
GEOMETRIC AND LANGLANDS CLASSFICATION FOR SL(2,R)

QIXIAN ZHAO

These notes are written for the representation theory student seminar at University of Utah,
Fall 2021, which aims to achieve the following

‚ Present the geometric classification of irreducible admissible representations of SL(2,R)
and compare it to Langlands classification.

‚ Realize (non‑unitary) principal series representations ofSL(2,R)geometrically anddemon‑
strate/verify Casselman’s Subrepresentation Theorem for SL(2,R).

The calculation is mostly based on [Hec+, 4].
If you find any mistakes in the notes, please let me know. It would be much appreciated.
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GENERAL NOTATIONS
‚ G0 = SL(2,R),

‚ B0 =

{(
˚ ˚

˚

)
P SL(2,R)

}
,

‚ M0 = {˘I P SL(2,R)},

‚ A0 =

{(
r

r−1

)
P SL(2,R) | r ą 0

}
,

‚ N0 =

{(
1 ˚

1

)}
,

‚ K0 =

{(
cos θ − sin θ
sin θ cos θ

)
| θ P R

}
;

‚ G = SL(2,C),

‚ B =

{(
˚ ˚

˚

)
P SL(2,C)

}
,

‚ M = {˘I P SL(2,C)},

‚ K =

{(
˚

˚

)
P SL(2,C)

}
;
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‚ g0 = LieG0, etc, and h = k;
‚ W Weyl group of the root system of (g, h);
‚ λ an element of h˚; θ = W ¨ λ;
‚ U(g) the universal enveloping algebra of g; Z(g) the center of U(g); S(h) the symmetric
algebra of h;

‚ χλ : Z(g) → C the infinitesimal character determined by λ; Uθ = U(g){kerχλU(g);
‚ ρ P h˚ is the half sum of positive roots determined by b;

‚ Hr =

(
−i

i

)
, Er =

1

2

(
−i 1

1 i

)
, Fr =

1

2

(
i 1

1 −i

)
;

‚ H =

(
1

−1

)
, E =

(
1

0

)
, F =

(
0

1

)
.

1. PRINCIPAL SERIES
We first look at what principal series are and their structure.

Definition 1.1. A (non‑unitary) principal series representation is a representation (L2, continu‑
ously, or smoothly) induced from an irreducible finite dimensional representation of a minimal
parabolic subgroup.

Principal series are useful because of their structures are easier to understand and because of
the following theorem.

Theorem 1.2 (Casselman’s Subrepresentation Theorem). Any irreducible admissible representation
of (g0, K0) on a Banach space can be embedded ((g0, K0)‑linearly) into a principal series.

In the case of G0 = SL(2,R), B0 = M0A0N0 is a minimal parabolic subgroup. An irreducible
representation of B0 necessarily takes the form (ε b ν,C) where ε = 0 or 1 (identified with the
trivial or the sign representation of M0 by abuse of notation) and ν P C (identified with the
weight ν : a0 – R → C, r Þ→ νr) with

(ε b ν)(˘I) = (˘1)ε for ˘ I P M0, (1.3)
(ε b ν)(a) = eν loga for a P A0, (1.4)
(ε b ν)(n) = 1 for n P N0. (1.5)

Its continuous induction to G0 is
IndG0

B0
(ε b ν) = {f : G0 → Cε,ν | f is continuous; @p P B0, f(pg) = (ε b ν)(p) ¨ f(g)}. (1.6)

This is also frequently denoted by IB0,ε,ν−1 (the parameter ν − 1 is what people called the nor‑
malized parameter).
Taking K0‑finite vectors, we obtain a (g0, K0)‑module

(
IndG0

B0
(εbν)

)
[K0]

, where the g0‑action is
given by

(ξ ¨ fn)(g) =
d

dt
fn(ge

tξ)
∣∣∣
t=0

(1.7)

(convergence is automatic by K0‑finiteness). We want to describe the structure of this module.
Let ηn (n P Zě0) be the 1‑dimensional representation of K0 with

ηn

((
cos θ − sin θ
sin θ cos θ

))
¨ v = einθv. (1.8)

By Iwasawa decomposition G0 = N0A0K0, restriction to K0 defines a K0‑equivariant linear iso‑
morphism

IndG0

B0
(ε b ν) – IndK0

M0
ε, (1.9)
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and the right side encodes all information on K0‑types. Combined with Frobenius reciprocity,

HomK0
(ηn, IndG0

B0
(ε b ν)) – HomK0

(ηn, IndK0

M0
ε) – HomM0

(ηn, ε). (1.10)

HomM0
(ηn, ε) consists of linear maps φ : C → C satisfying φ((−1)nv) = (−1)εφ(v). This space

is 1‑dimensional if n ” ε mod 2 and is 0 otherwise. Hence,

dim
(
IndG0

B0
(ε b ν)

)
[K0],ηn

= dimHomK0
(ηn,

(
IndG0

B0
(ε b ν)

)
[K0]

) (1.11)

= dimHomK0
(ηn, IndG0

B0
(ε b ν)) (1.12)

=

{
1 n ” ε mod 2,

0 n ı ε mod 2,
(1.13)

where the ηn subscript denotes the corresponding isotypic component. Let ω−n P
(
IndG0

B0
(ε b

ν)
)
[K0],ηn

be a nonzero vector. Then since
(
IndG0

B0
(ε b ν)

)
[K0]

is the sum of all K0‑types,

{ω−n | n P η+ 2Z} (1.14)

is a basis for
(
IndG0

B0
(ε b ν)

)
[K0]

. Explicitly, we can take

ω−n|K0
: K0 → C,

(
cos θ − sin θ
sin θ cos θ

)
Þ→ einθ (1.15)

and extend it to G0 by leftN0A0‑linearity. One computes (using (1.7) and Iwasawa decomposi‑
tion) that

Hr ¨ i
n
2 ωn = ni

n
2 ωn, (1.16)

Er ¨ i
n
2 ωn = −

i

2
(n+ ν)i

n+2
2 ωn+2, (1.17)

Fr ¨ i
n
2 ωn = −

i

2
(n− ν)i

n−2
2 ωn−2. (1.18)

To match the geometric calculation in §2, we set ν = λ + ρ = λ + 1. Then the structure of(
IndG0

B0
(ε b ν)

)
[K0]

can be described diagrammatically as

¨ ¨ ¨ C ¨ i
n−2
2 ωn−2 C ¨ i

n
2 ωn C ¨ i

n+2
2 ωn+2 ¨ ¨ ¨ ,‘

− 1
2
(n+λ−1)

n−2

‘

− 1
2
(n+λ+1)

1
2
(n−λ−1)

n

‘

n+2

1
2
(n−λ+1)

‘

Er

Fr

Hr

(1.19)
We also pre‑compose the action (g0, K0) ý

(
IndG0

B0
(ε b ν)

)
[K0]

with the complexification of the
isomorphism

SU(1, 1) ∼−→ SL(2,R), g Þ→ (
1 i

i 1

)
g

(
1 i

i 1

)−1

(1.20)

which sends K to the complexification of K0 and H to Hr, E to Er and F to Fr. Then the action
g ý

(
IndG0

B0
(εbν)

)
[K0]

can be described by the same diagram except now arrows denote actions
of E, F,H instead of Er, Fr, Hr. From this, we can compute the action of the center Z(g) by using
the Casimir element

Ω = H2 − 2H+ 4EF (1.21)
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(which generatesZ(g) as aC‑algebra). One checks thatΩ ¨ωn = (λ2−1)ωn. On the other hand,
if χλ denotes the character on Z(g) determined by λ, χλ(Ω) = λ2 − 1 because, by the definition
of χλ,

Ω
proj. to C¨H w.r.t. the PBW basis

Þ−−−−−−−−−−−−−−−−−→
determined by {E,H,F}

H2 − 2H
shift

Þ−−→
by ρ

H2 − 1
λ

Þ−→ λ2 − 1. (1.22)

Hence
(
IndG0

B0
(ε b ν)

)
[K0]

has infinitesimal character χλ.
In §2 we will realize principal series and the Subrepresentation theorem via D‑modules on

the flag variety.

2. GEOMETRIC CLASSIFICATION
We turn to describing the geometric classification of irreducible admissible representations

of (g, K).
Let’s first recall the general setting. Suppose g Ą b Ą h is a complex semisimple Lie algebra,

a Borel subalgebra, and a Cartan subalgebra, and G Ą B Ą T algebraic groups with g, b, h as
respective Lie algebras. LetW be the Weyl group of the root system of (g, h). Consider the flag
variety X of g. This is the variety of all Borel subalgebras of g; equivalently this is the variety
G{B. For each λ P h˚, there is a G‑homogeneous twisted sheaf of differential operators (“htdo” for
short) Dλ on X[1]. This parametrization is normalized so that when λ is integral, Dλ is the sheaf
of differential operators on the homogeneous line bundle OX(λ + ρ) (in particular D−ρ = DX

and Dρ = DωX
). If χλ is the infinitesimal character determined by λ and the Harish‑Chandra

homomorphism Z(g) → S(h)W , then

Γ(X,Dλ) = U(g){kerχλU(g) (2.1)

(due to Beilinson‑Bernstein [BeBe81]; see also [Mil, 2.6]). Since χλ Ď Z(g) only depends on the
W‑orbit θ of λ, we denote U(g){kerχλU(g) by Uθ.
Thereforewe can localize a g‑module to aDλ onX, in the sameway as localizing amodule over

a commutative ring R to produce a sheaf on SpecR; conversely, given a Dλ‑module, its global
section is a g‑module. In nice cases, this is an equivalence of categories of modules on both
sides. On one sidewe haveModfg(Uθ, K), the category of finitely generated (g, K)‑modules with
infinitesimal character χλ; on the other side we have Modcoh(Dλ, K), the category of coherent
(i.e. locally finitely generated) (Dλ, K)‑modules. Here a (Dλ, K)‑module is a Dλ‑module with a
compatible K‑action, where compatibility means that the action of k Ă Dλ agrees with the action
coming from differentiation of K‑action).
In order to achieve equivalence, we need some conditions on λ. λ is said to be antidominant

if α∨(λ) R Zą0 for any positive root α, and regular if α∨(λ) ‰ 0 for any root α.

Theorem 2.2 (Beilinson‑Bernstein; see also [Mil, 3.1]).
‚ If λ is antidominant, localization is an equivalence of categories

Mod(Uθ, K) – QModcoh(Dλ, K) (2.3)

where QModcoh(Dλ, K) is the quotient ofModcoh(Dλ, K) by modules with no global sections.
‚ If λ is antidominant regular, localization is an equivalence of categories

Mod(Uθ, K) – Modcoh(Dλ, K). (2.4)

[1]Here λ should really be an element of H˚ where H is the universal Cartan algebra of g. Since we won’t go into the
precise construction of Dλ’s, this won’t make a difference later.
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‚ If λ is regular, derived localization is an equivalence of categories
D(Uθ) – D(Dλ) (2.5)

where the left side the derived category of Uθ‑modules, and the right side is the derived category
of quasicoherent Dλ‑modules.

The quasi‑inverse to these equivalences are given by the (derived) functor of taking global sections.

Therefore we can translate the study of (g, K)‑modules with an infinitesimal character to D‑
modules. Regarding irreducible D‑modules:

Theorem 2.6 (Beilinson‑Bernstein; see also [Mil, §4.5]). Irreducible coherent (Dλ, K)‑modules are
parametrized by pairs (Q, τ)whereQ is aK‑orbit inX and τ is an irreducibleK‑homogeneous connection
on Q compatible with λ+ ρ. It is the unique irreducible submodule of the direct image of τ to X.

Here, “τ compatible with λ+ ρ” means that τ is a (Dλ|{0}, K)‑module, where Dλ|{0} is the pull‑
back of Dλ to {0} along the inclusion map. Let L(Q, τ) denote the irreducible module corre‑
sponding to (Q, τ) and I(Q, τ) the direct image of τ. I(Q, τ) is called a standard module.
Now we specify to SL(2,C).
Let X = P1. The representationG = SL(2,C) ýC2 descends to a transitive action on Xwhose

stabilizer at the image of (1, 0) P C2 isB. Hence the orbitmap induces an isomorphismG{B ∼−→ X

and X is the flag variety of G. Let 0,∞ P X denote the images of (1, 0), (0, 1) P C2, respectively.
Let U0 = X− {∞} and U∞ = X− {0}, both isomorphic to A1 as varieties with coordinates

x : U0 → C, (s, t) Þ→ t

s
, (2.7)

y : U∞ → C, (s, t) Þ→ s

t
, (2.8)

respectively. On a point z in the overlap z P U0 X U∞ = C˚, x(z) = 1{y(z).
Let λ, ρ P h˚ as before. We can describe local sections of Dλ explicitly using a trivialization

over U0 and U∞, as follows.

Lemma 2.9. There is a trivialization of Dλ on X described as follows.
‚ On U0,

E = −x2Bx − (λ+ ρ)(H)x, (2.10)
H = 2xBx + (λ+ ρ)(H), (2.11)
F = Bx. (2.12)

(i.e. there is an isomorphismDλ|U0

∼−→ DU0
so that the composition g → Γ(X,Dλ) → Γ(U0,Dλ)

∼−→
Γ(U0,DU0

) sends E, F,H to the respective operators on the right hand side),
‚ on U∞,

E = By, (2.13)
H = −2yBy − (λ+ ρ)(H), (2.14)
F = −y2By − (λ+ ρ)(H)y (2.15)

which, when further restricted to C˚ = U0 X U∞, equals (using y = x−1, By = −x2Bx)

E = −x2Bx, (2.16)
H = 2xBx − (λ+ ρ)(H), (2.17)
F = Bx − (λ+ ρ)(H)x−1; (2.18)



6 QIXIAN ZHAO

‚ and on C˚ the transition map is given by (in the coordinate (x, Bx))

DU0
|C˚

∼−→ DU∞ |C˚ , Bx Þ→ Bx − (λ+ ρ)(H)x−1. (2.19)

These are calculated using the definition of Dλ and the bracket relations between E, F,H. See
[Hec+, 4] for details.
Now we look at the standard and irreducible D‑modules on X. K‑orbits are {0}, {∞} and C˚.

2.1. D‑modules on closed orbits. Let i0 : {0} → X be the inclusion map. The pullback of Dλ to
{0} is denoted byDi0

λ . Recall that, for amorphismφ : G1{S1 → G2{S2 of homogeneous spaces,Gi‑
htdo’s on Gi{Si are parametrized by Si‑invariant elements in s˚

i , and for λ P (s˚
2)

S2 , the pullback
Dφ

G2{H2,λ
of DG2{H2,λ has parameter given by λ|s1 . Applied to our situation, Di0

λ has parameter
given by λ|h. This means that the image of H under k → Di0

λ is equal to (λ+ ρ)(H) = λ+ 1.
Let τ be an irreducible K‑homogeneous connection on the orbit {0}. The stabilizer of the only

point is K itself. So τ, viewed as an irreducible K‑homogenous vector bundle, is simply an
irreducible algebraic representation of K, which must be of the form Cµ for some integral µ P

k˚ = h˚. On the other hand, τ is a Di0
λ ‑module, so H acts on τ by λ + ρ. Hence λ + ρ = µ, and λ

must be integral for τ to exist.
Assuming integrality of λ, I({0}, λ) can be computed explicitly by the definition of direct

image functor: let m0 Ď OX be the ideal (sheaf) of functions vanishing on {0}, then
I({0}, λ) = i0,+Cλ+ρ (2.1.1)

= i0,˚

(
Dλ{Dλm0 b

C
C
)

(2.1.2)

= i0,˚Dλ{Dλm0. (2.1.3)

On U0 Dλ – DU0
has basis given by Bm

x x
n,m,n P Zě0. So

Dλ{Dλm0 = spanC{1, Bx, B2
x, . . .}. (2.1.4)

The Lie algebra elements acts as left multiplication by the operators given in the trivialization
(2.10)‑(2.12). So

H ¨ Bm
x = (2xBx + (λ+ 1))Bm

x (2.1.5)
= 2xBm+1

x + (λ+ 1)Bm
x (2.1.6)

= 2Bm+1
x x− 2(m+ 1)Bm

x + (λ+ 1)Bm
x (2.1.7)

= 0+ (λ− 2m− 1)Bm
x (2.1.8)

= (λ− 2m− 1)Bm
x . (2.1.9)

Similarly

E ¨ Bm
x = m(λ−m)Bm−1

x , (2.1.10)
F ¨ Bm

x = Bm+1
x . (2.1.11)

Therefore the structure of Γ(U, I({0}, λ)) for any open set U Q 0 can be described diagrammati‑
cally as

¨ ¨ ¨ C ¨ B2
x C ¨ Bx C ¨ 1

3(λ−3)

‘

2(λ−2)

λ−5

‘

1

λ−1

1

λ−3

‘

λ−1

1

E

F

H

. (2.1.12)
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This is an irreducibleD‑module because x sendsC ¨ Bm
x to C ¨ Bm−1

x and Bx sendsC ¨ Bm
x to C ¨ Bm+1

x .
This can also be seen using Kashiwara’s theorem:

Theorem2.1.13 (Kashiwara (see [Bor+87, VI.7])). Ifφ : Z ↪→ X is a closed immersion between smooth
varieties and D a tdo on X, φ+ is concentrated at degree 0 and H0φ+ is an equivalence of categories

Modqcoh(Dφ) – Modqcoh,Z(D) (2.1.14)
where the subscript qcoh denotes quasi‑coherence, and the subscript Z denotes modules supported in Z.
The quasi‑inverse is the functor φ! which takes sections supported in Z. This restricts to an equivalence
of categories between coherent modules.

The global section Γ(X, I({0}, λ)) is the Verma moduleM(λ) = U(g) bU(b) Cλ−ρ.
A similar thing happen for the orbit at {∞}, except we get a Verma module M̄(−λ) for the

opposite Borel subalgebra.

Lemma 2.1.15. I({0}, λ) and I({∞}, λ) exist if and only if λ is integral. If this is the case,
Γ(X, I({0}, λ)) = M(λ), and (2.1.16)

Γ(X, I({∞}, λ)) = M̄(−λ). (2.1.17)

They are irreducible precisely when λ ď 0. If λ ě 1, they contain M(−λ) and M̄(−λ) as irreducible
submodules, respectively, and the quotients are finite dimensional irreducible representations.

2.2. Modules on the open orbit. Now let us look at the open orbit C˚. The stablizer of a point
in K isM = {˘I}, so any the (λ + ρ)‑compatibility condition is void because it is a requirement
that boils down to the action of Lie algebra of the stablizer. Hence we are left to find irreducible
K‑homogeneous vector bundle on C˚. They correspond to irreducible representations of M,
which can only be {trv, sgn}. Let τε denote the vector bundle corresponding to ε P {trv, sgn}.
As before, by abuse of notation we also view ε as either 0 or 1.
Recall that global section of τε on C˚ is given by induction:

Γ(C˚, τε) = HomM(K,Cε). (2.2.1)
Let z be the coordinate on K – C˚, this space is

{f P Γ(K,OK) | f(−z) = (−1)εf(z)} =

{
À

mPZ C ¨ z2m ε = 0,
À

mPZ C ¨ z2m+1 ε = 1.
(2.2.2)

The action of H on Γ(C˚, τε) is the left regular representation:

H ¨ zk = kzk. (2.2.3)
However we want to view τε as “functions” on K{M = C˚. To do this, notice that inverse image
along the quotient map

K C˚
z

K{M C˚
x

–

–

(2.2.4)

is an injection sending x to z2. Hence we can view
Γ(C˚, τ0) = Γ(C˚,OC˚) = spanC{x

p | p P Z} (2.2.5)
as O‑modules with H‑action given by

H ¨ xp = H ¨ z2p = 2pz2p = 2pxp = 2xBx ¨ xp, (2.2.6)
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i.e. H acts as 2xBx P DC˚ . Following the same spirit, we view

Γ(C˚, τ1) = spanC{x
p+ 1

2 | p P Z} (2.2.7)

where H acts as 2xBx. In this way τε become (DC˚ , K)‑modules. There is only one isomorphism
class of K‑htdo onC˚ (because the parameterizing set ism˚ = 0), and the isomorphism from the
trivialization (2.10)‑(2.12) is given explicitly by

DU0
|C˚

∼−→ Dλ|C˚
∼−→ DC˚ , Bx Þ→ Bx −

λ+ 1

2x
(2.2.8)

under which

E = −x2Bx −
λ+ 1

2
x, (2.2.9)

H = 2xBx, (2.2.10)

F = Bx −
λ+ 1

2x
, (2.2.11)

acting on Γ(C˚, τε) by the usual action of differential operators on functions:

E ¨ xn+
ε
2 = −

(
n+

ε+ λ+ 1

2

)
xn+1+ ε

2 , (2.2.12)

H ¨ xn+
ε
2 = (2n+ ε)xn+

ε
2 , (2.2.13)

F ¨ xn+
ε
2 =

(
n+

ε− λ− 1

2

)
xn−1+ ε

2 . (2.2.14)

The space of global sections of the standard module is then

Γ(X, I(C˚, τε)) = Γ(X, iC˚,˚τε) = Γ(C˚, τε). (2.2.15)

Using the explicit operators (2.2.9)‑(2.2.11), it can be described diagrammatically as

¨ ¨ ¨ C ¨ xn−1+ ε
2 C ¨ xn+

ε
2 C ¨ xn+1+ ε

2 ¨ ¨ ¨ ,‘

−(n−1+ ε+λ+1
2 )

2n−2+ε

‘

−(n+ ε+λ+1
2 )

n+ ε−λ−1
2

2n+ε

‘

2n+2+ε
n+1+ ε−λ−1

2

‘

Er

Fr

Hr

(2.2.16)
Rewriting labels on the horizontal arrows by−

(
n+ ε+λ+1

2

)
= 1

2
((2n+ε)+λ+1) and n+ ε−λ−1

2
=

1
2
((2n+ ε) − λ− 1) and compare with (1.19), we see that this is the principal series discussed in
§1 via

Γ(X, I(C˚, τε))
∼−→ IB0,ε,λ, xn+

ε
2 Þ→ i

2n+ε
2 ω2n+ε. (2.2.17)

(To be rigorous, I think we need to replace B0 by its conjugate under (1.20)).
Let us analyze reducibility of this module. From the above diagram, it is clear that this is

reducible if and only if either ε+λ+1
2

P Z or ε−λ−1
2

P Z. This is equivalent to λ + ε being an odd
integer. If this happens for one ε, then it will fail for the other ε. Therefore, if λ is not integral,
Γ(X, I(C˚, τε)) is irreducible; if λ is integral, one of Γ(X, I(C˚, τ0)), Γ(X, I(C˚, τ1)) is irreducible
and the other is reducible.
The condition that λ+ ε is not an odd integer is called the parity condition in [Hec+].
Assuming λ to be integral, what is the unique irreducible submodule of the reducible one? By

integrality of λ, the irreducibleG‑homogeneous connectionO(λ+ρ) exists. It is a submodule of
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I(C˚, τε) if and only if there is a map into it. By adjunction of direct image and inverse image,

HomDλ
(O(λ+ ρ), I(C˚, τε)) = HomDC˚ (O(λ+ ρ)|C˚ , τε) (2.2.18)

– HomM(O(λ+ ρ)(x0), τε(x0)). (2.2.19)

where x0 P C˚ and −(x0) takes geometric fiber at x0. This is nonzero if λ has the correct parity.
When this is the case, O(λ + ρ) embeds into one of I(C˚, τ0), I(C˚, τ1) and not into the other.
In fact O(λ + ρ) embeds into the reducible one, because otherwise O(λ + ρ) = I(C˚, τε) (the
irreducible one), which would imply

0 ‰ i˚
0O(λ+ ρ) = i˚

0I(C˚, τε) = i˚
0 iC˚,˚OC˚ = 0 (2.2.20)

as O‑modules, a contradiction.
Let V be the cokernel of the inclusion:

0 −→ O(λ+ ρ) −→ I(C˚, τε) −→ V −→ 0. (2.2.21)

To see what V is, look at the long exact sequence of derived pullback to {0}:

0 i!0O(λ+ ρ) i!0I(C˚, τε) i!0V

i˚
0O(λ+ ρ) i˚

0I(C˚, τε) i˚
0V 0

(2.2.22)

i˚
0I(C˚, τε) = 0 by previous discussion. i˚

0O(λ + ρ) = C as vector spaces. i!0I(C˚, τε) = 0

either by D‑module base change theorem, or by directly computing Tor1C[x](C[x, x−1],C) = 0.
Therefore Ri!0V = C as vector spaces. Similarly Ri!∞V = C. Hence, by Kashiwara’s theorem
2.1.13 V = I({0}, λ) ‘ I({∞}, λ).
To summarize:

Lemma 2.2.23.
‚ Γ(X, I(C˚, τε)) = IB0,ε,λ is a principal series representation.
‚ If λ is not integral, I(C˚, τε) is irreducible.
‚ If λ is integral and λ and ε satisfy the parity condition, I(C˚, τε) is irreducible.
‚ If λ is integral and λ and ε fail the parity condition, I(C˚, τε) is reducible and fits into the short
exact sequence

0 −→ O(λ+ ρ) −→ I(C˚, τε) −→ I({0}, λ) ‘ I({∞}, λ) −→ 0. (2.2.24)

2.3. Geometric classification. Invoking 2.2, we can obtain a classification of irreducible admis‑
sible (g, K)‑modules.
Every irreducible module has an infinitesimal character by Dixmier’s lemma, whence lies in

Modfg(Uθ, K) for someWeyl group orbit θ. Let λ P θ be the unique strongly antidomiant element
in θ, that is, Reα∨(λ) ď 0 for the positive root α. When λ is identified with a complex number,
this just means that Re λ ď 0. To avoid confusion, write I(C˚, τε, λ) to indicate that this is an
Dλ‑module. There are three cases.

‚ λnot integral. Then in particular λ is regular. Irreducible (Dλ, K)‑modules are I(C˚, τε, λ)
for both ε = 0, 1 (I({0}, λ) and I({∞}, λ) do not exist). Hence irreducible modules in
Modfg(Uθ, K) are

Γ(X, I(C˚, τ0, λ)) = IB0,0,λ, (2.3.1)
Γ(X, I(C˚, τ1, λ)) = IB0,1,λ, (2.3.2)

which are irreducible principal series.
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‚ λ ă 0 integral. Irreducible (Dλ, K)‑modules are I({0}, λ), I({∞}, λ),O(λ+ρ), and I(C˚, τε, λ)
where ε satisfies the parity condition with λ. Hence irreducible modules inModfg(Uθ, K)
are

Γ(X,O(λ+ ρ)) =: Fλ+ρ, (2.3.3)
Γ(X, I({0}, λ)) = M(λ) =: D−

θ , (2.3.4)
Γ(X, I({∞}, λ)) = M̄(−λ) =: D+

θ , (2.3.5)
Γ(X, I(C˚, τε, λ)) = IB0,ε,λ (λ, ε satisfy parity condition). (2.3.6)

The first is a finite dimensional representation with lowest weight λ + ρ by Borel‑Weil
theorem. The second and third are Vermamodules. In the language of analytic represen‑
tation theory, they are called the discrete series representations (their matrix coefficients
are L2 functions on G0). The last one is an irreducible principal series.

‚ λ = 0. Irreducible (Dλ, K)‑modules are the same as in the previous case. However O(ρ)
now has no global section. Hence irreducible modules in Modfg(U0, K) are

Γ(X, I({0}, 0)) = M(0) =: D−
0 , (2.3.7)

Γ(X, I({∞}, 0)) = M̄(0) =: D+
0 , (2.3.8)

Γ(X, I(C˚, τε, 0)) = IB0,0,0. (2.3.9)

The first two areVermamodules. They are also classically called limits of discrete series.
The third one is an irreducible principal series.

3. THE SUBREPRESENTATION THEOREM
We want to show that every irreducible admissible module above embeds into a principal

series representations.
The irreducible principal series embed into themselves.
For the finite dimensional representation, let λ ă 0 be integral, and let ε fails the parity con‑

dition with λ. Apply Γ(X,−) to the inclusion O(λ+ ρ) ↪→ I(C˚, λ, τε) produces the inclusion

Fλ+ρ ↪−→ IB0,ε,λ (3.1)

into a reducible principal series.
For the discrete series, we have to look at domiant λ. Let λ ą 0 be integral and ε failing the

parity condition with λ. Take the long exact sequence of sheaf cohomologies on (2.2.24):

0 Γ(X,O(λ+ ρ)) Γ(X, I(C˚, τε)) Γ(X, I({0}, λ)) ‘ Γ(X, I({∞}, λ))

H1(X,O(λ+ ρ)) H1(X, I(C˚, τε)) H1(X, I({0}, λ)) ‘ H1(X, I({∞}, λ)) 0

.

(3.2)
By Borel‑Weil‑Bott or (Serre duality) Γ(X,O(λ+ρ)) = 0 andH1(X,O(λ+ρ)) = Γ(X,O(−λ+ρ)) =
F−λ+ρ. H1(X, I(C˚, τε)) = 0 because, if we write π : X → {˚} for the morphism to a point,

H1(X, I(C˚, τε)) = R1π˚iC˚,˚τε. (3.3)

Since C˚ is affine, iC˚ is an affine morphism. So RiC˚ = iC˚ . Hence

H1(X, I(C˚, τε)) = H1Rπ˚RiC˚,˚τε = R1(π ˝ iC˚)˚τε. (3.4)
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The map π ˝ iC˚ is also affine, so R1(π ˝ iC˚)˚ = 0, and the claim follows. Therefore we obtain a
short exact sequence

0 −→ IB0,ε,λ −→ M(λ) ‘ M̄(−λ) −→ F−λ+ρ −→ 0, (3.5)
where M(λ) and M̄(−λ) contains the discrete series D−

θ and D+
θ , respectively. If the image of

IB0,ε,λ in M(λ) ‘ M̄(−λ) does not contain D−
θ , then IB0,ε,λ will intersect trivially with D−

θ , and
D−

θ will be mapped isomorphically into F−λ+ρ. This is impossible by dimension consideration.
HenceD−

θ and similarlyD+
θ are both contained in the principal series IB0,ε,λ. This completes the

verification of the Subrepresentation theorem.

4. COMPARISON WITH LANGLANDS CLASSIFICATION
The Langlands classification states:

Theorem 4.1 (Langlands). Let G0 be a connected real semisimple Lie group with finite center, G0 =
K0A0N0 a Iwasawa decomposition, P0 = M0A0N0 a minimal parabolic subgroup. Then irreducible
admissible representations of (g0, K0) are parameterized by triples

(P 1
0, σ, λ) (4.2)

where P 1
0 = M 1

0A
1
0N

1
0 is a parabolic subgroup ofG0 containing P0, σ is a tempered representation ofM 1

0,
and ν P (a 1

0)
˚ is such that Reα∨(λ) ă 0 for any positive restricted root α of (g0, a 1

0) determined by N 1
0.

The irreducible representation corresponding to (P 1
0, σ, λ) is the unique irreducible subrepresentation of

the parabolically induced module IP 1
0
,σ,λ =

(
IndG0

P 1
0
(σ b (λ+ 1))

)
[K0]

.[2]

Let us verify this on SL(2,R).
Discrete series and the limits of discrete series are tempered. Hence they Γ(X, I({‚}, λ)) = D˘

θ

(with ‚ P {0,∞} and λ strongly antidominant) correspond to the triple (G0, D
˘
θ , 0).

The irreducible principal series Γ(X, I(C˚, τε, λ)) = IB0,ε,λ (with λ strongly antidominant and
ε satisfying the parity condition with λ) is itself parabolically induced. So it corresponds to
(B0, ε, λ).
The finite dimensional representation Γ(X,O(λ+ρ)) = Fλ+ρ (for λ ď −1 integral) embeds into

a reducible principal series IB0,ε,λ (with ε failing the parity condition with λ) as discussed in the
previous section. Hence it corresponds to (B0, ε, λ).
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