GEOMETRIC AND LANGLANDS CLASSFICATION FOR SL($2, \mathbb{R}$)

QIXIAN ZHAO

These notes are written for the representation theory student seminar at University of Utah, Fall 2021, which aims to achieve the following

- Present the geometric classification of irreducible admissible representations of $\operatorname{SL}(2, \mathbb{R})$ and compare it to Langlands classification.
- Realize (non-unitary) principal series representations of $\operatorname{SL}(2, \mathbb{R})$ geometrically and demonstrate/verify Casselman's Subrepresentation Theorem for $\operatorname{SL}(2, \mathbb{R})$.
The calculation is mostly based on [Hec+, 4].
If you find any mistakes in the notes, please let me know. It would be much appreciated.

Contents

General notations

1. Principal series
2. Geometric classification 4
2.1. \mathcal{D}-modules on closed orbits 6
2.2. Modules on the open orbit 7
2.3. Geometric classification 9
3. The Subrepresentation theorem 10
4. Comparison with Langlands classification 11

References 11

General notations

- $\mathrm{G}_{0}=\mathbf{S L}(2, \mathbb{R})$,
- $\mathrm{B}_{0}=\left\{\left(\begin{array}{ll}* & * \\ & *\end{array}\right) \in \mathbf{S L}(2, \mathbb{R})\right\}$,
- $M_{0}=\{ \pm \mathrm{I} \in \mathbf{S L}(2, \mathbb{R})\}$,
- $A_{0}=\left\{\left.\left(\begin{array}{ll}r & \\ & r^{-1}\end{array}\right) \in \mathbf{S L}(2, \mathbb{R}) \right\rvert\, r>0\right\}$,
- $\mathrm{N}_{0}=\left\{\left(\begin{array}{ll}1 & * \\ & 1\end{array}\right)\right\}$,
- $\mathrm{K}_{0}=\left\{\left.\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right) \right\rvert\, \theta \in \mathbb{R}\right\}$;
- $G=\operatorname{SL}(2, \mathbb{C})$,
- $\mathrm{B}=\left\{\left(\begin{array}{ll}* & * \\ & *\end{array}\right) \in \mathbf{S L}(2, \mathbb{C})\right\}$,
- $\mathbf{M}=\{ \pm \mathrm{I} \in \mathbf{S L}(2, \mathbb{C})\}$,
- $\mathrm{K}=\left\{\left(\begin{array}{ll}* & \\ & *\end{array}\right) \in \operatorname{SL}(2, \mathbb{C})\right\}$;
- $\mathfrak{g}_{0}=$ Lie G_{0}, etc, and $\mathfrak{h}=\mathfrak{k}$;
- W Weyl group of the root system of $(\mathfrak{g}, \mathfrak{h})$;
- λ an element of $\mathfrak{h}^{*} ; \theta=W \cdot \lambda$;
- $\mathcal{U}(\mathfrak{g})$ the universal enveloping algebra of $\mathfrak{g} ; \mathcal{Z}(\mathfrak{g})$ the center of $\mathcal{U}(\mathfrak{g}) ; S(\mathfrak{h})$ the symmetric algebra of \mathfrak{h};
- $\chi_{\lambda}: \mathcal{Z}(\mathfrak{g}) \rightarrow \mathbb{C}$ the infinitesimal character determined by $\lambda ; \mathcal{U}_{\theta}=\mathcal{U}(\mathfrak{g}) / \operatorname{ker} \chi_{\lambda} \mathcal{U}(\mathfrak{g})$;
- $\rho \in \mathfrak{h}^{*}$ is the half sum of positive roots determined by \mathfrak{b};
- $H_{r}=\left(\begin{array}{ll}-i \\ i & \end{array}\right), E_{r}=\frac{1}{2}\left(\begin{array}{cc}-i & 1 \\ 1 & \mathfrak{i}\end{array}\right), F_{r}=\frac{1}{2}\left(\begin{array}{cc}\mathfrak{i} & 1 \\ 1 & -\mathfrak{i}\end{array}\right)$;
- $\mathrm{H}=\left(\begin{array}{ll}1 & \\ & -1\end{array}\right), \mathrm{E}=\left(\begin{array}{ll} & 1 \\ 0 & \end{array}\right), \mathrm{F}=\left(\begin{array}{ll}1 & 0 \\ 1 & \end{array}\right)$.

1. Principal series

We first look at what principal series are and their structure.
Definition 1.1. A (non-unitary) principal series representation is a representation (L^{2}, continuously, or smoothly) induced from an irreducible finite dimensional representation of a minimal parabolic subgroup.

Principal series are useful because of their structures are easier to understand and because of the following theorem.

Theorem 1.2 (Casselman's Subrepresentation Theorem). Any irreducible admissible representation of $\left(\mathfrak{g}_{0}, \mathrm{~K}_{0}\right)$ on a Banach space can be embedded $\left(\left(\mathfrak{g}_{0}, \mathrm{~K}_{0}\right)\right.$-linearly $)$ into a principal series.

In the case of $G_{0}=S L(2, \mathbb{R}), B_{0}=M_{0} A_{0} N_{0}$ is a minimal parabolic subgroup. An irreducible representation of B_{0} necessarily takes the form $(\varepsilon \otimes v, \mathbb{C})$ where $\varepsilon=0$ or 1 (identified with the trivial or the sign representation of M_{0} by abuse of notation) and $v \in \mathbb{C}$ (identified with the weight $\left.v: \mathfrak{a}_{0} \cong \mathbb{R} \rightarrow \mathbb{C}, r \mapsto v r\right)$ with

$$
\begin{align*}
(\varepsilon \otimes v)(\pm \mathrm{I}) & =(\pm 1)^{\varepsilon} \text { for } \pm \mathrm{I} \in M_{0} \tag{1.3}\\
(\varepsilon \otimes v)(a) & =e^{v \log a} \text { for } a \in A_{0} \tag{1.4}\\
(\varepsilon \otimes v)(n) & =1 \text { for } n \in N_{0} \tag{1.5}
\end{align*}
$$

Its continuous induction to G_{0} is

$$
\begin{equation*}
\operatorname{Ind}_{B_{0}}^{G_{0}}(\varepsilon \otimes v)=\left\{f: G_{0} \rightarrow \mathbb{C}_{\varepsilon, v} \mid f \text { is continuous } ; \forall p \in B_{0}, f(p g)=(\varepsilon \otimes v)(p) \cdot f(g)\right\} \tag{1.6}
\end{equation*}
$$

This is also frequently denoted by $\mathrm{I}_{\mathrm{B}_{0}, \varepsilon, v-1}$ (the parameter $v-1$ is what people called the normalized parameter).

Taking K_{0}-finite vectors, we obtain a $\left(\mathfrak{g}_{0}, K_{0}\right)$-module $\left(\operatorname{Ind}_{B_{0}}^{G_{0}}(\varepsilon \otimes v)\right)_{\left[K_{0}\right]}$, where the \mathfrak{g}_{0}-action is given by

$$
\begin{equation*}
\left(\xi \cdot f_{n}\right)(g)=\left.\frac{d}{d t} f_{n}\left(g e^{t \xi}\right)\right|_{t=0} \tag{1.7}
\end{equation*}
$$

(convergence is automatic by K_{0}-finiteness). We want to describe the structure of this module.
Let $\eta_{n}\left(n \in \mathbb{Z}_{\geqslant 0}\right)$ be the 1 -dimensional representation of K_{0} with

$$
\eta_{n}\left(\left(\begin{array}{cc}
\cos \theta & -\sin \theta \tag{1.8}\\
\sin \theta & \cos \theta
\end{array}\right)\right) \cdot v=e^{i n \theta} v
$$

By Iwasawa decomposition $G_{0}=N_{0} A_{0} K_{0}$, restriction to K_{0} defines a K_{0}-equivariant linear isomorphism

$$
\begin{equation*}
\operatorname{Ind}_{\mathrm{B}_{0}}^{\mathrm{G}_{0}}(\varepsilon \otimes v) \cong \operatorname{Ind}_{\mathrm{M}_{0}}^{\mathrm{K}_{0}} \varepsilon, \tag{1.9}
\end{equation*}
$$

and the right side encodes all information on K_{0}-types. Combined with Frobenius reciprocity,

$$
\begin{equation*}
\operatorname{Hom}_{K_{0}}\left(\eta_{n}, \operatorname{Ind}_{B_{0}}^{G_{0}}(\varepsilon \otimes v)\right) \cong \operatorname{Hom}_{K_{0}}\left(\eta_{n}, \operatorname{Ind}_{M_{0}}^{K_{0}} \varepsilon\right) \cong \operatorname{Hom}_{M_{0}}\left(\eta_{\mathfrak{n}}, \varepsilon\right) \tag{1.10}
\end{equation*}
$$

$\operatorname{Hom}_{M_{0}}\left(\eta_{n}, \varepsilon\right)$ consists of linear maps $\varphi: \mathbb{C} \rightarrow \mathbb{C}$ satisfying $\varphi\left((-1)^{n} v\right)=(-1)^{\varepsilon} \varphi(v)$. This space is 1 -dimensional if $n \equiv \varepsilon \bmod 2$ and is 0 otherwise. Hence,

$$
\begin{align*}
\operatorname{dim}\left(\operatorname{Ind}_{\mathrm{B}_{0}}^{G_{0}}(\varepsilon \otimes v)\right)_{\left[\mathrm{K}_{0}\right], \eta_{n}} & =\operatorname{dim} \operatorname{Hom}_{\mathrm{K}_{0}}\left(\eta_{n},\left(\operatorname{Ind}_{\mathrm{B}_{0}}^{G_{0}}(\varepsilon \otimes v)\right)_{\left[\mathrm{K}_{0}\right]}\right) \tag{1.11}\\
& =\operatorname{dim} \operatorname{Hom}_{\mathrm{K}_{0}}\left(\eta_{n}, \operatorname{Ind}_{\mathrm{B}_{0}}^{G_{0}}(\varepsilon \otimes v)\right) \tag{1.12}\\
& = \begin{cases}1 & n \equiv \varepsilon \bmod 2, \\
0 & n \not \equiv \varepsilon \bmod 2,\end{cases} \tag{1.13}
\end{align*}
$$

where the η_{n} subscript denotes the corresponding isotypic component. Let $\omega_{-n} \in\left(\operatorname{Ind}_{B_{0}}^{G_{0}}(\varepsilon \otimes\right.$ $v))_{\left[K_{0}\right], \eta_{n}}$ be a nonzero vector. Then since $\left(\operatorname{Ind}_{B_{0}}^{G_{0}}(\varepsilon \otimes v)\right)_{\left[K_{0}\right]}$ is the sum of all K_{0}-types,

$$
\begin{equation*}
\left\{\omega_{-n} \mid n \in \eta+2 \mathbb{Z}\right\} \tag{1.14}
\end{equation*}
$$

is a basis for $\left(\operatorname{Ind}_{B_{0}}^{G_{0}}(\varepsilon \otimes v)\right)_{\left[K_{0}\right]}$. Explicitly, we can take

$$
\left.\omega_{-n}\right|_{K_{0}}: K_{0} \rightarrow \mathbb{C}, \quad\left(\begin{array}{cc}
\cos \theta & -\sin \theta \tag{1.15}\\
\sin \theta & \cos \theta
\end{array}\right) \mapsto e^{\mathfrak{i n} \theta}
$$

and extend it to G_{0} by left $N_{0} A_{0}$-linearity. One computes (using (1.7) and Iwasawa decomposition) that

$$
\begin{align*}
& H_{r} \cdot i^{\frac{n}{2}} \omega_{n}=n i^{\frac{n}{2}} \omega_{n}, \tag{1.16}\\
& E_{r} \cdot i^{\frac{n}{2}} \omega_{n}=-\frac{i}{2}(n+v) i^{\frac{n+2}{2}} \omega_{n+2} \tag{1.17}\\
& F_{r} \cdot i^{\frac{n}{2}} \omega_{n}=-\frac{i}{2}(n-v) i^{\frac{n-2}{2}} \omega_{n-2} \tag{1.18}
\end{align*}
$$

To match the geometric calculation in $\S 2$, we set $v=\lambda+\rho=\lambda+1$. Then the structure of $\left(\operatorname{Ind}_{B_{0}}^{G_{0}}(\varepsilon \otimes v)\right)_{\left[K_{0}\right]}$ can be described diagrammatically as

We also pre-compose the action $\left(\mathfrak{g}_{0}, \mathrm{~K}_{0}\right) \subset\left(\operatorname{Ind}_{\mathrm{B}_{0}}^{\mathrm{G}_{0}}(\varepsilon \otimes v)\right)_{\left[\mathrm{K}_{0}\right]}$ with the complexification of the isomorphism

$$
\mathbf{S U}(1,1) \xrightarrow{\sim} \mathbf{S L}(2, \mathbb{R}), \quad g \mapsto\left(\begin{array}{ll}
1 & \mathfrak{i} \tag{1.20}\\
\mathfrak{i} & 1
\end{array}\right) g\left(\begin{array}{ll}
1 & \mathfrak{i} \\
\mathfrak{i} & 1
\end{array}\right)^{-1}
$$

which sends K to the complexification of K_{0} and H to H_{r}, E to E_{r} and F to F_{r}. Then the action $\mathfrak{g} \subset\left(\operatorname{Ind}_{\mathrm{B}_{0}}^{\mathrm{G}_{0}}(\varepsilon \otimes v)\right)_{\left[\mathrm{K}_{0}\right]}$ can be described by the same diagram except now arrows denote actions of E, F, H instead of E_{r}, F_{r}, H_{r}. From this, we can compute the action of the center $\mathcal{Z}(\mathfrak{g})$ by using the Casimir element

$$
\begin{equation*}
\Omega=\mathrm{H}^{2}-2 \mathrm{H}+4 \mathrm{EF} \tag{1.21}
\end{equation*}
$$

(which generates $\mathcal{Z}(\mathfrak{g})$ as a \mathbb{C}-algebra). One checks that $\Omega \cdot \omega_{n}=\left(\lambda^{2}-1\right) \omega_{n}$. On the other hand, if χ_{λ} denotes the character on $\mathcal{Z}(\mathfrak{g})$ determined by $\lambda, \chi_{\lambda}(\Omega)=\lambda^{2}-1$ because, by the definition of χ_{λ},

$$
\begin{equation*}
\Omega \xrightarrow[\text { determined by }\{E, H, F\}]{\text { proj. to } \mathbb{C} \cdot H \text { w.r.t the PBW basis }} H^{2}-2 H \underset{\text { by } \rho}{\stackrel{\text { shift }}{\longrightarrow}} H^{2}-1 \stackrel{\lambda}{\hookrightarrow} \lambda^{2}-1 . \tag{1.22}
\end{equation*}
$$

Hence $\left(\operatorname{Ind}_{\mathrm{B}_{0}}^{\mathrm{G}_{0}}(\varepsilon \otimes v)\right)_{\left[\mathrm{K}_{0}\right]}$ has infinitesimal character χ_{λ}.
In $\S 2$ we will realize principal series and the Subrepresentation theorem via \mathcal{D}-modules on the flag variety.

2. GEOMETRIC CLASSIFICATION

We turn to describing the geometric classification of irreducible admissible representations of (\mathfrak{g}, K).

Let's first recall the general setting. Suppose $\mathfrak{g} \supset \mathfrak{b} \supset \mathfrak{h}$ is a complex semisimple Lie algebra, a Borel subalgebra, and a Cartan subalgebra, and $G \supset B \supset T$ algebraic groups with $\mathfrak{g}, \mathfrak{b}, \mathfrak{h}$ as respective Lie algebras. Let W be the Weyl group of the root system of $(\mathfrak{g}, \mathfrak{h})$. Consider the flag variety X of \mathfrak{g}. This is the variety of all Borel subalgebras of \mathfrak{g}; equivalently this is the variety G / B. For each $\lambda \in \mathfrak{h}^{*}$, there is a G-homogeneous twisted sheaf of differential operators ("htdo" for short) \mathcal{D}_{λ} on $X^{[1]}$. This parametrization is normalized so that when λ is integral, \mathcal{D}_{λ} is the sheaf of differential operators on the homogeneous line bundle $\mathcal{O}_{X}(\lambda+\rho)$ (in particular $\mathcal{D}_{-\rho}=\mathcal{D}_{X}$ and $\mathcal{D}_{\rho}=\mathcal{D}_{\omega_{\chi}}$). If χ_{λ} is the infinitesimal character determined by λ and the Harish-Chandra homomorphism $\mathcal{Z}(\mathfrak{g}) \rightarrow S(\mathfrak{h})^{W}$, then

$$
\begin{equation*}
\Gamma\left(X, \mathcal{D}_{\lambda}\right)=\mathcal{U}(\mathfrak{g}) / \operatorname{ker} \chi_{\lambda} \mathcal{U}(\mathfrak{g}) \tag{2.1}
\end{equation*}
$$

(due to Beilinson-Bernstein [BeBe81]; see also [Mil, 2.6]). Since $\chi_{\lambda} \subseteq \mathcal{Z}(\mathfrak{g})$ only depends on the W-orbit θ of λ, we denote $\mathcal{U}(\mathfrak{g}) / \operatorname{ker} \chi_{\lambda} \mathcal{U}(\mathfrak{g})$ by \mathcal{U}_{θ}.

Therefore we can localize a \mathfrak{g}-module to a \mathcal{D}_{λ} on X, in the same way as localizing a module over a commutative ring R to produce a sheaf on Spec R; conversely, given a \mathcal{D}_{λ}-module, its global section is a \mathfrak{g}-module. In nice cases, this is an equivalence of categories of modules on both sides. On one side we have $\operatorname{Mod}_{\mathrm{fg}}\left(\mathcal{U}_{\theta}, \mathrm{K}\right)$, the category of finitely generated (\mathfrak{g}, K)-modules with infinitesimal character χ_{λ}; on the other side we have $\operatorname{Mod}_{\text {coh }}\left(\mathcal{D}_{\lambda}, K\right)$, the category of coherent (i.e. locally finitely generated) (\mathcal{D}_{λ}, K)-modules. Here a $\left(\mathcal{D}_{\lambda}, K\right)$-module is a \mathcal{D}_{λ}-module with a compatible K -action, where compatibility means that the action of $\mathfrak{k} \subset \mathcal{D}_{\lambda}$ agrees with the action coming from differentiation of K-action).

In order to achieve equivalence, we need some conditions on λ. λ is said to be antidominant if $\alpha^{\vee}(\lambda) \notin \mathbb{Z}_{>0}$ for any positive root α, and regular if $\alpha^{\vee}(\lambda) \neq 0$ for any root α.
Theorem 2.2 (Beilinson-Bernstein; see also [Mil, 3.1]).

- If λ is antidominant, localization is an equivalence of categories

$$
\begin{equation*}
\operatorname{Mod}\left(\mathcal{U}_{\theta}, K\right) \cong Q \operatorname{Mod}_{\operatorname{coh}}\left(\mathcal{D}_{\lambda}, K\right) \tag{2.3}
\end{equation*}
$$

where $\operatorname{L~Mod}_{\text {coh }}\left(\mathcal{D}_{\lambda}, \mathrm{K}\right)$ is the quotient of $\operatorname{Mod}_{\text {coh }}\left(\mathcal{D}_{\lambda}, \mathrm{K}\right)$ by modules with no global sections.

- If λ is antidominant regular, localization is an equivalence of categories

$$
\begin{equation*}
\operatorname{Mod}\left(\mathcal{U}_{\theta}, K\right) \cong \operatorname{Mod}_{\operatorname{coh}}\left(\mathcal{D}_{\lambda}, K\right) \tag{2.4}
\end{equation*}
$$

[^0]- If λ is regular, derived localization is an equivalence of categories

$$
\begin{equation*}
\mathrm{D}\left(\mathcal{U}_{\theta}\right) \cong \mathrm{D}\left(\mathcal{D}_{\lambda}\right) \tag{2.5}
\end{equation*}
$$

where the left side the derived category of \mathcal{U}_{θ}-modules, and the right side is the derived category of quasicoherent \mathcal{D}_{λ}-modules.
The quasi-inverse to these equivalences are given by the (derived) functor of taking global sections.
Therefore we can translate the study of $(\mathfrak{g}, \mathrm{K})$-modules with an infinitesimal character to \mathcal{D} modules. Regarding irreducible \mathcal{D}-modules:
Theorem 2.6 (Beilinson-Bernstein; see also [Mil, §4.5]). Irreducible coherent ($\mathcal{D}_{\lambda}, \mathrm{K}$)-modules are parametrized by pairs (Q, τ) where Q is a K -orbit in X and τ is an irreducible K -homogeneous connection on Q compatible with $\lambda+\rho$. It is the unique irreducible submodule of the direct image of τ to X .

Here, " τ compatible with $\lambda+\rho$ " means that τ is a $\left(\left.\mathcal{D}_{\lambda}\right|_{\{0\}}, K\right)$-module, where $\mathcal{D}_{\lambda} \mid\{0\}$ is the pullback of \mathcal{D}_{λ} to $\{0\}$ along the inclusion map. Let $\mathcal{L}(Q, \tau)$ denote the irreducible module corresponding to (Q, τ) and $\mathcal{I}(\mathrm{Q}, \tau)$ the direct image of $\tau . \mathcal{I}(\mathrm{Q}, \tau)$ is called a standard module.

Now we specify to $\operatorname{SL}(2, \mathbb{C})$.
Let $X=\mathbb{P}^{1}$. The representation $G=\mathbf{S L}(2, \mathbb{C}) \subset \mathbb{C}^{2}$ descends to a transitive action on X whose stabilizer at the image of $(1,0) \in \mathbb{C}^{2}$ is B. Hence the orbit map induces an isomorphism $G / B \xrightarrow{\sim} X$ and X is the flag variety of G. Let $0, \infty \in X$ denote the images of $(1,0),(0,1) \in \mathbb{C}^{2}$, respectively. Let $U_{0}=X-\{\infty\}$ and $U_{\infty}=X-\{0\}$, both isomorphic to \mathbb{A}^{1} as varieties with coordinates

$$
\begin{align*}
x: \mathrm{U}_{0} \rightarrow \mathbb{C}, & (\mathrm{~s}, \mathrm{t}) \mapsto \frac{\mathrm{t}}{\mathrm{~s}}, \tag{2.7}\\
\mathrm{y}: \mathrm{U}_{\infty} \rightarrow \mathbb{C}, & (\mathrm{s}, \mathrm{t}) \mapsto \frac{\mathrm{s}}{\mathrm{t}} \tag{2.8}
\end{align*}
$$

respectively. On a point z in the overlap $z \in \mathrm{U}_{0} \cap \mathrm{U}_{\infty}=\mathbb{C}^{*}, x(z)=1 / \mathrm{y}(z)$.
Let $\lambda, \rho \in \mathfrak{h}^{*}$ as before. We can describe local sections of \mathcal{D}_{λ} explicitly using a trivialization over U_{0} and U_{∞}, as follows.

Lemma 2.9. There is a trivialization of \mathcal{D}_{λ} on X described as follows.

- On U_{0},

$$
\begin{align*}
E & =-\chi^{2} \partial_{x}-(\lambda+\rho)(H) x, \tag{2.10}\\
H & =2 x \partial_{x}+(\lambda+\rho)(H), \tag{2.11}\\
F & =\partial_{x} . \tag{2.12}
\end{align*}
$$

(i.e. there is an isomorphism $\mathcal{D}_{\lambda} \mid \mathrm{u}_{0} \xrightarrow{\sim} \mathcal{D}_{\mathrm{u}_{0}}$ so that the composition $\mathfrak{g} \rightarrow \Gamma\left(\mathrm{X}, \mathcal{D}_{\lambda}\right) \rightarrow \Gamma\left(\mathrm{U}_{0}, \mathcal{D}_{\lambda}\right) \xrightarrow{\sim}$ $\Gamma\left(\mathrm{U}_{0}, \mathcal{D}_{\mathrm{U}_{0}}\right)$ sends $\mathrm{E}, \mathrm{F}, \mathrm{H}$ to the respective operators on the right hand side),

- on U_{∞},

$$
\begin{align*}
\mathrm{E} & =\partial_{y} \tag{2.13}\\
\mathrm{H} & =-2 y \partial_{y}-(\lambda+\rho)(H), \tag{2.14}\\
F & =-y^{2} \partial_{y}-(\lambda+\rho)(H) y \tag{2.15}
\end{align*}
$$

which, when further restricted to $\mathbb{C}^{*}=\mathrm{U}_{0} \cap \mathrm{U}_{\infty}$, equals (using $\mathrm{y}=\mathrm{x}^{-1}, \partial_{y}=-x^{2} \partial_{x}$)

$$
\begin{align*}
E & =-x^{2} \partial_{x} \tag{2.16}\\
H & =2 x \partial_{x}-(\lambda+\rho)(H) \tag{2.17}\\
F & =\partial_{x}-(\lambda+\rho)(H) x^{-1} \tag{2.18}
\end{align*}
$$

- and on \mathbb{C}^{*} the transition map is given by (in the coordinate $\left(x, \partial_{x}\right)$)

$$
\begin{equation*}
\left.\left.\mathcal{D}_{\mathrm{u}_{0}}\right|_{\mathbb{C}^{*}} \xrightarrow{\sim} \mathcal{D}_{\mathrm{u}_{\infty}}\right|_{\mathbb{C}^{*}}, \quad \partial_{x} \mapsto \partial_{x}-(\lambda+\rho)(\mathrm{H}) \mathrm{x}^{-1} . \tag{2.19}
\end{equation*}
$$

These are calculated using the definition of \mathcal{D}_{λ} and the bracket relations between E, F, H. See [Hect, 4] for details.

Now we look at the standard and irreducible \mathcal{D}-modules on X. K-orbits are $\{0\},\{\infty\}$ and \mathbb{C}^{*}.
2.1. \mathcal{D}-modules on closed orbits. Let $\mathfrak{i}_{0}:\{0\} \rightarrow X$ be the inclusion map. The pullback of \mathcal{D}_{λ} to $\{0\}$ is denoted by $\mathcal{D}_{\lambda}^{i_{0}}$. Recall that, for a morphism $\varphi: G_{1} / S_{1} \rightarrow G_{2} / S_{2}$ of homogeneous spaces, $G_{i}-$ htdo's on G_{i} / S_{i} are parametrized by S_{i}-invariant elements in \mathfrak{s}_{i}^{*}, and for $\lambda \in\left(\mathfrak{s}_{2}^{*}\right)^{S_{2}}$, the pullback $\mathcal{D}_{\mathrm{G}_{2} / \mathrm{H}_{2}, \lambda}$ of $\mathcal{D}_{\mathrm{G}_{2} / \mathrm{H}_{2}, \lambda}$ has parameter given by $\lambda_{\mathfrak{s}_{1}}$. Applied to our situation, $\mathcal{D}_{\lambda}^{\mathrm{i}_{0}}$ has parameter given by $\left.\lambda\right|_{\mathfrak{h}}$. This means that the image of H under $\mathfrak{k} \rightarrow \mathcal{D}_{\lambda}^{\mathfrak{i}_{0}}$ is equal to $(\lambda+\rho)(H)=\lambda+1$.

Let τ be an irreducible K-homogeneous connection on the orbit $\{0\}$. The stabilizer of the only point is K itself. So τ, viewed as an irreducible K -homogenous vector bundle, is simply an irreducible algebraic representation of K, which must be of the form \mathbb{C}_{μ} for some integral $\mu \in$ $\mathfrak{k}^{*}=\mathfrak{h}^{*}$. On the other hand, τ is a $\mathcal{D}_{\lambda}^{i_{0}}$-module, so H acts on τ by $\lambda+\rho$. Hence $\lambda+\rho=\mu$, and λ must be integral for τ to exist.

Assuming integrality of $\lambda, \mathcal{I}(\{0\}, \lambda)$ can be computed explicitly by the definition of direct image functor: let $\mathfrak{m}_{0} \subseteq \mathcal{O}_{X}$ be the ideal (sheaf) of functions vanishing on $\{0\}$, then

$$
\begin{align*}
\mathcal{I}(\{0\}, \lambda) & =\mathfrak{i}_{0,+} \mathbb{C}_{\lambda+\rho} \tag{2.1.1}\\
& =\mathfrak{i}_{0, *}\left(\mathcal{D}_{\lambda} / \mathcal{D}_{\lambda} \mathfrak{m}_{0} \otimes \mathbb{C}\right) \tag{2.1.2}\\
& =\mathfrak{i}_{0, *} \mathcal{D}_{\lambda} / \mathcal{D}_{\lambda} \mathfrak{m}_{0} . \tag{2.1.3}
\end{align*}
$$

On $\mathrm{U}_{0} \mathcal{D}_{\lambda} \cong \mathcal{D}_{\mathrm{U}_{0}}$ has basis given by $\partial_{x}^{m} x^{n}, m, n \in \mathbb{Z}_{\geqslant 0}$. So

$$
\begin{equation*}
\mathcal{D}_{\lambda} / \mathcal{D}_{\lambda} \mathfrak{m}_{0}=\operatorname{span}_{\mathbb{C}}\left\{1, \partial_{x}, \partial_{x}^{2}, \ldots\right\} \tag{2.1.4}
\end{equation*}
$$

The Lie algebra elements acts as left multiplication by the operators given in the trivialization (2.10)-(2.12). So

$$
\begin{align*}
H \cdot \partial_{x}^{m} & =\left(2 x \partial_{x}+(\lambda+1)\right) \partial_{x}^{m} \tag{2.1.5}\\
& =2 x \partial_{x}^{m+1}+(\lambda+1) \partial_{x}^{m} \tag{2.1.6}\\
& =2 \partial_{x}^{m+1} x-2(m+1) \partial_{x}^{m}+(\lambda+1) \partial_{x}^{m} \tag{2.1.7}\\
& =0+(\lambda-2 m-1) \partial_{x}^{m} \tag{2.1.8}\\
& =(\lambda-2 m-1) \partial_{x}^{m} . \tag{2.1.9}
\end{align*}
$$

Similarly

$$
\begin{align*}
& \mathrm{E} \cdot \partial_{x}^{m}=m(\lambda-m) \partial_{x}^{m-1} \tag{2.1.10}\\
& \mathrm{~F} \cdot \partial_{x}^{m}=\partial_{x}^{m+1} . \tag{2.1.11}
\end{align*}
$$

Therefore the structure of $\Gamma(\mathrm{U}, \mathcal{I}(\{0\}, \lambda))$ for any open set $\mathrm{U} \ni 0$ can be described diagrammatically as

This is an irreducible \mathcal{D}-module because x sends $\mathbb{C} \cdot \partial_{x}^{m}$ to $\mathbb{C} \cdot \partial_{x}^{m-1}$ and ∂_{x} sends $\mathbb{C} \cdot \partial_{x}^{m}$ to $\mathbb{C} \cdot \partial_{x}^{m+1}$. This can also be seen using Kashiwara's theorem:

Theorem 2.1.13 (Kashiwara (see [Bor+87, VI.7])). If $\varphi: Z \hookrightarrow X$ is a closed immersion between smooth varieties and \mathcal{D} a tdo on X, φ_{+}is concentrated at degree 0 and $\mathrm{H}^{0} \varphi_{+}$is an equivalence of categories

$$
\begin{equation*}
\operatorname{Mod}_{\mathrm{qcoh}}\left(\mathcal{D}^{\varphi}\right) \cong \operatorname{Mod}_{\mathrm{qcoh}, \mathrm{Z}}(\mathcal{D}) \tag{2.1.14}
\end{equation*}
$$

where the subscript qcoh denotes quasi-coherence, and the subscript Z denotes modules supported in Z. The quasi-inverse is the functor φ ! which takes sections supported in Z. This restricts to an equivalence of categories between coherent modules.

The global section $\Gamma(X, \mathcal{I}(\{0\}, \lambda))$ is the Verma module $M(\lambda)=\mathcal{U}(\mathfrak{g}) \otimes_{\mathcal{U}(\mathfrak{b})} \mathbb{C}_{\lambda-\rho}$.
A similar thing happen for the orbit at $\{\infty\}$, except we get a Verma module $\bar{M}(-\lambda)$ for the opposite Borel subalgebra.

Lemma 2.1.15. $\mathcal{I}(\{0\}, \lambda)$ and $\mathcal{I}(\{\infty\}, \lambda)$ exist if and only if λ is integral. If this is the case,

$$
\begin{align*}
\Gamma(X, \mathcal{I}(\{0\}, \lambda)) & =M(\lambda), \text { and } \tag{2.1.16}\\
\Gamma(X, \mathcal{I}(\{\infty\}, \lambda)) & =\bar{M}(-\lambda) . \tag{2.1.17}
\end{align*}
$$

They are irreducible precisely when $\lambda \leqslant 0$. If $\lambda \geqslant 1$, they contain $M(-\lambda)$ and $\bar{M}(-\lambda)$ as irreducible submodules, respectively, and the quotients are finite dimensional irreducible representations.
2.2. Modules on the open orbit. Now let us look at the open orbit \mathbb{C}^{*}. The stablizer of a point in K is $M=\{ \pm I\}$, so any the $(\lambda+\rho)$-compatibility condition is void because it is a requirement that boils down to the action of Lie algebra of the stablizer. Hence we are left to find irreducible K-homogeneous vector bundle on \mathbb{C}^{*}. They correspond to irreducible representations of M, which can only be $\{\operatorname{tr} v, \operatorname{sgn}\}$. Let τ_{ε} denote the vector bundle corresponding to $\varepsilon \in\{\operatorname{trv}, \operatorname{sgn}\}$. As before, by abuse of notation we also view ε as either 0 or 1 .

Recall that global section of τ_{ε} on \mathbb{C}^{*} is given by induction:

$$
\begin{equation*}
\Gamma\left(\mathbb{C}^{*}, \tau_{\varepsilon}\right)=\operatorname{Hom}_{M}\left(\mathrm{~K}, \mathbb{C}_{\varepsilon}\right) \tag{2.2.1}
\end{equation*}
$$

Let z be the coordinate on $K \cong \mathbb{C}^{*}$, this space is

$$
\left\{\mathrm{f} \in \Gamma\left(\mathrm{~K}, \mathcal{O}_{\mathrm{K}}\right) \mid \mathrm{f}(-z)=(-1)^{\varepsilon} \mathrm{f}(z)\right\}= \begin{cases}\oplus_{\mathrm{m} \in \mathbb{Z}} \mathbb{C} \cdot z^{2 \mathrm{~m}} & \varepsilon=0 \tag{2.2.2}\\ \oplus_{\mathrm{m} \in \mathbb{Z}} \mathbb{C} \cdot z^{2 \mathrm{~m}+1} & \varepsilon=1\end{cases}
$$

The action of H on $\Gamma\left(\mathbb{C}^{*}, \tau_{\varepsilon}\right)$ is the left regular representation:

$$
\begin{equation*}
\mathrm{H} \cdot z^{\mathrm{k}}=\mathrm{k} z^{\mathrm{k}} . \tag{2.2.3}
\end{equation*}
$$

However we want to view τ_{ε} as "functions" on $K / M=\mathbb{C}^{*}$. To do this, notice that inverse image along the quotient map

is an injection sending x to z^{2}. Hence we can view

$$
\begin{equation*}
\Gamma\left(\mathbb{C}^{*}, \tau_{0}\right)=\Gamma\left(\mathbb{C}^{*}, \mathcal{O}_{\mathbb{C}^{*}}\right)=\operatorname{span}_{\mathbb{C}}\left\{\chi^{p} \mid p \in \mathbb{Z}\right\} \tag{2.2.5}
\end{equation*}
$$

as \mathcal{O}-modules with H -action given by

$$
\begin{equation*}
H \cdot x^{p}=H \cdot z^{2 p}=2 p z^{2 p}=2 p x^{p}=2 x \partial_{x} \cdot x^{p}, \tag{2.2.6}
\end{equation*}
$$

i.e. H acts as $2 x \partial_{x} \in \mathcal{D}_{\mathbb{C}^{*}}$. Following the same spirit, we view

$$
\begin{equation*}
\Gamma\left(\mathbb{C}^{*}, \tau_{1}\right)=\operatorname{span}_{\mathbb{C}}\left\{\left.\chi^{p+\frac{1}{2}} \right\rvert\, p \in \mathbb{Z}\right\} \tag{2.2.7}
\end{equation*}
$$

where H acts as $2 x \partial_{x}$. In this way τ_{ε} become $\left(\mathcal{D}_{\mathbb{C}^{*}}, \mathrm{~K}\right)$-modules. There is only one isomorphism class of K -htdo on \mathbb{C}^{*} (because the parameterizing set is $\mathfrak{m}^{*}=0$), and the isomorphism from the trivialization (2.10)-(2.12) is given explicitly by

$$
\begin{equation*}
\left.\left.\mathcal{D}_{\mathrm{u}_{0}}\right|_{\mathbb{C}^{*}} \xrightarrow{\sim} \mathcal{D}_{\lambda}\right|_{\mathbb{C}^{*}} \xrightarrow{\sim} \mathcal{D}_{\mathbb{C}^{*}}, \quad \partial_{x} \mapsto \partial_{x}-\frac{\lambda+1}{2 x} \tag{2.2.8}
\end{equation*}
$$

under which

$$
\begin{align*}
E & =-x^{2} \partial_{x}-\frac{\lambda+1}{2} x \tag{2.2.9}\\
H & =2 x \partial_{x} \tag{2.2.10}\\
F & =\partial_{x}-\frac{\lambda+1}{2 x} \tag{2.2.11}
\end{align*}
$$

acting on $\Gamma\left(\mathbb{C}^{*}, \tau_{\varepsilon}\right)$ by the usual action of differential operators on functions:

$$
\begin{align*}
& E \cdot x^{n+\frac{\varepsilon}{2}}=-\left(n+\frac{\varepsilon+\lambda+1}{2}\right) x^{n+1+\frac{\varepsilon}{2}} \tag{2.2.12}\\
& H \cdot x^{n+\frac{\varepsilon}{2}}=(2 n+\varepsilon) x^{n+\frac{\varepsilon}{2}} \tag{2.2.13}\\
& F \cdot x^{n+\frac{\varepsilon}{2}}=\left(n+\frac{\varepsilon-\lambda-1}{2}\right) x^{n-1+\frac{\varepsilon}{2}} \tag{2.2.14}
\end{align*}
$$

The space of global sections of the standard module is then

$$
\begin{equation*}
\Gamma\left(X, \mathcal{I}\left(\mathbb{C}^{*}, \tau_{\varepsilon}\right)\right)=\Gamma\left(X, \mathfrak{i}_{\mathbb{C}^{*}, *} \tau_{\varepsilon}\right)=\Gamma\left(\mathbb{C}^{*}, \tau_{\varepsilon}\right) \tag{2.2.15}
\end{equation*}
$$

Using the explicit operators (2.2.9)-(2.2.11), it can be described diagrammatically as

Rewriting labels on the horizontal arrows by $-\left(n+\frac{\varepsilon+\lambda+1}{2}\right)=\frac{1}{2}((2 n+\varepsilon)+\lambda+1)$ and $n+\frac{\varepsilon-\lambda-1}{2}=$ $\frac{1}{2}((2 n+\varepsilon)-\lambda-1)$ and compare with (1.19), we see that this is the principal series discussed in $\S 1$ via

$$
\begin{equation*}
\Gamma\left(X, \mathcal{I}\left(\mathbb{C}^{*}, \tau_{\varepsilon}\right)\right) \xrightarrow{\sim} \mathrm{I}_{\mathrm{B}_{0}, \varepsilon, \lambda}, \quad x^{\mathrm{n}+\frac{\varepsilon}{2}} \mapsto i^{\frac{2 n+\varepsilon}{2}} \omega_{2 n+\varepsilon} \tag{2.2.17}
\end{equation*}
$$

(To be rigorous, I think we need to replace B_{0} by its conjugate under (1.20)).
Let us analyze reducibility of this module. From the above diagram, it is clear that this is reducible if and only if either $\frac{\varepsilon+\lambda+1}{2} \in \mathbb{Z}$ or $\frac{\varepsilon-\lambda-1}{2} \in \mathbb{Z}$. This is equivalent to $\lambda+\varepsilon$ being an odd integer. If this happens for one ε, then it will fail for the other ε. Therefore, if λ is not integral, $\Gamma\left(X, \mathcal{I}\left(\mathbb{C}^{*}, \tau_{\varepsilon}\right)\right)$ is irreducible; if λ is integral, one of $\Gamma\left(X, \mathcal{I}\left(\mathbb{C}^{*}, \tau_{0}\right)\right), \Gamma\left(X, \mathcal{I}\left(\mathbb{C}^{*}, \tau_{1}\right)\right)$ is irreducible and the other is reducible.

The condition that $\lambda+\varepsilon$ is not an odd integer is called the parity condition in [$\mathrm{Hec}+$].
Assuming λ to be integral, what is the unique irreducible submodule of the reducible one? By integrality of λ, the irreducible G-homogeneous connection $\mathcal{O}(\lambda+\rho)$ exists. It is a submodule of
$\mathcal{I}\left(\mathbb{C}^{*}, \tau_{\varepsilon}\right)$ if and only if there is a map into it. By adjunction of direct image and inverse image,

$$
\begin{align*}
\operatorname{Hom}_{\mathcal{D}_{\lambda}}\left(\mathcal{O}(\lambda+\rho), \mathcal{I}\left(\mathbb{C}^{*}, \tau_{\varepsilon}\right)\right) & =\operatorname{Hom}_{\mathcal{D}_{\mathbb{C}^{*}}}\left(\left.\mathcal{O}(\lambda+\rho)\right|_{\mathbb{C}^{*}}, \tau_{\varepsilon}\right) \tag{2.2.18}\\
& \cong \operatorname{Hom}_{M}\left(\mathcal{O}(\lambda+\rho)\left(x_{0}\right), \tau_{\varepsilon}\left(x_{0}\right)\right) . \tag{2.2.19}
\end{align*}
$$

where $x_{0} \in \mathbb{C}^{*}$ and $-\left(x_{0}\right)$ takes geometric fiber at x_{0}. This is nonzero if λ has the correct parity. When this is the case, $\mathcal{O}(\lambda+\rho)$ embeds into one of $\mathcal{I}\left(\mathbb{C}^{*}, \tau_{0}\right), \mathcal{I}\left(\mathbb{C}^{*}, \tau_{1}\right)$ and not into the other. In fact $\mathcal{O}(\lambda+\rho)$ embeds into the reducible one, because otherwise $\mathcal{O}(\lambda+\rho)=\mathcal{I}\left(\mathbb{C}^{*}, \tau_{\varepsilon}\right)$ (the irreducible one), which would imply

$$
\begin{equation*}
0 \neq i_{0}^{*} \mathcal{O}(\lambda+\rho)=i_{0}^{*} \mathcal{I}\left(\mathbf{C}^{*}, \tau_{\varepsilon}\right)=i_{0}^{*} i_{\mathbb{C}^{*}, *} \mathcal{O}_{\mathbb{C}^{*}}=0 \tag{2.2.20}
\end{equation*}
$$

as \mathcal{O}-modules, a contradiction.
Let \mathcal{V} be the cokernel of the inclusion:

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}(\lambda+\rho) \longrightarrow \mathcal{I}\left(\mathbb{C}^{*}, \tau_{\varepsilon}\right) \longrightarrow \mathcal{V} \longrightarrow 0 \tag{2.2.21}
\end{equation*}
$$

To see what \mathcal{V} is, look at the long exact sequence of derived pullback to $\{0\}$:

$i_{0}^{*} \mathcal{I}\left(\mathbb{C}^{*}, \tau_{\varepsilon}\right)=0$ by previous discussion. $i_{0}^{*} \mathcal{O}(\lambda+\rho)=\mathbb{C}$ as vector spaces. $i_{0}^{!} \mathcal{I}\left(\mathbb{C}^{*}, \tau_{\varepsilon}\right)=0$ either by \mathcal{D}-module base change theorem, or by directly computing $\operatorname{Tor}_{\mathbb{C}[x]}^{1}\left(\mathbb{C}\left[x, x^{-1}\right], \mathbb{C}\right)=0$. Therefore $R i_{0}^{!} \mathcal{V}=\mathbb{C}$ as vector spaces. Similarly $R i_{\infty}^{!} \mathcal{V}=\mathbb{C}$. Hence, by Kashiwara's theorem 2.1.13 $\mathcal{V}=\mathcal{I}(\{0\}, \lambda) \oplus \mathcal{I}(\{\infty\}, \lambda)$.

To summarize:

Lemma 2.2.23.

- $\Gamma\left(\mathrm{X}, \mathcal{I}\left(\mathbb{C}^{*}, \tau_{\varepsilon}\right)\right)=\mathrm{I}_{\mathrm{B}_{0}, \varepsilon, \lambda}$ is a principal series representation.
- If λ is not integral, $\mathcal{I}\left(\mathbb{C}^{*}, \tau_{\varepsilon}\right)$ is irreducible.
- If λ is integral and λ and ε satisfy the parity condition, $\mathcal{I}\left(\mathbb{C}^{*}, \tau_{\varepsilon}\right)$ is irreducible.
- If λ is integral and λ and ε fail the parity condition, $\mathcal{I}\left(\mathbb{C}^{*}, \tau_{\varepsilon}\right)$ is reducible and fits into the short exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}(\lambda+\rho) \longrightarrow \mathcal{I}\left(\mathbb{C}^{*}, \tau_{\varepsilon}\right) \longrightarrow \mathcal{I}(\{0\}, \lambda) \oplus \mathcal{I}(\{\infty\}, \lambda) \longrightarrow 0 \tag{2.2.24}
\end{equation*}
$$

2.3. Geometric classification. Invoking 2.2, we can obtain a classification of irreducible admissible (\mathfrak{g}, K)-modules.

Every irreducible module has an infinitesimal character by Dixmier's lemma, whence lies in $\operatorname{Mod}_{\mathrm{fg}}\left(\mathcal{U}_{\theta}, \mathrm{K}\right)$ for some Weyl group orbit θ. Let $\lambda \in \theta$ be the unique strongly antidomiant element in θ, that is, $\operatorname{Re} \alpha^{\vee}(\lambda) \leqslant 0$ for the positive root α. When λ is identified with a complex number, this just means that $\operatorname{Re} \lambda \leqslant 0$. To avoid confusion, write $\mathcal{I}\left(\mathbb{C}^{*}, \tau_{\varepsilon}, \lambda\right)$ to indicate that this is an \mathcal{D}_{λ}-module. There are three cases.

- λ not integral. Then in particular λ is regular. Irreducible $\left(\mathcal{D}_{\lambda}, \mathrm{K}\right)$-modules are $\mathcal{I}\left(\mathbb{C}^{*}, \tau_{\varepsilon}, \lambda\right)$ for both $\varepsilon=0,1(\mathcal{I}(\{0\}, \lambda)$ and $\mathcal{I}(\{\infty\}, \lambda)$ do not exist). Hence irreducible modules in $\operatorname{Mod}_{\mathrm{fg}}\left(\mathcal{U}_{\theta}, \mathrm{K}\right)$ are

$$
\begin{align*}
& \Gamma\left(X, \mathcal{I}\left(\mathbb{C}^{*}, \tau_{0}, \lambda\right)\right)=\mathrm{I}_{\mathrm{B}_{0}, 0, \lambda}, \tag{2.3.1}\\
& \Gamma\left(\mathrm{X}, \mathcal{I}\left(\mathbb{C}^{*}, \tau_{1}, \lambda\right)\right)=\mathrm{I}_{\mathrm{B}_{0}, 1, \lambda}, \tag{2.3.2}
\end{align*}
$$

which are irreducible principal series.

- $\lambda<0$ integral. Irreducible $\left(\mathcal{D}_{\lambda}, K\right)$-modules are $\mathcal{I}(\{0\}, \lambda), \mathcal{I}(\{\infty\}, \lambda), \mathcal{O}(\lambda+\rho)$, and $\mathcal{I}\left(\mathbb{C}^{*}, \tau_{\varepsilon}, \lambda\right)$ where ε satisfies the parity condition with λ. Hence irreducible modules in $\operatorname{Mod}_{f g}\left(\mathcal{U}_{\theta}, K\right)$ are

$$
\begin{align*}
\Gamma(X, \mathcal{O}(\lambda+\rho)) & =: F_{\lambda+\rho}, \tag{2.3.3}\\
\Gamma(X, \mathcal{I}(\{0\}, \lambda)) & =M(\lambda)=: D_{\theta}^{-} \tag{2.3.4}\\
\Gamma(X, \mathcal{I}(\{\infty\}, \lambda)) & =\bar{M}(-\lambda)=: D_{\theta}^{+} \tag{2.3.5}\\
\Gamma\left(X, \mathcal{I}\left(\mathbb{C}^{*}, \tau_{\varepsilon}, \lambda\right)\right) & =\mathrm{I}_{\mathrm{B}_{0}, \varepsilon, \lambda} \quad(\lambda, \varepsilon \text { satisfy parity condition }) . \tag{2.3.6}
\end{align*}
$$

The first is a finite dimensional representation with lowest weight $\lambda+\rho$ by Borel-Weil theorem. The second and third are Verma modules. In the language of analytic representation theory, they are called the discrete series representations (their matrix coefficients are L^{2} functions on G_{0}). The last one is an irreducible principal series.

- $\lambda=0$. Irreducible $\left(\mathcal{D}_{\lambda}, K\right)$-modules are the same as in the previous case. However $\mathcal{O}(\rho)$ now has no global section. Hence irreducible modules in $\operatorname{Mod}_{\mathrm{fg}}\left(\mathcal{U}_{0}, \mathrm{~K}\right)$ are

$$
\begin{align*}
\Gamma(\mathrm{X}, \mathcal{I}(\{0\}, 0)) & =\mathrm{M}(0)=: \mathrm{D}_{0}^{-} \tag{2.3.7}\\
\Gamma(\mathrm{X}, \mathcal{I}(\{\infty\}, 0)) & =\overline{\mathrm{M}}(0)=: \mathrm{D}_{0}^{+} \tag{2.3.8}\\
\Gamma\left(\mathrm{X}, \mathcal{I}\left(\mathbb{C}^{*}, \tau_{\varepsilon}, 0\right)\right) & =\mathrm{I}_{\mathrm{B}_{0}, 0,0} . \tag{2.3.9}
\end{align*}
$$

The first two are Verma modules. They are also classically called limits of discrete series. The third one is an irreducible principal series.

3. The Subrepresentation theorem

We want to show that every irreducible admissible module above embeds into a principal series representations.

The irreducible principal series embed into themselves.
For the finite dimensional representation, let $\lambda<0$ be integral, and let ε fails the parity condition with λ. Apply $\Gamma(\mathrm{X},-)$ to the inclusion $\mathcal{O}(\lambda+\rho) \hookrightarrow \mathcal{I}\left(\mathbb{C}^{*}, \lambda, \tau_{\varepsilon}\right)$ produces the inclusion

$$
\begin{equation*}
\mathrm{F}_{\lambda+\rho} \hookrightarrow \mathrm{I}_{\mathrm{B}_{0}, \varepsilon, \lambda} \tag{3.1}
\end{equation*}
$$

into a reducible principal series.
For the discrete series, we have to look at domiant λ. Let $\lambda>0$ be integral and ε failing the parity condition with λ. Take the long exact sequence of sheaf cohomologies on (2.2.24):

$$
\begin{align*}
0 & \longrightarrow \Gamma(X, \mathcal{O}(\lambda+\rho)) \longrightarrow \Gamma\left(X, \mathcal{I}\left(\mathbb{C}^{*}, \tau_{\varepsilon}\right)\right) \longrightarrow \Gamma(X, \mathcal{I}(\{0\}, \lambda)) \oplus \Gamma(X, \mathcal{I}(\{\infty\}, \lambda)) \longrightarrow \\
& \longrightarrow \mathrm{H}^{1}(\mathrm{X}, \mathcal{O}(\lambda+\rho)) \longrightarrow \mathrm{H}^{1}\left(\mathrm{X}, \mathcal{I}\left(\mathbb{C}^{*}, \tau_{\varepsilon}\right)\right) \longrightarrow \mathrm{H}^{1}(\mathrm{X}, \mathcal{I}(\{0\}, \lambda)) \oplus \mathrm{H}^{1}(\mathrm{X}, \mathcal{I}(\{\infty\}, \lambda)) \longrightarrow 0 \tag{3.2}
\end{align*}
$$

By Borel-Weil-Bott or (Serre duality) $\Gamma(X, \mathcal{O}(\lambda+\rho))=0$ and $H^{1}(X, \mathcal{O}(\lambda+\rho))=\Gamma(X, \mathcal{O}(-\lambda+\rho))=$ $\mathrm{F}_{-\lambda+\rho} . \mathrm{H}^{1}\left(\mathrm{X}, \mathcal{I}\left(\mathbb{C}^{*}, \tau_{\varepsilon}\right)\right)=0$ because, if we write $\pi: \mathrm{X} \rightarrow\{*\}$ for the morphism to a point,

$$
\begin{equation*}
\mathrm{H}^{1}\left(\mathrm{X}, \mathcal{I}\left(\mathbb{C}^{*}, \tau_{\varepsilon}\right)\right)=\mathrm{R}^{1} \pi_{*} \dot{\mathbb{C}}_{\mathbb{C}^{*}, *} \tau_{\varepsilon} . \tag{3.3}
\end{equation*}
$$

Since \mathbb{C}^{*} is affine, $\mathfrak{i}_{\mathbb{C}^{*}}$ is an affine morphism. So $R i_{\mathbb{C}^{*}}=\mathfrak{i}_{\mathbb{C}^{*}}$. Hence

$$
\begin{equation*}
\mathrm{H}^{1}\left(\mathrm{X}, \mathcal{I}\left(\mathbb{C}^{*}, \tau_{\varepsilon}\right)\right)=\mathrm{H}^{1} \mathrm{R} \pi_{*} \mathrm{Ri}_{\mathbb{C}^{*}, *} \tau_{\varepsilon}=\mathrm{R}^{1}\left(\pi \circ \mathfrak{i}_{\mathbb{C}^{*}}\right)_{*} \tau_{\varepsilon} \tag{3.4}
\end{equation*}
$$

The map $\pi \circ \mathfrak{i}_{\mathbb{C}^{*}}$ is also affine, so $R^{1}\left(\pi \circ \mathfrak{i}_{\mathbb{C}^{*}}\right)_{*}=0$, and the claim follows. Therefore we obtain a short exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathrm{I}_{\mathrm{B}_{0}, \varepsilon, \lambda} \longrightarrow \mathrm{M}(\lambda) \oplus \overline{\mathcal{M}}(-\lambda) \longrightarrow \mathrm{F}_{-\lambda+\rho} \longrightarrow 0, \tag{3.5}
\end{equation*}
$$

where $\mathcal{M}(\lambda)$ and $\bar{M}(-\lambda)$ contains the discrete series D_{θ}^{-}and D_{θ}^{+}, respectively. If the image of $\mathrm{I}_{\mathrm{B}_{0}, \varepsilon, \lambda}$ in $M(\lambda) \oplus \bar{M}(-\lambda)$ does not contain D_{θ}^{-}, then $\mathrm{I}_{\mathrm{B}_{0}, \varepsilon, \lambda}$ will intersect trivially with D_{θ}^{-}, and D_{θ}^{-}will be mapped isomorphically into $F_{-\lambda+\rho}$. This is impossible by dimension consideration. Hence D_{θ}^{-}and similarly D_{θ}^{+}are both contained in the principal series $\mathrm{I}_{\mathrm{B}_{0}, \varepsilon, \lambda}$. This completes the verification of the Subrepresentation theorem.

4. Comparison with Langlands classification

The Langlands classification states:
Theorem 4.1 (Langlands). Let G_{0} be a connected real semisimple Lie group with finite center, $\mathrm{G}_{0}=$ $\mathrm{K}_{0} \mathrm{~A}_{0} \mathrm{~N}_{0}$ a Iwasawa decomposition, $\mathrm{P}_{0}=\mathrm{M}_{0} \mathrm{~A}_{0} \mathrm{~N}_{0}$ a minimal parabolic subgroup. Then irreducible admissible representations of $\left(\mathfrak{g}_{0}, \mathrm{~K}_{0}\right)$ are parameterized by triples

$$
\begin{equation*}
\left(P_{0}^{\prime}, \sigma, \lambda\right) \tag{4.2}
\end{equation*}
$$

where $P_{0}^{\prime}=M_{0}^{\prime} A_{0}^{\prime} N_{0}^{\prime}$ is a parabolic subgroup of G_{0} containing P_{0}, σ is a tempered representation of M_{0}^{\prime}, and $v \in\left(\mathfrak{a}_{0}^{\prime}\right)^{*}$ is such that $\operatorname{Re} \alpha^{\vee}(\lambda)<0$ for any positive restricted root α of $\left(\mathfrak{g}_{0}, \mathfrak{a}_{0}^{\prime}\right)$ determined by N_{0}^{\prime}. The irreducible representation corresponding to $\left(\mathrm{P}_{0}^{\prime}, \sigma, \lambda\right)$ is the unique irreducible subrepresentation of the parabolically induced module $\mathrm{I}_{\mathrm{P}_{0}^{\prime}, \sigma, \lambda}=\left(\operatorname{Ind}_{\mathrm{P}_{0}^{\prime}}^{\mathrm{G}^{\prime}}(\sigma \otimes(\lambda+1))\right)_{\left[\mathrm{K}_{0}\right]}^{[2]}$

Let us verify this on $\operatorname{SL}(2, \mathbb{R})$.
Discrete series and the limits of discrete series are tempered. Hence they $\Gamma(X, \mathcal{I}(\{\bullet\}, \lambda))=D_{\theta}^{ \pm}$ (with $\bullet \in\{0, \infty\}$ and λ strongly antidominant) correspond to the triple ($\left.\mathrm{G}_{0}, \mathrm{D}_{\theta}^{ \pm}, 0\right)$.

The irreducible principal series $\Gamma\left(\mathrm{X}, \mathcal{I}\left(\mathbb{C}^{*}, \tau_{\varepsilon}, \lambda\right)\right)=\mathrm{I}_{\mathrm{B}_{0}, \varepsilon, \lambda}$ (with λ strongly antidominant and ε satisfying the parity condition with λ) is itself parabolically induced. So it corresponds to ($B_{0}, \varepsilon, \lambda$).

The finite dimensional representation $\Gamma(X, \mathcal{O}(\lambda+\rho))=F_{\lambda+\rho}$ (for $\lambda \leqslant-1$ integral) embed into a reducible principal series $\mathrm{I}_{\mathrm{B}_{0}, \varepsilon, \lambda}$ (with ε failing the parity condition with λ) as discussed in the previous section. Hence it corresponds to ($\mathrm{B}_{0}, \varepsilon, \lambda$).

References

[BeBe81] A. Beйlinson and J. Bernstein. "Localisation de g-modules". In: C. R. Acad. Sci. Paris Sér. I Math. 292.1 (1981), pp. 15-18.
[Bor+87] A. Borel et al. Algebraic D-modules. Vol. 2. Perspectives in Mathematics. Academic Press, Inc., Boston, MA, 1987, pp. xii+355.
[Hec+] H. Hecht et al. "Localization and standard modules for real semisimple Lie groups II: Irreducibility, vanishing theorems and classification". In: (). to appear.
[Mil] D. Miličić. Localization and Representation Theory of Reductive Lie Groups. unpublished manuscript.

[^1]
[^0]: ${ }^{[1]}$ Here λ should really be an element of \mathfrak{H}^{*} where \mathfrak{H} is the universal Cartan algebra of \mathfrak{g}. Since we won't go into the precise construction of \mathcal{D}_{λ} 's, this won't make a difference later.

[^1]: ${ }^{[2]}$ Many books use the dual version where they require $\operatorname{Re} \alpha^{\vee}(\lambda)>0$ instead. The irreducible module becomes the unique irreducible quotient of the induced module.

