}_{\mathsf{B}_0}^{\mathsf{G}_0}(\varepsilon \otimes \nu))_{[\mathsf{K}_0]}$ with the complexification of the isomorphism

$$\mathbf{SU}(1,1) \xrightarrow{\sim} \mathbf{SL}(2,\mathbb{R}), \quad g \mapsto \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} g \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}^{-1}$$
 (1.20)

which sends K to the complexification of K_0 and H to H_r , E to E_r and F to F_r . Then the action $\mathfrak{g} \hookrightarrow \left(\operatorname{Ind}_{B_0}^{G_0}(\epsilon \otimes \nu) \right)_{[K_0]}$ can be described by the same diagram except now arrows denote actions of E, F, H instead of E_r , F_r , H_r . From this, we can compute the action of the center $\mathcal{Z}(\mathfrak{g})$ by using the Casimir element

$$\Omega = H^2 - 2H + 4EF \tag{1.21}$$

(which generates $\mathcal{Z}(\mathfrak{g})$ as a \mathbb{C} -algebra). One checks that $\Omega \cdot \omega_n = (\lambda^2 - 1)\omega_n$. On the other hand, if χ_λ denotes the character on $\mathcal{Z}(\mathfrak{g})$ determined by λ , $\chi_\lambda(\Omega) = \lambda^2 - 1$ because, by the definition of χ_λ ,

$$\Omega \xrightarrow{\text{proj. to } \mathbb{C} \cdot \text{H w.r.t. the PBW basis}}_{\text{determined by } \{\text{E},\text{H},\text{F}\}} H^2 - 2H \xrightarrow{\text{shift}}_{\text{by } \rho} H^2 - 1 \xrightarrow{\lambda} \lambda^2 - 1.$$
(1.22)

Hence $\left(Ind_{B_0}^{G_0}(\epsilon \otimes \nu)\right)_{[K_0]}$ has infinitesimal character χ_{λ} .

In §2 we will realize principal series and the Subrepresentation theorem via \mathcal{D} -modules on the flag variety.

2. Geometric classification

We turn to describing the geometric classification of irreducible admissible representations of $(\mathfrak{g}, \mathsf{K})$.

Let's first recall the general setting. Suppose $\mathfrak{g} \supset \mathfrak{b} \supset \mathfrak{h}$ is a complex semisimple Lie algebra, a Borel subalgebra, and a Cartan subalgebra, and $G \supset B \supset T$ algebraic groups with $\mathfrak{g}, \mathfrak{h}, \mathfrak{h}$ as respective Lie algebras. Let W be the Weyl group of the root system of $(\mathfrak{g}, \mathfrak{h})$. Consider the flag variety X of \mathfrak{g} . This is the variety of all Borel subalgebras of \mathfrak{g} ; equivalently this is the variety G/B. For each $\lambda \in \mathfrak{h}^*$, there is a *G*-homogeneous twisted sheaf of differential operators ("htdo" for short) \mathcal{D}_{λ} on $X^{[1]}$. This parametrization is normalized so that when λ is integral, \mathcal{D}_{λ} is the sheaf of differential operators on the homogeneous line bundle $\mathcal{O}_X(\lambda + \rho)$ (in particular $\mathcal{D}_{-\rho} = \mathcal{D}_X$ and $\mathcal{D}_{\rho} = \mathcal{D}_{\omega_X}$). If χ_{λ} is the infinitesimal character determined by λ and the Harish-Chandra homomorphism $\mathcal{Z}(\mathfrak{g}) \to S(\mathfrak{h})^W$, then

$$\Gamma(X, \mathcal{D}_{\lambda}) = \mathcal{U}(\mathfrak{g}) / \ker \chi_{\lambda} \mathcal{U}(\mathfrak{g})$$
(2.1)

(due to Beilinson-Bernstein [BeBe81]; see also [Mil, 2.6]). Since $\chi_{\lambda} \subseteq \mathcal{Z}(\mathfrak{g})$ only depends on the *W*-orbit θ of λ , we denote $\mathcal{U}(\mathfrak{g})/\ker \chi_{\lambda}\mathcal{U}(\mathfrak{g})$ by \mathcal{U}_{θ} .

Therefore we can *localize* a g-module to a \mathcal{D}_{λ} on X, in the same way as localizing a module over a commutative ring R to produce a sheaf on Spec R; conversely, given a \mathcal{D}_{λ} -module, its global section is a g-module. In nice cases, this is an equivalence of categories of modules on both sides. On one side we have $Mod_{fg}(\mathcal{U}_{\theta}, K)$, the category of finitely generated (g, K)-modules with infinitesimal character χ_{λ} ; on the other side we have $Mod_{coh}(\mathcal{D}_{\lambda}, K)$, the category of coherent (i.e. locally finitely generated) (\mathcal{D}_{λ}, K)-modules. Here a (\mathcal{D}_{λ}, K)-module is a \mathcal{D}_{λ} -module with a *compatible* K-action, where compatibility means that the action of $\mathfrak{t} \subset \mathcal{D}_{\lambda}$ agrees with the action coming from differentiation of K-action).

In order to achieve equivalence, we need some conditions on λ . λ is said to be **antidominant** if $\alpha^{\vee}(\lambda) \notin \mathbb{Z}_{>0}$ for any positive root α , and **regular** if $\alpha^{\vee}(\lambda) \neq 0$ for any root α .

Theorem 2.2 (Beilinson-Bernstein; see also [Mil, 3.1]).

• If λ is antidominant, localization is an equivalence of categories

$$\operatorname{Mod}(\mathcal{U}_{\theta}, \mathsf{K}) \cong \Omega \operatorname{Mod}_{\operatorname{coh}}(\mathcal{D}_{\lambda}, \mathsf{K})$$
 (2.3)

where $\Omega \operatorname{Mod}_{\operatorname{coh}}(\mathcal{D}_{\lambda}, \mathsf{K})$ is the quotient of $\operatorname{Mod}_{\operatorname{coh}}(\mathcal{D}_{\lambda}, \mathsf{K})$ by modules with no global sections.

• If λ is antidominant regular, localization is an equivalence of categories

$$\operatorname{Mod}(\mathcal{U}_{\theta},\mathsf{K}) \cong \operatorname{Mod}_{\operatorname{coh}}(\mathcal{D}_{\lambda},\mathsf{K}).$$
 (2.4)

^[1]Here λ should really be an element of \mathfrak{H}^* where \mathfrak{H} is the *universal Cartan algebra* of \mathfrak{g} . Since we won't go into the precise construction of \mathcal{D}_{λ} 's, this won't make a difference later.

• If λ is regular, derived localization is an equivalence of categories

$$\mathsf{D}(\mathcal{U}_{\theta}) \cong \mathsf{D}(\mathcal{D}_{\lambda}) \tag{2.5}$$

where the left side the derived category of U_{θ} -modules, and the right side is the derived category of quasicoherent D_{λ} -modules.

The quasi-inverse to these equivalences are given by the (derived) functor of taking global sections.

Therefore we can translate the study of $(\mathfrak{g}, \mathsf{K})$ -modules with an infinitesimal character to \mathcal{D} -modules. Regarding irreducible \mathcal{D} -modules:

Theorem 2.6 (Beilinson-Bernstein; see also [Mil, §4.5]). *Irreducible coherent* $(\mathcal{D}_{\lambda}, K)$ -modules are parametrized by pairs (Q, τ) where Q is a K-orbit in X and τ is an irreducible K-homogeneous connection on Q compatible with $\lambda + \rho$. It is the unique irreducible submodule of the direct image of τ to X.

Here, " τ compatible with $\lambda + \rho$ " means that τ is a $(\mathcal{D}_{\lambda}|_{\{0\}}, \mathsf{K})$ -module, where $\mathcal{D}_{\lambda}|_{\{0\}}$ is the pullback of \mathcal{D}_{λ} to $\{0\}$ along the inclusion map. Let $\mathcal{L}(Q, \tau)$ denote the irreducible module corresponding to (Q, τ) and $\mathcal{I}(Q, \tau)$ the direct image of τ . $\mathcal{I}(Q, \tau)$ is called a **standard module**.

Now we specify to $SL(2, \mathbb{C})$.

Let $X = \mathbb{P}^1$. The representation $G = \mathbf{SL}(2, \mathbb{C}) \subset \mathbb{C}^2$ descends to a transitive action on X whose stabilizer at the image of $(1, 0) \in \mathbb{C}^2$ is B. Hence the orbit map induces an isomorphism $G/B \xrightarrow{\sim} X$ and X is the flag variety of G. Let $0, \infty \in X$ denote the images of $(1, 0), (0, 1) \in \mathbb{C}^2$, respectively. Let $U_0 = X - \{\infty\}$ and $U_\infty = X - \{0\}$, both isomorphic to \mathbb{A}^1 as varieties with coordinates

$$x: U_0 \to \mathbb{C}, \quad (s,t) \mapsto \frac{t}{s},$$
 (2.7)

$$y: U_{\infty} \to \mathbb{C}, \quad (s,t) \mapsto \frac{s}{t},$$
 (2.8)

respectively. On a point *z* in the overlap $z \in U_0 \cap U_\infty = \mathbb{C}^*$, x(z) = 1/y(z).

Let $\lambda, \rho \in \mathfrak{h}^*$ as before. We can describe local sections of \mathcal{D}_{λ} explicitly using a trivialization over U_0 and U_{∞} , as follows.

Lemma 2.9. There is a trivialization of D_{λ} on X described as follows.

• *On* U₀,

$$\mathsf{E} = -x^2 \partial_x - (\lambda + \rho)(\mathsf{H})x, \tag{2.10}$$

$$H = 2x\partial_x + (\lambda + \rho)(H), \qquad (2.11)$$

$$\mathsf{F} = \partial_{\mathsf{x}}.\tag{2.12}$$

(*i.e.* there is an isomorphism $\mathcal{D}_{\lambda}|_{U_0} \xrightarrow{\sim} \mathcal{D}_{U_0}$ so that the composition $\mathfrak{g} \to \Gamma(X, \mathcal{D}_{\lambda}) \to \Gamma(U_0, \mathcal{D}_{\lambda}) \xrightarrow{\sim} \Gamma(U_0, \mathcal{D}_{U_0})$ sends E, F, H to the respective operators on the right hand side),

• on U_{∞} ,

$$\mathsf{E} = \partial_{\mathsf{y}},\tag{2.13}$$

$$H = -2y\partial_y - (\lambda + \rho)(H), \qquad (2.14)$$

$$F = -y^2 \partial_y - (\lambda + \rho)(H)y$$
(2.15)

which, when further restricted to $\mathbb{C}^* = U_0 \cap U_\infty$, equals (using $y = x^{-1}$, $\partial_y = -x^2 \partial_x$)

$$\mathsf{E} = -\mathbf{x}^2 \partial_{\mathbf{x}},\tag{2.16}$$

$$H = 2x\partial_x - (\lambda + \rho)(H), \qquad (2.17)$$

$$F = \partial_x - (\lambda + \rho)(H)x^{-1}; \qquad (2.18)$$

• and on \mathbb{C}^* the transition map is given by (in the coordinate (x, ∂_x))

$$\mathcal{D}_{\mathsf{U}_0}|_{\mathbb{C}^*} \xrightarrow{\sim} \mathcal{D}_{\mathsf{U}_\infty}|_{\mathbb{C}^*}, \quad \partial_x \mapsto \partial_x - (\lambda + \rho)(\mathsf{H})x^{-1}.$$
(2.19)

These are calculated using the definition of D_{λ} and the bracket relations between E, F, H. See [Hec+, 4] for details.

Now we look at the standard and irreducible \mathcal{D} -modules on X. K-orbits are $\{0\}, \{\infty\}$ and \mathbb{C}^* .

2.1. \mathcal{D} -modules on closed orbits. Let $i_0 : \{0\} \to X$ be the inclusion map. The pullback of \mathcal{D}_{λ} to $\{0\}$ is denoted by $\mathcal{D}_{\lambda}^{i_0}$. Recall that, for a morphism $\varphi : G_1/S_1 \to G_2/S_2$ of homogeneous spaces, G_i -htdo's on G_i/S_i are parametrized by S_i -invariant elements in \mathfrak{s}_i^* , and for $\lambda \in (\mathfrak{s}_2^*)^{S_2}$, the pullback $\mathcal{D}_{G_2/H_2,\lambda}^{\phi}$ of $\mathcal{D}_{G_2/H_2,\lambda}$ has parameter given by $\lambda|_{\mathfrak{s}_1}$. Applied to our situation, $\mathcal{D}_{\lambda}^{i_0}$ has parameter given by $\lambda|_{\mathfrak{s}_1}$. This means that the image of H under $\mathfrak{k} \to \mathcal{D}_{\lambda}^{i_0}$ is equal to $(\lambda + \rho)(H) = \lambda + 1$.

Let τ be an irreducible K-homogeneous connection on the orbit {0}. The stabilizer of the only point is K itself. So τ , viewed as an irreducible K-homogenous vector bundle, is simply an irreducible algebraic representation of K, which must be of the form \mathbb{C}_{μ} for some integral $\mu \in \mathfrak{t}^* = \mathfrak{h}^*$. On the other hand, τ is a $\mathcal{D}_{\lambda}^{i_0}$ -module, so H acts on τ by $\lambda + \rho$. Hence $\lambda + \rho = \mu$, and λ must be integral for τ to exist.

Assuming integrality of λ , $\mathcal{I}(\{0\},\lambda)$ can be computed explicitly by the definition of direct image functor: let $\mathfrak{m}_0 \subseteq \mathcal{O}_X$ be the ideal (sheaf) of functions vanishing on $\{0\}$, then

$$\mathcal{I}(\{0\},\lambda) = \mathfrak{i}_{0,+}\mathbb{C}_{\lambda+\rho} \tag{2.1.1}$$

$$= \mathfrak{i}_{0,*} \left(\mathcal{D}_{\lambda} / \mathcal{D}_{\lambda} \mathfrak{m}_0 \underset{\mathbb{C}}{\otimes} \mathbb{C} \right)$$

$$(2.1.2)$$

$$= \mathfrak{i}_{0,*} \mathcal{D}_{\lambda} / \mathcal{D}_{\lambda} \mathfrak{m}_{0}. \tag{2.1.3}$$

On $U_0 \mathcal{D}_{\lambda} \cong \mathcal{D}_{U_0}$ has basis given by $\partial_x^m x^n$, $m, n \in \mathbb{Z}_{\geq 0}$. So

$$\mathcal{D}_{\lambda}/\mathcal{D}_{\lambda}\mathfrak{m}_{0} = \operatorname{span}_{\mathbb{C}}\{1, \partial_{x}, \partial_{x}^{2}, \ldots\}.$$
(2.1.4)

The Lie algebra elements acts as left multiplication by the operators given in the trivialization (2.10)-(2.12). So

$$\mathsf{H} \cdot \partial_x^{\mathfrak{m}} = (2x\partial_x + (\lambda + 1))\partial_x^{\mathfrak{m}} \tag{2.1.5}$$

$$=2x\partial_x^{m+1} + (\lambda+1)\partial_x^m \tag{2.1.6}$$

$$=2\partial_x^{m+1}x - 2(m+1)\partial_x^m + (\lambda+1)\partial_x^m$$
(2.1.7)

$$= 0 + (\lambda - 2m - 1)\partial_x^m \tag{2.1.8}$$

$$= (\lambda - 2\mathbf{m} - 1)\partial_x^{\mathbf{m}}.$$
(2.1.9)

Similarly

$$\mathsf{E} \cdot \partial_x^{\mathfrak{m}} = \mathfrak{m}(\lambda - \mathfrak{m})\partial_x^{\mathfrak{m}-1}, \qquad (2.1.10)$$

$$\mathbf{F} \cdot \partial_{\mathbf{x}}^{\mathbf{m}} = \partial_{\mathbf{x}}^{\mathbf{m}+1}.$$
(2.1.11)

Therefore the structure of $\Gamma(U, \mathcal{I}(\{0\}, \lambda))$ for any open set $U \ni 0$ can be described diagrammatically as

$$\cdots \qquad \underbrace{\bigoplus_{1}^{3(\lambda-3)}}_{1} \qquad \underbrace{\bigoplus_{\lambda-5}^{2(\lambda-2)}}_{1} \qquad \underbrace{\bigoplus_{\lambda-3}^{\lambda-1}}_{1} \qquad \underbrace{\bigoplus_{\lambda-1}^{k-1}}_{1} \qquad \underbrace{\bigoplus_{k-1}^{E}}_{1} \qquad \underbrace{\bigoplus_{k-1}^{E$$

This is an irreducible \mathcal{D} -module because x sends $\mathbb{C} \cdot \partial_x^m$ to $\mathbb{C} \cdot \partial_x^{m-1}$ and ∂_x sends $\mathbb{C} \cdot \partial_x^m$ to $\mathbb{C} \cdot \partial_x^{m+1}$. This can also be seen using Kashiwara's theorem:

Theorem 2.1.13 (Kashiwara (see [Bor+87, VI.7])). *If* φ : $Z \hookrightarrow X$ *is a closed immersion between smooth varieties and* \mathcal{D} *a tdo on* X, φ_+ *is concentrated at degree* 0 *and* $H^0\varphi_+$ *is an equivalence of categories*

$$\operatorname{Mod}_{\operatorname{qcoh}}(\mathcal{D}^{\varphi}) \cong \operatorname{Mod}_{\operatorname{qcoh},Z}(\mathcal{D})$$
 (2.1.14)

where the subscript qcoh denotes quasi-coherence, and the subscript Z denotes modules supported in Z. The quasi-inverse is the functor $\varphi^{!}$ which takes sections supported in Z. This restricts to an equivalence of categories between coherent modules.

The global section $\Gamma(X, \mathcal{I}(\{0\}, \lambda))$ is the Verma module $\mathcal{M}(\lambda) = \mathcal{U}(\mathfrak{g}) \otimes_{\mathcal{U}(\mathfrak{b})} \mathbb{C}_{\lambda-\rho}$.

A similar thing happen for the orbit at $\{\infty\}$, except we get a Verma module $\overline{M}(-\lambda)$ for the opposite Borel subalgebra.

Lemma 2.1.15. $\mathcal{I}(\{0\},\lambda)$ and $\mathcal{I}(\{\infty\},\lambda)$ exist if and only if λ is integral. If this is the case,

$$\Gamma(X, \mathcal{I}(\{0\}, \lambda)) = \mathcal{M}(\lambda), and$$
(2.1.16)

$$\Gamma(X, \mathcal{I}(\{\infty\}, \lambda)) = \mathcal{M}(-\lambda). \tag{2.1.17}$$

They are irreducible precisely when $\lambda \leq 0$. If $\lambda \geq 1$, they contain $M(-\lambda)$ and $M(-\lambda)$ as irreducible submodules, respectively, and the quotients are finite dimensional irreducible representations.

2.2. **Modules on the open orbit.** Now let us look at the open orbit \mathbb{C}^* . The stablizer of a point in K is $M = \{\pm I\}$, so any the $(\lambda + \rho)$ -compatibility condition is void because it is a requirement that boils down to the action of Lie algebra of the stablizer. Hence we are left to find irreducible K-homogeneous vector bundle on \mathbb{C}^* . They correspond to irreducible representations of M, which can only be $\{trv, sgn\}$. Let τ_{ε} denote the vector bundle corresponding to $\varepsilon \in \{trv, sgn\}$. As before, by abuse of notation we also view ε as either 0 or 1.

Recall that global section of τ_{ϵ} on \mathbb{C}^* is given by induction:

$$\Gamma(\mathbb{C}^*, \tau_{\varepsilon}) = \operatorname{Hom}_{\mathsf{M}}(\mathsf{K}, \mathbb{C}_{\varepsilon}). \tag{2.2.1}$$

Let *z* be the coordinate on $K \cong \mathbb{C}^*$, this space is

$$\{f \in \Gamma(K, \mathcal{O}_{K}) \mid f(-z) = (-1)^{\varepsilon} f(z)\} = \begin{cases} \bigoplus_{m \in \mathbb{Z}} \mathbb{C} \cdot z^{2m} & \varepsilon = 0, \\ \bigoplus_{m \in \mathbb{Z}} \mathbb{C} \cdot z^{2m+1} & \varepsilon = 1. \end{cases}$$
(2.2.2)

The action of H on $\Gamma(\mathbb{C}^*, \tau_{\epsilon})$ is the left regular representation:

$$\mathbf{H} \cdot \boldsymbol{z}^{\mathbf{k}} = \mathbf{k} \boldsymbol{z}^{\mathbf{k}}.\tag{2.2.3}$$

However we want to view τ_{ε} as "functions" on $K/M = \mathbb{C}^*$. To do this, notice that inverse image along the quotient map

$$\begin{array}{cccc} \mathsf{K} & \stackrel{\cong}{\longrightarrow} & \mathbb{C}_{z}^{*} \\ \downarrow & & \downarrow \\ \mathsf{K}/\mathsf{M} & \stackrel{\cong}{\longrightarrow} & \mathbb{C}_{z}^{*} \end{array} \tag{2.2.4}$$

is an injection sending x to z^2 . Hence we can view

$$\Gamma(\mathbb{C}^*, \tau_0) = \Gamma(\mathbb{C}^*, \mathcal{O}_{\mathbb{C}^*}) = \operatorname{span}_{\mathbb{C}} \{ x^p \mid p \in \mathbb{Z} \}$$
(2.2.5)

as O-modules with H-action given by

$$\mathsf{H} \cdot \mathsf{x}^{\mathsf{p}} = \mathsf{H} \cdot z^{2\mathsf{p}} = 2\mathsf{p}z^{2\mathsf{p}} = 2\mathsf{p}\mathsf{x}^{\mathsf{p}} = 2\mathsf{x}\partial_{\mathsf{x}} \cdot \mathsf{x}^{\mathsf{p}}, \tag{2.2.6}$$

i.e. H acts as $2x\partial_x \in \mathcal{D}_{\mathbb{C}^*}$. Following the same spirit, we view

$$\Gamma(\mathbb{C}^*, \tau_1) = \operatorname{span}_{\mathbb{C}}\{x^{p+\frac{1}{2}} \mid p \in \mathbb{Z}\}$$
(2.2.7)

where H acts as $2x\partial_x$. In this way τ_{ε} become $(\mathcal{D}_{\mathbb{C}^*}, K)$ -modules. There is only one isomorphism class of K-htdo on \mathbb{C}^* (because the parameterizing set is $\mathfrak{m}^* = 0$), and the isomorphism from the trivialization (2.10)-(2.12) is given explicitly by

$$\mathcal{D}_{U_0}|_{\mathbb{C}^*} \xrightarrow{\sim} \mathcal{D}_{\lambda}|_{\mathbb{C}^*} \xrightarrow{\sim} \mathcal{D}_{\mathbb{C}^*}, \quad \partial_x \mapsto \partial_x - \frac{\lambda + 1}{2x}$$
(2.2.8)

under which

$$\mathsf{E} = -\mathbf{x}^2 \partial_{\mathbf{x}} - \frac{\lambda + 1}{2} \mathbf{x},\tag{2.2.9}$$

$$H = 2x\partial_x, \qquad (2.2.10)$$

$$F = \partial_x - \frac{\lambda + 1}{2x}, \qquad (2.2.11)$$

acting on $\Gamma(\mathbb{C}^*, \tau_{\varepsilon})$ by the usual action of differential operators on functions:

$$\mathsf{E} \cdot \mathsf{x}^{n+\frac{\varepsilon}{2}} = -\left(n + \frac{\varepsilon + \lambda + 1}{2}\right) \mathsf{x}^{n+1+\frac{\varepsilon}{2}},\tag{2.2.12}$$

$$\mathbf{H} \cdot \mathbf{x}^{n+\frac{\varepsilon}{2}} = (2n+\varepsilon)\mathbf{x}^{n+\frac{\varepsilon}{2}},\tag{2.2.13}$$

$$F \cdot x^{n+\frac{\varepsilon}{2}} = \left(n + \frac{\varepsilon - \lambda - 1}{2}\right) x^{n-1+\frac{\varepsilon}{2}}.$$
(2.2.14)

The space of global sections of the standard module is then

$$\Gamma(X, \mathcal{I}(\mathbb{C}^*, \tau_{\varepsilon})) = \Gamma(X, \mathfrak{i}_{\mathbb{C}^*, *}\tau_{\varepsilon}) = \Gamma(\mathbb{C}^*, \tau_{\varepsilon}).$$
(2.2.15)

Using the explicit operators (2.2.9)-(2.2.11), it can be described diagrammatically as

$$\cdots \qquad \bigoplus \qquad \begin{array}{c} -\left(n-1+\frac{\varepsilon+\lambda+1}{2}\right) & -\left(n+\frac{\varepsilon+\lambda+1}{2}\right) \\ \oplus \qquad \mathbb{C} \cdot x^{n-1+\frac{\varepsilon}{2}} \oplus \qquad \mathbb{C} \cdot x^{n+\frac{\varepsilon}{2}} \oplus \qquad \mathbb{C} \cdot x^{n+1+\frac{\varepsilon}{2}} \oplus \qquad \cdots, \\ & & & \\ &$$

(2.2.16) Rewriting labels on the horizontal arrows by $-(n + \frac{\varepsilon + \lambda + 1}{2}) = \frac{1}{2}((2n + \varepsilon) + \lambda + 1)$ and $n + \frac{\varepsilon - \lambda - 1}{2} = \frac{1}{2}((2n + \varepsilon) - \lambda - 1)$ and compare with (1.19), we see that this is the principal series discussed in §1 via

$$\Gamma(X, \mathcal{I}(\mathbb{C}^*, \tau_{\varepsilon})) \xrightarrow{\sim} I_{B_0, \varepsilon, \lambda}, \quad x^{n + \frac{\varepsilon}{2}} \mapsto i^{\frac{2n + \varepsilon}{2}} \omega_{2n + \varepsilon}.$$
(2.2.17)

(To be rigorous, I think we need to replace B_0 by its conjugate under (1.20)).

Let us analyze reducibility of this module. From the above diagram, it is clear that this is reducible if and only if either $\frac{\varepsilon+\lambda+1}{2} \in \mathbb{Z}$ or $\frac{\varepsilon-\lambda-1}{2} \in \mathbb{Z}$. This is equivalent to $\lambda + \varepsilon$ being an odd integer. If this happens for one ε , then it will fail for the other ε . Therefore, if λ is not integral, $\Gamma(X, \mathcal{I}(\mathbb{C}^*, \tau_{\varepsilon}))$ is irreducible; if λ is integral, one of $\Gamma(X, \mathcal{I}(\mathbb{C}^*, \tau_0))$, $\Gamma(X, \mathcal{I}(\mathbb{C}^*, \tau_1))$ is irreducible and the other is reducible.

The condition that $\lambda + \varepsilon$ is not an odd integer is called the **parity condition** in [Hec+].

Assuming λ to be integral, what is the unique irreducible submodule of the reducible one? By integrality of λ , the irreducible G-homogeneous connection $O(\lambda + \rho)$ exists. It is a submodule of

 $\mathcal{I}(\mathbb{C}^*, \tau_{\epsilon})$ if and only if there is a map into it. By adjunction of direct image and inverse image,

$$\operatorname{Hom}_{\mathcal{D}_{\lambda}}(\mathcal{O}(\lambda+\rho), \mathcal{I}(\mathbb{C}^{*}, \tau_{\varepsilon})) = \operatorname{Hom}_{\mathcal{D}_{\mathbb{C}^{*}}}(\mathcal{O}(\lambda+\rho)|_{\mathbb{C}^{*}}, \tau_{\varepsilon})$$
(2.2.18)

$$\cong \operatorname{Hom}_{\mathcal{M}}(\mathcal{O}(\lambda + \rho)(x_0), \tau_{\varepsilon}(x_0)). \tag{2.2.19}$$

where $x_0 \in \mathbb{C}^*$ and $-(x_0)$ takes geometric fiber at x_0 . This is nonzero if λ has the correct parity. When this is the case, $\mathcal{O}(\lambda + \rho)$ embeds into one of $\mathcal{I}(\mathbb{C}^*, \tau_0)$, $\mathcal{I}(\mathbb{C}^*, \tau_1)$ and not into the other. In fact $\mathcal{O}(\lambda + \rho)$ embeds into the reducible one, because otherwise $\mathcal{O}(\lambda + \rho) = \mathcal{I}(\mathbb{C}^*, \tau_{\varepsilon})$ (the irreducible one), which would imply

$$0 \neq \mathfrak{i}_0^* \mathcal{O}(\lambda + \rho) = \mathfrak{i}_0^* \mathcal{I}(\mathbf{C}^*, \tau_{\varepsilon}) = \mathfrak{i}_0^* \mathfrak{i}_{\mathbb{C}^*, *} \mathcal{O}_{\mathbb{C}^*} = 0$$
(2.2.20)

as *O*-modules, a contradiction.

Let \mathcal{V} be the cokernel of the inclusion:

$$0 \longrightarrow \mathcal{O}(\lambda + \rho) \longrightarrow \mathcal{I}(\mathbb{C}^*, \tau_{\varepsilon}) \longrightarrow \mathcal{V} \longrightarrow 0.$$
(2.2.21)

To see what \mathcal{V} is, look at the long exact sequence of derived pullback to $\{0\}$:

$$0 \longrightarrow i_{0}^{!} \mathcal{O}(\lambda + \rho) \longrightarrow i_{0}^{!} \mathcal{I}(\mathbb{C}^{*}, \tau_{\varepsilon}) \longrightarrow i_{0}^{!} \mathcal{V} \longrightarrow$$

$$(2.2.22)$$

$$(3.2.22)$$

$$(3.2.22)$$

 $i_0^* \mathcal{I}(\mathbb{C}^*, \tau_{\epsilon}) = 0$ by previous discussion. $i_0^* \mathcal{O}(\lambda + \rho) = \mathbb{C}$ as vector spaces. $i_0^! \mathcal{I}(\mathbb{C}^*, \tau_{\epsilon}) = 0$ either by \mathcal{D} -module base change theorem, or by directly computing $\operatorname{Tor}_{\mathbb{C}[x]}^1(\mathbb{C}[x, x^{-1}], \mathbb{C}) = 0$. Therefore $\operatorname{Ri}_0^! \mathcal{V} = \mathbb{C}$ as vector spaces. Similarly $\operatorname{Ri}_{\infty}^! \mathcal{V} = \mathbb{C}$. Hence, by Kashiwara's theorem 2.1.13 $\mathcal{V} = \mathcal{I}(\{0\}, \lambda) \oplus \mathcal{I}(\{\infty\}, \lambda)$.

To summarize:

Lemma 2.2.23.

- $\Gamma(X, \mathcal{I}(\mathbb{C}^*, \tau_{\epsilon})) = I_{B_{0}, \epsilon, \lambda}$ is a principal series representation.
- If λ is not integral, $\mathcal{I}(\mathbb{C}^*, \tau_{\epsilon})$ is irreducible.
- If λ is integral and λ and ε satisfy the parity condition, $\mathcal{I}(\mathbb{C}^*, \tau_{\varepsilon})$ is irreducible.
- If λ is integral and λ and ε fail the parity condition, $\mathcal{I}(\mathbb{C}^*, \tau_{\varepsilon})$ is reducible and fits into the short exact sequence

$$0 \longrightarrow \mathcal{O}(\lambda + \rho) \longrightarrow \mathcal{I}(\mathbb{C}^*, \tau_{\varepsilon}) \longrightarrow \mathcal{I}(\{0\}, \lambda) \oplus \mathcal{I}(\{\infty\}, \lambda) \longrightarrow 0.$$
(2.2.24)

2.3. **Geometric classification.** Invoking 2.2, we can obtain a classification of irreducible admissible (g, K)-modules.

Every irreducible module has an infinitesimal character by Dixmier's lemma, whence lies in $Mod_{fg}(\mathcal{U}_{\theta}, K)$ for some Weyl group orbit θ . Let $\lambda \in \theta$ be the unique strongly antidomiant element in θ , that is, Re $\alpha^{\vee}(\lambda) \leq 0$ for the positive root α . When λ is identified with a complex number, this just means that Re $\lambda \leq 0$. To avoid confusion, write $\mathcal{I}(\mathbb{C}^*, \tau_{\varepsilon}, \lambda)$ to indicate that this is an \mathcal{D}_{λ} -module. There are three cases.

λ not integral. Then in particular λ is regular. Irreducible (D_λ, K)-modules are I(C*, τ_ε, λ) for both ε = 0,1 (I({0}, λ) and I({∞}, λ) do not exist). Hence irreducible modules in Mod_{fq}(U_θ, K) are

$$\Gamma(X, \mathcal{I}(\mathbb{C}^*, \tau_0, \lambda)) = I_{B_0, 0, \lambda}, \tag{2.3.1}$$

$$\Gamma(X, \mathcal{I}(\mathbb{C}^*, \tau_1, \lambda)) = I_{B_0, 1, \lambda}, \tag{2.3.2}$$

which are irreducible principal series.

• $\lambda < 0$ integral. Irreducible $(\mathcal{D}_{\lambda}, K)$ -modules are $\mathcal{I}(\{0\}, \lambda), \mathcal{I}(\{\infty\}, \lambda), \mathcal{O}(\lambda + \rho), \text{ and } \mathcal{I}(\mathbb{C}^*, \tau_{\varepsilon}, \lambda)$ where ε satisfies the parity condition with λ . Hence irreducible modules in $Mod_{fg}(\mathcal{U}_{\theta}, K)$ are

$$\Gamma(X, \mathcal{O}(\lambda + \rho)) =: F_{\lambda + \rho}, \tag{2.3.3}$$

$$\Gamma(X, \mathcal{I}(\{0\}, \lambda)) = \mathcal{M}(\lambda) =: \mathcal{D}_{\theta}^{-},$$
(2.3.4)

$$\Gamma(X, \mathcal{I}(\{\infty\}, \lambda)) = \bar{\mathcal{M}}(-\lambda) \eqqcolon \mathcal{D}_{\theta}^{+}, \tag{2.3.5}$$

$$\Gamma(X, \mathcal{I}(\mathbb{C}^*, \tau_{\varepsilon}, \lambda)) = I_{B_0, \varepsilon, \lambda} \quad (\lambda, \varepsilon \text{ satisfy parity condition}).$$
(2.3.6)

The first is a finite dimensional representation with lowest weight $\lambda + \rho$ by Borel-Weil theorem. The second and third are Verma modules. In the language of analytic representation theory, they are called the **discrete series** representations (their matrix coefficients are L² functions on G₀). The last one is an irreducible principal series.

• $\lambda = 0$. Irreducible (\mathcal{D}_{λ}, K)-modules are the same as in the previous case. However $\mathcal{O}(\rho)$ now has no global section. Hence irreducible modules in $Mod_{fg}(\mathcal{U}_0, K)$ are

$$\Gamma(X, \mathcal{I}(\{0\}, 0)) = M(0) =: D_0^-, \tag{2.3.7}$$

$$\Gamma(X, \mathcal{I}(\{\infty\}, 0)) = M(0) =: D_0^+,$$
 (2.3.8)

$$\Gamma(X, \mathcal{I}(\mathbb{C}^*, \tau_{\varepsilon}, 0)) = I_{B_0, 0, 0}.$$
(2.3.9)

The first two are Verma modules. They are also classically called **limits of discrete series**. The third one is an irreducible principal series.

3. The Subrepresentation theorem

We want to show that every irreducible admissible module above embeds into a principal series representations.

The irreducible principal series embed into themselves.

For the finite dimensional representation, let $\lambda < 0$ be integral, and let ε fails the parity condition with λ . Apply $\Gamma(X, -)$ to the inclusion $\mathcal{O}(\lambda + \rho) \hookrightarrow \mathcal{I}(\mathbb{C}^*, \lambda, \tau_{\varepsilon})$ produces the inclusion

$$F_{\lambda+\rho} \longrightarrow I_{B_0,\varepsilon,\lambda} \tag{3.1}$$

into a reducible principal series.

For the discrete series, we have to look at domiant λ . Let $\lambda > 0$ be integral and ε failing the parity condition with λ . Take the long exact sequence of sheaf cohomologies on (2.2.24):

$$0 \longrightarrow \Gamma(X, \mathcal{O}(\lambda + \rho)) \longrightarrow \Gamma(X, \mathcal{I}(\mathbb{C}^*, \tau_{\varepsilon})) \longrightarrow \Gamma(X, \mathcal{I}(\{0\}, \lambda)) \oplus \Gamma(X, \mathcal{I}(\{\infty\}, \lambda)) \longrightarrow H^1(X, \mathcal{I}(\{0\}, \lambda)) \oplus H^1(X, \mathcal{I}(\{\infty\}, \lambda)) \longrightarrow 0$$

By Borel-Weil-Bott or (Serre duality)
$$\Gamma(X, \mathcal{O}(\lambda+\rho)) = 0$$
 and $H^1(X, \mathcal{O}(\lambda+\rho)) = \Gamma(X, \mathcal{O}(-\lambda+\rho)) = 0$
(3.2)

 $F_{-\lambda+\rho}$. $H^1(X, \mathcal{I}(\mathbb{C}^*, \tau_{\varepsilon})) = 0$ because, if we write $\pi : X \to \{*\}$ for the morphism to a point,

$$\mathsf{H}^{\mathsf{I}}(\mathsf{X},\mathcal{I}(\mathbb{C}^*,\tau_{\varepsilon})) = \mathsf{R}^{\mathsf{I}}\pi_*\mathfrak{i}_{\mathbb{C}^*,*}\tau_{\varepsilon}.$$
(3.3)

Since \mathbb{C}^* is affine, $i_{\mathbb{C}^*}$ is an affine morphism. So $Ri_{\mathbb{C}^*} = i_{\mathbb{C}^*}$. Hence

$$\mathsf{H}^{\mathsf{I}}(\mathsf{X},\mathcal{I}(\mathbb{C}^*,\tau_{\varepsilon}))=\mathsf{H}^{\mathsf{I}}\mathsf{R}\pi_*\mathsf{Ri}_{\mathbb{C}^*,*}\tau_{\varepsilon}=\mathsf{R}^{\mathsf{I}}(\pi\circ\mathfrak{i}_{\mathbb{C}^*})_*\tau_{\varepsilon}.$$
(3.4)

The map $\pi \circ i_{\mathbb{C}^*}$ is also affine, so $R^1(\pi \circ i_{\mathbb{C}^*})_* = 0$, and the claim follows. Therefore we obtain a short exact sequence

$$0 \longrightarrow I_{B_0,\epsilon,\lambda} \longrightarrow M(\lambda) \oplus \overline{M}(-\lambda) \longrightarrow F_{-\lambda+\rho} \longrightarrow 0,$$
(3.5)

where $M(\lambda)$ and $M(-\lambda)$ contains the discrete series D_{θ}^- and D_{θ}^+ , respectively. If the image of $I_{B_0,\epsilon,\lambda}$ in $M(\lambda) \oplus \overline{M}(-\lambda)$ does not contain D_{θ}^- , then $I_{B_0,\epsilon,\lambda}$ will intersect trivially with D_{θ}^- , and D_{θ}^- will be mapped isomorphically into $F_{-\lambda+\rho}$. This is impossible by dimension consideration. Hence D_{θ}^- and similarly D_{θ}^+ are both contained in the principal series $I_{B_0,\epsilon,\lambda}$. This completes the verification of the Subrepresentation theorem.

4. Comparison with Langlands classification

The Langlands classification states:

Theorem 4.1 (Langlands). Let G_0 be a connected real semisimple Lie group with finite center, $G_0 = K_0 A_0 N_0$ a Iwasawa decomposition, $P_0 = M_0 A_0 N_0$ a minimal parabolic subgroup. Then irreducible admissible representations of (g_0, K_0) are parameterized by triples

$$(\mathsf{P}_0', \sigma, \lambda) \tag{4.2}$$

where $P'_0 = M'_0 A'_0 N'_0$ is a parabolic subgroup of G_0 containing P_0 , σ is a tempered representation of M'_0 , and $\nu \in (\mathfrak{a}'_0)^*$ is such that Re $\alpha^{\vee}(\lambda) < 0$ for any positive restricted root α of $(\mathfrak{g}_0, \mathfrak{a}'_0)$ determined by N'_0 . The irreducible representation corresponding to (P'_0, σ, λ) is the unique irreducible subrepresentation of the parabolically induced module $I_{P'_0,\sigma,\lambda} = (Ind_{P'_0}^{G_0}(\sigma \otimes (\lambda + 1)))_{[K_0]}$.^[2]

Let us verify this on $SL(2, \mathbb{R})$.

Discrete series and the limits of discrete series are tempered. Hence they $\Gamma(X, \mathcal{I}(\{\bullet\}, \lambda)) = D_{\theta}^{\pm}$ (with $\bullet \in \{0, \infty\}$ and λ strongly antidominant) correspond to the triple $(G_0, D_{\theta}^{\pm}, 0)$.

The irreducible principal series $\Gamma(X, \mathcal{I}(\mathbb{C}^*, \tau_{\varepsilon}, \lambda)) = I_{B_0,\varepsilon,\lambda}$ (with λ strongly antidominant and ε satisfying the parity condition with λ) is itself parabolically induced. So it corresponds to $(B_0, \varepsilon, \lambda)$.

The finite dimensional representation $\Gamma(X, \mathcal{O}(\lambda + \rho)) = F_{\lambda+\rho}$ (for $\lambda \leq -1$ integral) embeds into a reducible principal series $I_{B_0,\epsilon,\lambda}$ (with ϵ failing the parity condition with λ) as discussed in the previous section. Hence it corresponds to (B_0, ϵ, λ) .

References

- [BeBe81] A. Beĭlinson and J. Bernstein. "Localisation de g-modules". In: C. R. Acad. Sci. Paris Sér. I Math. 292.1 (1981), pp. 15–18.
- [Bor+87] A. Borel et al. *Algebraic* D*-modules*. Vol. 2. Perspectives in Mathematics. Academic Press, Inc., Boston, MA, 1987, pp. xii+355.
- [Hec+] H. Hecht et al. "Localization and standard modules for real semisimple Lie groups II: Irreducibility, vanishing theorems and classification". In: (). to appear.
- [Mil] D. Miličić. *Localization and Representation Theory of Reductive Lie Groups*. unpublished manuscript.

^[2]Many books use the dual version where they require Re $\alpha^{\vee}(\lambda) > 0$ instead. The irreducible module becomes the unique irreducible quotient of the induced module.