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LOOP GROUPS AND EQUATIONS OF KdV TYPE
by GRaEME SEGAL and Georce WILSON

The purpose of this paper is to work out some of the implications of recent ideas
of M. and Y. Sato about the Korteweg-de Vries (KdV) equation and related non-linear
partial differential equations. We learned of these ideas from the papers [5] of Date,
Jimbo, Kashiwara and Miwa (the original work of M. and Y. Sato appears to be available
only in Japanese). We shall describe a construction which assigns a solution of the
KdV equation to each point of a certain infinite dimensional Grassmannian. The class
of solutions obtained in this way, which is misleadingly referred to as  the general
solution ** in [5], includes the explicit algebro-geometric solutions of Krichever [10, 11];
among these are the well known ¢ n-soliton  and rational solutions.

Our main aims are to determine what class of solutions is obtained by the method,
to illustrate in detail how the geometry of the Grassmannian is reflected in properties
of the solutions, and to show how the algebro-geometric solutions fit into the picture.
We have also tried to explain the geometric meaning of the “ r-function ”’, which plays
a fundamental role in the papers [5]. But above all we have endeavoured to present
a clear and self-contained account of the theory, and hope to have elucidated a number
of points left obscure in the literature.

1. Introduction

The KdV equation
ou Bu 6 ou
—_— e — U —
ot 0ox3 ox

describes the time-evolution of a function u of the variable x: we think of the equation
geometrically as defining a flow on a suitable space of functions u. It is well known
that the theory of the equation is closely connected with that of the linear differential
operator L, = D? 4 u, where D = 9/dx, which is to be regarded as an operator on
functions of x which varies with time. In fact the KdV equation can be written in

the ¢ Lax form”
oL

¥ = y4[P,, L],
P 4[P,, L,]

where P, is the operator D3 -+ % (uD + Du).
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The operator P, is almost characterized by the fact that—for any function u—the
commutator [P,, L,] is a multiplication operator. More precisely, for given L, there
is a canonical sequence of operators

PP =D+ o D2 + ... +

such that each [P®, L,] is a multiplication operator, and any operator P with the same
property is a constant linear combination of the P¥. It turns out that the coefficients
of such an operator P must be differential polynomials in #, i.e. polynomials in % and
its x-derivatives &'u/dxi. For each %k the equation

(x.1) Lo _ 1o, 1]

o “
defines a flow on the space of functions of x. These flows are called the “ KdV hierarchy .
The case & = g is the original KdV equation (apart from the factor 4). When % =1
we have P{) = D, and the corresponding flow is just uniform translation of . When
k is even we have P = (L) so that the corresponding flow is stationary. It is
a fundamental theorem of the subject that the flows given by (1.1) for various & commute
among themselves.

In this paper we shall describe the KdV flows on a certain class € of functions u.
Our approach is in terms of the geometry of an infinite dimensional manifold which is
of considerable interest in its own right. It has two alternative descriptions. The
first is as the space QU, of loops in the unitary group U,. The second, more immedia-
tely relevant, description is as the Grassmannian Gr® of all closed subspaces W of the
Hilbert space H = L*(S') of square-summable complex-valued functions on the
circle S! ={zeC:|z| =1} which satisfy the two conditions
(i) 22WCW, and
(ii) W is comparable with H .

Here z denotes the operator H — H given by multiplication by the function z
on S, and H, is the closed subspace of H spanned by {z*} for &> o, i.e. the boundary
values of holomorphic functionsin |z| < 1. The meaning of ¢ comparable >’ is explained
in § 2.

Our basic construction associates to each point W in a connected component
of Gr'® a meromorphic function uy on the line, belonging to the class €. The group I',.
of holomorphic maps D, - G*, where D is the disc {2 e CG:2< 1}, acts by multi-
plication operators on H, and hence acts on Gr®. The action of I', induces the KdV
flows on ¢® in the following sense: if

g=expXt,fel,,
where (t;,t,, ...) are real numbers almost all zero, then u, is the function obtained

from uy by letting it flow for time ¢, along the k-th KdV flow, for each 2. (This makes
sense precisely because the KAV flows commute.)

6
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The meromorphic function uy is obtained from the so-called “ t-function ” 1y
of W by the formula

Uy (x) = 2 (%)2 log 7y (%) ;

Tw(x) is the determinant of the orthogonal projection ¢~ W —H_. Of course the
determinant needs to be suitably interpreted. To define it one must choose bases in W
and H_, and accordingly 7y (x) is defined only up to a multiplier independent of x.
The determinant vy (x) vanishes, and hence uy(x) has a pole, precisely when ¢ %W
intersects H= .

For certain particular subspaces W belonging to the Grassmannian it turns out
that the z-function is a Schur function. This was discovered by Sato, and it was, we
have been told, the observation that led him to develop his theory. In general a point
of the Grassmannian can be described by its Pliicker coordinates, and (as we shall prove
in § 8) the corresponding t-function is an infinite linear combination of Schur functions
with the Pliicker coordinates as coefficients.

It is not practical, however, in developing the theory, to pass directly from the
z-function to the function uy. Instead, one introduces an intermediate object, the
Baker function §y. This is an eigenfunction of the operator D? 4 uy:

(D? + uw) dw(x, 2) = 2 Py(x, 2);
on the other hand for each fixed x it is the unique element of W which is of the form
(x.2) (1 + ay(x) 271+ ap(x) 272+ .. 0).

Finding the formula ((5.14) below) for the Baker function in terms of the r-function
was one of the most important contributions of the Japanese school. The formula is a
precise analogue of a formula known earlier, in the case of solutions arising from an
algebraic curve, expressing the Baker function in terms of 6-functions.

At this point we should say something about the class €® of solutions uy which
we obtain. Suppose to begin with that # is a C® function defined in an interval of R.
Then the eigenvalue problem L, ¢ = 2*{¢ has a formal solution of the form (1.2).
The coefficients a; in the formal series are C* functions determined recursively by

—2aa, =L,q_,,

U

with g, = 1. Each successive ¢; involves a new constant of integration: this means
that ¢ is determined up to multiplication by an arbitrary power series in z~' with
constant coefficients. The series (1.2) will usually not converge for any values of z.
The class of functions ¢ is, roughly speaking, those such that it can be chosen conver-
gent in a neighbourhood of z = . To see how restrictive this is, consider the case
of functions « which are rapidly decreasing as ¥ —+ c. Then there are unique genuine

7
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solutions ¢_(x, 2) and ¢_(x,2) of L, = 2*{, defined and holomorphic in z for
Re(z) > o and Re(2) < o respectively, characterized by the properties

P (% 2) ~ € as x > — oo,

$_(x,2) ~ €” as x - + oo.

These solutions both extend to the axis Re(z) = o, but unless # belongs to the excep-
tional class of so-called “ reflectionless potentials” or  multisolitons” they will be
linearly independent functions of x, and then no genuine solution of the form (1.2)
can exist. The situation is similar if we consider the case where u is a real C® periodic
function: of these, our class ¥® contains only the *finite gap” potentials u. The
periodic KdV flows have been described by McKean and Trubowitz [25] in terms
of Riemann surfaces of (in general) infinite genus: the finite gap potentials are precisely
those for which the Riemann surface involved is of finite genus. The corresponding
solutions to the KdV hierarchy are then included in the class obtained by Krichever’s
method.

We next explain how Krichever’s construction is included in ours. Krichever
associates a function of x, say ux &, to an algebraic curve X with a distinguished point x,,
and a line bundle % (and also some additional data which we shall overlook in this
introduction). A solution of the KdV equation is obtained by letting . move along a
straight line in the Jacobian of X. We shall see that a space W e Gr® is naturally
associated to Krichever’s data. Think of the circle S' as a small circle around the
point x, of X; then W consists of those functions on S! which are boundary values of
holomorphic sections of & outside S'—we suppose that &£ has been trivialized near x,,.
Krichever’s solution uy & is simply uy. When the curve X is non-singular, we shall
show in § g that the r-function 7y is essentially the 6-function of X.

The algebro-geometric solutions # are precisely those such that the operator L,
commutes with an operator of odd order. There is a very elegant theory, due essentially
to Burchnall and Chaundy [4], relating commutative rings of differential operators
to algebraic curves. A modern treatment of the subject has been given by Mumford [16];
but as it fits very naturally into our framework we have included a short self-contained
account in § 6.

We shall describe in particular detail the KdV flows on the two dense subspaces Gri?),
and Gr{? of the Grassmannian corresponding respectively to polynomial and rational
loops in U,. The first space corresponds exactly to the rational solutions of the KdV
equations which are zero at co. It is a beautiful fact that the orbits of the group I',
of KdV flows on Gr) form a cell decomposition of Gri), with one cell of each complex
dimension. (The n-th cell is the orbit of the function — n(n + 1)/x2)

The points of Gr{® are those that arise by Krichever’s construction from rational
curves with singularities. For any W e Gr{® the orbit of W under I', can be identified
with the Jacobian of the corresponding curve.

The KdV hierarchy has fairly obvious generalizations in which the operator

8 ,
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D? + u is replaced by an operator of order n: these hierarchies are related to the loop
space of U, in the same way that the KdV equations are related to QU,. For simplicity
of explanation we have restricted ourselves in the introduction to the case n = 2, but
in the body of the paper we shall always treat the general case, which presents no addi-
tional difficulty. In fact we shall treat a more general hierarchy still, that of the
¢ Kadomtsev-Petviashvili ” (KP) equations; the hierarchies already mentioned are
all specializations of this. Less obvious are the generalizations of the KdV hierarchy
due to Drinfel’d and Sokolov [6], in which, roughly speaking, U, is replaced by an
arbitrary compact Lie group; more precisely, Drinfel’d and Sokolov associate several
“KdV ” hierarchies to each affine Kac-Moody algebra. Some of these hierarchies
are discussed in [5], though no general theory is developed there. The key step in [6]
which is missing from [5] is to view the KdV flows as quotients of certain simpler ones,
the ‘ modified KdV ” flows [12, 20]: the generalization of the latter is fairly evident.
We refer to [35] for a brief account of how the present theory generalizes to the equations
of Drinfel’d and Sokolov: here we just mention that from this point of view our main
construction appears as a special case of a well known procedure (*dressing”) of
Zakharov and Shabat [23].

We end with a technical remark. In this introduction we have been considering
uy and Ty as functions of the single variable x. In the body of the paper, however,
it will be more convenient to think of them as functions of an infinite sequence of variables
(%, t3, 83, ...), or alternatively as functions of the element

g=exp(xz2+ 2+ 42+ ...)
of the group I',. To do this we define

Uy (% loy bgy .. ) = ug_lw(o),

Ty (%, by, b3y - - .) = T,1w(0).

Then u = uy will be a solution of the hierarchy (1.1) in the sense that

0
— L, =[P, L,].
atk % [ u u]

Note added July 1984. — We draw the reader’s attention to several related papers
and preprints [26-33] by Japanese authors, which we have seen since completing this
work.

Summary of contents

§ 2 describes the Grassmannian of Hilbert space and its relationship with loop
groups.

§ g describes the determinant line bundle Det on the Grassmannian, and its
relationship with a central extension of the loop group. We introduce the z-function,
and calculate it explicitly for the subspaces which correspond to multisolitons.
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§ 4 is an outline of the basic formal theory of the generalized KdV equations.

§ 5 describes the correspondence between points of the Grassmannian, Baker
functions, and differential operators, and works out the simplest examples. We also
give a characterization of the class of solutions €',

§ 6 shows how Krichever’s construction fits into the framework of §§ 2-5. It
also contains a discussion of rings of commuting differential operators, and of the ¢ Pain-
levé property ” of the stationary solutions of the KdV equations.

§ 7 is devoted to the subspaces Gr{® and Gr{" of the Grassmannian which were
mentioned above.

§ 8 obtains the expansion of the general t-function as a sequence of Schur functions.

§ 9 proves that when W arises from an algebraic curve the z-function 7y can be
expressed explicitly in terms of the 6-function of the curve.

§ 10 is an appendix explaining the connections between the theory developed in
the paper and the representation theory of loop groups.

2. The Grassmannian and loop groups

In this section we shall describe the Grassmannian of Hilbert space and its relation
with loop groups. The material is all fairly well known, and we shall not prove all
our assertions. For a much more detailed discussion we refer the reader to [17].

The Grassmannian

Let H be a separable complex Hilbert space with a given decomposition
H =H_®H_ as the direct sum of two infinite dimensional orthogonal closed subspaces.
We are interested in the Grassmannian of all subspaces of H which are comparable
with H_ in the following sense.

Definition. — Gr(H) is the set of all closed subspaces W of H such that

(i) the orthogonal projection pr: W —H_ is a Fredholm operator (i.e. has finite dimensional
kernel and cokernel), and
(ii) the orthogonal projection pr: W — H_ is a compact operator.

If W belongs to Gr(H), then so does the graph of any compact operator from
W to WL, Thus W lies in a subset of Gr(H) which is in one to one correspondence
with the vector space o (W; W1) of compact operators W — W+, This makes the
Grassmannian into a Banach manifold modelled on %" (H_; H_), which is given the
operator-norm topology.

If W e Gr(H), we shall call the index of the Fredholm operator pr: W — H_
the wvirtual dimension of W (recall that the index of a Fredholm operator T is
dim(ker T) — dim(coker T)). The Grassmannian is not connected: two subspaces
belong to the same component if and only if they have the same virtual dimension.
In the application to differential equations we shall be interested only in the component

10
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consisting of subspaces of virtual dimension zero. These subspaces are precisely the
ones which are the images of embeddings H, —H which differ from the standard
inclusion by a compact operator.

Because of the restrictions on the subspaces W belonging to Gr(H), not every
invertible operator on H induces a map of Gr(H). We define the restricted general linear
group GL_(H) as follows. Let us write operators g € GL(H) in the block form

(2.7) e= (¢ 3)

with respect to the decomposition H =H,®H_. Then GL_,(H) is the closed
subgroup of GL(H) consisting of operators g whose off-diagonal blocks 4 and ¢ are compact
operators. The blocks a and d are then automatically Fredholm. The group of con-
nected components of GL ,(H) is Z, the component being determined by the index
of the Fredholm operator a.

Lemma 2.2.

The group GL,(H) acts on Gr(H).

Proof. — A subspace W belongs to Gr(H) precisely when it is the image of an
embedding w, ®w_:H, —-H,  ®H_ with w, Fredholm and w_ compact. Then
its transform by the element g in (2.1) above is the image of w/ @w’, where
w, =aw, +bw_ and w’ =cw, + dw_. But w) is Fredholm and w’ is compact.

We can read off from the formula for w’, that the virtual dimension of gW differs
from that of W by the index of a.

Remark. — The action of GL,,(H) on Gr(H) is easily seen to be transitive.

We now specialize to the case where H is the space of all square-integrable complex
valued functions on the unit circle S!' ={zeC:|z| =1}. In this space we have
a natural orthonormal basis consisting of the functions {z*}, k¥ €Z. We define H,
and H_ to be the closed subspaces spanned by the basis elements {2} with 2> o and
k< o, respectively. Then H = H, @®H_: we shall write simply Gr for the Grass-
mannian corresponding to this choice of (H, H, , H_).

Any continuous non-vanishing function f on S! defines an invertible multiplication
operator, again written f, on H. This induces an action on Gr in view of the following
theorem.

Proposition 2.3. Let T denote the group of continuous maps S' — C*, regarded as
multiplication operators on H. Then T'CGL(H).

If f:S'— C* is twice differentiable, then the off-diagonal blocks of the corresponding
operator are of trace class (i.e. nuclear).

Proof. — The first assertion follows from the second, as the usual topology on T’
corresponds to the norm topology on the multiplication operators, and for this a limit
of operators of trace class is compact.

11
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Now let f = 2f, 2 be the Fourier expansion of f. The matrix of the correspon-
ding operator, with respect to the basis {#*}, o5 of H, has (i, )-th entry Ji—j- We must
show that the blocks {¢> o0, j< o} and {i< o0, j> o} are of trace class. But a
matrix («;) is certainly of trace class if 2 |«;| < 0. So what we need is that

Y |fiejl<ow and X | fizil < oo,

i>0,<0 i<0,§>0

that is,
DR|fil <o and X Ek|f_i]| < co.
k>0 k>0

These conditions are satisfied if f is twice differentiable, because the Fourier series of
a (! function is absolutely convergent.

In this paper we shall be interested mainly in the action of the subgroup I', of T’
consisting of all real-analytic functions f:S' — C* which extend to holomorphic func-
tions f: Dy - G in the disc Dy = {z € C:|z| < 1} satisfying f(0) = 1. (Here and
elsewhere, when we say that a function defined on a closed set in C is holomorphic,
we mean that it extends to a holomorphic function in a neighbourhood of the set.) We
shall also consider the subgroup I'_ of I' consisting of functions f which extend to non-
vanishing holomorphic functions in D, ={z2e€C U o0 :|z| > 1} satisfying f(o0) = 1.
Concerning this subgroup we can assert

Proposition 2.4. — T'_ acts freely on Gr.
We shall postpone the proof of this for a moment.

The stratification of Gr

We shall make much use of some special spaces Hge Gr indexed by certain
subsets S of the integers: for any S CZ we define Hg to be the closed subspace of H
spanned by {2°},c5. The kernel and cokernel of the orthogonal projection Hg —H_
are spanned by the functions {z'} with 7 belonging to S\ N and N\ S, respectively;
thus Hg e Gr precisely when both S\ N and N\S are finite. We denote by &
the set of all subsets S CZ of this kind. If S e &, we call the number

card(S\ N) — card(N'\ S)
the virtual cardinal of S: it is equal to the virtual dimension of Hg. A set of virtual car-

dinal d is simply an increasing sequence S = {sq, §;, Ss, ...} Of integers such that
s; =1 — d for all sufficiently large 7. Let us order the set & by defining

S<S < s5,>s5, for all

Lemma 2.5. — For every W € Gr, there exist sets S € & such that W is the graph of
a compact operator Hg — HE, or, equivalently, such that the orthogonal projection W — Hg
is an isomorphism. Furthermore there is a unique minimal S with this property.

12



LOOP GROUPS AND EQUATIONS OF KdV TYPE 13

We shall omit the straightforward proof of this lemma: it can be found in [17].
Let us only point out that the unique minimal S associated to W consists precisely of
those integers s such that W contains an element of order s, i.e. an element of the form

2 a, 2* with a,  o.
k<s
A very useful corollary of the lemma is

Proposition 2.6, — In any W € Gr, the elements of finite order form a dense subspace,
which we shall denote by W™,

This holds because a projection W — Hg which is an isomorphism induces an
isomorphism between W*¢ and HZ; and the elements of finite order are obviously
dense in Hg.

Let us at this point return to give the proof of Proposition 2.4. Suppose that
W e Gr, and that g e I'_ is such that gW = W. Now g is of the form 1 + X g,z

k<0
Let w e W be an element of minimal order s,. Then gw — w is an element of W

of order less than s,. So gw = w, and hence g =1.

The spaces W e Gr which are the graphs of operators Hg — Hg will be called
transverse to Hy. They form an open set Ug of Gr; lemma 2.5 asserts that the Ug cover
Gr. The set of W such that S is the minimal indexing set with W € Ug form a closed
submanifold of Ug denoted by Xg. Notice that W belongs to g precisely when W*#
has a basis {w;};>, (in the algebraic sense) with w; of order s;.

The Zg constitute a stratification of Gr by manifolds of finite codimension. The
codimension of Xg is the length of S, defined as

(8) = X (b — s, —d),
k>0
where d is the virtual cardinal of S.

Scaling

For each A €S!, we can consider the operator R, on H induced by rotating the

circle S', that is, the operator defined by
R, f(z) =f(x"12), (feH).

If A is a complex number with |A| # 1, the operator R, defined by this formula is
unbounded. Nevertheless, using (2.5), we can see that if |A| < 1, then the operator
R, still induces a transformation of Gr. For then the domain of R, includes the dense
subspace H™ of H consisting of functions of finite order, i.e. those whose Fourier series
involve only a finite number of positive powers of z. We can therefore define R, W
to be the closure of the space R, W*. To see that R, W belongs to Gr, we use (2.5) :
if W is transverse to Hg, then clearly R, W is too, and is the graph of a compact operator.
We shall refer to the operators {R,:|A| < 1} as the semigroup of scaling transformations
of Gr. It should be noticed that R, W depends continuously both on A and on W.

13



14 GRAEME SEGAL AND GEORGE WILSON

The scaling operators R, preserve the stratification of Gr by the 3. In the sense
of Morse theory, Zg is the stable manifold of the point Hg for the scaling flow, i.e. the set
of all W such that R, W —~Hg as A —o.

Loop groups

We now come to the connection of the Grassmannian with loop groups. Although
this will not play a very prominent role in the paper, we regard it as fundamental.

Let H™ be the Hilbert space of all square integrable functions on S! with values
in G". We break up H™ as H" @ H", using Fourier series just as in the case n = 1.
The group LGL,(C) of all continuous maps y: S* — GL,(C) acts on H™ in an obvious
way. Generalizing Proposition 2.3 we have

Proposition 2.7.

LGL,(C) C GL_,(H").

res

The proof is exactly the same as in the case 7 = 1.

Thus LGL,(C) acts on Gr(H"™). For each y e LGL,(C) we set W, = y.H?.
Then W, CW,, where z denotes the operation of multiplication by the scalar-valued
function z on S$'; for multiplication by z commutes with the action of y on H™, and
zH"W CHY. This leads us to introduce the

Definition. — Gri®) ={W e Gr(H") : zZW C W}.

Gri" is a closed subspace of Gr, and LGL,(C) acts on it. One reason for its
importance is that it is essentially the loop space QU, of the unitary group U,, i.e. the
space of continuous maps y:S' — U, such that y(1) = 1. To be precise, vy W,
maps QU, injectively onto a dense subspace of Gr™; and indeed Gr'™ can be identified,
if one wants, with a certain class of measurable loops in U,,.

The construction by which one associates a loop to a subspace W in Gr™ is as
follows. One first observes that the quotient space W/zW is n-dimensional. Let
wy, ..., w, be elements of W which span W/zW. Think of them as functions on the
circle whose values are n-component column vectors. Then (w;,w,,...,w,) 15 a
function on the circle with values in GL,(C): call it y. It is obvious that v.H% = W.
Unfortunately the matrix entries of y are a priori only L2 functions, and it may not be
possible to choose them continuous. If the elements w,, ..., w, are chosen to be an
orthonormal basis for the orthogonal complement of zW in W, then it is easy to see that
the loop vy takes its values in U,. Furthermore vy is then unique up to multiplication on
the right by a constant unitary matrix.

We should notice that in the correspondence between loops and subspaces the
winding number of a loop y is minus the virtual dimension of W,. (This can be seen
by deforming y continuously to a standard loop with the same winding number.)

We shall now identify the Hilbert space H” with H = H" by letting the stan-
dard basis {¢; 2*: 1 < i< n, k eZ} for H" correspond lexicographically to the basis {2*}

14



LOOP GROUPS AND EQUATIONS OF KdV TYPE 15

for H. (Here {¢;} denotes the standard basis for C".) Thus ¢; z* corresponds to 2™ +i~1,
More invariantly, given a vector valued function with components (f, ...,fui_,),

we associate to it the scalar valued function f such that

~

S(2) =f() + () + ... + 27 ((2).

Conversely, given fN e H, we have

Sil2) =

~

% )

R~

where ¢ runs through the n-th roots of z. The isomorphism H™ =~ H is an isometry.
It makes continuous functions correspond to continuous ones, and also preserves most
other reasonable classes of functions, for example: smooth, real analytic, rational, poly-
nomial. Multiplication by z on H™ corresponds to multiplication by 2" on H; and
H') corresponds to H,. From now on we shall always think of Grl” as the subspace
of Gr given by

Gr" ={W eGr:z2"WC W}

Note that Gr™ is preserved by the action of the group I' and also by the semigroup of
scaling transformations.

Proposition 2.8. Let W e Gr'™. Then for any complex number N with |A|< 1,
the space R, W corresponds to a real analytic loop.

The proposition implies that for the purposes of this paper we could perfectly
well confine ourselves to the subspace of Gr" consisting of those W that correspond
to analytic loops (see (5.10) below). However, most of our arguments apply naturally
to the larger space Gr'.

Proof of (2.8). — We have to see that there is a complementary subspace for 2"(R, W)
in R, W consisting of analytic functions. Choose a complementary subspace A for 2" W
in W such that A C W® (this is possible because, as we have seen, W* is dense in W).
Then each feA has the form

Sf(2) 2_% 62

where the series converges for |z|> 1; hence the series for f(A\™'2z) converges for
| 2| > |A|, sothatf(A~*z) is an analytic functionon S'. Thus the space {f(A\"12):fe A}
is a complement to 2"(R, W) in R, W of the desired kind.

Rational and polynomial loops

In § 7 we shall consider two subspaces Gr{® and Gr{" of Gr: they can be defined
as the subspaces corresponding to rational and Laurent polynomial loops, respectively.
They can also be characterized in another way, which will be more convenient for us.

15



16 GRAEME SEGAL AND GEORGE WILSON

Proposition 2.9. — The following conditions on a subspace W € Gr'™ are equivalent.

(i) W =W, for some rational loop vy (that is, a loop such that each matrix entry in y is
a rational function of z with no poles on S*).
(ii) There exist polynomials p and q in z such that

pH,CWCg'H,.

(iii) W is commensurable with H, , ie. W nH, s of finite codimension in both W
and H .

We denote by Gr{” the subspace of Gr™ consisting of those W that satisfy the
conditions in (2.9). We define Gr, to be the subspace of Gr consisting of those W e Gr
that satisfy condition (ii) in (2.9). Notice that we may assume that the roots of the
polynomials p and ¢ all lie in the region {|z|<1}; forif |¢|> 1, then z —¢ isan
invertible operator on H_.

Example 2.10. — For spaces W e Gr not belonging to any Gr™ the condition
of commensurability (2.9) (iii) does not imply condition (2.9) (ii). As an example,
consider the subspace W of codimension 1 in H, which is the kernel of the linear map
F:H, - C defined by

F(f) = residue, _(e*.f).
Obviously there is no polynomial p such that pH, CW.

Proposition 2.11. — The following conditions on a subspace W € Gr'™ are equivalent.

(i) 22H . CWC2z ?H, for some positive integer q.

(ii) W = W, for some Laurent polynomial loop v (by this we mean that both v and v *
have finite Laurent expansions).

We denote by Gr, the subspace of Gr consisting of those W that satisfy the condi-
tion (2.11) (i), and we set

Grl" = Gr, N Gr™™,

Then Gr, is the union of all the Gr{".

We note that all the Grassmannians Gr;, Gr,, Gr{® and Gr{" are invariant under
the semigroup of scaling transformations, and also under the action of the group I',
of holomorphic functions in the disc (defined after (2.3)). (Gr, and Gr, are preserved
by I', because gH, = H, _ for any geT,.)

It is easy to see that Gr, is dense in Gr. As Gr, is the union of a sequence of com-
pact finite dimensional algebraic varieties (namely the Grassmannians of z7¢H /2 H ),
this implies that every holomorphic function on Gr is constant.

Although it will play only a minor role in this paper, we should mention that the
space Gry has a cell decomposition into even-dimensional cells indexed by the same

16



LOOP GROUPS AND EQUATIONS OF KdV TYPE 17

set & as the stratification. For S € & the cell Cg consists of all W e Gr, for which
W™ has a basis {w,},c s With w, of the form
w, =2 + X ;2"
i>s

The cell Cq is homeomorphic to C/®, It is a submanifold of Gr transversal to the
stratum Xg, which it meets in the single point Hg. On Gry the scaling operators R,
make sense for all A € C*, and Cg is the ¢ unstable manifold > of Hg for the scaling
flow, i.e. the set of W such that R, W - Hg as A — 0.

Finally, let us observe that Hg belongs to Gr™ if and only if S 4 n CS. Forsuch S
let us write C{ for Cg N Gr™, The C¥ form a cell decomposition of Gr™, and the
dimension of C{ is X (¢ — 5; — d), where the sum is taken only over the z integers ¢

such that s;¢S + s, and d is the virtual cardinal of S.

3. The determinant bundle and the t-function

In this section we are going to construct a holomorphic line bundle Det over Gr.
For simplicity, we shall confine ourselves to the connected component of the Grass-
mannian consisting of spaces of virtual dimension zero: the symbol Gr will now denote
this component. We think of Det as the ¢ determinant bundle ”, that is, the bundle
whose fibre over W € Gr is the “ top exterior power ”” of W. Our first task is to explain
how to make sense of this.

On the Grassmannian Gr,(C") of k-dimensional subspaces of CG” the fibre of the
determinant line bundle at W e Gr,(C") is det(W) = A¥(W). A typical element of
A¥(W) can be written Aw,; A wy A ... A w,, with A € G, where {w;} is a basis for W.
In analogy with this, an element of det(W), for W e Gr, will be an infinite expres-
sion AwyA w; A wy A ..., where {w;} is what we shall call an admissible basis for W.
The crucial property of the class of admissible bases is that if {z;} and {w;} are two
admissible bases of W then the infinite matrix ¢ relating them is of the kind that has
a determinant; for we want to be able to assert that

MU A W AWy A ... = Adet(t) woA w A wyA ...

when w; = 2¢; w;.
Let us recall (see, for example, [19]) that an operator has a determinant if and
only if it differs from the identity by an operator of trace class. Now the subspaces W
we are considering have the property that the projection pr: W —H, is Fredholm
and of index zero. This means that W contains sequences {w;} such that
(i) the linear map w:H, —H which takes ' to w; is continuous and injective and
has image W, and
(i) the matrix relating {pr(w;,)} to {#'} differs from the identity by an operator of trace
class.

17



18 GRAEME SEGAL AND GEORGE WILSON

Such a sequence {w;} will be called an admissible basis. (A possible choice
for {w;} is the inverse image of the sequence {z°},.s under a projection W — Hjy
which is an isomorphism (see (2.5).)

We shall think of w:H, - H as a Z XN matrix

o= (=)
w_

whose columns are the w;, and where w, — 1 is of trace class; the block w_ is auto-
matically a compact operator. Then w is determined by W up to multiplication on
the right by an N X N matrix (or operator H, —H,) belonging to the group &
of all invertible matrices ¢ such that ¢ — 1 is of trace class. (The topology of & is
defined by the trace norm.) Because operators in & have determinants we can define
an element of Det(W) as a pair (w, ), where A € G and w is an admissible basis of W,
and we identify (w, A) with (@', )') when w’ = wt~! and A’ = A det(¢) for some ¢ € &,
(We could also write (w, ) as AwyA wy A ...)

To be quite precise, the space Z of matrices w should be given the topology defined
by the operator norm on w_ and the trace norm on w, — 1. Then £ is a principal
€-bundle on Gr = Z/&, and the total space of Det is & X G where & acts on G
by det: & — G*.

Now we come to the crucial difference between the finite and infinite dimensional
cases. The group GL,(C) acts on Gr,(C"), and also on the total space of the line
bundle det on it: if g e GL,(C) and w; A ... Aw,edet(W) then g.(w,A ... Aw)
is defined as gw; A ... A gw, in det(gW). We have seen that the corresponding group
which acts on Gr is not the entire general linear group of H but the identity component
of the smaller group GL,(H) of invertible operators in H of the form

a b

(3.1) &= (0 d)

(with respect to the decomposition H = H,_ ®H_), where b and ¢ are compact. But
this action on Gr does not automatically induce an action on Det, for if {w;} is an admis-
sible basis for W then {gw;} is usually not an admissible basis for gW. To deal with
this problem we introduce the slightly smaller group GL,(H) consisting of invertible
operators g of the form (3.1), but where the blocks 4 and ¢ are of trace class. The topo-
logy of GL,(H) is defined by the operator norm on a and d, and the trace norm on b
and ¢. We shall see that the action of the identity component GL,(H)? on Gr does
lift projectively to Det. In other words there is a central extension GL{* of GL,(H)°
by CG* which acts on Det, covering the action of GL,(H)° on Gr.

To obtain a transformation of Det we must give not only a transformation g of H
but also some information telling us how to replace a non-admissible basis {gw;} of gW
by an admissible one. To do this we introduce the subgroup & of GL,(H)° x GL(H,)
consisting of pairs (g, ¢) such that ag~! — 1 is of trace class, where 4 is as in (3.1).

18



LOOP GROUPS AND EQUATIONS OF KdV TYPE 19

(We give & the topology induced by its embedding (g,¢) b (g, ¢,a¢7* — 1) in
GL,(H) x GL(H,) X {operators of trace class}.) The definition of & is precisely
designed to make it act naturally on the space & of admissible bases by

(8 q).w = gwqg,

and hence act on Det by (g, ¢).(w,\) = (gwg™ %, \).
The group & has a homomorphism (g, ¢) » g onto GL,(H)? Its kernel can
clearly be identified with &. Thus we have an extension

g > & - GL,(H)".

But the subgroup &, of & consisting of operators of determinant 1 acts trivially on Det,
so that in fact the quotient group GL; = &/&, acts on Det. This last group is a central
extension of GL,(H)? by &/g,~ C*.

The extension

C* - GL; - GL,(H)®

is a non-trivial fibre bundle: there is no continuous cross-section GL,(H)? - GL;',
and the extension cannot be described by a continuous cocycle. But on the dense
open set GL{* of GL,(H)® where a is invertible, there is a cross-section s of & — GL,(H)®?
given by s(g) = (g, a); the corresponding cocycle is

(81, &) - det(a, gy a,71),

where g, = (f‘ Z‘), and g; = g, 8, We shall always make the elements of GL{* act

on Det by means of the section s. Of course, GL{*® is not a group, and the map s is
not multiplicative. But let GL{ be the subgroup of GL[* consisting of elements whose

block decomposition has the form (Z (bl,

inclusion of groups GL;{ — & and we can regard GL; as a group of automorphisms
of the bundle Det. Similar remarks apply to the subgroup GL , consisting of elements
of GL{*® whose block decomposition has the form (? 3
groups I' | and I'_ of the group of maps S! - C* acton Det,for I', C GL{. (Cf.remarks
following (2.3).)

). Then the restriction of s to GL] is an

). In particular the sub-

The ~-function

We have now reached our main goal in this section, the definition of the z-function.
Alongside the determinant bundle Det just constructed there is its dual Det",
whose fibres are the duals of the fibres of Det. A point of Det* over W € Gr can be
taken to be a pair (w, 1), where w is an admissible basis for W, A € G, and (w, 1) is iden-
tified with (@', \') if w’ = wt and A = Adet(t) for some te&. The action of GL{

19



20 GRAEME SEGAL AND GEORGE WILSON

on Det induces an action on Det*. The line bundle Det* has a canonical global holo-
morphic section o, defined by

6(W) = (w, det w_),

where W e Gr, and w is an admissible basis for W. We can think of ¢(W) as the
determinant of the orthogonal projection W — H_; note that ¢(W) = o if and only
if W is not transverse to H_. The section ¢ is not equivariant with respect to the action
of I', on Det". For each W eGr, the r-function of W is the holomorphic function

tw: ', > C defined by

o(g”'W)

T = — T
W(g) g—1 8“7

where 3y is some non-zero element of the fibre of Det* over W. In general there is no
canonical choice of 3y, so that 1y is defined only up to a constant factor. However,
if W is transverse to H_, it is natural to choose 8y = (W), so that the t-function is
given by

(3-2) o tw(g) .67 (W) = o(g7' W) (for W transverse to H_).

It is easy to give an explicit formula for ty as an infinite determinant.

Proposition 3.3. Let g=*eT, have the block form

—1__fa b
£ = (o d)
with respect to the splitting H=H, ®H_. Then for W € Gr, we have

(3-4) Tw(g) = det(w, + 4" bw_),

where w is an admissible basis of W.  In particular, if W is transverse to H_ and vy is normalized
as in (3.2), then we have

(3-5) Tw(g) = det(1 + a= bA),
where A:H,_ —H_ s the map whose graph is W.

The proposition follows at once from the definitions.

Example

An interesting example of a space W belonging to Gr{ is the following one, which,
as we shall see, is related to the m-soliton solution of the KdV equation.

Let py, ..., p,, be non-zero complex numbers such that |p;| < 1 and all p? are
distinct; and let A, ..., A, be also non-zero. Then W = W, , denotes the closure
of the space of functions f which are holomorphic in the unit disc except for a pole of
order < m at the origin, and which satisfy f(—p;) =Nf(g;) for ¢ =1,...,m To
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calculate 7y we first determine the map A:H, —H_ whose graph is W, ,. This
assigns to feH, the polynomial

A(f) =o(f) 27+ oo+ an(f) 27"
such that f4 A(f) belongs to W, ,. Clearly each o f) is a linear combination of
ﬁl(f)’ e Bm(f)) where

I -

8. =2 08 fe) — W EA— ),

for A(f) is zero when the B;(f) vanish. In fact B; =EIM

M; = ZoF = (= p

2

«;, where

15 %59

and W, , is transverse to H_ precisely when det(M;) + o.

To apply (3.5) we must also calculate the map a~'b: H_ —H_ corresponding

to the element g~! of I',. We write g in the form exp X ¢, 7"
k>0
Suppose that a~'b takes z7* to f, e H,. Before determining f, let us observe

that an infinite determinant of the form
det(1 +‘E fi®a)
=1
reduces to the determinant of the m X m matrix whose (¢, 7)-th entry is
3 + o (fy)-
Thus 7y (t) = det(M;)~* det(M; + B;(f)).
If pr:H —»>H,_ is the projection, we find
p=g.pr(g7t )
=M1 —eHfrtgrtet .. o FTY),

where Z; 2 is the expansion of e~ Z¥; and so
M+ Bi(f) = —B{z e ¥ (1 + ez + ... + Gy # N}

The determinant of this matrix, after the obvious column operations have been per-
formed on it, reduces to

7 (0 +8)  prieu(0 +8) ... 1" (0 + 3y) \
(— 1) exp( Xty pF¥) det £ 90 + %)
ik ..

’

p1;1 q’l(em + 8m) e e ;m q’m(em + 8m)
where ¢; = cosh for ¢ odd and = sinh for ¢ even,
0, = X pft,, and
% 0dd

I
85' = Elog )\;.

The constant factor (— 1)™ det(M;)™" in 7 can be ignored.
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a\2
In § 5 we shall see that 2 (5) log 7y is a solution to the KdV equations. It is
1

’ solution.

143

usually called the ‘ m-soliton ’

The projective multiplier on T', and T'_

The results of this subsection will be used only in § 9.

The actions of the groups I' | and I'_ on Gr obviously commute with each other.
However, their actions on Det* do not commute, and we shall need to know the relation-
ship between them. Note that since the discs D, and D,, are simply connected, the
elements geT', and FeT_ can be written uniquely in the form g=¢, =4,

~

where f:D, - C and f: D, — C are holomorphic maps with f(0) = f(®) = o.
If v is an element of either I, or I'_, we shall write 2 (y) for the corresponding automor-
phism of the bundle Det".

Proposition 3.6. If gel', and geT_, then
2F) 2(g) =¢(& 8 2(g) 2(2),
where, if as above = ¢ and g = ¢, we have
(8 8) = 50

~ I

and S(AS) =

(2 f(2) da.

a7l gt

Proof. — It is immediate from the definition of the actions of I', on Det* that we
have a formula of the kind stated, with

¢(g, g) = det(aqa=* 3"

where a and @ are the H, —H_ blocks of g and & (The commutator has a deter-
minant because, from the fact that ¢ and g commute, it is equal to 1 — bTa~ 13",
where & and 7 are the off-diagonal blocks of g and g, which are of trace class by (2.3).)
The map ¢ is a homomorphism from I'_ X I' | to G; it follows easily that it is of the desired

form, with
S(f.f) = trace [«, o],

where « and ¥ are the H, —H_ blocksof fand f. Now, if f = 24,7 and f = b, 2~
the (%, ) matrix element of the commutator [«, «] is

The trace is therefore

— % ma,, b,, = —L.fSlﬁ(z) f(z) da.

m=1 271

as stated.
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Lemma 3.7. The section o of Det* is equivariant with respect to the action of T'_, that

1s, we have
o(§W) = go(W) for gel_.

Lemma 3.8, — For geT'_, we have

Tzw(g) = 51 Tw(g),

where as before g = ¢ and § = d.

Both lemmas follow at once from the definitions.

General remarks

In the theory of loop groups like the group L of smooth maps S' — GL,(C) the
existence of a certain central extension

c >L L

plays an important role. This extension (at least over the identity component of L)
is the restriction of the central extension GL; constructed in this section, when L is
embedded in the usual way in GL,(H).

On the level of Lie algebras the extension can be described very simply for the
loop group LG of any reductive group G. The Lie algebra of LG is the vector space Lg
of loops in the Lie algebra g of G, and the extension is defined by the cocycle

B: LgxLg -~ C
I 21
given by BUfi) = o [ CHOLAO)

where ¢ , > is a suitably normalized invariant bilinear form on g.

The existence of the corresponding extension of groups is less obvious (cf. [18]),
partly because it is topologically non-trivial as a fibre bundle. The discussion in this
section provides a concrete realization of Lasa group of holomorphic automorphisms
of the line bundle Det, in the case G = GL,(C). For the elements of L above yeL
are precisely the holomorphic bundle maps ¥ : Det — Det which cover the action of y
on Gr. (For given vy the possible choices of ¥ differ only by multiplication by constants,
as any holomorphic function on Gr is constant. (Cf. remark following (2.11)).)

The corresponding central extension of the loop group of any complex reductive
group (characterized by its Lie algebra cocycle) can be constructed in a similar way
as a group of holomorphic automorphisms of a complex line bundle, and conversely
the holomorphic line bundle is determined by the group extension. This is explained
in [17]. But in the general case the line bundle does not have such a simple description.
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4. Generalized KdV equations and the formal Baker function

The n-th generalized KdV hierarchy consists of all evolution equations for n — 1
unknown functions y(%, t), ..., #,_,(%, f) that can be written in the form oL/o¢t = [P, L],
where L is the n-th order ordinary differential operator

L=D"+4u,_,D" 24+ ... +u4D+uy

and P is another differential operator. (As usual, D denotes 9/0x.) The possible ope-
rators P are essentially determined by the requirement that [P, L] should have order
(at most) n — 2. A very simple description of them is available if we work in the
algebra of formal pseudo-differential operators, which we denote by Psd.

A formal pseudo-differential operator is, by definition, a formal series of the form

N
R = X r,(x) D!

for some N €Z. The coefficients r;(x) are supposed to lie in some algebra of smooth
functions of . To multiply two such operators, we need to know how to move D!
across a function 7(x): the rule for this,

D lr= X (— 1)/ D1,
i=0
follows easily from the basic rule
(4-1) Dr=1rD + or/ox

determining the composition of differential operators. It is easy to check that this makes
Psd into an associative algebra.

Proposition 4.2. — In the algebra Psd, the operator L has a unique n-th root of the form
Lin — Q= D+ Zq,- D,
1

The coefficients g; are certain universal differential polynomials in the w;; if we assign to ud the
weight n — 1 + j, then q; is homogeneous of weight i + 1.

Proof. — Equating coefficients of powers of D in the equality Q" =L, we find
that

Up_i—q1 = Ng; + &,
where «; is some differential polynomial in ¢, ..., ¢;_; (here we have set u; = o if
j<o0). We claim that if we give ¢/ weight i 4 j 4 1 then «; is homogeneous of

weight ¢ + 1. Granting that, it is clear that the above equations can be solved uniquely
for the ¢;, and that these have the form stated.

The homogeneity of the «; is most easily seen as follows. Consider the algebra
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of formal pseudo-differential operators whose coefficients are differential polynomials
in the ¢; (which we think of for the moment as abstract symbols, rather than as fixed
functions of x). Call such an operator homogeneous of weight 7 if the coefficient of D*
is homogeneous of weight r — ¢ (thus D has weight 1). From the homogeneity of the
basic rule (4.1) it follows at once that the product of two operators that are homo-
geneous of weights r and s is homogeneous of weight r 4+ s. Since Q is homogeneous
of weight 1, Q" must be homogeneous of weight n.

If R = Zr; D' is a formal pseudo-differential operator, we shall write R for the

¢ differential operator part ” R, = z.] rnDiand R_= X ;D’. ThusR=R, +R_.
i>0 i<o

Proposition 4.3. The equation

(4-4) dLjot = [L7", L]

is equivalent to a system of evolution equations
ou;
Z=f

Jor the coefficients uy, ..., u,_o of L. The f; are differential polynomials in the u;, homogeneous
of weight n 4+ r — 1.

Proof. — Note first that L”* denotes (L") ; L is defined as Q. The only
part of the proposition that is not obvious from what precedes is that the commutator
in (4.4) is an operator of order at most n — 2. But that follows at once from the equality

[L’-i/-”’ L] = ['— LT.’ L]-

(Of course L7 and L commute, because they are both powers of Q = L")

The equation (4.4) is called the r-th equation of the n-th KdV hierarchy. It is trivial
if r is a multiple of n, because then L™ = L"" is just an integral power of L.

It is usual to think of the equations (4.4) as defining flows on some space of func-
tions {#y(x), ..., 4,_o(*) }: it is then a basic fact that the flows corresponding to different
values of 7 commute. For this assertion to make sense, we need to identify some class
of functions on which the flows can be proved to exist, that is, we need to prove existence
and uniqueness theorems for solutions of the equations (4.4). However, the analytic

€¢ 3

problems involved here are in a sense irrelevant: the basic ‘“ infinitesimal ” fact under-
lying the commutativity can be formulated in a purely algebraic way. We refer to [22]
for a very simple proof of this algebraic version of the commutativity. In the present
paper none of these questions need concern us, because for the special class of solutions
that we are interested in, both the existence of the flows and their commutativity will

be clear from the construction.
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The formal Baker function

The main idea in all studies of solutions of the equations (4.4) is this: as L changes
in time, we try to follow the evolution of the eigenfunctions of L by comparing them with
the eigenfunctions of the constant operator D". To do that, we find an operator K
such that K™'LK = D"; then if {, is an eigenfunction of D", ¢ = K¢, will be an
eigenfunction of L. The algebra Psd enables us to give one realization of this idea.

Proposition 4.5.

There is an operator K € Psd of the form
(4.6) K=1+ZgxD
1

such that K=*LK = D". Such a K is unique up to right multiplication by a constant coefficient
operator of the form 1 + ¢, Dt ...,

Proof. — Only constant coefficient operators commute with D", so the statement
about uniqueness is trivial. To prove existence, we simply compare coefficients of powers
of D in the equality LK = KD"; this gives equations 0a;/0x = ..., where the right
hand side involves only g; with j < ¢; we can therefore solve these equations successively
to get suitable g;.

Proposition 4.5 can be reformulated as follows.

Proposition 4.7.
of the form

(4.8) b= e=(1 + Ta(x) 7.

The equation Ly = 2" { has a solution in the space of formal series

The solution { is unique up to multiplication by a series with constant coefficients of the form

14¢ 27 4.

The series ¢ in (4.8) is called the formal Baker function of L. The solutions of the
KdV equations that we are going to construct are characterized by the property that
this formal series actually converges (for |z| sufficiently large). As we mentioned in
the introduction, among these solutions are the rank 1 algebro-geometric solutions of
Krichever: it was essentially in that context that the function ¢ was originally introduced
by Baker [3].

The intuitive reason for the equivalence of (4.5) and (4.7) was explained above:
since K™!'LK = D" we expect the solutions of the equation L{ = z*{ to be of the
form ¢ = K¢,, where {, is a solution of D" {, = 2" {,. If we take ¢, =™, then
formally it is clear that ¢ = K¢, should be given by (4.8). We can make this argument

rigorous as follows. Let M be the space of all formal expressions f = ¢”f, where

fis a formal series
N .
F: 3 fi(x) 2 (for some N).
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Dyfferential operators act on M in an obvious way: the action of D on M is given by
De=f=¢=(D + 2) f. |

If we let D“lﬂac‘t on M‘l')y
D= f = ¢*(D + 2)~'f,

where (D + 2)~! is interpreted as the formal ‘series 7' —Dz 24 ..., it is
easy to check that this makes M into a module over the algebra  Psd. If
R = Zr,(x) D' € Psd, then -

Re™ = ¢™(Zr,(x) z27%),
so that M is in fact a free Psd-module of rank 1, with generatorb ¢ € M.
The KP equations

It will often be convenient for us to regard the n-th KdV hierarchy (for any z)
as embedded in a certain ‘‘ universal KdV hierarchy > of evolution equations in infinitely
many variables; for brevity we shall follow [5] and call these equations the KP (for
Kadomtsev-Petviashvili) hierarchy. The KP equations are defined as follows. Let Q be
a general first order formal pseudo-differential operator of the form

Q=D+ %qi(x) D~
(in general, such a Q will not be the n-th root of a differential operator for any r).

Proposition 4.10. — The equation

Q. .
(4.31) e )
is equivalent to a system of evolution equations
o
o i

Jor the (infinitely many) functions ¢;(x,8), 1> 1. The f; are certain universal differential poly-
nomials in the q;, homogencous of weight r 4 i + 1 if we give ¢ weight i + j + 1.

The proof is the same as that of (4.3). We call (4.11) the r-th equation of the KP
hierarchy.

Proposition 4.12. — The assignment L > LY = Q sefs up a 1 — 1 correspondence
between solutions of the n-th KdV hierarchy and solutions Q of the KP hierarchy such that Q" is
a differential operator.

Proof. — It is trivial that if Q satisfies (4.11) then L = Q" satisfies (4.4). We
refer to [22] for the proof of the converse, which is only slightly harder.
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The scaling transformation

Proposition 4.13. — Let Q = D + Sg,; D~ be any solution of the r-th equation (4.11).
For any non-zero complex number A, let R, Q =D + Z¢N D% where the coefficients ¢V
are defined by
gP(x, £) = N+ g, (amx, A7 1),

Then R, Q is another solution of (4.11).

Proof. — This follows trivially from the assertion in (4.10) about the homogeneity
of the f.

We call the operation R, the scaling transformation of the solutions to the KP equa-
tions. Notice that each variable gets rescaled by the power of A corresponding to its
weight. The scaling transformations clearly act on the solutions to the n<th KdV hie-
rarchy (for any n).

Note on the literature. — Our construction of the KdV equations follows closely
the exposition in [14]. The basic idea of using fractional powers of L first appeared
in the 1976 paper of Gel’fand and Dikii [g], and has been used extensively in the literature
since then. In [5] this idea is attributed to Sato (1981).

5. The Baker function

In this section Gr and Gr'™ will denote the component of the Grassmannians
consisting of spaces of virtual dimension zero. We are going to associate to each W e Gr
a “ Baker function” ¢, and also a sequence of differential operators defined in terms of .

We recall from § 2 that the group I', of holomorphic maps g:D, - C* with
g(o) =1 acts on Gr. Given a space W € Gr, we set

'V ={gel,:g 'W is transverse to H_}.
From now on we shall refer to spaces transverse to H_ simply as transverse. From § 3
it follows that I'Y is the complement of the zero set of the t-function 7y : T, — C;
in particular it is a dense open subset of I' . (We admit for the moment the fact that
'Y is not empty, that is, that the holomorphic function ty is not identically zero: this
will be proved in § 8.)

Proposition 5.1, — For each W € Gr there is a unique function (w(g, 2), defined for
gelV and zeS', such that

(i) Ywlg, ©) €W for each fixed geT¥
(i1) dw has the form

(5.2) w=8(2) (1 + Zayg) 2.

The coefficients a; are analytic functions on TV ; they extend to meromorphic functions on the whole
of T',.
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The proof of the last sentence depends on the properties of the t-function, and will
be given later in this section. The rest of the proposition is trivial: the infinite series
in (5.2) is simply the unique function of that form that lies in the transverse space g~ ! W,
that is, it is the inverse image of 1 under the orthogonal projection g~ 'W —H,.

We call ¢y the Baker function of W.

Now, each g eI', can be written uniquely in the form

(5-3) g(2) =exp(xz + ty 22+t 28+ ...)

with x,¢ € C. When g is written in this way, we shall write {y(x,t, 2) instead of
Yw(g, 2). Here t stands for (¢, %5, ...). In this notation, ¢y is a ‘ function of infi-
nitely many variables >’ of the form

(5.4) bl & 9) = explas + 1y 2+ ) (1 + s 1) 7.

Proposition 5.5. — For each integer r> 2, there is a unique differential operator P, of
the form
Pr =D +przDr—2 + ... +pr,r—1D +prr
such that

(5.6) O _

=P .
at, r "pW

(Here as usual D = 0[ox.) The coefficients p,; are certain universal differential polynomials
in the functions a; in (5.4).

Proof. — From (5.4), we have

O _
ot

r

8(2) (& + ay 77 4 O(F7%).

On the other hand, D" ¢y also has this form, and in general we have

Dy = g(2) (27 + O(212)).
Comparing coefficients, we see at once that there is a unique operator P, of the form
stated such that

Hw
oL,

r

(5-7) — P, 4y = g(2) (O(z7").

Now, since i lies in W for each fixed (x, t), the same is true of the derivatives o¢y/ot,
and D?¢y. Hence the left hand side of (5.7) lies in W for each fixed value of (x, t)
for which it is defined, that is, for which the corresponding g belongs to I'Y. But the
right hand side of (5.7) belongs to gH_. As g~' W is transverse, both sides must vanish.

Now let

o]

K=1+ Xg(xt) D"

1

29



30 GRAEME SEGAL AND GEORGE WILSON

be the formal integral operator corresponding to ¢y (see § 4). Equation (5.6) can be
written -in  the form

(5.8) 5;—+KD’=P,K,

so that in particular we have
P, = (KD’ K_1)+ = Q:+z

where we have set Q = KDK~'. Thus Q is a for'mal‘ pseudo-differential operator
of the form ' ' '

Q=D+ Eq,-(x, t) D~
1

Proposition 5.9. The coeﬁz’cientsrq,- of Q satisfy the equations of the KP hierarchy; that

is, we have

oQ .
o [Q,, Q]

Each q; is a meromorphic function of all the variables (x, t).

Progf. — Differentiating the relation defining Q and rewriting, we find

™ L(eKat) K, Q1.

On the other hand, from (5.8) we have

oK
— K'=P—KDK'=Q, —Q,

so the proposition follows at once.

Recall from § 2 that rescaling z induces an action Wi R, W of the semigroup
of complex numbers A with |A| <1 on Gr.
Proposition 5.10. — The Baker function corresponding to the space R, W is given by
brow (%t B3y -+ 05 2) = YW, A28y, A28y, ... 371 2).
If Q is the solution of the K P equations corresponding to W, then the solution corresponding to R, W
is R, Q (s (4.13)).

The proof is trivial.
‘We now specialize to the case W e Gr'™,

If W eGr™, then
P, dw = 2" {y.

Moreover, the functions a;, and hence also all the operators P, are independent of ¢, ts,, t3,, « ...

Proposition 5.11.
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Proof. — From (5.4) and (5.6) we see that

® oa; _,
P by — 2" by = g(2) Za_z
1 0,
For W e Gr'™, the left hand side of this expression lies in W for each fixed (x, t); it
therefore vanishes by the same argument as in the proof of (5.5). That proves the
first statement in the proposition, and also that the g; are independent of #,. Since

obviously Gr®CGr™ for all r> 1, the g; are independent of ¢, too.

Since the g; are independent of #,, the operator K is also, so (5.8) gives
P,=KD'K~'=Q"

Thus if W e Gr™ then Q" is a differential operator. Write L for P, = Q"; then L
has the form D" 44, ,D""2+4 ... 4+ 4,. Combining (5.9) and (4.12), we get
the main result of this section.

Corollary 5.12. — If W e Gr'™), the coefficients of the operator L satisfy the equations
of the n-th KdV hierarchy, that is, we have

0
& = L Ll

Let us reformulate this slightly. For each W € Gr™), let Ly denote the operator L
evaluated for #, =3 = ... = o0. The coeflicients u,, ...,u,_, of Ly are functions
of one variable x: they are the “ initial values > of the KdV flows. Let €™ be the space
of all Ly for W € Gr™”. The map Gr® — @™ is not one to one: however, from (4.%)
we see that Ly = Ly precisely when W = yW’, where vy is a function of the form
1 +¢ 2 '+ ... Since multiplication by y commutes with the action of ', , we can
restate (5.12) as follows.

Proposition 5.13. — The action of T', on Gr™ induces an action on the space €™. The
flow Wi exp(t, 2) W on Gr'™ induces the r-th KdV flow on €™.

Since I', is commutative, it is obvious that the different KdV flows on &
commute.

Examples

To obtain the simplest interesting example of a space in Gr® we choose p € C
so that o< [p[ <1, and A €C*, and define W, , as the L? closure of the space of
functions f which are holomorphic in |z| < 1 except for a possible simple pole at the
origin, and which satisfy f(— p) = M(p).

The Baker function of W, , must be of the form.

Y(t, 2) = 4 (1 + a(t)[2).
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(We write here t = (#;,¢,, ...), where ¢, is identified with x.) From the condition
$(t, — p) = A(t, p) we find
a(t) = — p tanh(0 + o),

where 6 = X ¢, and & =\
k odd
The second-order differential operator L such that L{ = 22¢ is D2 — 24/, i.e.
D2 4 2p2 sech?(6 + «).

This is the well known one-soliton solution of the KdV equation.

More generally, we have the subspace W, , introduced in § g which depends
on m points p,, ..., p, of the disc |z| <1 and m parameters A, ..., A\, e C*. The
corresponding solution of the KdV equation is called the m-soliton solution. We shall
give an expression for it below in terms of the t-function which was calculated in § 3;
but let us at present notice the obvious fact that it depends on ¢ only through e%*%
where 6, =k§d pit, and &% =2. This is because the orbit of W, , under I', is

isomorphic to (G*)™ in fact if y:Dy, —G* is an element of ', then y.W, , =W, ,
where p; = y(p;) Y(— p) "' N

The Baker function and the <-function

We now turn to the proof of the last part of (5.1), concerning the properties of
the functions g;. It depends on the formula (5.14) below, relating the Baker function
to the ~z-function, which we mentioned in the Introduction as central to the theory.
We return to the case of an arbitrary space W € Gr (not necessarily in any Gr®),
Let us write

~

Talg5) =1+ Zafg)
for the infinite series in (5.2). Clearly 'JW extends to an analytic function of z in the
region |z|> 1 (for each fixed g eI'Y). For { eC we write g, for the map

qe(z) = 1 — 2[C.

Obviously
geel', for |T|> 1.

Proposition 5.14. — For g e TV and |¢|> 1 we have
Sw(8 O = Tw(g-99 frw(9)-
Proof. — It follows easily from (3.2) that the right hand side is equal to 7,-.w(gy).
The left hand side is characterized as the unique function of the form 1 -+ Xg ¢

whose boundary value as |{| — 1 lies in the transverse space g=! W. Hence the pro-
position follows at once if we apply the next lemma to g=' W,
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Lemma 5.15. — Let W € Gr be transverse, and let f, be the unique element of H_ such
that 1 + fo € W.  Then for |{|> 1, we have

Tw(gy) = 1 + fo(%).

Proof. — We use the formula (3.5). When ¢¢ ! is written in the form (g Z), the

map b:H_ —H, takes z7" to {"¥¢;!; thus a=' b is the map of rank one that takes

feH_ to the constant function f({). The map a~! bA is thus also of rank one, and the
infinite determinant

tw(gy) = det(1 + a~ 1 bA)

is equal to
1 -+ trace(a”'bA).

Since A maps 1 to fy(2), the lemma follows.
If we write g in the form (5.3), and correspondingly write g, in the form

7e(2) = exp log(1 — %) = exp(— 2 A,
then (5.14) takes the form
(5.16) w6, 0) = vl — 1/8 8y — 1202, ...) [ry(x, t).
The fact that the functions g;(x, t) are meromorphic follows at once from this formula:
indeed, if we expand the numerator in a Taylor series, we see that each g; has the form
a; = P;x/x

where P; is a polynomial differential operator in 9/dx, 9[dt,, ..., 0/0t;,, For example,
we have

a, = — (ot/ox) v
ay = 2(32 20 — drjot) .

The proof of (5.1) is now complete.
We can be more precise about the orders of the poles of the functions ¢;. Let us

fix the values of the variables t,, %, ..., say £, =1}, and regard g; as a meromorphic
function of one variable x.

Proposition 5.17.

The poles of the function a,(x, t°) have order at most 1.

In the case of g, this follows at once from the formula above and the fact that
< is analytic. For 7> 1, however, that is not so; for example, if we had © = x" + ¢,
then the corresponding function a,(x, 0) would have a pole of order n at the origin.
Our proof of (5.17) uses the expansion of the t-function in terms of Schur functions:
it will be given in § 8.
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Corollary 5.18. — For W e Gr'", the differential operators Ly € €™ have only regular
singular points (except for the point at infinity); that is, the coefficient u; of D' has poles of order
at most n — 1.

Proof. — Recall that Ly = KD"K™ where K =1 -+ Zg,(x) D™%. Thus if
we give a) weight % +j, then u; is a homogeneous differential polynomial in the g,
of weight n — ¢ (cf. the proof of (4.2)). Thus the corollary follows at once from (5.17).

Finally, we note that the coefficients #; of L. can be expressed directly in terms of
the r-function. In the case n = 2, L has the form D2 + uy, where

da, 0%

(5.19) uw=—2—£=2éﬁlogﬂcw.

However for n> 2 the explicit formulae become very complicated.

The class €™

We have shown how to associate an n-th order differential operator
(5.20) Ly = D" + u,_,(x) D" 2 4+ ... + uy(x),

with meromorphic coefficients and only regular singular points, to a space W e Gr",
We shall now describe the inverse process of associating a space W to a differential ope-
rator L. This cannot be done for an arbitrary operator, even one which is meromorphic
with regular singular points. We do not know an altogether satisfying description of
the desired class €™; roughly speaking, it consists of the operators whose formal Baker
functions converge for large 2.

Suppose that L is of the form (5.20), with coefficients defined and smooth in an
open interval I containing the origin. The formal Baker function

P(x, 2) = {1 +a(x) 271 +ay(x) 272+ ...}

of L was introduced in § 4. It is a formal series whose coefficients g; are smooth functions
defined in the interval I, and it is uniquely determined by L if we normalize it so that
¢(o, 2) = 1. If the n formal series

(5.21) (0, z), DY(o, 2), ..., D" (o, 2)
(which belong to the field G((z7!))) converge for large z, then by a scaling transformation
we can make them converge for | z| > 1 — &, so that they define n elements {,, ¢y, .. ., ,_,

of our Hilbert space H. We should like to define the corresponding W e Gr'™ as
the closed z"-invariant subspace of H generated by ¢, ..., §,_,, i.e. as yH_ , where
vy is the (n X n)-matrix-valued function ({,, ¢y, ..., $,_,;) on the circle. (In regarding
v as a matrix-valued function we are using the identification H ~ H™ described in § 2.)
For this to be possible we need to know that y is a loop of winding number zero in
GL,(C) — otherwise W*8 would turn out to be bigger than the space spanned alge-
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braically by {2 ¢;},>4 o <i<n+ Making y explicit according to the formulae of § 2,
we find

[! R < N £ 2 (Y B X () P R ()
() SR O &?O(CZ) U@ o Yy

\t ¢, o) \e) W@ . i)/

where ¢y, ..., ¢, are the n-th roots of z. But ¢,(2) ~ 2* as z - . So vy is holomor-
phic in |z|>1 —¢, and y(z) -1 as z —oo. By a further rescaling, if necessary,
we can therefore ensure that y(2) is invertible for |z|> 1 — ¢, as we want.

Let us notice that the series D* (o, z) depend only on the jets (i.e. Taylor series)
at the origin of the coefficients #; of L, and that conversely the series D* (o, z) determine
the jets of the u; at o. The space W which we have just constructed has its own Baker
function ¢y, which in turn defines a differential operator Ly with coefficients meromor-
phic in the entire complex plane. (For brevity, we shall write $y(x, z) for the Baker
function evaluated at ¢, =# = ... = 0.) Because both D¥ {(o, z) and D* {y(o, z)
belong to W and are of the form z* 4+ (lower terms), it follows by induction on % that
they coincide. The jets of the coefficients of L and Ly at 0 must therefore coincide too.
This gives us the first half of the following result.

Proposition 5.22.

(i) If the series (5.21) converge in a neighbourhood of z = co, then there are meromorphic
Sunctions Uy, ..., u,_, defined in the entire complex plane such that u; and %, have the same Taylor
series at x = o.

(ii) If the series Y(x, z) converges for |z| > R for each x in 1 then the u; coincide with
the 4 in 1.

To prove the second statement, let ¢;(x, 2") be the solution of Lo = 2"¢
characterized by the initial conditions Dg¢(o,2") =3§;. Each ¢; is an entire
function of 7" for x in I. If z is fixed and |z|> R, then {(x, z) and

n—1

_?0 Cpi(xa zn) Di \b(O, Z)

are both solutions of L¢ = 2" ¢ with the same initial conditions. They must therefore
coincide, and it follows that {¢(x, -) belongs to W for all x eI. As{(x, -) also belongs
to ¢”(1 + H_), we can conclude that {(x, z2) = {y(x, 2) for all xel, and so L
and Ly coincide in I.

6. Algebraic curves: the construction of Krichever

In Krichever’s construction of solutions to the KdV equations the starting point
is a collection of data whose most important constituents are a compact Riemann sur-
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face X and a holomorphic line bundle .Z over it. Mumford [16] pointed out that the
construction still applies more or less unchanged if we allow X to be any complete
irreducible complex algebraic curve (possibly singular), and that in that case it is natural
to allow & to be, more generally, a rank 1 torsion free coherent sheaf over X. (If X is
non-singular, any such sheaf is a line bundle.) One reason for including singular curves
is that the n-soliton solutions correspond to rational curves with n double points; and
even the solutions coming from torsion free sheaves that are not line bundles scem to
have nothing very exotic about them (we shall see examples in § 7). The inclusion of
torsion free sheaves will not cause us any extra difficulty, and will be essential for the
proof of theorem 6.10 below.

As well as X and &, the construction requires three more pieces of data (x,, 2, ¢).
Here x,, is a non-singular point of X and 27! is a local parameter on X near x,,. We
shall suppose that z is an isomorphism from some closed neighbourhood X, of x, in X
to the disc D, ={|z| > 1} in the Riemann sphere. That can always be achieved
by rescaling z (see remark 6.5 below). Finally, ¢ is a trivialization of & over X,.
We shall use ¢ to identify sections of & over subsets of X with complex-valued func-
tions. We shall also identify the unit circle S! with its inverse image in X under 2z.
We denote by X, the complement of the interior of X_: thus the closed sets X and X
cover X, and their intersection is S'.

To all this data we associate the following subspace W of H = L*SY, C): W is
the closure of the space of analytic functions on S* that extend to sections of &L over X,.

Proposition 6.x. — The subspace W belongs to the Grassmannian Gr. The virtual dimen-

sion of W is equal to %(&L) — 1, where as usual y(F) denotes the Euler characteristic
dim H(X; %) — dim H'(X; £).

Progof. — We observe first that the projection W — H_ factorizes
W H 2 H S H
for suitable A with 0 <A< 1 (here R, is the scaling transformation discussed in § 2).
For A sufficiently close to 1, the map R,..: W — H is bounded: for each feW is the
boundary value of a holomorphic section of £ over X\ X, and (by assumption)
the trivialization ¢ extends over some open set containing X_. Thus R,-, simply
assigns to f e W the function 2z f(Az), i.e. f evaluated on a circle slightly inside the
boundary of X,. Since R,:H_ —H_ is compact, the projection W —H_ is too.
It follows easily that the projection W —H_ has closed range.

It remains to show that the projection W —H_ is a Fredholm operator of the
index stated. We shall prove a more precise statement: the kernel and cokernel of the
orthogonal projection W —2H, are HY(X, %) and HYX, #) respectively. Let U,
and U, be open sets of X containing X, and X, and let Uy, = U, nU,. Because
U,, U,, and U,, are Stein varieties, we can calculate the cohomology of X with
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coeflicients in any coherent sheaf from the covering {U,, U_}; in particular, we have
an exact sequence

o ~HYX, Z) > 2Z(Uy) ® £(U,) -~ ZL(U,,) >H(X, &) —o,

where Z(U) denotes the sections of £ over a subset U of X. Taking the direct limit
of this as U, and U, shrink to X; and X, gives the exact sequence

0 > H(X, ) > Z(X,) ® Z(X,) - L(SY) - H(X, £) > o.

Since 2 is torsion free, its sections over X, or X_ are determined by their restrictions
to S!; thus we can identify #(X,) and £ (X,) with subspaces of the space Z(S!) of
real analytic functions on S!. The two middle terms in the above exact sequence then
become

wa e zH" - H*,

the map being the inclusion on the first factor and minus the inclusion on the second
factor (we write V** for the analytic functions in a subspace V of H). The kernel and
cokernel of this map are the same as those of the projection W** — zH%', so we have
only to see that the kernel and cokernel of this do not change when we pass to the com-
pletions W — zH_. But a function in the kernel of this last projection is the common L?
boundary value of holomorphic functions defined inside and outside S!, hence it must
be analytic: thus the two kernels coincide. That the cokernels coincide too follows
easily from the fact that W —H_ has closed range.

The same argument shows that the kernel and cokernel of the orthogonal
projection W —H_, can be identified with HO(X, %) and H'(X, .%,), where
&L, =L O[— x,] is the sheaf whose sections are sections of . that vanish at x,.
In particular, W is transverse if and only if we have H’(X, %) = H(X, %,) = o.
For readers of [16, 21], we note that it is the sheaf %, , rather than .#, that is considered -
in those papers.

We are mainly interested in spaces of virtual dimension zero; by (6.1), these
arise from sheaves with (%) = 1. If £ is a line bundle, the Riemann-Roch theorem
shows that its degree is then the arithmetic genus of X.

Combining the construction above with that of § 5, we obtain a solution to the
KP equations for each set of data (X, x, 2, Z, ¢) with y(#) = 1. This construction
is essentially the same as that of Krichever [10, 11]. To be more precise, Krichever
considers the case where X is non-singular, and starts off from a positive divisor
2 ={Py,...,P,}, with P;eX, of degree g equal to the genus of X. He assumes
that no P, is the point x,, and that & is non-special. ¢ Non-special ”’ means that the
line bundle Z corresponding to £ has a unique (up to a constant multiple) holomorphic
section, which vanishes precisely at the points P;; this section therefore defines a trivia-
lization of % over the complement of {P;}, in particular over a neighbourhood of x,,.
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If all the points P, lie outside the disc X, we can use this trivialization; our construction
then reduces exactly to Krichever’s.

The correspondence that we have described between algebro-geometric data and
subspaces of H is obviously not one to one, for the following reason: suppose w: X' — X
is a map which is a birational equivalence (that is, intuitively, the curve X is obtained
from X’ by making it “ more singular ’). Then we obtain the same space W from a
sheaf #’ on X' and from its direct image £ = m,(%¥’) on X. We shall avoid this
ambiguity by agreeing to consider only maximal torsion free sheaves on X, that is ones
that do not arise as the direct image of a sheaf on a less singular curve. A perhaps more
illuminating description of them is as follows. Recall (see [7]) that the rank 1 torsion
free sheaves over X (of some fixed Euler characteristic) form a compact moduli space M
on which the generalized Jacobian of X (the line bundles of degree zero) acts by tensor
product. We claim that the maximal torsion free sheaves form precisely the part of M
on which the Jacobian acts freely. Indeed, if % is any rank 1 torsion free sheaf on X
and L is a line bundle of degree zero, then giving an isomorphism L® &% = £ is equi-
valent to giving an isomorphism L & Hom(%, £); but Hom(&, Z£) is just the structure
sheaf of the ¢ least singular » curve X’ such that # is the direct image of a sheaf on X/,
hence it is Oy exactly when & is maximal. Obviously, any line bundle is a maximal
torsion free sheaf; and if all the singularities of X are planar, these are the only ones,
for in that case (and only in that case) M is an irreducible variety containing the line
bundles as a Zariski open subset (see [34]). However, in general there are many maximal
torsion free sheaves that are not line bundles: we shall meet simple examples in § 7.

Proposition 6.2. The construction described above sets up a one to one correspondence
between isomorphism classes of data (X, L, x4, 2, ), with £ maximal, and certain spaces
W € Gr.

Proof. — Let W be the space arising from data (X, &, %, 2, ¢) with % maximal.
We have to show how to reconstruct all of this data (up to isomorphism) from W alone.
Let us recall from (2.6) the definition of the dense subspace W*¢ of W, consisting of
all elements of finite order. Clearly W®¢ can be identified with the space of algebraic
sections of .Z over X\ {x,}. If A is the coordinate ring of the affine curve X\ {x,},
then W®¢ is the rank one torsion free A-module corresponding to the sheaf Z restricted
to X\{*,}. On the other hand, let Ay be the ring of analytic functions f on S' such
that f. W C W*8, Clearly Ay is an algebra containing A (if we identify functions
in A with their restrictions to S'), and W® is a faithful Ay-module. As W is torsion-
free and of rank one as a module over A, it follows that Ay can be identified with an
integral subring of the quotient field of A. This means that Spec(Ay) is a curve of the
form X'\ {x,} (with X' complete) projecting birationally on to X\{x,}; and so
if # is maximal we must have Ay = A. Thus we have reconstructed from W the
curve X, the point x,, and the restriction of & to X \{x,}. Finally, the inclusion
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W C C[z] ® H_ defines a trivialization of % over X, \{x,} (and hence the exten-
sion of & to X); for if |{|> 1 then evaluation at { defines a map W%t — C which
induces an isomorphism of the fibre of £ at { with C. (That is clear, because the fibre
is canonically W*¢/mW=®¢, where m C Ay is the ideal of functions that vanish at &.)

Remark 6.3. — The definition of Ay makes sense for any W e Gr. In general,
however, it will be trivial, i.e. Ay = C. (This is clearly the case, for example, when W
is the subspace of codimension one in H, which was described in (2.10).) The spaces
W e Gr which arise from algebro-geometrical data are precisely those such that Ay
contains an element of each sufficiently large order, or, equivalently, such that the
Ay-module W has rank 1. That follows at once from the preceding discussion,
in view of the fact that the coordinate rings A of irreducible curves of the form X \{#-}
(where X is complete and x, is a non-singular point) are characterized as integral
domains simply by the existence of a filtration

C=A,CACA,C...CA

such that

(1) A A CA; L,

(it) dim(A,/A,_,) <1 for all 2, and
(1ii) dim(A,/A,_,) =1 for all large %.

Remark 6.4. — We should point out that for any W € Gr the construction of § 5
defines a realization of Ay as a commutative ring of differential operators. More pre-
cisely, the proof of (5.11) shows that for any f e Ay there is a unique differential ope-
rator L(f) such that

L(f) bw = f(2) dw.

If WeGr™, then 2"eAy, and L(z") = Ly. In general, the order of the ope-
rator L(f) is equal to the order of f.

Remark 6.5. — As we saw in § 5, a change of local parameter z ¢z (¢ a non-zero
constant) corresponds to acting on the solution to the KP hierarchy by the scaling trans-
formation. Thus the condition that the validity of the parameter z should extend up
to |z| =1 is not a serious restriction in our theory.

Remark 6.6. — The solution to the KP hierarchy does not depend on the choice
of trivialization ¢: for a different choice of ¢ would just multiply W by a function of
the form ¢y +¢; 271 + ... (with ¢y % 0), which, as we know, does not change the
solution. Even the space W does not change if we replace ¢ by ¢ where ¢ is a non-zero
constant; that does not contradict (6.2), because the quintuples of data (X, %, 2, Z, co)
for different ¢ # o are obviously isomorphic.
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Remark 6.7. — We get a solution to the n-th KdV hierarchy (i.e. W e Gri") if
and only if 2" € Ay; that is, if the local parameter z is such that 2" extends to a mero-
morphic function on X with no singularities except for the n-th order pole at x,,. For
fixed n, this of course imposes a restriction on which pairs (X, x,) can occur: for example
if » =2 then X must be hyperelliptic and x,, must be a Weierstrass point.

Remark 6.8. — An important part of Krichever’s theory is the observation that
the KdV (or KP) flows correspond to straight line motion on the Jacobian of X. That
is easily seen from our point of view as follows. For each geT,, let L, be the line
bundle obtained by taking trivial bundles over X, and X, and glueing them by the
transition function g on (an open neighbourhood of) §t. Thus L, comes equipped with
a trivialization ¢, over X,. The natural action of I', on Gr corresponds to the fol-
lowing action on the data (X, x,, 2, &, ¢): geI'. acts trivially on the first three
components, and on (£, ¢) by tensoring with (L;, ¢,). The action of I', on solutions
to the KP hierarchy thus corresponds simply to £+ 2 ®L,. The assertion about

straight line motion is now clear in view of the following result.

Proposition 6.9. — The assignment gi> L, defines a surjective homomorphism from T,
to the generalized Jacobian of X (whick consists of all holomorphic line bundles on X of degree
zero).

Proof. — If L is a line bundle on X then L| X, and L | X, are trivial, for all
bundles on affine curves are analytically trivial, and X, and X, are contained in affine
open sets of X. So L = L, for some holomorphic function S' - C* whose winding
number is the degree of L. We can change g by any element of I'_ without affecting L;
and so if ¢ has winding number zero we can choose it in I"_ .

Example

Let us return briefly to the subspace W = W, , € Gr{? which was introduced
in § 3 and discussed further in § 5. In this case Ay consists of all polynomials f in z
such that f(— p;) = f(p;) for each ¢. This is the coordinate ring of the affine curve
whose completion X, is obtained from the Riemann sphere by identifying the point p;
with — p; for each i: X, is a rational curve with m double points. If we take & = 22
and 1 = 2( —#}) ... (& —p%) as generators of Ay then the equation of X, is

N =EE =) ... (E—ph)
We remarked in § 5 that the orbit of W, under I', consists of all W,  , where
 runs through (G*)™ This conforms with (6.9), as (G*)™ is the generalized Jacobian

of X,.
Commuting differential operators

Our last goal in this section is to point out that our results lead directly to a proof
of the so-called ¢ Painlevé property >’ of the stationary KdV equations. Since these
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have the form [P, L] = o, the result can be formulated as a statement about commuting
differential operators.

Theorem 6. 10. Let L=D"+u, ,D""%+ ... 4+ u, be an ordinary differential
operator whose coefficients u; are defined and smooth in a neighbourhood 1 of the origin in R. Sup-
pose that there exists a differential operator P of order m relatively prime to n that commutes with L.
Then the functions u; extend to meromorphic functions on the whole complex plane, with poles of
order at most n — i, so that all the finite singular points of L are regular.

Note that the condition about relatively prime orders is obviously essential: if
we omitted it there would be trivial counterexamples to the theorem where L = P,
or more generally L and P are both polynomials in some operator of lower order.

It is easy to see (for example by conjugating L into D" by a formal integral operator
as in § 4) that any operator P that commutes with L is some linear combination

N
P =S¢ L
0

of the operators P, occuring in the definition of the n-th KdV hierarchy. For each
fixed sequence of constants {c,}, the stationary KdV equation [P,L] = o is a system
of ordinary differential equations for the coefficients {#,, ..., u,_,} of L. Let us call
such an equation (or the corresponding P) admissible if there is some index r relatively
prime to n with ¢, + o. For example, if n is prime, then every non-trivial stationary
KdV equation is admissible. If P is admissible, then the algebra generated by L and
P contains operators of order relatively prime to n. Thus (6.10) can be formulated as
follows: every solution {u;} of an admissible stationary KdV equation is of the kind stated in the
conclusion of (6.10).

Theorem 6. 10 will follow from (5.18) if we show that every operator L satisfying
the hypotheses is of the form Ly, for some W e Gr™ arising from an algebraic curve.
This is well known, and is proved in [16, 21]; however, for completeness we give a self-
contained proof, following the approach of Burchnall and Chaundy [4].

Proposition 6. 11,

If L and P are commuting differential operators as in (6.10), then:
(i) There is an irreducible polynomial ¥ e CG[&, n] of the form
F=t"4+...4+9"

suck that F(L, P) = o.

(ii) For all but a finite number of points (A, ) of the affine curve Xy whose equation is
F(A, ) = o there is a unique common eigenfunction ¢, , of L and P such that ¢, ,(0o) = 1:

Loyw =20ru  Poyy = ey,
For any x €l, o, ,(x) is a meromorphic function on the curve X.
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(i) For x €1 the formal Baker functions {y,(x, 2) and $p(x, 2) of L and P both converge
Sor large z, and then

P, N = gy, ™) = gy ().

(Notice that \''" and p!™ are local parameters at the point at infinity of Xg.)

We begin by proving assertion (i). For any A e C let V, be the n-dimensional
vector space of solutions of Lo =2A¢ on I. A basis for V, is given by the func-
tions @;(x,A) for 0 <i<n such that ¢{(0,2) = 3;;. Notice that for any ¢ €V,
and any 2 we have '

n—1
9(0) = B pu(x) ¢(0)

where the p,;(A) are polynomials independent of ¢.

The operator P maps V, into itself. In terms of the basis {¢;} the action of P
on V, is given by an n X n matrix P, of polynomials in A. Let F(a, u) be the charac-
teristic polynomial det(w — P,). It is not hard to see that F(A, u) is a polynomial
of degree m in A: in fact one can show that (up to sign) it is the same as the polynomial
obtained by reversing the roles of P and L in the construction. Thus F has the form
stated in (i). Consider the differential operator F(L, P). There is at least one solu-
tion of F(L,P) ¢ = o0 in each V,. As a differential operator can have only finitely
many linearly independent solutions, this implies that F(L, P) == 0. But the same
argument shows that if G is any factor of F then G(L, P) = o; so F must be a power
of an irreducible polynomial. As F(A, u) contains the monomials A™ and p", the power
must divide both n and m. But these are relatively prime, so F must be irreducible.

We next prove assertion (ii). Because the polynomial F is irreducible there are,
for all but finitely many values of A, n distinct solutions g of F(A, u) = o. For each
of these values of p. there is (up to a scalar multiple) a unique eigenvector ¢, , of P,
in V, with eigenvalue n. We can choose it so that its coordinates with respect to the
basis { ¢;} of V, (i.e. its derivatives at 0) are polynomials in A and u: for example we can
take the coordinates to be the cofactors of any row of the matrix p — P,. The value
of ¢, , at o cannot vanish identically, for the eigenvectors of P, must span V, for almost
all \. This permits us to normalize ¢, , so that ¢, ,(0) = 1, except at a finite number
of points (A, ). The derivatives ¢} ,(0) will then be rational functions of A and p.

To see that ¢, ,(¥) is meromorphic on Xy we observe that

n—1

Pa, p.(x) = i§0 (P(Ai,)u<o) ?i(x, )‘)'

(Note that ¢;(x,2) is an entire function of A.)
To prove (iii) we first observe that not only do we have L{; = 2" ¢, by defi-
nition, but also P{;, = u(z) ¢, where u(2) is a formal power series belonging to the
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N
field C((z7!)) of formal series of the form X o;2'. To see this, choose K as in § 4

so that K™'!LK = D" Then K~!PK commutes with D", and so must be a formal
pseudodifferential operator (D) with constant coefficients. Thus PK = Kyu(D).
Applying both sides to ¢ gives Py = u(2) ¢, as Ke® = {,,.

Now we adopt the following point of view. The operators L and P can be thought
of as acting on the vector space of jets of functions (of x) at the origin: in other words
we replace functions ¢ by sequences {9"(0)};>,. Consider the vector space J of
formal jets whose components ¢/(0) belong to the field G((2~!)) of formal series. The
operator L — 2" acts on J, and has an n-dimensional kernel J; spanned by the jets
of the functions ¢,(x, 2") already mentioned. (Recall that ¢{(o, z") is a polynomial
in 2") Now formal series of the form ¢* Za,(x) z~* define jets in J, and the jet of ¢
belongs to J;,. Furthermore P preserves J;,, and Py, = u(z) ¢;. On the other hand
we already know that the unique eigenvectors of P in J;, when normalized at o, are
the jets of @, ,, where A = 2", and y runs through the » roots of F(A, u) = o, which
are distinct for large A. This proves that ¢{!(o, 2) = ¢l ,,(0) for some point
(2", u(2)) € Xg, and hence that the series ¢{)(0, z) and p(z) converge for large z.

In the preceding discussion the role of the origin could have been played by any
point xy € I. Thus we can conclude that if a formal Baker function ¢y, , (x, z) is cal-
culated at x, then

G2y (%05 2) = 9R)u (%) €07 @y (%) ™.

(The factor e%°gq, (%)~ ! on the right occurs because ¢, is normalized by
$r, 00 (%0, 2) = €™%) The space W, e Gr" defined by $r,4, is therefore related to
the space W defined by ¢, by

W:co = ¢* Pn, u.(z)(xo) “lw.

But ¢7™° ¢,4 ,,)(%) does not vanish for large z, and so (after scaling, if necessary)
it defines an element y of the group I'_. Thus W, and W define the same meromorphic
differential operator. The jets of its coefficients coincide with those of L at x, and o
respectively. This proves (iii).

Remark 6.12. — Notice that we have proved that L arises by Krichever’s construc-
tion from the curve X and the torsion-free sheaf % whose space of sections over X\ {0}
is the space W*¢ generated by the ¢{,(0). In particular, this proves (6.10). It is
not hard to show that the fibre of £ at any point (A, u) of X is canonically isomorphic
to the joint (A, w)-eigenspace of L and P.

Remark 6.13. — We believe that theorem 6. 10 is “ well known ” (except possibly
for the assertion about the orders of the poles), but our proof seems to be the first complete
one available. Krichever [10] noted that ‘“ most” of the solutions (that is, the ones
coming from non-singular curves X) of the stationary KdV equations are globally
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meromorphic; our proof is essentially the same as his except that he used the theta func-
tion of X where we use the more general =-function (see § g below). It might be inte-
resting to give a direct algebro-geometric proof of the theorem, presumably by introducing
suitable ‘ theta functions’ for singular curves. However, we note that one would
have to define a theta function, not merely for each singular curve, but for each orbit
of the Jacobian of such a curve acting on the space of maximal torsion free sheaves.

7. Rational Curves

We recall from § 2 that Gr, is the subspace of Gr consisting of spaces W such that
pH, CWCq¢ 'H,

for some polynomials p, ¢, and that p and ¢ can be chosen so that all their roots lie in
the region |z| < 1.

Proposition 77.x. — The construction described in the preceding section gives a one to one
correspondence between spaces W € Gry and isomorphism classes of data (X, &, x4, 2, @)
as in (6.2) such that

(i) X is a rational curve
(ii) z is a rational parameter on X
(iii) o extends to an algebraic trivialization of £ over some Zariski open set containing the disc X, .

Before giving the proof, we clarify the term  rational parameter ’. The curve X
being rational means that there is an algebraic map f from the Riemann sphere to X
which is an isomorphism outside the inverse image of the singular set of X. We can
choose f so that f(o) = x,. By a rational parameter z on X we mean the inverse of
such a map f in some neighbourhood of x,: note that its domain in fact extends to the
whole non-singular part of X. Note also that the rational parameter is uniquely deter-
mined up to a linear change zi»az + b: for any two of them differ by a birational,
hence genuine, automorphism of the Riemann sphere preserving oo, which must be
linear.

Proof of (7.1).
(i) Let W eGr,, and let p and ¢ be polynomials as above. Let W*2 and Ay
be as in the proof of (6.2). Clearly we have

(7.2) pC[z] C W C ™" C[2],

from which it follows easily that pgC[z] C Ay C (pg)"* C[2z]. Since Ay is a ring, we
have in fact
p9C[z] C Ay C C[2].

Thus the inclusion of Ay in C[2] induces an isomorphism of quotient fields; that shows
that the curve X \{x,} = Spec Ay is rational, and that z is a rational parameter
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on X. From (7.2) it is clear that the Ay-module W*¢, and hence also the corresponding
sheaf # on X, has rank 1. It remains to prove (iii). Let z, € G; then evaluation at
2, gives a map ¢(z,) : W — C which is defined provided that z, is not a root of g,
and non-zero provided that z, is not a root of p. Let P, be the point of X corresponding
to 2z, and let m C Ay be its maximal ideal. Then ¢(z,) defines a map from the fibre
W /mW?e of & over P, to C, which is an isomorphism provided that z, satisfies the
two conditions above and that P, lies in the open set of X over which % is a line bundle.
That completes the proof that W gives rise to algebro-geometric data of the kind stated
in the proposition.

(ii) Conversely, suppose we are given data (X, %, x,, 2, ¢) of the kind listed
in the proposition: we have to see that the corresponding W belongs to Gr;. Let BC X
be the finite set of points over which ¢ is not defined. If necessary we enlarge B to
include all the singular points of X. Let {z, ..., 2,}C G be the inverse image of B
under the map f:S% — X whose inverse is the parameter z. Then we can identify
the sections of % over X\ B with the sections of a trivialized line bundle over
S2\{z, - .., 2,}. Thus W*2, which is the space of sections of & over X\{x,}, is
identified with a subspace of the space F(z,, ..., 2,; —v;, ..., —v,) of rational func-
tions of z that are holomorphic except for poles of prescribed orders v; at the points z;.
More precisely, W8 is the subspace of F(z, —v,) consisting of all functions whose
Laurent series at the points z satisfy some finite set of linear conditions. These conditions
are certainly satisfied by all polynomials that vanish to suitably high orders p; at the
points z. It follows that if we set p = II(z — z)*, ¢ = II(2 — 2)% then we have

pC[z] C W C ¢~ C[2].
Passing to the L? closures, we find pH, CW C¢g *H,, as required.
Next recall that Gr, is the subspace of Gr; consisting of spaces W for which the

polynomials p and ¢ can be taken to be powers of z. If we follow through the above
proof in that case, we obtain the following.

Proposition 7.3. — The construction described in § 6 gives a one to one correspondence between
spaces W € Gry and isomorphism classes of data (X, %, 2, L, @) as in (6.2) such that

(1) X is a rational curve with just one irreducible (i.e. cusp-like) singularity
(i) z is a rational parameter on X such that the singular point x, corresponds to z = o
(iii) o extends to an algebraic trivialization of £ over the whole non-singular part X\ {x,} of X.

The term ¢ irreducible ” in (i) means that when we resolve the singularity we
still get only one point, so that z is in fact a bijection between X and the Riemann sphere.
Note that z and ¢ are now both uniquely determined up to multiplication by non-zero
constants. The fact that ¢ is unique means that the correspondence between spaces
in Gr, and solutions to the KP hierarchy is one to one. Indeed it is easy to see directly
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that if W € Gr, and v is a function of the form 1 +¢; 27! + ..., then YW cannot
belong to Gr, unless y = 1.

The subspaces W e Gr, provide many simple examples of maximal torsion free
sheaves that are not line bundles. Indeed let W = Hg, where S C Z is a set of virtual
cardinal zero. Then W e Gr,, and we claim that the corresponding maximal torsion
free sheaf is seldom a line bundle. Here W is the vector space spanned by {z'},¢ 5.
Let R be the semi-group of strictly positive integers 7 such that S 4+ 7 CS. Then Ay
is the algebra spanned by 1 and { 2"}, g, and the maximal ideal m of Ay corresponding
to the singular point z = o0 is spanned by {z"},cg. The dimension of the fibre
WeE/mW®¢ of the sheaf # over the singular point is thus the number of elements of
S\ S’, where we have set

S"= U (S +n.
rER
Unless this number is 1, the maximal torsion free sheaf .# is not a line bundle. The
simplest example is when S ={—1,0,2,3,...}; then R ={3,4,5, ...} and
S"={2,3,...}. In this case the dimension of the singular fibre of .# is 2. Note that
since the algebra Ay = C[Zz3 24, 2] needs more than two generators, the singularity
here is not planar: this conforms with our observation in § 6 that in the planar case every
maximal torsion free sheaf is a line bundle.

The case n = 2

In general, the isomorphism classes of data listed in (7.3) are hard to classify.
However, if we confine ourselves to the case of Gr{?), then many simplifications take place:
perhaps the most important is that the orbits of the group I' | in Gr) coincide with the
cells in the cell decomposition described in § 2. Here we give a brief description of the
situation, leaving most of the (easy) proofs to the reader. For simplicity, what follows
will refer only to the component of Gr{?) consisting of spaces of virtual dimension zero.

We recall from § 2 that Gr® has a cell decomposition with cells indexed by the
sets S € & such that S 4+ 2 CS. It is easy to see that the only such S are the sets S,
given by 4

S, ={—% —k+2,—k+4,.. . Bk+1,k+2, ...}

We denote by C, the corresponding cell in Gr{); it has complex dimension %, and consists
of all W of virtual dimension zero such that z*H,_CW C z7*H_ and % is the smallest
number with this property. It is not hard to see directly that these W form a k-dimen-
sional cell: such a space W contains elements w of the form

— —k+1 k—1
w=2 4o 2L oy Y

and {w, 2w, ..., 22 w}is then a basis for W/z* H,. Thus w determines W uniquely.
The converse is not true; however, the coefficients o; can be normalized in various ways,
of which the most convenient for us is the following.
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Lemma 77.4. — Eack W € G, contains a unique element w of the form

w=z%exp(a,z+ay,2®+ ... + aq, %Y.

The correspondence W« (a;, ..., ;) gives us an explicit isomorphism of the
cell G, with C*; the centre of the cell (corresponding to the origin in C¥) is the space Hg,,
which we shall denote simply by H,. It is clear from (7.4) that the subgroup{exp(¢:*~1)}
of ', acts on G, by translating the r-th coordinate 4,. In particular, we see that C,
is precisely the orbit of H, under I' .

It is interesting to see how this description of the orbits of I, fits in with the algebro-
geometric one implicit in (7.3). The main points are as follows. First, if W = H,
then Ay = C[2, 2#*'] = A,, say. Let X, = (Spec A;) U {x,} be the corresponding
complete curve, and let J, be the Jacobian of X, (parametrizing line bundles of degree
zero). If we use the point x, to identify the spaces of line bundles of different degrees,
then the torsion free sheaf over X, corresponding to the space H, is the neutral element
in J,; indeed, it is clear that Hi® = z=¥A,. Hence the orbit of H, under I', that is,
the cell G, can be identified with the Jacobian J,. The fact that the cells G,
exhaust Gr? implies that the curves X, are the only ones that arise from a space
W e Gr{), and also that every maximal torsion free sheaf over one of the curves X,
is a line bundle. Both of these facts can be seen directly: it is easy to show that the A,
are the only subalgebras of C[z] containing 2% and also an odd power of z; and, as we
have observed before, the assertion about the sheaves is true for any curve with planar
singularities (a simple proof that covers our present case (X degenerate hyperelliptic)
can be found in [8]; in fact the assertion for singularities of the type »" = x™ is implicitly
contained in [4 (c)]). To see directly that J, is a k-dimensional cell, we can use the
exponential sheaf theory exact sequence: since H'(X,, Z) = o, this gives an isomorphism
HY(X,, 0) 2 J,. The dimension k of the vector space H'(X,, ®) can be calculated
as the number of ““ gaps > in the ring A,, that is, the number of positive integers r such
that A, does not contain a polynomial of order . The algebras A, are invariant under
z > ¢z, which implies that the pairs (X, ¢z) for different ¢ % o are isomorphic, so
that the scaling transformations can be viewed as flows on the Jacobians J,. Indeed,
from (7.4) we see that the scaling flow on the cell G, is given by

R,(ay, ...,a) = N ay, ..., x7%Tlg).

Finally, it is interesting to consider the closure C; of the cell C;: this the union of
all the cells C, with r<k. Alternatively, C, consists of all W e Gr® such that
A, W CW. Hence each point of C, determines a torsion free sheaf (in general not
maximal) over X,; in fact we get a bijective map G, - M,, where M, is the moduli
space of rank one torsion free sheaves of some fixed Euler characteristic over X, (see [7]).
The closed cell C, is an algebraic variety, for it is an algebraic subset (given by the condi-
tion 22W C W) of the Grassmannian of k-dimensional subspaces of z=*H_[z* H,,
and it is fairly clear that the above construction gives us an algebraic family of sheaves
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over X,: that implies that the bijection C, -~ M, is an algebraic map. Unfortunately,
we cannot assert that it is an isomorphism of algebraic varieties: for example, C, is a
one-dimensional projective space (non-singular), whereas M, is isomorphic to the
curve X,, which has a cusp. (We do not know a precise reference for this fact, but
P. Deligne and T. Ekedahl have kindly pointed out to us that it follows easily from (2.6.1)
in [24].) In general, we expect that C, is the normalization of M,. The inclusion
A, CA,_, induces a map X, , - X,, and hence (taking the direct image of sheaves)
a map M;_, - M,. This map corresponds to the inclusion C,_, C C,, and iden-
tifies M,,_, with the boundary of M,, that is, with the space of torsion free sheaves
over X, that are not line bundles.

The solutions to the KdV equations corresponding to the points of Gr{ have
been much studied (see [1, 2]): the cell G, corresponds to the solutions to the KdV hie-
rarchy flowing out of the initial value

u(x,0,0,...) = —k(k + 1)[x2%

(This is the initial value defined by the space H,, as will become clear in § 8, when we
describe the z-functions of the spaces Hg.) It is known that these exhaust the rational
solutions to the KdV hierarchy that vanish at x = oo.

8. The r-function and Schur functions

We have already given explicit formulae (3.4) and (3.5) for the z-function as
an infinite determinant. It is useful for some purposes to make the formula even more
explicit by expanding the determinants in a certain way: the result is that the r-function
can be written as an infinite linear combination of Schur functions.

We begin by reviewing the basic definitions concerning partitions and Schur
functions (for more details see, for example, [13]). By a partition we mean an infinite
sequence v = (vg, V4, vy, ...) of non-negative integers such that vy> v, > vy > ...
and all except a finite number of the v; are zero. The number |v| = Zv; is called
the weight of v. To each partition v there is associated a Schur function F,. This is a
polynomial with integer coefficients in a sequence of indeterminates (ky, ky, fg, ...);
it is homogeneous of weight |v| when #; is given weight 7. One way to define it is as
the 7 X r determinant

F,(h) = det(h, i), (0<4j<7—1)

where 7 is any number sufficiently large so that v; = o for > r. Here it is understood
that Ay =1 and % = o for i< o; it is clear that the value of the determinant does
not depend on the choice of . One reason for the importance of Schur functions is
that they are characters of the general linear groups GLy(C): to each partition v there
corresponds an irreducible representation of GLy (C) (for any large N), and its character y,
is given by y,(A) = F,(h), where

1+ Xk 2 ={det(1 — Az)}},
1
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that is, the #; are the * complete homogeneous symmetric functions > of the eigenvalues
of the matrix A. In our context, however, the Schur functions arise in a purely formal
manner, and the representations of GLy(C) do not seem to be relevant.

Let &, denote the set of all subsets SCZ of virtual cardinal zero (see § 2); that
is, &, consists of all strictly increasing sequences S = {s,, §;, S5, ...} of integers such
that s; = ¢ for all except a finite number of indices 7.

Lemma 8. 1. There is a one to one correspondence between elements of &, and partitions,

gwen by S v where v; =1 —s,.

The proof is trivial. Notice that the weight |v| of a partition is equal to the
length £(S) of the corresponding S; that is, it is the codimension of the stratum XZg of Gr.
In what follows we shall write Fg for the Schur function of the partition corresponding
to an element S € .

Recall from § 2 that if S € &, then Hg e Gr is the closed subspace of H spanned

by { z° }s €8
Proposition 8.2, — Let W = Hg, where S € &. Then the t-function of W s given by
Tw(g) = Fy(h)

where we have set

gl=14 2k
1

Proof. — We use the formula (3.4). As an admissible basis for Hg, we choose
w; = 2% where S = {5, 51, S, - .. }. Also, themap (a,b) : H ->H_ isjust f (fg™",,
where the subscript + denotes orthogonal projection onto H, . Thus if g~* is expanded
as in the statement of the proposition, it follows at once that the matrix of the map
aw, +bw_:H, —-H,_ is

(kj—s,') = (h(i—s,-)—i+j): (Z,_] EN)

Since s; = ¢ for large 7, this matrix is strictly (that is, with 1’s on the diagonal) upper
triangular apart from a finite block in the top left corner. The matrix of the map
a:H, —H_ is strictly upper triangular, so it follows easily that the t-function

det(w, + a ' bw_) = deta (aw, + bw_)

is equal to the determinant of this finite block. That proves the proposition.

Now let W e Gr be any space of virtual dimension zero. Fix an admissible
basis w = (w,, w;, ...) for W. As in § 3, we think of w as a Z X N matrix, using
the natural basis {2} for H. For each S €%, let w® be the determinant of the
N X N matrix formed by extracting from w the rows indexed by the numbers s € S;
that is, if w; = Zw; Z, we set

w® = det(w;)ie s je -
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We call the numbers {w®} the Pliicker coordinates of W: they are homogeneous coordinates
(a different choice of admissible basis for W multiplies them all by the same non-zero
constant). As in the finite dimensional case, the Pliicker coordinates can be regarded
as giving a projective embedding of the Grassmannian (see the appendix § 10 below).
Notice that %% is non-zero precisely when W is transverse to Hs: indeed, w® is just the
determinant of the orthogonal projection W —Hg with respect to the bases {w;}
for W and {2°:5 €S} for Hy. In particular, by (2.5), there is a unique S of minimal
length such that ©® + 0. If we choose w so that w_ has the form 1 + (finite rank),
then the »® reduce to finite determinants. For example, if W is transverse, we can
choose w so that w, = 1, and then if we set S\N =A and N\S =B we have

w® = det(wy)ica,jen-

Proposition 8.3, — The v-function of W is given by

ww(e) = Zu* Fy(h),

where { w®} are the Pliicker coordinates of W, the sum is taken over all S € &,, and the variables h;
are related to g as in (8.2).

Proof. — We first observe that if v and w are m X n and =z X m matrices respec-
tively, with n > m, then we have

det vw = Zvg w®,

where the sum is taken over all subsets SC{1, 2, ..., n} with m elements, vg is the deter-
minant formed from the columns of » indexed by the elements of S, and %" is the deter-
minant formed from the corresponding rows of w. (This identity simply expresses the
functoriality of the m-th exterior power.) It is not hard to see that the identity extends
to a product of infinite matrices, indexed by N X Z and Z X N, of the form

(94, 02) (Zi)

where v, — 1, w, — 1, v_and w_ are all of trace class and S runs through the indexing
sets SCZ of virtual cardinal zero.
We apply this to the determinant (3.4) giving the z-function, with

(v,p,0_) = (1,a"1b).

Then w® is the Pliicker coordinate defined above and vg is the t-function of Hg, which
we calculated in (8.2). That completes the proof.

As we saw in § 5, for the application to differential equations we have to write
the elements of I', in the form

(2) = exp(Z4,5)
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(we write ¢, where we wrote x in § 5). We shall write 7y (t) for the t-function expressed
in terms of these “ coordinates >’ on I',: to calculate Ty (t) from (8.2) or (8.3), we have
only to substitute the variables #; for the k;, using the relation

(8.4) exp(— Ellti ) =14+ Xk 2
1

Each ¢, is a polynomial in the %;, homogeneous of weight % if we give k; weight 7. If
we regard the %; as symmetric functions of the eigenvalues {)\;} of a matrix, as above,
then the #, are given by

— kty, = X
J
(this differs by a sign from the convention adopted in [5]).

Example. — Let S={—1,0,2,3,...}. The corresponding partition is
v=(1,1,0,...), so the Schur function is

Fy(h) = det (”11 ;’Zﬂ) =12 —h,.
1

From (8.4), we have h = — ¢,k = %tf-—tz, so by (8.2) the t-function of the
space W = Hy is

I
Ty (t) = ;tf + L.
We end this section with some examples of the use of (8.3). First, note that it

is clear that W has only finitely many non-zero Pliicker coordinates if and only if it
belongs to Gry; hence we can read off from (8.3) the following.

Proposition 8.5. — The function vy (t) is a polynomial in (a finite number of) the variables
(tys tos .. .) if and only if W belongs to Gr,.

As a more substantial application of (8.3), we shall prove the assertion (5.17%)
about the orders of the poles of the functions g;(x, t°). We shall continue to write £
instead of x. The crucial ingredient in the proof is the fact that the restriction of the
t-function to the one parameter subgroup exp(¢, z) of I', cannot be identically zero.
More precisely, we have the following.

Proposition 8.6,

For any W € Gr, we have
tw(ti, 0,0, ...) = ctl + (higher terms),
where ¢ + 0 and { is the codimension of the stratum of Gr containing W (*).
(*) Added in proof. J. Fay has independently proved an equivalent result in the case when W arises from

a Riemann surface. (See his paper “ On the even-order vanishing of Jacobian theta functions », Duke Math.
J., 51 (1984), 109-132, thm 1.2.)
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In particular, the proposition shows that the t-function cannot vanish identically,
a fact that we used implicitly throughout § 5.

Proof of (8.6). We first consider the behaviour of a Schur function Fg when
we set f, =i#3 = ... =o0. Since Fg is a homogeneous polynomial of weight #(S)
in the ¢, it is clear that we have

Fy(ty, 0,0, ...) = dgt{®

where dg is some rational number. We claim that this number is non-zero. Indeed,
dy is equal to (— 1)’® times the reciprocal of a certain positive integer, the ¢ product
of the hook lengths ** of the partition associated to S (see [13], p. 37, ex. 3). Explicitly,
we have
(— I)l(s) dy= 11 (55 —s5) /11 (n — )"
i<j<n i<n

where n is any number large enough so that s, ,; = n 4 1, and asusual S = {s5¢,5;, ...}
(see [13], p. 9, formula (4)). We have already observed that for any W e Gr, there is
a unique S of minimal length ¢, say, such that the Pliicker coordinate w® is non-zero;
this S is the index of the stratum containing W, and ¢ is the codimension of the stratum.
That means that in the expansion (8.3) of ty, all the terms have weight at least /; and
the terms of minimal weight ¢/ form a non-zero multiple of a single Schur function Fg.
Thus the proposition follows at once from (8.3) and the fact that dg + o.

Proof of (5.17). — Replacing W if necessary by gW for suitable geI',, we see
that it is enough to consider the case where the pole is at the origin t = o. We already
observed in § 5 that the functions a; are quotients of the form

a;= P, x|~

where P, is a polynomial differential operator in {9/dt,}; indeed, P; is the coefficient
of 2= in the formal expansion of the expression

exp [-— %:] ; z” '(8/(%,)].

It follows at once from this that the operator P; lowers weight by ¢ (where, as always,
¢, has weight £). Thus in the power series expansion of the numerator P; v in the expres-
sion for 4;, only terms of weight at least / — ¢ can occur. (If £ — 7 < o, this statement

is vacuous.) Hence when we put #, =3 = ... = 0 in the numerator, the lowest
power of ¢, that can occur is # ~* (any terms involving a lower power of £, must also involve
a higher #,, and hence vanish when we set {, = ... = 0). Proposition (5.17) follows

at once from this and (8.6). In fact the argument shows also that the order of the
pole of any g; cannot be more than ¢ (*).

(*) Added in proof. According to G. Laumon (private communication) the order cannot be more than —s,.
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9. The r-function and the theta function

Let X be a compact Riemann surface of genus g, and let J be the Jacobian of X:
it is the identity component of the group H'(X, 0*), where @ is the sheaf of holomorphic
functionson X, Weset U =HYX, 0) and A = HY(X,Z). The map f ¢ induces
a sheaf homomorphism @ — @* with kernel 2miZ, from which we get the exact sequence

o>A->U-=>J—>o
(the kernel is really HY(X, 2niZ), but we identify this with HY(X, Z) in the obvious

way). We recall that U is a g-dimensional complex vector space, A is a lattice in U,
and J = U/A is a complex torus.

We denote by B: U X U -G the unique Hermitian form whose imaginary
part is the R-bilinear extension of the intersection pairing A X A —Z. We fix a
quadratic form ¢:A —Z[2Z such that

g +p) — () —g(w) =2.p (mod 2),

where A. p is the intersection pairing. Then the theta function of X (see, for example, [15])
is the holomorphic function 0:U — G defined by

0(u) = AEA(_ 1)a g — 3B A 2u)

It is characterized (up to a constant factor) by the functional equation
(9-7) B(u +2) = (— 1)t AR 22 f(u)
(for e U, AeA). It follows at once that we have
0(u + A) = CO(u) B(2) B™¥)
(where G = 0(0)~!). We shall use the fact that this relation too characterizes the theta

function up to certain simple transformations. More precisely, we have the following.

Lemma 9.2, — Let §: U — G be a holomorphic function such that
B(u +2) = CO(w) B(n) B> W
Jor all weU, NeA, and some (non-zero) constant C. Then we can find a constant A, a
C-linear map o :U — C and a point B €U such that
B(u) = A O(u — B).

Proof. — Set

éﬁ(u)
Then G(z + A) = G(u) G(A), and the restriction of G to A is a homomorphism A — C*.
Choose an R-linear map y:U — G such that G(A) =¢™ for A eA. Splitting y
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into its C-linear and C-antilinear parts and using the non-degeneracy of the form B,
we see that there are « and B as in the statement of the lemma such that

G()\) = X —mBR.8)

for AeA. If we set H(u) = ¢ *8(u + B)/0(x), then H(u + A) = H(x) for all
A €A; hence the holomorphic function

0y(u) = e~ B(u + )

satisfies the same functional equation (g.1) as the theta function, and must therefore
be a constant multiple of it. The lemma follows.

Remark g.3. — Obviously, the constant A is uniquely determined by §. The «
and B are not quite uniquely determined, because the map y occurring in the proof
of the lemma is determined only up to addition of a map vy, with y4(A) C 2miZ. How-
ever, it is easy to check that this would change the corresponding B only by a lattice
point, so the projection of 8 onto the Jacobian U/A is uniquely determined. Also,
« is uniquely determined once we have chosen .

The =-function is a function on the group I',; our next task is to explain how
we can regard the theta function too as defined on I, so that it makes sense to compare
the two functions. We fix a point x, € X and a local parameter z as in § 6. We
shall use z to identify X, C X with the disc D, ={|z| > 1} in the Riemann sphere.
We denote by V the vector space of all holomorphic maps f: D, -~ C with f(o) = o.
As in § 5, we identify V with T', via the map ft> ¢, and we shall regard the t-function
as a function on V. Now, any feV (indeed, any holomorphic function on S!) can
be regarded as a cocycle for the Cech cohomology group HY(X, %), where % = {U,, U}
is an open covering of X as in the proof of (6.1). Using again the fact that we can cal-
culate the cohomology of X from any such covering, we get a surjective homomorphism

V - HY(X, 0) = U.

Thus if K, denotes the kernel of this map, we can regard the theta function as a Ky-inva-
riant function on V. Now, K, is the linear subspace of V consisting of all functions
k € V which can be written in the form %2 = k&, + k., where £, and %, are holomorphic
functions on X, and X, respectively; the splitting is unique if we normalize %, so that
ko(0) = 0. We denote by ¥ the vector space of all such maps%,. Let K be the kernel
of the composite map V — U — J; it consists of all functions 2 eV such that there
is a factorization (necessarily unique)

(9-4) ¢ = q &

where k., eV and ¢, is a non-vanishing holomorphic function on X,. Clearly
K/K, = A, so that K, is indeed the identity component of K, as the notation suggests.
In the proof of (9.10) below we shall give an explicit description of the integral coho-
mology class corresponding to an element % € K.
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We now fix a line bundle % of degree g over X and a trivialization ¢ as in § 6;
let W e Gr be the corresponding space. For simplicity we assume that W is transverse
and that the function 7 = 1y :V — G is normalized as usual by <(0o) = 1. The
z-function is not usually K -invariant: however, we show next that a simple modification
of itis. We defineamap a: K — \Y by a(k) = k., where &, is asin (9.4). Clearly
a is a homomorphism, and its restriction to K, is a C-linear map.

Lemma 9.5. Let feV, keK. Then we have
(S + B) = =) 5(R) 5,
where S is the multiplier relating the actions of T, and T'_ on the bundle Det* (see (3.6)).

Proof. — By the definition of the z-function (see (3.2)), we have
(9.6) w(f+ k) e "Fa(W) = o(e T"FW).
From the definition of W, it is clear that ¢, W = W, so we have e *W = ¢ %W W
for £ e K. Using this and the fact that ¢ is I'_-equivariant (see (3.7)), we find
(9.7) (k) e7* a(W) = e o(W).
The right hand side of (9.6) is equal to
e~ 6(emT W) = t(f) e ™ ¢=1 6(W) = 1(f) S0hN g=1 g=ak) 5(W).
Inserting (9.7) into this and cancelling the non-zero vector e~ /=% g(W), we get the
lemma.
If we apply (9.5) when both f and % belong to K, we find that
S(a(k),t) — S(a(t), k) € 2miZ

for all 2, £ e K. Extend a to an R-linear map V — V; since K spans V over R, the
extension is unique, and we have

(9-8) S(a(f), &) — S(a(g),f) R

forall f, geV. Write a =& + ¢, where b is C-linear and ¢ is antilinear. Then (9.8)
implies that

S(6(f), &) = S(b(g),f)s
S(e(f), &) = S(c(8),f)

for all f; g e V. Since a|K, is C-linear, we have ¢(K;) = o; thus ¢, and hence also
the Hermitian form (f, g) - S(¢(f), g), are well defined on U = V[K,. Set

(f) = =(f) ¢~ ¥8¢0.0, Then from (9.5) we have
2 (f + B) = 11(f) 71(R) C®H1,
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In particular, the restriction of 7, to K, is a homomorphism K, - C*. Choose a
C-linear map %:V — G such that 7,(k) = ¢"® when & € K;; set ©o(f) = ,(f) e~ .
Then ~,(f+ k) = ,(f) for keK,. Thus 7, is well defined on U, and it satisfies

(9-9) To(t 4 N) = 7,(u) Ty(n) SCPY

for A e A = K/K,. But now we have the following crucial result.

Proposition 9.x0. — For all k, ¢ € K, we have
S(e(k), &) — S(c(0), #) = 2mi[k]. [£],
where [k], [£] denote the classes of k, ¢ in the group KK, = A = HY(X, Z).
The proposition shows that the Hermitian form occurring in the exponent in (g.9)

is 7 times the form B occurring in the definition of the theta function. We can therefore
apply (9.2) to obtain the main result of this section.

Theorem g. 11, The z-function vy :V — C is related to the theta function by

rw(f) = Agowlh)+ F 80, 1) 0( F— Bw),

where A is a constant, ay:V — G is a linear map, By, is a point of U, and f denotes the projec-
tion of fonto U = V/K,.

Remarks

(i) Note that the quadratic term éS(b( f),f) depends only on X and z.

(ii) By (9.3), the projection of By, onto the Jacobian J is uniquely determined by W.
If W moves according to one of the KP flows, then By moves along the corresponding
straight line in J.

(iii) There seems no point in trying to be more explicit about the map «, since
it depends on the choice of trivialization ¢ (see (3.8)).

It remains to give the proof of (9.10). For this we fix a basis A ={«;, 8;},
1 <i<g for H(X, Z) of the standard kind, that is, such that o,.8; = 1 and all other
intersections are zero. We can then regard the Riemann surface X in the classical
way as a quotient of a polygon Y with 4¢ edges arranged in groups of four (o;, B;, o; !, B;°%)
(we get X from Y by identifying the two edges corresponding to each element of A).
We suppose Y chosen so that the disc X, in X corresponds to a small disc Y,, in the
interior of Y; let Y, be the complement of the interior of Y,. If 2eK, then
k =ky+ k,, where k, and %k, are functions on Y, and Y, respectively. Now,
¢ = ¢, is a function on X: that means that the values of %, at corresponding points
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of the two edges of Y corresponding to a generator y € A differ by an integer multiple
of 2mi, say by 2win(k, y). The cohomology class defined by % is then given by

(6] = X ok 1) v
YEA

where {y'} is the basis of HY(X,Z) = A dual to A.
Now, we have
S(e(k),8) — S(c(¢), k) = S(a(k),¢) — S(a(¢), k)
I

= — [ ’ — ’ .
o ) (OF — )

After a short calculation we find that this is equal to

I

27l s1

’
OIO’

Since &, and ¢, are holomorphic functions on Y,, we can replace S! by the boundary
of Y in this integral. The contribution to the integral of a typical set of four edges

% B ot B!

o (o] o o o

can be reduced to an integral over the middle pair (;, «;!): we obtain
n(k, B;) J.B,[(') + n(k, o) fai{(l) = 2m{—n(k, B;) n(f, o)) + n(k, &) n(¢, B)}-

Summing over ¢ and using the fact that the intersection matrix of the basis {of, i} is
the same as that of { e, B;}, we see that the integral is indeed equal to 2ni[Z].[¢].

The Baker function and the theta function

If we combine (g9.11) with (5.14), we obtain a formula expressing the Baker
function (of a space W arising from a Riemann surface) in terms of the theta function.
As we mentioned in the introduction, such a formula is well known in the Russian lite-
rature (see, for example, [10, 11, 36]). However, it is perhaps not immediately obvious
that the Japanese formula (5.14) coincides with the Russian one: so at the suggestion
of the referee we end this section by offering a fairly detailed comparison of the two
formulas.

The Russian formula is expressed in terms of the classical Riemann theta function,
whose definition involves a choice of canonical homology basis {«;, B;} as in the proof
of (9.10) above: we suppose such a basis fixed from now on. The classical theta func-
tion is a function on the dual space R* of the space R of global holomorphic differentials
on X; but R* is usually identified with Cf via the basis

{m}—-)fa.o)}, o eR.
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On the other hand we have the natural pairing

HY(X, 0) ® HY(X, Q) -~ H!(X, Q) ~ C,

where Q is the sheaf of holomorphic differentials on X, which canonically identifies R*
with the space U = HY(X, 0) on which our theta function was defined. In what
follows we shall use without further comment these identifications U & R* =~ C/. The
choice of homology basis {«;, B;} gives a natural choice for the form ¢:A — Z/2Z
occurring in our version of the theta function, namely, we can choose ¢ to vanish on the
basis for A = HY(X, Z) dual to{«;, B;}. Itisthen easy to check that our theta function
differs from the classical one only by a factor exp Q (, ), where Q is a symmetric R-bili-
near form on U. Thus if we use the classical theta function, theorem g.11 remains
true except that the quadratic form is different. From now on we write 0 for the clas-
sical theta function.

With these preliminaries, we can now explain the Russian formula relating the
Baker function and the theta function. We follow the account given in [36], to which
we refer the reader for more details. With Krichever, we fix a non-special positive
divisor &2 ={P,, ..., P,} on X; without loss of generality (see (6.5)) we suppose
the points P; lie outside the disc D,CX. We want to write down the Baker func-
tion ¢, where W is the closure of the space of analytic functions on S* which extend to
meromorphic functions on X, that are regular except for (possible) simple poles at the
points P;. We fix a base point Py + x, in X, and let A: X —R*= ¢ be the cor-
responding Abel map, given by

A(P) (w) =fpm (PeX, weR).
Fo
The map A is well defined only modulo the period lattice A (because of the choice of
path of integration). Let G e C’ be a constant vector such that the function (on X)
0(A(P) — G) vanishes precisely when P =P,,...,P,. For n=1,2,..., let o,
be the differential of the second kind which has zero a-periods and is regular except for
a singularity at x, with principal part d(z"). Let W, € G’ be the vector of B-periods
of w,. Consider the expression

P\ 0(A(P) 4+ I4 W, — C)
f‘”"} BAP) —C)

(9.12) exp{Zt,.

1 PO

It is understood that the path of integration in the first term is the same as that used
in the Abel map; it is then easy to check (see [36], ch. 3, § 1) that (9.12) is a well defined
function of P € X, although the individual terms in it are not. It is obvious that when
restricted to S'C X the function (9.12) belongs to W for each fixed t, and has the form

exp 2t; 2(ay(t) + ay(t) 271+ ...).
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Thus to get the Baker function ¢y, we have only to divide by g,(t). That yields the
final formula

6(A(P) + 2t W;— C) 6(A(x,) — C)
8(A(P) — C) B(A(x,,) + Zt; W; — C)

P
(9.13) by = CXP{ 2 J; wi} exp{— Xt;b;}
where the constants &;, are defined from the expansions

fz 0,=2"+2b, 27"
Py 0
for z near x,,.

The formula (9.13) is global (P can run over the whole Riemann surface X).
We now restrict it to P e D, and accordingly write z instead of P. We claim that
(9.13) can then be identified with the formula obtained by substituting (9.11) into (5. 14).
Note first that the quotient

B(A(x.) — C)/8(A(2) — C)

in (9.13) is nothing but a function of the form 1 4 ¢; 27! 4 ...; it comes from the
uninteresting linear term « in (9.11). The exponential terms in (9.13) can be written

exp { Z¢; 2} exp { X kb z“j};
ij=1

the second factor here is the contribution to (9.13) coming from the quadratic term
in (9.11). To complete our check that (5.14) and (9.13) agree, we have still to see
two things: (i) that the vectors W; e € corresponding to the different #; agree with
those in (g9.11) (obtained by regarding the functions z* as cocycles for HY(X, 0)); (ii) that
the difference in the arguments of the two remaining theta function terms in (9.13)
agrees with the ¢, in (5.14). For (i), we use the fact that the carnonical pairing
U X R - G can be derived from the pairing V X R — G given by

I

(fs o) Jo;

b17) st
the desired assertion then reduces to something well known (see, for example, [36],
(2.1.21)). Concerning (ii), note that the difference in question is

A(Z) - A(xao) = Aoo(z)>

where A is the Abel map defined using the base point x,. Hence the result we need
is the following.

Lemma 9.x4. — Let I', — U —J = U[A be the map used earlier in this section (defined
by regarding an element of ', as a transition function for a line bundle on X). Then for |§|> 1,
the image of q, under this map is A, ().
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Proof. — We write ¢ in the form
7:(2) = (71 =) 2
The two factors here are transition functions for the line bundles corresponding to the
divisors [{] and [ — x,,], respectively. Thus the image of ¢, in the Jacobian is [{] — [x,],
which is indeed A (%).

Finally, we point out that one can reverse some of the arguments we have just
given and prove (9.11) by comparing the formulas (5.14) and (9.13). This argument
is indicated in [5], and is indeed the only possible one there, because at this point in [5]
the =-function is defined in terms of the Baker function by the formula (5.14). In our
context, however, we have an independent definition of the t-function, so it seemed to
us very desirable to give a direct proof of (9.11), avoiding the use of the Baker function.

10. Appendix: the representation theory of the loop group

In this paper we have not mentioned the representation theory of the loop
group LGL,(C), whereas the Japanese papers [5] put it in the foreground. The diffe-
rence, however, is more apparent than real, as we shall now explain. We shall begin
by describing the situation without any attempt at justification, and at the end we shall
return to give some indications about the proofs.

It will be convenient in this section to let Gr denote the ¢ Hilbert-Schmidt *
Grassmannian of H, consisting of closed subspaces W of H such that the projection
W — H_ is Fredholm and the projection W — H_ is Hilbert-Schmidt. Alternatively,
Gr consists of the graphs of all Hilbert-Schmidt operators Hg —Hg. It is clearly
a Hilbert manifold. We shall write LGL,(C) for the group of smooth loops.

We have seen* that a central extension of LGL,(C) by G* acts on the holomorphic
line bundle Det* on Gr. This means that LGL,(C) acts projectively on the space I'(Det")
of all holomorphic sections of Det*. With the topology of uniform convergence on
compact sets, I'(Det*) is a complete topological vector space. It is the so-called ¢ basic ”
irreducible projective representation of LGL,(C).

For any indexing set S € & the “ Pliicker coordinate” W > »® (introduced
in § 8) is an element of I'(Det*). We shall denote it by ng. In fact the g span a dense
subspace; and there is a natural Hilbert space 5 inside I'(Det*)—it can be thought of
as the ‘ square-integrable ” holomorphic sections—for which the =g form an ortho-
normal basis. The subgroup LU, of LGL,(C) acts by a projective unitary representation
on .

The geometrical significance of s is that there is a natural antiholomorphic
embedding

Q: Gr - P(#)

* Strictly speaking, in § 3 we considered only one component of LGL,(C) and Gr; but it is not hard to extend
the discussion to include the other components (see [17]).
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of the infinite dimensional complex manifold Gr in the projective space of #. It assigns
to W e Gr the ray in J# containing the section Q, of Det* defined by

Q,(w'") = det Cw, w' ),

where w is an admissible basis of W. (Here {w, w’) denotes the matrix whose (7, j)-th ele-
ment is {w;, w; >; and we are thinking of a section of Det" as a &-equivariant map
# —C.) The embedding Q is equivariant with respect to LU,.

The vector in # corresponding to H_ with its standard basis, i.e. the canonical
section ¢ of Det* (cf. § 3), is called the vacuum vector Q,.

If we think of the representation S as given, rather than the manifold Gr, then
the discussion of §§ 3 and 5 can be very simply translated. The crucial formula is the
definition of the ~-function, which becomes

Tw(g) = <, 80,7,

where g eI, and w is an admissible basis for W. This is the definition in parts of [5],
except that these authors appear to have in mind only the group of polynomial loops,
corresponding to our Grassmannian Gr,.

Two other realizations of the Hilbert space J# are of importance. To describe
the first, notice that the connected components of Gr are indexed by the integers, and
that correspondingly

H = @ Hrs

kEZ
where 5, consists of functions on the <th connected component. We saw in § 2 that
the group I'_ of holomorphic functions in the disc |z| > 1 acts freely on Gr. Let X
denote the orbit of H, under I'_. The restriction of Det* to X is canonically trivial;
so holomorphic sections of Det" restrict to give complex-valued holomorphic functions
on X. Writing a general element of I'_ in the form

I A Y F B S

we think of functions on X as functions of the infinite sequence of complex variables
hyshy, by, .... In fact sections of Det* over the component of Gr containing H, are
determined by their restrictions to X, and we have.

Proposition 10.1.

(i) If S e & has virtual cardinal zero then the Pliicker coordinate =g € I'(Det*) res-
tricts to the Schur function Fg(hy, ks, ...). (Cf. § 8.)

(ii) S, can be identified with the completion of the ring of symmetric polynomials Z[h,, hy, . . .]
with respect to its standard inner product [13]; equivalently, it is the space of L2 holomorphic func-
tions on T'_ with respect to the Gaussian measure

du(g) = ¢ ™% 1da, da,,

n

where g = exp Xa, 2 ".
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The second concrete realization of 5 is as the exterior algebra on the Hilbert
space H, ®H_. As H, and H_ have the orthonormal bases {7*},~, and {z"},<,
respectively, the exterior algebra A(H, ® H_) has an orthonormal basis of the form
(r0.2) ZUA L ANZHRA A LA 2
where ¢, < ... < g, <0<p,<...<b,. These basis elements correspond exactly
to the indexing sets S € & with which we are familiar: we write S\ N ={qa,, ..., a;}
and N\S ={b;,...,5,}. Thus we can denote the element (10.2) by 2%; the iso-
morphism A(H, ®H_) @ # makes 2° correspond to the Plicker coordinate mg.

A more interesting and also more relevant way of constructing the map
AH_®H_) - is by defining “ fermionic field operators” on #. These amount

to an operator-valued distribution 6+ ¢(0) on the circle, satisfying the anticommu-
tation relations

[2(8); (0)], = o.
[e(84), @(8)"]; = 3(6, — 8,).
Then the map A(H, ®H_) - is
Jih oo c AR G A o NG @y e @y By - By KD,

I

where %= o J:ﬂf(ﬂ) ¢(0) 40.

The highly singular ¢ vertex operator’ ¢(8) is constructed from the action of
.T'=LC* on & as the limit p -1 4 of the action of p,g,, where { =p® and

ge=1—Y¢tzel,,
pr=(1 -—Z“lz“l)‘1 el_.

The important formula (5.15) for the unique element of W N (1 4- H_) can be
written

dw(0, €°) = <Qy, ¢(6) Q.
This is equivalent to (5.15), because
{Qy, ¢(0) Q,> = lim <(Qy, pr g >
= lim <{py Q, 4 Q>
= lim <€y, ¢, Q,>

Remarks about the proofs

Let H, ,= 7"H,/2"H, when m <n. Then Gr contains the finite dimensional
Grassmannians Y,= Gr(H_,,), and the union of the Y, is dense. The bundle Det*
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on Gr restricts to the usual Det* on Y,; so we know that I'(Det*|Y,) can be identified
with the exterior algebra A(H_, ,). A section of Det* is determined by its restrictions
to the Y,. Thus we have an inclusion

(r0.3) I'(Det*) & linlr_lA(H—n,n)‘

Now A(H_,,) has a basis indexed by the 2™ sets S € & such that
[n, ©) CSC[— n, ).

These come from the corresponding Pliicker coordinates wg in I'(Det*). This shows
that the map (10.3) has a dense image, and also that the =g span a dense subspace
of I'(Det").

To construct the Hilbert space s# we begin by observing that w > Q, defines
an antiholomorphic map

Q: Det - I'(Det*)

which is antilinear on each fibre of Det. (Notice that if w = {2°},cg then Q, is the
Pliicker coordinate mg.) By transposing Q we obtain a C-linear map

Q': F — ['(Det"),

where F is the antidual of I'(Det"), i.e. the space of continuous antilinear maps
I'(Det*) — C. This gives us a hermitian form F X F —C defined by

(2 B) P> (C2" B).

In fact Q* is injective and has dense image, because the Q, span I'(Det*), and the Hilbert
space completion 5 of F is sandwiched between F and I'(Det*). It is clear that the =g
form an orthonormal basis of #. Because Q is equivariant with respect to LU, (or,
more accurately, with respect to a central extension of LU, by the circle), it follows
that LU, acts unitarily on 5#.

The proof of (10.1) (i) is almost exactly the same as that of (8.2); the second part
is then routine.

For a discussion of vertex operators we refer to [17] or [18].
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