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Abstract. This monograph, based on lectures given at the NSF-CBMS con-
ference on Tropical Geometry and Mirror Symmetry at Kansas State Univer-
sity, aims to present a snapshot of ideas being developed by Gross and Siebert
to understand mirror symmetry via tropical geometry.

In this program, there are three worlds. The first part of the book presents
these three linked realms: tropical geometry, in which geometric objects are
piecewise linear objects; the A- and B-models of mirror symmetry (Gromov-
Witten theory and period integrals respectively); and log geometry. Log ge-
ometry is used to go between the world of tropical geometry, on the one hand,
and the world of the A- and B-models, on the other.

Next, one complete example is given in depth, namely mirror symmetry
for P2. Following Siebert and Nishinou, a complete proof of Mikhalkin’s tropi-
cal curve counting theorem is given for toric surfaces. Gross’s mirror result for
P2 showing how period integrals can be computed directly in terms of tropical
geometry is then given.

Finally, the book ends with a survey of the Gross-Siebert program in the
Calabi-Yau case. A complete proof of the correspondence theorem between
affine K3 surfaces and degenerations of K3 surfaces is given, a special case
of the correspondence theorem for Calabi-Yau varieties proved by Gross and
Siebert in general and proved for K3 surfaces by Kontsevich and Soibelman.



“Maybe the tropics,” somebody, probably the General said, “but
never the Polar Region, it’s too white, too mathematical up
there.”

—Thomas Pynchon, Against the Day.
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Preface

The NSF-CBMS conference on Tropical Geometry and Mirror Symmetry was
held at Kansas State University during the period December 13–17, 2008. It was
organized by Ricardo Castaño-Bernard, Yan Soibelman, and Ilia Zharkov. During
this time, I gave ten hours of lectures. In addition, talks were given by M. Abouzaid,
K.-W. Chan, C. Doran, K. Fukaya, I. Itenberg, L. Katzarkov, A. Mavlyutov, D.
Morrison, Y.-G. Oh, T. Pantev, B. Siebert, and B. Young.

My talks were meant to give a snapshot of a long-term program currently
being carried out with Bernd Siebert aimed at achieving a fundamental conceptual
understanding of mirror symmetry. Tropical geometry emerges naturally in this
program, so in the lectures I took a rather ahistorical point of view. Starting with
the tropical semi-ring, I developed tropical geometry and explained Mikhalkin’s
tropical curve-counting formulas, outlining the proof given by Nishinou and Siebert.
I then explained my recent work in connecting this to the mirror side. Finally,
I sketched the ideas behind recent work by myself and Siebert on constructing
degenerations of Calabi-Yau manifolds from affine manifolds with singularities.

This monograph follows the structure of the lectures closely, filling in many de-
tails which were not given there. Like the lectures, this monograph only represents
a snapshot of an evolving program, but I hope it will be useful to those who may
wish to become involved in this program.

NSF grant DMS-0735319 provided support both for the conference and for this
book.

Mark Gross, La Jolla, 2010
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Introduction

The early history of mirror symmetry has been told many times; we will only
summarize it briefly here. The story begins with the introduction of Calabi-Yau
compactifications in string theory in 1985 [11]. The idea is that, since superstring
theory requires a ten-dimensional space-time, one reconciles this with the observed
universe by requiring (at least locally) that space-time take the form

R1,3 ×X,
where R1,3 is usual Minkowski space-time and X is a very small six-dimensional
Riemannian manifold. The desire for the theory to preserve the supersymmetry
of superstring theory then leads to the requirement that X have SU(3) holonomy,
i.e., be a Calabi-Yau manifold. Thus string theory entered the realm of algebraic
geometry, as any non-singular projective threefold with trivial canonical bundle
carries a metric with SU(3) holonomy, thanks to Yau’s proof of the Calabi conjecture
[113].

This generated an industry in the string theory community devoted to produc-
ing large lists of examples of Calabi-Yau threefolds and computing their invariants,
the most basic of which are the Hodge numbers h1,1 and h1,2.

In 1989, a rather surprising observation came out of this work. Candelas,
Lynker and Schimmrigk [12] provided a list of Calabi-Yau hypersurfaces in weighted
projective space which exhibited an obvious symmetry: if there was a Calabi-Yau
threefold with Hodge numbers given by a pair (h1,1, h1,2), then there was often also
one with Hodge numbers given by the pair (h1,2, h1,1). Independently, guided by
certain observations in conformal field theory, Greene and Plesser [36] studied the
quintic threefold and its mirror partner. If we let Xψ be the solution set in P4 of
the equation

x5
0 + · · ·+ x5

4 − ψx0x1x2x3x4 = 0

for ψ ∈ C, then for most ψ, Xψ is a non-singular quintic threefold, and as such, has
Hodge numbers

h1,1(Xψ) = 1, h1,2(Xψ) = 101.

On the other hand, the group

G =
{(a0, . . . , a4)|ai ∈ µ5,

∏4
i=0 ai = 1}

{(a, a, a, a, a)|a ∈ µ5}
acts diagonally on P4, via

(x0, . . . , x4) 7→ (a0x0, . . . , a4x4).

Here µ5 is the group of fifth roots of unity. This action restricts to an action on
Xψ, and the quotient Xψ/G is highly singular. However, these singularities can be

xi



xii INTRODUCTION

resolved via a proper birational morphism X̌ψ → Xψ/G with X̌ψ a new Calabi-Yau
threefold with Hodge numbers

h1,1(X̌ψ) = 101, h1,2(X̌ψ) = 1.

These examples were already a surprise to mathematicians, since at the time very
few examples of Calabi-Yau threefolds with positive Euler characteristic were known
(the Euler characteristic coinciding with 2(h1,1 − h1,2)).

Much more spectacular were the results of Candelas, de la Ossa, Green and
Parkes [10]. Guided by string theory and path integral calculations, Candelas et
al. conjectured that certain period calculations on the family X̌ψ parameterized by
ψ would yield predictions for numbers of rational curves on the quintic threefold.
They carried out these calculations, finding agreement with the known numbers of
rational curves up to degree 3. We omit any details of these calculations here, as
they have been exposited in many places, see e.g., [43]. This agreement was very
surprising to the mathematical community, as these numbers become increasingly
difficult to compute as the degree increases. The number of lines, 2875, was known
in the 19th century, the number of conics, 609250, was computed only in 1986
by Sheldon Katz [66], and the number of twisted cubics, 317206375, was only
computed in 1990 by Ellingsrud and Strømme [22].

Throughout the history of mathematics, physics has been an important source
of interesting problems and mathematical phenomena. Some of the interesting
mathematics that arises from physics tends to be a one-off — an interesting and
unexpected formula, say, which once verified mathematically loses interest. Other
contributions from physics have led to powerful new structures and theories which
continue to provide interesting and exciting new results. I like to believe that mirror
symmetry is one of the latter types of subjects.

The conjecture raised by Candelas et al., along with related work, led to the
study of Gromov-Witten invariants (defining precisely what we mean by “the num-
ber of rational curves”) and quantum cohomology, a way of deforming the usual cup
product on cohomology using Gromov-Witten invariants. This remains an active
field of research, and by 1996, the theory was sufficiently developed to allow proofs
of the mirror symmetry formula for the quintic by Givental [34], Lian, Liu and Yau
[75] and subsequently others, with the proofs getting simpler over time.

Concerning mirror symmetry, Batyrev [6] and Batyrev-Borisov [7] gave very
general constructions of mirror pairs of Calabi-Yau manifolds occurring as complete
intersections in toric varieties. In 1994, Maxim Kontsevich [68] made his funda-
mental Homological Mirror Symmetry conjecture, a profound effort to explain the
relationship between a Calabi-Yau manifold and its mirror in terms of category
theory.

In 1996, Strominger, Yau and Zaslow proposed a conjecture, [108], now referred
to as the SYZ conjecture, suggesting a much more concrete geometric relationship
between mirror pairs; namely, mirror pairs should carry dual special Lagrangian
fibrations. This suggested a very explicit relationship between a Calabi-Yau man-
ifold and its mirror, and initial work in this direction by myself [37, 38, 39] and
Wei-Dong Ruan [97, 98, 99] indicates the conjecture works at a topological level.
However, to date, the analytic problems involved in proving a full-strength ver-
sion of the SYZ conjecture remain insurmountable. Furthermore, while a proof of
the SYZ conjecture would be of great interest, a proof alone will not explain the
finer aspects of mirror symmetry. Nevertheless, the SYZ conjecture has motivated
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several points of view which appear to be yielding new insights into mirror sym-
metry: notably, the rigid analytic program initiated by Kontsevich and Soibelman
in [69, 70] and the program developed by Siebert and myself using log geometry,
[47, 48, 51, 49].

These ideas which grew out of the SYZ conjecture focus on the base of the
SYZ fibration; even though we do not know an SYZ fibration exists, we have a
good guess as to what these bases look like. In particular, they should be affine
manifolds, i.e., real manifolds with an atlas whose transition maps are affine linear
transformations. In general, these manifolds have a singular locus, a subset not
carrying such an affine structure. It is not difficult to write down examples of such
manifolds which we expect to correspond, say, to hypersurfaces in toric varieties.

More precisely,

Definition 0.1. An affine manifold B is a real manifold with an atlas of
coordinate charts

{ψi : Ui → Rn}
with ψi ◦ ψ−1

j ∈ Aff(Rn), the affine linear group of Rn. We say B is tropical

(respectively integral) if ψi◦ψ−1
j ∈ Rn⋊GLn(Z) ⊆ Aff(Rn) (respectively ψi◦ψ−1

j ∈
Aff(Zn), the affine linear group of Zn).

In the tropical case, the linear part of each coordinate transformation is integral,
and in the integral case, both the translational and linear parts are integral.

Given a tropical manifold B, we have a family of lattices Λ ⊆ TB generated
locally by ∂/∂y1, . . . , ∂/∂yn, where y1, . . . , yn are affine coordinates. The condition
on transition maps guarantees that this is well-defined. Dually, we have a family of
lattices Λ̌ ⊆ T ∗B generated by dy1, . . . , dyn, and then we get two torus bundles

f : X(B)→ B

f̌ : X̌(B)→ B

with

X(B) = TB/Λ, X̌(B) = T ∗B/Λ.
NowX(B) carries a natural complex structure. Sections of Λ are flat sections of

a connection on TB, and the horizontal and vertical tangent spaces of this connection
are canonically isomorphic. Thus we can write down an almost complex structure
J which interchanges these two spaces, with an appropriate sign-change so that
J2 = − id. It is easy to see that this almost complex structure on TB is integrable
and descends to X(B).

On the other hand, T ∗B carries a canonical symplectic form which descends to

X̌(B), so X̌(B) is canonically a symplectic manifold.
We can think of X(B) and X̌(B) as forming a mirror pair; this is a simple

version of the SYZ conjecture. In this simple situation, however, there are few
interesting compact examples, in the Kähler case being limited to the possibility
that B = Rn/Γ for a lattice Γ (shown in [15]). Nevertheless, we can take this
simple case as motivation, and ask some basic questions:

(1) What geometric structures on B correspond to geometric structures of
interest on X(B) and X̌(B)?

(2) If we want more interesting examples, we need to allow B to have singu-
larities, i.e., have a tropical affine structure on an open set B0 ⊆ B with
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B \ B0 relatively small (e.g., codimension at least two). How do we deal
with this?

By 2000, it was certainly clear to many of the researchers in the field that
holomorphic curves in X(B) should correspond to certain sorts of piecewise linear
graphs in B. Kontsevich suggested the possibility that one might be able to actually
carry out a curve count by counting these graphs. In 2002, Mikhalkin [79, 80]
announced that this was indeed possible, introducing and proving curve-counting
formulas for toric surfaces. This was the first evidence that one could really compute
invariants using these piecewise linear graphs. For historical reasons which will be
explained in Chapter 1, Mikhalkin called these piecewise linear graphs “tropical
curves,” introducing the word “tropical” into the field.

This brings us to the following picture. Mirror symmetry involves a relationship
between two different types of geometry, usually called the A-model and the B-
model. The A-model involves symplectic geometry, which is the natural category
in which to discuss such things as Gromov-Witten invariants, while the B-model
involves complex geometry, where one can discuss such things as period integrals.

This leads us to the following conceptual framework for mirror symmetry:

A-model

Tropical

geometry

B-model

Here, we wish to explain mirror symmetry by identifying what we shall refer to
as tropical structures in B which can be interpreted as geometric structures in the
A- and B-models. However, the interpretations in the A- and B-models should
be different, i.e., mirror, so that the fact that these structures are given by the
same tropical structures then gives a conceptual explanation for mirror symme-
try. For the most well-known aspect of mirror symmetry, namely the enumeration
of rational curves, the hope should be that tropical curves on B correspond to
(pseudo)-holomorphic curves in the A-model and corrections to period calculations
in the B-model.

The main idea of my program with Siebert is to try to understand how to go
between the tropical world and the A- and B-models by passing through another
world, the world of log geometry. One can view log geometry as half-way between
tropical geometry and classical geometry:
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A-model log geometry B-model

geometry

Tropical

As this program with Siebert is ongoing, with much work still to be done, my
lectures at the CBMS regional conference in Manhattan, Kansas were intended to
give a snapshot of the current state of this program. This monograph closely follows
the outline of those lectures. The basic goal is threefold.

First, I wish to explain explicitly, at least in special cases, all the worlds sug-
gested in the above diagram: the tropical world, the “classical” world of the A- and
B-model, and log geometry.

Second, I would like to explain one very concrete case where the full picture
has been worked out for both the A- and B-models. This is the case of P2. For the
A-model, curve counting is the result of Mikhalkin, and here I will give a proof of
his result adapted from a more general result of Nishinou and Siebert [86], as that
approach is more in keeping with the philosophy of the program. For the B-model,
I will explain my own recent work [42] which shows how period integrals extract
tropical information.

Third, I wish to survey some of the results obtained by Siebert and myself in
the Calabi-Yau case, outlining how this approach can be expected to yield a proof
of mirror symmetry. While for P2 I give complete details, this third part is intended
to be more of a guide for reading the original papers, which unfortunately are quite
long and technical. I hope to at least convey an intuition for this approach.

I will take a very ahistorical approach to all of this, starting with the basics of
tropical geometry and working backwards, showing how a study of tropical geom-
etry can lead naturally to other concepts which first arose in the study of mirror
symmetry. In a way, this may be natural. To paraphrase Witten’s statement about
string theory, mirror symmetry often seems like a piece of twenty-first century math-
ematics which fell into the twentieth century. Its initial discovery in string theory
represents some of the more difficult aspects of the theory. Even an explanation of
the calculations carried out by Candelas et al. can occupy a significant portion of a
course, and the theory built up to define and compute Gromov-Witten invariants is
even more involved. On the other hand, the geometry that now seems to underpin
mirror symmetry, namely tropical geometry, is very simple and requires no partic-
ular background to understand. So it makes sense to develop the discussion from
the simplest starting point.

The prerequisites of this volume include a familiarity with algebraic geometry
at the level of Hartshorne’s text [57] as well as some basic differential geometry.
In addition, familiarity with toric geometry will be very helpful; the text will recall
many of the basic necessary facts about toric geometry, but at least some previ-
ous experience will be useful. For a more in-depth treatment of toric geometry, I
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recommend Fulton’s lecture notes [27]. We shall also, in Chapter 3, make use of
sheaves in the étale topology, which can be reviewed in [83], Chapter II. However,
this use is not vital to most of the discussion here.

I would like to thank many people. Foremost, I would like to thank Ricardo
Castaño-Bernard, Yan Soibelman, and Ilia Zharkov for organizing the NSF-CBMS
conference at Kansas State University. Second, I would like to thank Bernd Siebert;
the approach in this book grew out of our joint collaboration. I also thank the many
people who answered questions and commented on the manuscript, including Sean
Keel, M. Brandon Meredith, Rahul Pandharipande, D. Peter Overholser, Daniel
Schultheis, and Katharine Shultis.

Parts of this book were written during a visit to Oxford; I thank Philip Candelas
for his hospitality during this visit. The final parts of the book were written during
the fall of 2009 at MSRI; I thank MSRI for its financial support via a Simons
Professorship.

I would like to thank Lori Lejeune for providing the files for Figures 17, 18 and
19 of Chapter 1 and Figures 7 and 8 of Chapter 6. Finally, and definitely not least,
I thank Arthur Greenspoon, who generously offered to proofread this volume.

Convention. Throughout this book k denotes an algebraically closed field of
characteristic zero. N denotes the set of natural numbers {0, 1, 2, . . .}.
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CHAPTER 1

The tropics

We start with the simplest of the three worlds, the tropical world. Tropical
geometry is a kind of piecewise linear combinatorial geometry which arises when
one starts to think about algebraic geometry over the so-called tropical semi-ring.

This chapter will give a rather shallow introduction to the subject. We will start
with the definition of the tropical semi-ring and some elementary algebraic geometry
over the tropical semi-ring. We move on to the notion of parameterized tropical
curve, which features in Mikhalkin’s curve counting results. Next, we introduce the
type of tropical objects which arise in the Gross-Siebert program: affine manifolds
with singularities. These arise naturally if one wants to think about curve counting
in Calabi-Yau manifolds. We end with a duality between such objects given by the
Legendre transform.

1.1. Tropical hypersurfaces

We begin with the tropical semi-ring,

Rtrop = (R,⊕,⊙).

Here R is the set of real numbers, but with addition and multiplication defined by

a⊕ b := min(a, b)

a⊙ b := a+ b.

Of course there is no additive inverse. This semi-ring became known as the tropical
semi-ring in honour of the Brazilian mathematician Imre Simon. The word tropical
has now spread rapidly.

We would like to do algebraic geometry over the tropical semi-ring instead of
over a field. Of course, since there is no additive identity in this semi-ring, it is not
immediately obvious what the zero-locus of a polynomial should be. The correct,
or rather, useful, intepretation is as follows. Let

Rtrop[x1, . . . , xn]

denote the space of functions f : Rn → R given by tropical polynomials

f(x1, . . . , xn) =
∑

(i1,...,in)∈S

ai1,...,inx
i1
1 · · ·xinn

where S ⊆ Zn is a finite index set. Here all operations are in Rtrop, so this is really
the function

f(x1, . . . , xn) = min{ai1,...,in +

n∑

k=1

ikxk | (i1, . . . , in) ∈ S}

This is a piecewise linear function, and the tropical hypersurface defined by f ,
V (f) ⊆ Rn, as a set, is the locus where f is not linear.

3



4 1. THE TROPICS

x1 0

Figure 1. 0⊕ (0 ⊙ x1)

In order to write these formulas in a more invariant way, in what follows we
shall often make use of the notation

M = Zn, MR = M ⊗Z R, N = HomZ(M,Z), NR = N ⊗Z R.

We denote evaluation of n ∈ N on m ∈ M by 〈n,m〉. We shall often use the
notion of index of an element m ∈ M \ {0}; this is the largest positive integer r
such that there exists m′ ∈ M with rm′ = m. If the index of m is 1, we say m is
primitive.

With this notation, we can view a tropical function as a map f : MR → R

written, for S ⊆ N a finite set, as

f(z) =
∑

n∈S

anz
n := min{an + 〈n, z〉 |n ∈ S}.

Now V (f) will be a union of codimension one polyhedra in Rn. Here, by a
polyhedron, we mean:

Definition 1.1. A polyhedron σ in MR is a finite intersection of closed half-
spaces. A face of a polyhedron is a subset given by the intersection of σ with a
hyperplane H such that σ is contained in a half-space with boundary H .

The boundary ∂σ of σ is the union of all proper faces of σ, and the interior
Int(σ) of σ is σ \ ∂σ.

The polyhedron σ is a lattice polyhedron if it is an intersection of half-spaces
defined over Q and all vertices of σ lie in M .

A polytope is a compact polyhedron.

Returning to V (f), each codimension one polyhedron making up V (f) separates
two domains of linearity of f , in one of which f is given by a monomial with
exponent n ∈ N and in the other by a monomial with exponent n′ ∈ N . Then the
weight of this polyhedron in V (f) is the index of n′ − n. We then view V (f) as a
weighted polyhedral complex.

Examples 1.2. Figures 1 through 5 give examples of two-variable tropical
polynomials and their corresponding “zero loci.” All edges have weight 1 unless
otherwise indicated. We also indicate the monomial determining the function on
each domain of linearity and the precise position of the vertices.

We now explain a simple way to see what V (f) looks like. Given

f =
∑

n∈S

anz
n,
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x1

1

(1, 1)

x2

Figure 2. 1⊕ (0 ⊙ x1)⊕ (0⊙ x2)

5 + 2x2

(−1,−1)
5 + 2x1 (−5,−1)

x1

(0, 0)

0

x2

(−1,−5)
1 + x1 + x2

Figure 3. 0⊕ (0⊙x1)⊕ (0⊙x2)⊕ (1⊙x1⊙x2)⊕ (5⊙x1⊙x1)⊕
(5 ⊙ x2 ⊙ x2)

9 + 2x1

3 + x1 + x2

(−9,−3)

(−5,−3)

x1
(0, 0)

0

x2

1 + 2x2

(−1,−1)

Figure 4. 0⊕ (0⊙x1)⊕ (0⊙x2)⊕ (3⊙x1⊙x2)⊕ (9⊙x1⊙x1)⊕
(1 ⊙ x2 ⊙ x2)

we consider the Newton polytope of S,

∆S := Conv(S) ⊆ NR,
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(0, 0)

x1

0

2

(1,−1)

1 + x2

2x1 + 2x2

Figure 5. 0⊕ (0 ⊙ x1)⊕ (1⊙ x2)⊕ (0⊙ x1 ⊙ x1 ⊙ x2 ⊙ x2)

(0, 1)

∆̃S

(3, 2)

(1, 0) (2, 0)

0 1 2 3

∆S

Figure 6

the convex hull of S in NR. The coefficients an then define a function

ϕ : ∆S → R

as follows. We consider the upper convex hull ∆̃S of the set

S̃ = {(n, an) |n ∈ S} ⊆ NR × R,

namely

∆̃S = {(n, a) ∈ NR × R | there exists (n, a′) ∈ Conv(S̃) with a ≥ a′}.
We then define

ϕ(n) = min{a ∈ R | (n, a) ∈ ∆̃S}.
For example, considering the univariate tropical polynomial

f = 1⊕ (0⊙ x)⊕ (0 ⊙ x2)⊕ (2⊙ x3),

we get ∆S and ∆̃S as depicted in Figure 6, with the lower boundary of ∆̃S being
the graph of ϕ.

This picture yields a polyhedral decomposition of ∆S :

Definition 1.3. A (lattice) polyhedral decomposition of a (lattice) polyhedron
∆ ⊆ NR is a set P of (lattice) polyhedra in NR called cells such that
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∆̃S

m = 2
m = 1/2

m = −1

−2 0 1

Figure 7. The left-hand figure is ∆̃S . The right-hand picture
shows P̌ on the x-axis and the graph of ϕ̌.

(1) ∆ =
⋃
σ∈P

σ.
(2) If σ ∈P and τ ⊆ σ is a face, then τ ∈P.
(3) If σ1, σ2 ∈P, then σ1 ∩ σ2 is a face of both σ1 and σ2.

For a polyhedral decomposition P, denote by Pmax the subset of maximal cells of
P. We denote by P [k] the set of k-dimensional cells of P.

Indeed, to get a polyhedral decomposition P of ∆S , we just take P to be
the set of images under the projection NR × R → NR of proper faces of ∆̃S . A
polyhedral decomposition of ∆S obtained in this way from the graph of a convex
piecewise linear function is called a regular decomposition and these decompositions
play an important role in the combinatorics of convex polyhedra, see e.g., [32].

We can now define the discrete Legendre transform of the triple (∆S ,P, ϕ):

Definition 1.4. The discrete Legendre transform of (∆S ,P, ϕ) is the triple
(MR, P̌, ϕ̌) where:

(1)

P̌ = {τ̌ | τ ∈P}
with

τ̌ =

{
m ∈MR

∣∣∣∣∣
∃a ∈ R such that 〈−m,n〉+ a ≤ ϕ(n)

for all n ∈ ∆S , with equality for n ∈ τ

}
.

(2) ϕ̌(m) = max{a | 〈−m,n〉+ a ≤ ϕ(n) for all n ∈ ∆S}.
Let us explain this in a bit more detail. First, if σ ∈Pmax, let mσ ∈M be the

slope of ϕ|σ . Then in fact

σ̌ = {−mσ},
as follows from the convexity of ϕ. Second, the formula in (2) is a fairly standard
way of describing the Legendre transformed function ϕ̌. We think of ϕ̌(m) as
obtained by taking the graph in NR ×R of a linear function on NR with slope −m
and moving it up or down until it becomes a supporting hyperplane for ∆̃S . The
value of this affine linear function at 0 is then ϕ̌(m); see Figure 7. Note that if
m ∈ Int(τ̌ ), then the graph of 〈−m, ·〉+ ϕ̌(m) is then a supporting hyperplane for

the face of ∆̃S projecting isomorphically to τ .



8 1. THE TROPICS

0 0

Figure 8. The Newton polytope and subdivision for Figure 1.

In fact, ϕ̌ can be described in a more familiar way. Note that

ϕ̌(m) = min{ϕ(n) + 〈m,n〉 |n ∈ ∆S}.
From this, it is clear that P̌max consists of the maximal domains of linearity of
ϕ̌, with ϕ̌|v̌ having slope v for v a vertex (element of P [0]) of P. Indeed, the
minimum is always achieved at some vertex, and if this vertex is v, then ϕ̌(m) =
ϕ(v) + 〈m, v〉. Thus ϕ̌ is linear on v̌ with slope v. Furthermore, as necessarily
ϕ(v) + 〈m, v〉 ≤ ϕ(v′) + 〈m, v′〉 whenever m ∈ v̌, one sees that ϕ̌ is in fact given by
the tropical polynomial ∑

n∈P[0]

ϕ(n)zn.

This is not necessarily the original polynomial defining the function f . However,
clearly the vertices of ∆̃S are of the form (n, an) for n ∈ P [0] ⊆ S, so ϕ(n) = an
for n ∈P [0], and the tropical polynomial defining ϕ̌ is simply missing some of the
terms of the original defining polynomial f . These missing terms are precisely ones
of the form anz

n with (n, an) not a vertex of ∆̃S . We can see that such terms

are irrelevant for calculating f . Indeed, if (n, an) is not a vertex of ∆̃S for some
n ∈ N ∩∆S , and f(m) = 〈m,n〉+ an for some m ∈MR, then

〈m,n〉+ an ≤ 〈m,n′〉+ an′

for all n′ ∈ S. But then the hyperplane in NR × R given by

{(n′, r) ∈ NR × R | 〈m,n′〉+ r = 〈m,n〉+ an}

is a supporting hyperplane for ∆̃S which contains (n, an), and hence must also

contain a vertex (n′, an′) of ∆̃S . Then f(m) coincides with 〈m,n′〉+an′ , and hence
the term anz

n was irrelevant for calculating f . Thus we see

ϕ̌ = f.

Since the domains of linearity of ϕ̌ are the polyhedra of P̌max, we see that

V (f) =
⋃

τ∈P[1]

τ̌ .

Since the 0-cells of P̌ are the cells σ̌ = {−mσ} for σ ∈ Pmax, it is usally easy to
draw V (f) using this description. Additionally, the weights are easily determined:
for τ ∈ P [1], the weight of τ̌ is just the affine length of τ , i.e., the index of the
difference of the endpoints of τ .

To summarize, the function ϕ determines the dual decomposition P̌, whose
vertices are given by slopes of ϕ, and V (f) is the codimension one skeleton of P̌.

Examples 1.5. For the examples of Figures 1 through 5, the Newton polytopes
along with their regular decomposition and values of an are given in Figures 8
throught 12.
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Figure 9. The Newton polytope and subdivision for Figure 2.

0 0 5

1
0

5

Figure 10. The Newton polytope and subdivision for Figure 3.

0 0 9

3
0

1

Figure 11. The Newton polytope and subdivision for Figure 4.

This description of V (f) leads to an important condition known as the balancing
condition. Specifically, for each ω̌ ∈ P̌ [n−2], a codimension two cell, let τ̌1, . . . , τ̌k ∈
P̌ [n−1] be the cells containing it in V (f), with weights w1, . . . , wk. Note that ω is
a two-dimensional cell of P and τ1, . . . , τk are the edges of ω. Let n1, . . . , nk ∈ N
be primitive tangent vectors to τ1, . . . , τk, pointing in directions consistent with the
orientations on τ1, . . . , τk induced by some chosen orientation on ω. The vectors
n1, . . . , nk are primitive normal vectors to τ̌1, . . . , τ̌k. Indeed, the endpoints of τi
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0

1

0

0

Figure 12. The Newton polytope and subdivision for Figure 5.

give the slopes of ϕ̌ = f on the two domains of linearity of f on either side of τ̌i,
so ni must be constant on τ̌i. Obviously, we have

(1.1)
k∑

i=1

wini = 0.

We call this the balancing condition.
In the case when dimMR = 2, so that V (f) is a curve, it is useful to rewrite

this as follows. Let V ∈ P̌ [0] be a vertex of V (f), contained in edges E1, . . . , Ek ∈
P̌

[1] of V (f), and let m1, . . . ,mk ∈ M be primitive tangent vectors to E1, . . . , Ek
pointing away from V . Suppose Ei has weight wi. Then (1.1) is equivalent to

(1.2)

k∑

i=1

wimi = 0.

Example 1.6. The tropical Bézout theorem. Suppose dimMR = 2, and let
e1, e2 be a basis for M . Let ∆d be the polytope which is the convex hull of 0, de1,
and de2. If f =

∑
n∈∆d

anz
n, then V (f) is a tropical curve in MR, which we call

a degree d curve in the tropical projective plane. For example, Figure 2 depicts a
degree 1 curve, i.e., a tropical line, and Figures 3 and 4 depict degree 2 curves,
i.e., tropical conics. These should be thought of as tropical analogues of ordinary
lines and conics in P2. These tropical versions often share surprising properties in
common with the usual algebraic versions. We give one example here.

Let C,D ⊆MR be two tropical curves in the tropical projective plane of degree
d and e respectively. Suppose that C and D intersect at only a finite number of
points; this can always be achieved by translating C or D. In fact, we can similarly
assume that none of these intersection points are vertices of C or D. We can define
a notion of multiplicity of an intersection point of these two curves. Suppose that
a point P ∈ C ∩D is contained in an edge E of C and an edge F of D, of weights
w(E) and w(F ) respectively. Let m1 be a primitive tangent vector to E and m2

be a primitive tangent vector to F . Then we define the intersection multiplicity of
C and D at P to be the positive integer

iP (C,D) := w(E)w(F )|m1 ∧m2|.
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Figure 13. Two tropical conics meeting at four points.

Here m1,m2 ∈ M ∼= Z2, and
∧2M ∼= Z, so |m1 ∧m2| makes sense as a positive

number no matter which isomorphism is chosen. We then have the tropical Bézout
theorem, which states that

∑

P∈C∩D

iP (C,D) = d · e.

This is exactly the expected result for ordinary algebraic curves in P2, of course.
For a proof, see [96], §4. See Figure 13 for an example.

1.2. Some background on fans

We will collect here a number of standard notions concerning fans. We send
the reader to [27] for more details.

Definition 1.7. A strictly convex rational polyhedral cone in MR is a lattice
polyhedron in MR with exactly one vertex, which is 0 ∈MR.

A fan Σ in MR is a set of strictly convex rational polyhedral cones such that

(1) If σ ∈ Σ, and τ ⊆ σ is a face, then τ ∈ Σ.
(2) If σ1, σ2 ∈ Σ, then σ1 ∩ σ2 is a face of σ1 and σ2.

In other words, a fan Σ is a polyhedral decomposition of a set |Σ| ⊆MR, called
the support of Σ, with all elements of the polyhedral decomposition being strictly
convex rational polyhedral cones.

A fan is complete if |Σ| = MR.

Definition 1.8. Let Σ be a fan in MR. A PL (piecewise linear) function on Σ
is a continuous function ϕ : |Σ| → R which is linear when restricted to each cone
of Σ.

The function ϕ is strictly convex if

(1) |Σ| is a convex set in MR;
(2) For m,m′ ∈ |Σ|, ϕ(m) +ϕ(m′) ≥ ϕ(m+m′), with equality holding if and

only if m,m′ lie in the same cone of Σ.
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The function ϕ is integral if for each σ ∈ Σmax there exists an nσ ∈ N such
that nσ and ϕ agree on σ.

The Newton polyhedron of a strictly convex PL function ϕ : |Σ| → R is

∆ϕ := {n ∈ NR |ϕ(m) + 〈n,m〉 ≥ 0 for all m ∈ |Σ|}.

The Newton polyhedron of a function ϕ is unbounded if and only if Σ is not a
complete fan. If Σ is complete, it is easy to see that

∆ϕ = Conv({−nσ |σ ∈ Σmax})
where nσ ∈ NR is the linear function ϕ|σ. Note there is a one-to-one inclusion
reversing correspondence between cones in Σ and faces of ∆ϕ, with σ ∈ Σ corre-
sponding to

{n ∈ ∆ϕ |ϕ(m) + 〈n,m〉 = 0 for all m ∈ σ}.
Definition 1.9. If ∆ ⊆ NR is a polyhedron, σ ⊆ ∆ a face, the normal cone to

∆ along σ is

N∆(σ) = {m ∈M |m|σ = constant, 〈m,n〉 ≥ 〈m,n′〉 for all n ∈ ∆, n′ ∈ σ}.
If τ ⊆ σ is a subset, then Tτσ denotes the tangent wedge to σ along τ , defined by

Tτσ = {r(m−m′) |m ∈ σ,m′ ∈ τ, r ≥ 0}.
The normal fan of ∆ is

Σ̌∆ := {N∆(σ) | σ is a face of ∆}.
One checks easily that

(1.3) Tσ∆ = (N∆(σ))∨ := {n ∈ N | 〈n,m〉 ≥ 0 ∀m ∈ N∆(σ)}.
The normal fan Σ̌∆ to ∆ carries a PL function ϕ∆ : |Σ̌∆| → R defined by

ϕ∆(m) = − inf{〈n,m〉 |n ∈ ∆}.

It is easy to see that if ϕ : |Σ| → R is strictly convex, then Σ is the normal
fan to ∆ϕ. This in fact gives a one-to-one correspondence between strictly convex
PL functions ϕ on a fan Σ and polyhedra ∆ with normal fan Σ. Note given ∆,
∆ϕ∆ = ∆, and given ϕ : |Σ| → R, ϕ∆ϕ = ϕ.

Definition 1.10. If Σ is a fan in MR, τ ∈ Σ, we define the quotient fan Σ(τ)
of Σ along τ to be the fan

Σ(τ) := {(σ + Rτ)/Rτ |σ ∈ Σ, τ ⊆ σ}
in MR/Rτ , where Rτ is the linear space spanned by τ .

If ϕ : |Σ| → R is a PL function on Σ, then ϕ induces a function ϕ(τ) : Σ(τ)→ R,
well-defined up to linear functions, as follows. Choose n ∈ NR such that ϕ(m) =
〈n,m〉 for m ∈ τ . Then for any σ containing τ , ϕ|σ−n is zero on τ , hence descends
to a linear function on (σ + Rτ)/Rτ . These piece together to give a PL function
ϕ(τ) on Σ(τ), well-defined up to a linear function (determined by the choice of n).

Note that if ϕ is strictly convex, then so is ϕ(τ). If M ′R = MR/Rτ and N ′R =
Hom(M ′R,R), then N ′R = (Rτ)⊥. It is then easy to see that ∆ϕ(τ) is just the
translate by n of the face of ∆ϕ corresponding to τ .
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1.3. Parameterized tropical curves

We shall now use the discussion of the balancing condition in §1.1 to define
tropical curves in a more abstract setting. In theory, similar definitions could be
given for tropical varieties of higher dimension, but we will not do so here.

Let Γ be a connected graph with no bivalent vertices. Such a graph can be
viewed in two different ways. First, it can be viewed as a purely combinatorial

object, i.e., a set Γ
[0]

of vertices and a set Γ
[1]

of edges consisting of unordered pairs

of elements of Γ
[0]

, indicating the endpoints of an edge.
We can also view Γ as the topological realization of the graph, i.e., a topological

space which is the union of line segments corresponding to the edges. We shall
confuse these two viewpoints at will, hopefully without any confusion.

Let Γ
[0]

∞ be the set of univalent vertices of Γ, and write

Γ = Γ \ Γ
[0]

∞ .

Let Γ[0],Γ[1] denote the set of vertices and edges of Γ. Here we are thinking of Γ

and Γ as topological spaces, so Γ now has some non-compact edges. Let Γ
[1]
∞ be

the set of non-compact edges of Γ. A flag of Γ is a pair (V,E) with V ∈ Γ[0] and
E ∈ Γ[1] with V ∈ E.

In addition, all graphs will be weighted graphs, i.e., Γ comes along with a weight
function

w : Γ
[1] → N = {0, 1, 2, . . .}.

We will often consider marked graphs, (Γ, x1, . . . , xk), where Γ is as above and
x1, . . . , xk are labels assigned to non-compact edges of weight 0, i.e., we are given
an inclusion

{x1, . . . , xk} →֒ Γ[1]
∞

xi 7→ Exi

with w(Exi) = 0. We will use the convention in this book which is not actually
quite standard in the tropical literature that w(E) 6= 0 unless E = Exi for some xi.

We can now define a marked parameterized tropical curve in MR, where as
usual, M = Zn, MR = M ⊗Z R and N = HomZ(M,Z).

Definition 1.11. A marked parameterized tropical curve

h : (Γ, x1, . . . , xk)→MR

is a continuous map h satisfying the following two properties:

(1) If E ∈ Γ[1] and w(E) = 0, then h|E is constant; otherwise, h|E is a proper
embedding of E into a line of rational slope in MR.

(2) The balancing condition. Let V ∈ Γ[0], and let E1, . . . , Eℓ ∈ Γ[1] be the
edges adjacent to V . Let mi ∈M be a primitive tangent vector to h(Ei)
pointing away from h(V ). Then

ℓ∑

i=1

w(Ei)mi = 0.

If h : (Γ, x1, . . . , xn)→MR is a marked parameterized tropical curve, we write
h(xi) for h(Exi).
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We will call two marked parameterized tropical curves h : (Γ, x1, . . . , xk)→MR

and h′ : (Γ′, x′1, . . . , x
′
k) → MR equivalent if there is a homeomorphism ϕ : Γ → Γ′

with ϕ(Exi) = Ex′i and h = h′ ◦ϕ. We will define a marked tropical curve to be an
equivalence class of parameterized marked tropical curves.

The genus of h is b1(Γ). �

We wish to talk about the degree of a tropical curve, and to do so, we need
to fix a fan Σ. In fact, for the moment, we will only make use of the set of one-
dimensional cones in Σ, Σ[1]. Denote by TΣ the free abelian group generated by
Σ[1]. For ρ ∈ Σ[1], denote by tρ ∈ TΣ the corresponding generator. We have a map

r : TΣ → M

tρ 7→ mρ

where mρ is the primitive generator of the ray ρ.

Definition 1.12. A marked tropical curve h is in XΣ if for each E ∈ Γ
[1]
∞

which is not a marked edge, h(E) is a translate of some ρ ∈ Σ[1].
If h is a curve in XΣ, the degree of h is ∆(h) ∈ TΣ defined by

∆(h) =
∑

ρ∈Σ[1]

dρtρ

where dρ is the number of edges E ∈ Γ
[1]
∞ with h(E) a translate of ρ, counted with

weight.
For ∆ ∈ TΣ, ∆ =

∑
ρ∈Σ[1] dρtρ, define

|∆| :=
∑

ρ∈Σ[1]

dρ.

The following lemma is a straightforward application of the balancing condition,
obtained by summing the balancing conditions over all vertices of Γ:

Lemma 1.13. r(∆(h)) = 0.

Example 1.14. Let Σ be the fan for P2. This is the complete fan in MR = R2

whose one-dimensional rays are ρ0, ρ1, ρ2 generated by m0 = (−1,−1), m1 = (1, 0)
and m2 = (0, 1); see Figure 14. The two-dimensional cones are σi,i+1, with indices
taken modulo 3 and where σi,i+1 is generated by mi and mi+1. We shall see in
Chapter 3 that this fan defines P2 as a toric variety (Example 3.2). In particular,
we shall give meaning to the symbol “XΣ”, which is actually a variety, and in the
case of this particular Σ, XΣ = P2. Then the examples of Figures 2, 3 and 4 are
tropical curves in XΣ = P2. The degree of Figure 2 is tρ0 + tρ1 + tρ2 , while the
degree of Figures 3 and 4 is 2(tρ0 + tρ1 + tρ2). In general, a tropical curve in P2

will be, by the above lemma, of degree d(tρ0 + tρ1 + tρ2), in which case we say the
curve is degree d in P2 (compare with Example 1.6). So in particular, Figure 2 is
a tropical line, and all degree one curves in P2 are just translates of this example.
Figures 3 and 4 are tropical conics.

It is reasonable to ask what the relationship is between this new definition of
tropical curve and the earlier notion of a tropical hypersurface inMR with dimMR =
2. In particular, one can ask whether or not h(Γ) is a tropical hypersurface in MR.
Of course, to pose this question, one must first define weights on h(Γ), as h is in
general not an embedding. Viewing h(Γ) as a one-dimensional polyhedral complex,
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ρ1

ρ2

ρ0

Figure 14. The fan for P2.

we need to assign a weight w(E) to each edge E of h(Γ). We define this as follows.
Pick a point m ∈ E which is not a vertex of h(Γ) and is not the image of any vertex
of Γ, and define

w(E) =
∑

E′∈Γ[1]

E′∩h−1(m) 6=∅

w(E′),

i.e., the weight of E is the sum of weights of edges of Γ whose image under h contains
m. It is easy to check that the balancing condition on h implies firstly that this
weight is well-defined, i.e., doesn’t depend on the choice of m, and secondly that
h(Γ) satisfies the balancing condition.

Proposition 1.15. If h : Γ → MR is a tropical curve with dimMR = 2,
then there exists a tropical polynomial f such that h(Γ) = V (f), as weighted one-
dimensional polyhedral complexes.

Proof. We define f as follows. h(Γ) yields a polyhedral decomposition P̌ of
MR whose maximal cells are closures of connected components of MR \ h(Γ).

Choose some cell σ0 ∈ P̌max and define f |σ0 ≡ 0. We then define f inductively.

Suppose f is defined on σ ∈ P̌max. If σ′ ∈ P̌max and E = σ∩σ′ satisfies dimE = 1,
then we can define f on σ′ as follows. Extend f |σ to an affine linear function
fσ : MR → R. Let nE ∈ N be a primitive normal vector to E which takes a
constant value on E and takes larger values on σ than on σ′. Denote by 〈nE , E〉
the value nE takes on E. Then we define f to be fσ + w(E)(nE − 〈nE , E〉) on σ′.
It is an immediate consequence of the balancing condition that this is well-defined.
Indeed, if we define f on a sequence of polygons with a common vertex V , starting
at σ and passing successively through edges E1, . . . , En, then when we return to σ,
we have constructed the function fσ +

∑n
i=1 w(Ei)(nEi − 〈nEi , Ei〉) = fσ by the

balancing condition.
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Finally, we note that f is convex, i.e., given by a tropical polynomial. In
addition, clearly h(Γ) = V (f). �

We are ready to talk about moduli spaces of such curves. For this, we need to
talk about the combinatorial type of a marked tropical curve h : (Γ, x1, . . . , xn)→
MR. This is the data of the labelled graph (Γ, x1, . . . , xn), the weight function w,
along with, for each flag (V,E) of Γ, the primitive tangent vector m(V,E) ∈ M to
h(E) pointing away from h(V ). A combinatorial equivalence class is the set of all
tropical curves of the same combinatorial type. We denote by [h] the combinatorial
equivalence class of a curve h.

Definition 1.16. For g, k ≥ 0, Σ a fan in MR, ∆ ∈ TΣ with r(∆) = 0, denote
by Mg,k(Σ,∆) the set of tropical curves in XΣ of genus g, degree ∆ and with k
marked points.

If [h] is a combinatorial equivalence class of curves of genus g with k marked

points of degree ∆ in XΣ, we denote by M[h]
g,k(Σ,∆) ⊆ Mg,k(Σ,∆) the set of all

curves of combinatorial equivalence class [h].

Proposition 1.17.

Mg,k(Σ,∆) =
∐
M[h]

g,k(Σ,∆),

where the disjoint union is over all combinatorial equivalence classes of curves of
degree ∆ and genus g with k marked points. For a given combinatorial equivalence

class [h] of a curve h : (Γ, x1, . . . , xk) → MR, M[h]
g,k(Σ,∆) is the interior of a

polyhedron of dimension

≥ e+ k + (3− dimMR)(g − 1)− ov(Γ),

where
ov(Γ) =

∑

V ∈Γ[0]

(
Valency(V )− 3

)

is the overvalence of Γ and e is the number of non-compact unmarked edges of Γ.

Proof. First note the topological Euler characteristic χ(Γ) = 1− g satisfies

χ(Γ) = #Γ
[0] −#Γ

[1]

= #Γ[0] −#(Γ[1] \ Γ[1]
∞).

On the other hand,

3(#Γ[0]) + ov(Γ) =
∑

V ∈Γ[0]

Valency(V ) = 2(#Γ[1] \ Γ[1]
∞) + #Γ[1]

∞ ,

from which we conclude that

# of compact edges of Γ = # non-compact edges of Γ + 3g − 3− ov(Γ)

= e+ k + 3g − 3− ov(Γ).

Now to describe all possible tropical curves with the given topological type, we
choose a reference vertex V ∈ Γ[0], and we need to choose h(V ) ∈ MR and affine
lengths1 ℓE of each bounded edge h(E). However, these lengths cannot be chosen
independently. Indeed, suppose we have a cycle E1, . . . , Em of edges in Γ, ∂Ei =

1The affine length of a line segment of rational slope in MR with endpoints m1,m2 is the
number ℓ ∈ R>0 such that m1 −m2 = ℓmprim for some primitive mprim ∈M .



1.3. PARAMETERIZED TROPICAL CURVES 17

{Vi−1, Vi} with Vm = V0. We of course have by definition of m(Vi−1,Ei) that Vi =

Vi−1 + ℓEim(Vi−1,Ei). Thus V0 = Vm = V0 +
∑m

i=1 ℓEim(Vi−1,Ei), or

m∑

i=1

ℓEim(Vi−1,Ei) = 0

in MR. So, for each cycle, we obtain the above linear equation, which imposes
dimMR linear conditions on the ℓE ’s. Thus, given that there exists a tropical curve
of the given combinatorial type, the set of all curves of this combinatorial type is

MR × (R
e+k+3g−3−ov(Γ)
>0 ∩ L)

where L ⊆ Re+k+3g−3−ov(Γ) is a linear subspace of codimension ≤ g · dimMR and
hence the whole cell is of dimension

≥ e+ k + (3− dimMR)(g − 1)− ov(Γ).

�

Remark 1.18. One should view the case where all vertices of Γ are trivalent
as a generic situation. However, there are tropical curves of genus g ≥ 1 in MR

for dimMR ≥ 3 which are not trivalent and cannot be viewed as limits of trivalent
curves.

Of course, for g = 0, equality always holds for the dimension, but for g ≥
1 equality need not hold. A curve of a given combinatorial type is said to be
superabundant if the moduli space of curves of that type is larger than

e+ k + (3− dimMR)(g − 1)− ov(Γ).

Otherwise a curve is called regular. Superabundant curves cause a great deal of
difficulty for tropical geometry, and we shall handle this by restricting further to
plane curves, i.e., dimMR = 2. Furthermore, as we shall only need the genus zero
case for our discussion, we shall often restrict our attention to this case also.

Restricting to the case that dimMR = 2, we define

Definition 1.19. A marked tropical curve h : Γ → MR for dimMR = 2 is
simple if

(1) Γ is trivalent;
(2) h is injective on the set of vertices and there are no disjoint edges E1, E2

with a common vertex V for which h|E1 and h|E2 are non-constant and
h(E1) ⊆ h(E2);

(3) Each unbounded unmarked edge of Γ has weight one.

By our discussion above, simple curves move in a family of dimension at least
|∆| + k + g − 1, as now e = |∆|. However, one can show that simple curves
in dimension two are always regular, see [80], Proposition 2.21, so in fact simple
curves move in (|∆| + k + g − 1)-dimensional families. We know this for g = 0
already, but since we shall not be focussing on higher genus curves, we omit a proof
of this fact.

Lemma 1.20. Fix Σ a fan in MR, dimMR = 2, and a degree ∆ ∈ TΣ. Let
P1, . . . , P|∆|−1 ∈ MR be general points.2 Then there are a finite number of marked

2By general, we mean that (P1, . . . , P|∆|−1) ∈ M
|∆|−1
R lies in some dense open subset of

M
|∆|−1
R .
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genus zero tropical curves h : (Γ, x1, . . . , x|∆|−1) → MR in XΣ with h(xi) = Pi for
all i. Furthermore, these curves are simple, and there is at most one such curve of
any given combinatorial type.

Proof. First note there are only a finite number of combinatorial types of
curves of degree ∆ in XΣ. Indeed, given a curve h : Γ→MR, we know by Proposi-
tion 1.15 that h(Γ) is in fact a tropical hypersurface in MR. The degree ∆ in fact
determines the Newton polytope (up to translation) of a defining equation for h(Γ).
Furthermore, specifying a regular subdivision of the Newton polytope is equivalent
to specifying the combinatorial type of h(Γ). For each possible combinatorial type
of h(Γ), there are only a finite number of ways of parameterizing such a curve.
Since there are a finite number of lattice subdivisions of the Newton polytope, this
implies there are only a finite number of combinatorial types.

So in fact we can prove the result just by fixing one combinatorial type of curve,
[h]. This gives the description as in the proof of Proposition 1.17,

M[h]
0,|∆|−1(Σ,∆) ∼= MR × R

e+|∆|−4−ov(Γ)
>0 ,

obtained after choosing a reference vertex V ∈ Γ[0]. We have an evaluation map

ev :M[h]
0,|∆|−1(Σ,∆)→ (MR)|∆|−1

sending h : (Γ, x1, . . . , x|∆|−1)→MR to

ev(h) = (h(x1), . . . , h(x|∆|−1)).

Note that in fact ev is an affine linear map. Indeed, to compute h(xi) given h

corresponding to a point in MR × R
e+|∆|−4−ov(Γ)
>0 , let E1, . . . , En be the sequence

of edges traversed from the reference vertex V to the vertex adjacent to Exi , with
∂Ei = {Vi−1, Vi}, V0 = V . Then

h(xi) = h(V ) +
n∑

i=1

ℓEim(Vi−1,Ei)

where ℓEi is the affine length of Ei. This shows that h(xi) depends affine linearly
on h(V ) and the length of the edges.

Thus, unless dimM[h]
0,|∆|−1(Σ,∆) ≥ dim((MR)|∆|−1), there is no curve of com-

binatorial type [h] through general (P1, . . . , P|∆|−1) ∈ (MR)|∆|−1. This inequality
of dimensions only holds if

e+ |∆| − 2− ov(Γ) ≥ 2(|∆| − 1),

or

e− ov(Γ) ≥ |∆|.
Since e ≤ |∆| and ov(Γ) ≥ 0, strict inequality never holds and equality only holds
if e = |∆| and ov(Γ) = 0, i.e., all unbounded edges of Γ are weight 1 and Γ is
trivalent. If this equality holds, then either the image of ev is codimension ≥ 1,
in which case again there are no curves of combinatorial type [h] through general
(P1, . . . , P|∆|−1), or else ev is a local isomorphism and then there is at most one
curve of combinatorial type [h] passing through any P1, . . . , P|∆|−1 ∈MR.

Finally, it is easy to see that the general curve in M[h]
0,|∆|−1(Σ,∆) is injective

on the set of vertices. Also, if there is a vertex V with attached edges E1, E2 with
h|E1 , h|E2 non-constant and h(E1) ⊆ h(E2), then we are free to move h(V ) along
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the affine line containing h(Ei), violating the fact that there is only one such curve.
So a curve of type [h] passing through general points P1, . . . , P|∆|−1 is simple, as
desired. �

This result allows us to count tropical curves passing through a general set of
points. However, as Mikhalkin showed, to get a meaningful result these must be
counted with a suitable multiplicity, which we now define.

Definition 1.21. Let h : Γ→MR be a simple tropical curve, with dimMR = 2.
We define for V ∈ Γ[0] with adjacent edges E1, E2 and E3,

MultV (h) = wΓ(E1)wΓ(E2)|m(V,E1) ∧m(V,E2)|
= wΓ(E2)wΓ(E3)|m(V,E2) ∧m(V,E3)|
= wΓ(E3)wΓ(E1)|m(V,E3) ∧m(V,E1)|

if none of E1, E2, E3 are marked, and otherwise MultV (h) = 1. Here for m1,m2 ∈
M , we identify

∧2
M with Z so that |m1 ∧m2| makes sense. The equalities follow

from the balancing condition.
We then define the (Mikhalkin) multiplicity of h to be

Mult(h) =
∏

V ∈Γ[0]

MultV (h).

Finally, for a given fan Σ and degree ∆, we write

N0,trop
∆,Σ =

∑

h

Mult(h)

where the sum is over all h ∈ M0,|∆|−1(Σ,∆) passing through |∆|−1 general points
in MR.

While the generality of these points guarantees that the sum makes sense, it is
not obvious that N0,trop

∆,Σ doesn’t depend on the choice of these points. This will be
shown later, twice, once in Chapter 4 and once in Chapter 5.

In fact, the same definition can be made for curves of genus g. Indeed, one can
show that, for a choice of |∆|+g−1 general points in MR, there are a finite number
of simple genus g curves passing through these points (see [80], Proposition 2.23).

Using the same definition of multiplicity, one obtains numbers Ng,trop
∆,Σ .

If dimMR > 2, there are similar definitions for counting formulas for genus
zero curves: see [86] for precise statements. However, because of superabundant
families of g > 0 curves, there are more serious issues in higher genus.

Mikhalkin’s main result in [80] relates the numbers Ng,trop
∆,Σ , which are of course

purely combinatorial, to counts of holomorphic curves in the toric varietyXΣ. Stat-
ing this result rather imprecisely here, he shows that the numbers Ng,trop

∆,Σ coincide

with the numbers Ng,hol
∆,Σ of holomorphic curves of genus g in XΣ passing through

|∆|+ g− 1 points in general position. The fact that this count can be computed in
this purely combinatorial fashion was the first significant result in tropical geometry.
We shall give a proof of this result for genus zero in Chapter 4.

1.4. Affine manifolds with singularities

We shall now discuss possible generalizations of the discussion of tropical curves.
The question we want to pose here is: all our curves have lived in MR, a real affine
space. Are there interesting choices for more general target manifolds?
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One could, for example, study tropical curves inside tropical hypersurfaces, as
has been done, say, in [111]. However, this is not the point of view we want to
take here. Instead, we want to look at target spaces which “locally look like MR,”
in such a way that we can still talk about tropical curves. The main point is that
to talk about tropical curves, one needs the structure of MR as an affine space, but
one also needs to know about the integral structure M ⊆MR.

In what follows, we consider the group Aff(MR) = MR⋊GL(MR) of affine linear
automorphisms of MR, given by m 7→ Am + b, where A ∈ GLn(R) and b ∈ MR,
and its subgroups

MR ⋊ GL(M) ⊆ Aff(MR)

and
Aff(M) := M ⋊ GL(M) ⊆ Aff(MR).

Definition 1.22. A tropical affine manifold is a real topological manifold B
(possibly with boundary) with an atlas of coordinate charts ψi : Ui → MR with
transition functions ψi ◦ ψ−1

j ∈MR ⋊ GL(M) ⊆ Aff(MR).
An integral affine manifold is a tropical manifold with transition functions in

Aff(M).

We will often make use of two local systems on a tropical affine manifold,
defining Λ ⊆ TB to be the family of lattices locally generated by ∂/∂y1, . . . , ∂/∂yn
for y1, . . . , yn local affine coordinates. The sheaf Λ̌ ⊆ T ∗B is the dual local system
locally generated by dy1, . . . , dyn. The point is these families of lattices are well-
defined on tropical manifolds because of the restriction on the transition maps.
Note that TB carries a natural flat connection, ∇B , with flat sections being R-
linear combinations of ∂/∂y1, . . . , ∂/∂yn.

It is easy to generalize the notion of parameterized tropical curve with target a
tropical affine manifold, as locally the notion of a line segment with rational slope
and the balancing condition make sense.

Example 1.23. B = MR/Γ for a lattice Γ ⊆MR gives an example of a compact
tropical affine manifold. In [82], such spaces arise naturally as tropical Jacobians of
tropical curves. Figure 15 gives an example of a two-dimensional torus containing
a genus 2 tropical curve.

Unfortunately, tori are not particularly useful for the applications we have in
mind, so we shall generalize the notion of tropical affine manifold as follows.

Definition 1.24. A tropical affine manifold with singularities is a topological
manifold B along with data

• a subset ∆ ⊆ B which is a locally finite union of codimension ≥ 2 locally
closed submanifolds of B;
• a tropical affine structure on B0 := B \∆.

We say B is an integral affine manifold with singularities if the affine structure on
B0 is integral. The set ∆ is called the singular locus or discriminant locus of B.

Note that we are assuming that B is still a topological manifold even at the
singular points: the singularities lie in the affine structure in the sense that, in
general, the affine structure cannot be extended across ∆. We shall see some
examples later, but for the moment one can imagine a two-dimensional cone as an
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(b, c)

(a+ b, b+ c)

(0, 0)

(a, b)

Figure 15. A tropical curve of genus two in R2/Γ, where Γ is
generated by (a, b) and (b, c). The dotted lines give a fundamental
domain, and the three external vertices of the curve are in fact
identified, so these vertices represent a single trivalent vertex.

example, obtained by cutting an angular sector out of a piece of paper and then
gluing together the two edges of the sector. (However, in fact we will not ultimately
allow this particular example.)

A priori, the singularities of the affine structure can be arbitrarily complicated,
and there are many reasonable examples which we shall not wish to consider. In
addition, it is often convenient to consider restrictions on the nature of the boundary
of B. To control the singularities and the boundary, we introduce a refined notion
which arises from the following construction.

Construction 1.25. Let B be a topological manifold (possibly with bound-
ary) equipped with a polyhedral decomposition P, i.e.,

B =
⋃

σ∈P

σ

where

• σ ∈ P is a subset of B equipped with a homeomorphism to a (not nec-
essarily compact) polyhedron in MR with faces of rational slope and at
least one vertex. Thus in particular any σ ∈ P has a set of faces: these
faces are inverse images of faces of the polyhedron in MR.
• If σ ∈P and τ ⊆ σ is a face, then τ ∈P.
• If σ1, σ2 ∈P, σ1 ∩ σ2 6= ∅, then σ1 ∩ σ2 is a face of σ1 and σ2.

For each σ ∈P, viewing σ ⊆ MR yields a tangent space Λσ,R ⊆ MR to σ, and we
can set

Λσ := Λσ,R ∩M.

The assumption that σ has faces of rational slope implies in particular that if σ is
of codimension at least one in MR, then the affine space spanned by σ has rational
slope. Thus Λσ generates Λσ,R as an R-vector space.

Now the interior of each σ ∈ P carries a natural affine structure. Indeed, σ
is equipped with a homeomorphism with a polyhedron in MR, which is embedded
in the affine space it spans in MR. This gives an affine coordinate chart on Int(σ).
However, this doesn’t define an affine structure on B, but only an affine structure
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τ

Sτ

Στ

Figure 16. A fan structure given by the map Sτ in a neighbour-
hood of the one-dimensional cell τ . This can be viewed as describ-
ing an affine structure in a direction transverse to τ .

on the subset of B given by ⋃

σ∈Pmax

Int(σ),

where Pmax is the set of maximal cells in P. This is insufficient for giving a
structure of tropical affine manifold with singularities to B, so we need to extend
this affine structure. To do so requires the choice of some extra structure, known
as a fan structure.

Definition 1.26. Let τ ∈P. The open star of τ is

Uτ :=
⋃

σ ∈P s.t. τ ⊆ σ
Int(σ).

A fan structure along τ ∈ P is a continuous map Sτ : Uτ → Rk where k =
dimB − dim τ , satisfying

(1) S−1
τ (0) = Int(τ).

(2) If τ ⊆ σ, then Sτ |Int(σ) is an integral affine submersion onto its image,
with dimSτ (σ) = dimσ − dim τ . By integral affine submersion we mean
the following. We can think of σ as a lattice polytope in Λσ,R. Then the
map Sτ |σ is induced by a surjective affine map Λσ → W ∩ Zk, for some
vector subspace W ⊆ Rk of codimension equal to the codimension of σ in
B.

(3) For τ ⊆ σ, define Kτ,σ to be the cone generated by Sτ (σ ∩ Uτ ). Then

Στ := {Kτ,σ | τ ⊆ σ ∈P}
is a fan with |Στ | convex.

Two fan structures Sτ , S
′
τ are considered equivalent if Sτ = α ◦ Sτ ′ for some

α ∈ GLk(Z).
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If Sτ : Uτ → Rk is a fan structure along τ ∈P and σ ⊇ τ , then Uσ ⊆ Uτ . We
then obtain a fan structure along σ induced by Sτ given by the composition

Uσ →֒ Uτ
Sτ−→Rk → Rk/Lσ ∼= Rl

where Lσ ⊆ Rk is the linear span of Kτ,σ. This is well-defined up to equivalence.
It is easy to see that with the induced fan structure on σ, Σσ = Στ (Kτ,σ) in the
notation of Definition 1.10.

See Figure 16 for a picture of a fan structure. The most important case is when
τ = v a vertex of P. Then a fan structure is an identification of a neighbourhood
of v in B with a neighbourhood of the origin in Rn (n = dimB). This identification
locally near v identifies P with a fan Σv in Rn.

Given a fan structure Sv at each vertex v ∈ P, we can construct a tropical
structure on B as follows. We first need to choose a discriminant locus ∆ ⊆ B.
The precise details of this choice of discriminant locus in fact turn out not to be so
important, and it can be chosen fairly arbitrarily, subject to certain constraints:

(1) ∆ does not contain any vertex of P.
(2) ∆ is disjoint from the interior of any maximal cell of P.
(3) For any ρ ∈ P which is a codimension one cell not contained in ∂B,

the connected components of ρ \∆ are in one-to-one correspondence with
vertices of ρ, with each vertex contained in the corresponding connected
component.

For example, if dimB = 2, we simply choose one point in the interior of each
compact edge of P not contained in ∂B, and take ∆ to be the set of these chosen
points. If B is compact without boundary of any dimension, we can take ∆ to be
the union of all simplices in the first barycentric subdivision of P which neither
contain a vertex of P nor intersect the interior of a maximal cell of P. For the
general case, see [49], §1.1. We should also note that, for us, this is a maximal
choice of discriminant locus, and if there is a subset ∆′ ⊆ ∆ such that the affine
structure on B \∆ extends to an affine structure across B \∆′, we will replace ∆
with ∆′ without comment.

For a vertex v of P, let Wv denote a choice of open neighbourhood of v with
Wv ⊆ Uv satisfying the condition that if v ∈ ρ with ρ a codimension one cell, then
Wv ∩ ρ is the connected component of ρ \∆ containing v. Then

{Int(σ) |σ ∈Pmax} ∪ {Wv | v ∈P
[0]}

form an open cover of B0 := B \ ∆. We define an affine structure on B0 via the
already given affine structure on Int(σ) for σ ∈Pmax,

ψσ : Int(σ) →֒MR

and the composed maps

ψv : Wv →֒ Uv
Sv−→RdimB

where the first map is the inclusion.
It is easy to see that this produces the structure of a tropical affine manifold

with singularities on B. Indeed, the crucial point is that the affine charts ψv induced
by the choice of fan structure are compatible with the charts ψσ on the interior of
maximal cells of P, but this follows precisely from item (2) in the definition of a
fan structure.
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If furthermore all polyhedra in P are lattice polytopes, then in fact the affine
structure is integral.

This construction provides a wide class of examples. However, these examples
are still too general. We will impose one additional condition.

We say a collection of fan structures {Sv | v ∈P
[0]} is compatible if, for any two

vertices v, w of τ ∈P, the fan structures induced on τ by Sv and Sw are equivalent.
Note that given such a compatible set of fan structures, we obtain well-defined fan
structures along every τ ∈P.3

Definition 1.27. A tropical manifold is a pair (B,P) where B is a tropical
affine manifold with singularities obtained from the polyhedral decomposition P

of B and a compatible collection {Sv | v ∈P [0]} of fan structures.
(B,P) is an integral tropical manifold if in addition all polyhedra in P are

lattice polyhedra.

Examples 1.28. (1) Any lattice polyhedron σ with at least one vertex supplies
an example of an integral tropical manifold, either bounded or unbounded, with
B = σ and P the set of faces of σ. In this case the affine structure on Int(σ)
extends to give the structure of an affine manifold (with boundary) on σ. Here
∆ = ∅.

(2) The polyhedral decomposition of B = MR given in Definition 1.4 is also an
example of a tropical manifold (provided the tropical hypersurface in question has
at least one vertex).

(3) Let Ξ ⊆MR be a reflexive lattice polytope, i.e., 0 ∈ Int(Ξ) and the polytope

Ξ∗ := {n ∈ NR | 〈n,m〉 ≥ −1 ∀m ∈ Ξ}
is also a lattice polytope.

Then B = ∂Ξ carries the obvious polyhedral decomposition P consisting of
the proper faces of Ξ. These faces are lattice polytopes. So, to specify an integral
tropical manifold structure on B, we need only specify a fan structure at each vertex
v of Ξ. This is done via the projection Sv : Uv → MR/Rv. Compatibility is easily
checked, as the induced fan structure on a cell ω ∈P containing v is the projection
Uω →MR/Rω, where Rω now denotes the vector subspace of MR spanned by ω.

There are a number of refinements of this construction. For example, if we
take a refinement P ′ of P by integral lattice polytopes, we can use the same
prescription above for the fan structure at the vertices.

Note that, in this case, the description of ∆′ ⊆ B of the singular locus as
determined by the refinement P ′ may give a much bigger discriminant locus, with
∆′ ∩ Int(σ) 6= ∅ for σ a maximal proper face of Ξ. However, the affine structure
induced by P ′ on Int(σ) is compatible with the obvious affine structure on Int(σ),
so in fact the affine structure extends across points of ∆′ ∩ Int(σ). Thus we can
replace ∆′ with

∆′ ∩
⋃

τ∈P
dim τ=dimΞ−2

τ.

For example, let

Ξ1 := Conv{(−1,−1,−1), (3,−1,−1), (−1, 3,−1), (−1,−1, 3)}.
3In the case we will focus on in this book, dimB = 2, this compatibility condition is in fact

trivial, since, provided v 6= w, τ is dimension one or two and there are not many choices for zero
or one-dimensional fans! So, for the most part, the reader can ignore this condition.
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Figure 17

Figure 18

Figure 19

Then choose P ′ so that each edge of P is subdivided into four line segments of
affine length 1, as in Figure 17. Then ∆′ consists of 24 points, one in the interior
of each of these line segments.

We can repeat this in higher dimension, say taking

Ξ2 := Conv{(−1,−1,−1,−1), (4,−1,−1,−1), . . . , (−1,−1,−1, 4)}.
Suppose P ′ is chosen so that each 2-face of Ξ is triangulated by P ′ as in Figure
18. Then ∆′ restricted to such a two-face is depicted in Figure 19.

So far, these examples are all integral tropical manifolds. To obtain examples
which are not integral, one can deform one of the above examples continuously.
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σ1 σ2

(−1, 0) (1, 0)

Σv′

Σv

(−1, 0) (1, 0)

(0, 1)

(−1,−1) (0,−1)

(1, d− 1)

Sv′

Sv

∆

(0, 1)

(0, 0)

(B,P)

Figure 20. (B,P) is shown on the left, with the embedding in
R2 shown giving the correct affine structures on σ1 and σ2. The
fan structures Sv and Sv′ depicted then turn (B,P) into a tropical
manifold.

Suppose Ξ′ ⊆ MR is a deformation of Ξ which has the same normal fan. For
example, Ξ1 and Ξ2 can just be rescaled, but

Ξ3 := {(x, y, z) | − 1 ≤ x, y, z ≤ 1}
can be deformed to

Ξ′3 := {(x, y, z) | − a ≤ x ≤ a,−b ≤ y ≤ b,−c ≤ z ≤ c}.
As before, take the polyhedral decomposition P ′ of B′ = ∂Ξ′ to consist of all
proper faces of Ξ′. Then, for each vertex v′ ∈P

′ corresponding to a vertex v of Ξ,
define a fan structure Sv′ : Wv′ →MR/Rv via

Sv′(m) = m− v′ mod Rv.

One checks easily again that this defines a fan structure, and hence a tropical
manifold (B′,P ′) which is not, in general, integral, as the elements of P ′ are not
lattice polytopes.

These are all special cases of much more general constructions given in [40, 54,

55]. The Batyrev-Borisov [7] construction, in particular, for complete intersection
Calabi-Yau varieties in toric varieties yields vast numbers of examples, as discussed
in [40, 55].

(4) In Chapter 6, we will focus largely on the two-dimensional case. In this
case, the classification of singularities which may occur in tropical manifolds is
particularly straightforward. We now give a simple model for the singularities
which can occur.

Consider (B,P) as depicted in Figure 20, with two maximal cells σ1, σ2 and
one one-dimensional cell τ = σ1 ∩ σ2, and four vertices, including v = (0, 0) and
v′ = (0, 1), as depicted. The picture gives the affine structures on σ1 and σ2, and
to specify the full affine structure we need to specify fan structures at the vertices
v and v′, which are shown on the right in Figure 20. We note that we are violating
the condition that |Σv′ | be convex, if d > 2, but this can be rectified by embedding
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(0, 1)

(1, d)

(0, 1)

U

(0, 0)(−1, 0) (1, 0) (−1, 0) (0, 0)

U ′

Figure 21

this local example in a larger B. One can think of the induced affine structure as
coming from two charts on a cover of B0 = B \∆ consisting of the open sets

U = B \ {(0, x) ∈ B |x ≥ 1/2}
U ′ = B \ {(0, x) ∈ B |x ≤ 1/2}.

Figure 21 then shows the embeddings of U and U ′ into R2. The best way to describe
the singularity is to describe the monodromy of the local system Λ around, say, a
counterclockwise loop γ : [0, 1]→ B0 about ∆. Suppose γ(0) is a point right below
∆. Using the chart on U , we identify the integral tangent vectors at γ(0) with
Z2 ⊆ R2, the latter being the tangent space of the chart on U . We then move into
σ2 along γ, and to cross back into σ1 above ∆ we need to switch to the chart on U ′,
which requires applying on σ2 the linear transformation ( 1 0

d 1 ); this acts the same
way on tangent vectors. We can then complete our loop γ through U ′, and switching
back to U requires no further change of coordinates. Hence the monodromy of Λ
around γ is given in the standard basis by ( 1 0

d 1 ).
In fact, this example describes the local structures of all possible singularities

which can occur in two-dimensional tropical manifolds.
An important feature of these singularities is that tangent vectors to the edge

containing the singularity are left invariant by monodromy.

1.5. The discrete Legendre transform

We now wish to generalize the discrete Legendre transform that we saw in §1.1
to tropical manifolds. As we shall describe in Chapter 6, the motivation for this is
that the discrete Legendre transform in fact describes a form of mirror symmetry.
This section may be skipped on a first reading.

To define the discrete Legendre transform, we first need to generalize the notion
of a convex piecewise linear function. Even if there are no singularities, a tropical
manifold B may carry no convex functions, e.g., B = MR/Γ a torus. Instead, we
use multi-valued functions.
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To begin, we need

Definition 1.29. A function f : MR → R is affine linear if it is of the form
m 7→ 〈n,m〉+ b for some n ∈ NR, b ∈ R. It is integral affine linear if n ∈ N , b ∈ Z.

Definition 1.30. If B is an affine manifold, an affine linear function f : B →
R is a continuous function given on a coordinate chart ψi : Ui → MR by the
composition of ψi with an affine linear function MR → R. Furthermore, if B is
integral, we say f : B → R is integral affine if it is locally given by MR → R

integral affine linear.
If (B,P) is an (integral) tropical manifold, an (integral) affine function on an

open set U ⊆ B is a continuous map ϕ : U → R that is (integral) affine on U \∆.
An (integral) PL function on U is a continuous map ϕ : U → R such that if

Sτ : Uτ → Rk is the fan structure along τ ∈P, then

(1.4) ϕ|U∩Uτ = λ+ ϕτ ◦ Sτ ,
where

ϕτ : |Στ | → R

is an (integral) PL function on the fan Στ determined by the fan structure Sτ along
τ , and λ is (integral) affine linear.

Denote by Aff (B,R) the sheaf of affine linear functions on B (and denote by
Aff (B,Z) the sheaf of integral affine linear functions if B is integral), and similarly
by PLP(B,R) (or PLP(B,Z)) the sheaf of (integral) PL functions.

A multi-valued (integral) PL function is a section of PLP(B,R)/Aff (B,R)
(respectively PLP(B,Z)/Aff (B,Z)). In other words, it is a collection {(Ui, ϕi)}
of PL functions with ϕi − ϕj affine linear on Ui ∩ Uj.

We say a multi-valued PL function on U is convex if it is locally represented
on U ∩ Uτ by ϕτ ◦ Sτ with ϕτ a strictly convex function.

We can now generalize the discrete Legendre transform given in §1.1. Given
a triple (B,P, ϕ), where (B,P) is a tropical manifold and ϕ is a multi-valued
strictly convex PL function on B, we will define the discrete Legendre transform of
(B,P, ϕ), denoted by (B̌, P̌, ϕ̌).

For any τ ∈ P, we have a representative ϕτ : |Στ | → R of ϕ as in (1.4), and
set τ̌ := ∆ϕτ , the Newton polyhedron of ϕτ . If τ ⊆ σ for τ, σ ∈P, then Σσ is the
quotient fan of Στ by the cone in Στ corresponding to σ and, up to a linear map,
ϕσ : |Σσ| → R is induced by ϕτ : |Στ | → R as in Definition 1.10. Hence σ̌ can be
identified with a face of τ̌ .

This gives us the pair (B̌, P̌), where P̌ = {σ̌ |σ ∈ P}, and B̌ is obtained by
identifying τ̌1 and τ̌2 along the common face σ̌ if σ ∈ P is the smallest cell of P

containing τ1 and τ2.
It is easy to see B̌ constructed in this way is a topological manifold, with P̌ the

dual polyhedral complex to P, and in fact B \ ∂B and B̌ \ ∂B̌ are homeomorphic.
To complete the description of (B̌, P̌, ϕ̌), we need to define the fan structure

on (B̌, P̌) and the function ϕ̌.

For σ ∈Pmax, σ̌ is a vertex of P̌, and let Σ̌σ denote the normal fan (Definition
1.9) to σ. The cones of Σ̌σ are in one-to-one inclusion reversing correspondence with
faces of σ, and for τ ⊆ σ the tangent wedge (Definition 1.9) to τ̌ at σ̌ is Nσ(τ).
Thus there is a natural fan structure

Šσ̌ : Uσ̌ → NR.
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Indeed, locally Uσ̌ ∩ τ̌ looks like the tangent wedge to τ̌ at σ̌, which is identified via
Šσ̌ with the normal cone Nσ(τ). Finally, we define ϕ̌ by taking ϕ̌τ on Στ̌ = Σ̌τ to
be the function induced by τ as in Definition 1.9.

Examples 1.31. (1) Let B = σ ⊆MR be a strictly convex rational polyhedral
cone, P the set of faces of σ, and ϕ ≡ 0. Then B̌ is simply the dual cone

σ∨ := {n ∈ NR | 〈n,m〉 ≥ 0 for all m ∈ σ}
and ϕ̌ ≡ 0.

(2) Let B ⊆ MR be a polyhedron, P its set of faces, ϕ ≡ 0. Then P̌ is the
normal fan to B in NR, B̌ is the support of the normal fan, and

ϕ̌(n) := − inf{〈n,m〉 |m ∈ B}
is the PL function on the normal fan induced by B, as in Definition 1.9.

(3) Let B ⊆ NR be a (compact) polytope, P a polyhedral decomposition of B,

ϕ a strictly convex PL function on B. Then B̌ = MR, and (B̌, P̌, ϕ̌) agrees with
the discrete Legendre transform defined in §1.1, up to a change of sign of ϕ̌.

(4) Let Ξ ⊆ MR be a reflexive polytope, B = ∂Ξ, P the set of proper faces
of B, so the construction of Example 1.28, (3), yields an integral tropical manifold
(B,P). Define ϕ as follows. First, let Σ be the fan defined by Σ = {R≥0σ |σ ∈P}.
The fact that Ξ is reflexive implies there is a strictly convex integral PL function
ψ : |Σ| → R which takes the value 1 on each vertex of Ξ. For τ ∈P, choose nτ ∈ N
such that nτ = ψ|τ on τ , and define ϕτ on the quotient fan Σ(R≥0τ) to be defined
by the function induced by ψ − nτ , as in Definition 1.10. From the way the fan
structure was defined on B, Σ(R≥0τ) is precisely the fan Στ associated to τ ∈P.
Hence the collection of PL functions {ϕτ | τ ∈ P} defines a convex multi-valued
integral PL function on B.

As an exercise in the definitions, check that (B̌, P̌, ϕ̌) is the integral tropical
manifold defined by the same construction using the dual reflexive polytope Ξ∗.

(5) Consider the surface depicted in Figure 22. This figure depicts a surface
B which is the union of three two-dimensional simplices, each isomorphic to the
standard two-simplex. Furthermore, there is one point of the discriminant locus
along each interior edge. The figure shows an open subset ofB obtained by removing
the dotted lines along the edges. This open set is embedded in R2 as depicted
by an affine coordinate chart. In this embedding, the vertices are v0 = (0, 0),
v1 = (1, 0), v2 = (0, 1) and v3 = (−1,−1). This embedding defines a fan structure
at the internal vertex, and we give fan structures at the three boundary vertices as
depicted. As a result, the boundary is actually a straight line in the affine structure.
This gives B and P, and in addition, we can choose a strictly convex PL function
ϕ. On the open set depicted in the figure, ϕ will be given by (0, 0) on the upper
right-hand triangle, (−1, 0) on the left-hand triangle, and (0,−1) on the lower left-
hand triangle. In other words, ϕ is completely determined by the fact that it is
zero at all vertices, except for the vertex v3, where ϕ is 1.

What is the discrete Legendre transform of (B,P, ϕ)? First, the Newton
polytope of ϕ at v0 is the standard simplex, and the Newton polyhedra of ϕ at
v1, v2 and v3 are all isomorphic to [0, 1] × [0,∞). This gives a picture roughly as
in Figure 23. That figure is misleading though: all three unbounded edges are in
fact parallel! Furthermore, the fan structure at each vertex is the normal fan to
the standard simplex, i.e., the fan for P2. This gives us B̌ and P̌. Finally, ϕ̌ can
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v3
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Figure 23

still be taken to be single-valued, taking the value 0 on the compact maximal cell,
and on each unbounded cell [0, 1]× [0,+∞), ϕ̌ is just the second coordinate in this
representation.

One can in fact compute the monodromy of Λ around the three singular points
of B̌, and one finds at each point that it is given by ( 1 0

3 1 ) in a suitable basis. As
a result, it is actually possible to pull apart each singular point into three singular
points, each with monodromy ( 1 0

1 1 ), as in Figure 24. We will use this deformation
as an example in the next section.

1.6. Tropical curves on tropical surfaces

Briefly we show how to define tropical curves on two-dimensional tropical man-
ifolds. The reason for restricting to dimension two is that it is not yet clear what
the correct definitions in higher dimensions should be.

So fix a tropical manifold (B,P) with dimB = 2. Let Γ be a connected graph

with no bivalent vertices. Let Γ
[0]

∞ be a subset of the set of univalent vertices (in
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Figure 24

distinction from §1.3, where Γ
[0]

∞ denoted the set of all univalent vertices). Let

Γ = Γ \ Γ
[0]

∞ . In addition, assume Γ has a weighting w : Γ
[1] → N.

We will not bother with marked tropical curves here; one can fill in the details
for this if the reader wishes. So we assume all weights are positive.

In what follows, recall that with B0 := B \∆, B0 \ ∂B0 is an honest tropical
affine manifold, and hence carries a local system Λ. Let i : B0 \ ∂B0 →֒ B be
the inclusion. We will use below the sheaf i∗Λ. For U a contractible open set
in B0, Γ(U, i∗Λ) ∼= Z2, i.e., i∗Λ is locally constant on B0. But if U is a small
neighbourhood of a point of ∆, and the affine structure can’t be extended across
this point, then

(1.5) Γ(U, i∗Λ) ∼= Z,

the monodromy invariant part of the local system on U . Here, recall that the
monodromy around ∆ takes the form ( 1 0

d 1 ) for some d ≥ 0 in a suitable basis.

Definition 1.32. A continuous map h : Γ → B is a parameterized tropical
curve if it is proper and satisfies the following two conditions:

(1) For each edge E of Γ, h|E is an immersion (the image can self-intersect).
Furthermore, there is a section u ∈ Γ(E, h−1(i∗Λ)) which is tangent to
every point of h(E).

(2) For every vertex V of Γ, let E1, . . . , Em ∈ Γ[1] be the edges adjacent to
V . If h(V ) ∈ ∆, there is no further condition. Otherwise, let u1, . . . , um
be integral tangent vectors at h(V ), i.e., elements of the stalk (i∗Λ)h(V ),
with ui primitive, tangent to h(Ei), and pointing away from h(V ). Then

m∑

j=1

w(Ej)uj = 0.

Let’s clarify what these conditions mean. (1) tells us that locally h(E) is a line
of rational slope; this is a well-defined notion in a tropical affine manifold. However,
if h(E) contains a point of ∆ with non-trivial monodromy, the tangent direction to
h(E) near this point is completely determined, by (1.5). In other words, there is a
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Figure 25. The darker lines give a tropical curve.

unique invariant direction at each point of ∆, and h(E) must be tangent to that
direction. Note that, in the analysis of two-dimensional singularities given in §1.4,
this invariant direction is precisely the direction of the edge of P passing through
the point of ∆.

The second condition tells us that, besides the usual balancing condition, we
can have edges terminating at singular points. Even if an edge terminates at a
singular point, however, it still must be tangent to the invariant direction at the
singular point.

Example 1.33. Consider the surface B̌ given in Example 1.31, (5), or rather,
the variant with 9 singular points rather than 3. Figure 25 shows a tropical curve.
In fact, there are 27 such tropical curves: three choices of unbounded edge, and 32

choices for the endpoints. In Example 6.2, we shall see that this surface corresponds
to the cubic surface in P3. Morally, these tropical curves correspond to the 27 lines
on the cubic surface.

1.7. References and further reading

The material of §1.1 largely follows the more in depth introductory paper [96].
Standard references for fans are the books on toric varieties by Fulton [27] and Oda
[87]. The material on parameterized tropical curves originates in Mikhalkin’s work
[80]. See also the book of Itenberg, Mikhalkin and Shustin, [62]. The material on
affine manifolds with singularities and the discrete Legendre transform forms part
of the Gross-Siebert program: see [48], [47], [49] and [41].



CHAPTER 2

The A- and B-models

Our goal in this chapter is to explain the A- and B-models involved in the
mirror symmetry story as needed for this book. The topics covered here are rather
selective. The A-model is concerned with Gromov-Witten invariants. We shall be
extremely brief about the definition of Gromov-Witten invariants, which have been
examined thoroughly in other texts. On the other hand, we shall discuss in detail
some of the structures produced by Gromov-Witten invariants, such as the notion of
semi-infinite variations of Hodge structure. The B-model is concerned with period
integrals. For the B-model, we shall ignore completely the Calabi-Yau case, which
the reader can find discussed in many sources, including [43]. Instead, we focus on
the case we shall be largely interested in here, the case of Fano manifolds. Again,
in this case, the relevant structures are semi-infinite variations of Hodge structure.

2.1. The A-model

2.1.1. Stable maps and Gromov-Witten invariants. Let’s begin with the
basic definitions:

Definition 2.1. A stable n-pointed curve is data (C, x1, . . . , xn) where C is a
(possibly reducible) proper reduced connected algebraic curve over an algebraically
closed field with only nodes as singularities, and x1, . . . , xn ∈ C are distinct points
which do not coincide with any of the nodes. Furthermore, the automorphism
group of (C, x1, . . . , xn) must be finite. Here, an automorphism of (C, x1, . . . , xn)
means an automorphism ϕ : C → C satisfying ϕ(xi) = xi. The genus of C is the
arithmetic genus of C. An isomorphism of n-pointed curves (C, x1, . . . , xn) and
(C′, x′1, . . . , x

′
n) is an isomorphism ϕ : C → C′ with ϕ(xi) = x′i.

We note that (C, x1, . . . , xn) having a finite automorphism group can be char-

acterized as follows. Let ν : C̃ → C be the normalization of C, and call a point
of C̃ distinguished if it either maps via ν to a node or to one of the marked points
x1, . . . , xn. Then the condition that (C, x1, . . . , xn) has a finite automorphism group

is equivalent to every component of C̃ of genus zero having at least 3 distinguished
points, and every component of C̃ of genus one having at least 1 distinguished
point.

A famous result of Deligne and Mumford [19] is that the moduli space Mg,n

of n-pointed stable curves is an irreducible proper smooth Deligne-Mumford stack..
This phrase requires some discussion. We will take the attitude towards stacks

exhibited in [56], pages 139–149. In other words, we won’t give the definition of
a stack, and simply will try not to worry too much about this gap. However, the
basic point is as follows. In an ideal world, Mg,n would be a fine moduli space,
i.e., would be a scheme representing the functor from the category of schemes to

33



34 2. THE A- AND B-MODELS

the category of sets given by

S 7→





isomorphism classes of flat families C → S with sections
σ1, . . . , σn : S → C such that (Cs̄, σ1(s̄), . . . , σn(s̄)) is a stable
n-pointed genus g curve for every geometric point s̄ of S



 .

Thus Hom(S,Mg,n) would coincide with the set of isomorphism classes of such
flat families over S. In particular, there would be a universal family of stable
n-pointed curves over Mg,n, corresponding to the identity in Hom(Mg,n,Mg,n).
However, it is well-known that no such universal family exists due to the existence
of automorphisms of curves: the automorphism group of a stable curve is finite,
but need not be trivial. As a result, one needs to enlarge the category of schemes
so that the moduli functor becomes representable. This is done using the category
of algebraic stacks. A smooth Deligne-Mumford stack can be viewed as an algebro-
geometric object which is an orbifold, i.e., a scheme which is locally the quotient
of a smooth scheme by a finite group, but we remember this local description. We
can still talk about such things as Chow groups (or cohomology groups if we are
working over C with the usual topology) and intersection products, but these are
at best defined over Q.

In particular, it is worth emphasizing the point that intersection numbers are
only defined over Q. Indeed, if locally we can describe a smooth Deligne-Mumford
stack asX/G, withX smooth, then informally, if Z1, Z2 ⊆ X/G are two subschemes
of complementary dimension meeting in a zero-dimensional subscheme, we define
the intersection number of Z1 and Z2 at P ∈ Z1 ∩ Z2 as 1

|G|

∑
Q∈π−1(P ) iQ, where

π : X → X/G is the projection and iQ denotes the intersection multiplicity of
π−1(Z1) and π−1(Z2) at Q.

For example, consider X = P2, G = Z2, with Z2 acting by

(x, y, z) 7→ (−x,−y, z).
We can view X/G as a smooth Deligne-Mumford stack. Let D1 and D2 be the
images of the lines L1 and L2 given by x = 0 and y = 0 in X/G. If π : X → X/G
denotes the projection, we then have

D1 ·D2 =
1

2
L1 · L2 =

1

2
.

With this in mind, given a smooth Deligne-Mumford stackX , we obtainAiQ(X),
the codimension i Chow group with rational coefficients, along with intersection
products

AiQ(X)×AjQ(X)→ Ai+jQ (X),

giving a ring structure on A∗Q(X).
Similarly, if we work over C, in the usual topology, the rational cohomology

ring H∗(X,Q) makes sense, along with cup products

Hi(X,Q)×Hj(X,Q)→ Hi+j(X,Q).

We shall usually work in this latter context.

Examples 2.2. M0,n is empty for n ≤ 2, and for n = 3 is just a point. In

fact, M0,n is always a scheme, because n-pointed rational curves with n ≥ 3 have
no automorphisms.
M0,4 is isomorphic to P1, which we see as follows. Given (P1, x1, x2, x3, x4),

there is a unique element of PGL(2) taking x1 to 0, x2 to 1, and x3 to ∞. Then
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Figure 1

x4 ∈ P1 \ {0, 1,∞} determines the isomorphism class of (P1, x1, x2, x3, x4). (This is
just the classical cross-ratio). ThusM0,4, the open subset ofM0,4 corresponding to
non-singular curves, is isomorphic to P1 \ {0, 1,∞}. The points 0, 1,∞ correspond
to stable but singular curves depicted in Figure 1.

Note that the universal family overM0,4 = P1 is obtained by taking the family
P1 × P1 → P1 given by projection onto the second component, and taking the
sections {0} × P1, {1} × P1 and {∞} × P1 and the diagonal section as σ1, . . . , σ4

respectively. We then blow up the three points where σ4 intersects one of the other
three sections.

Traditionally, one views this as saying that as x4 approaches one of the other
three marked points, we have to bubble off a copy of P1 to maintain the distinctness
of the marked points.
M1,1 can be identified with the j-line, but not as a scheme. Every pointed

elliptic curve has an automorphism given by negation, and elliptic curves with j-
invariant 0 and 1 have larger automorphism groups. Thus even points other than
j = 0 and j = 1 have to be viewed as stacky points, locally of the form U/Z2, where
Z2 acts trivially on U !

In general, dimMg,n = 3g − 3 + n.

Next, we consider stable maps.

Definition 2.3. Let X be a variety. A stable n-pointed map to X is a map

f : (C, x1, . . . , xn)→ X

such that C is a proper connected reduced nodal algebraic curve, x1, . . . , xn ∈ C are
distinct points not coinciding with any nodes of C, such that f has a finite automor-
phism group. Here an automorphism of f is an automorphism ϕ of (C, x1, . . . , xn)
such that f ◦ ϕ = f .

Note that the finiteness of the automorphism group of f is equivalent to the
statement that every component of the normalization of C on which f is constant
has at least three distinguished points if it is genus zero and at least one distin-
guished point if it is genus one.

If β ∈ H2(X,Z), we say f represents β if f∗([C]) = β, where [C] ∈ H2(C,Z) is
the fundamental class. (If we are not working over the field C, we can replace H2

with the dimension one Chow group).
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Two stable maps f : (C, x1, . . . , xn)→ X , f ′ : (C′, x′1, . . . , x
′
n)→ X are viewed

as being isomorphic if there is an isomorphism ϕ : (C, x1, . . . , xn)→ (C′, x′1, . . . , x
′
n)

with ϕ(xi) = x′i, and f ′ ◦ ϕ = f .

As before, we can ask whether the moduli functor

S 7→





isomorphism classes of flat families C → S with sections
σ1, . . . , σn : S → C and a morphism f : C → X

such that f : (Cs̄, σ1(s̄), . . . , σn(s̄))→ X is a stable map
of genus g representing β for every geometric point s̄ of S





is representable. It is not in general representable by a scheme, nor even by a
smooth Deligne-Mumford stack. However, it is a proper Deligne-Mumford stack
[9]. This will make life more difficult for us. We write the stack of n-pointed stable
maps of genus g representing a class β ∈ H2(X,Z) asMg,n(X,β).

Let us also remark here that properness can be tested using the valuative
criterion, which boils down to the following basic fact, known as stable reduction.
See [28], §4.2 for a proof.

Proposition 2.4. Let S be a non-singular curve over k, with s ∈ S a point.
Let U = S \{s}. Suppose we have a family of stable maps f : (CU , σ1, . . . , σn)→ X
over U . Then there is an open neighbourhood V of s, a finite map π : V ′ → V with
V ′ a non-singular curve and a point s′ ∈ V ′ such that

(1) if U ′ = V ′ \ {s′}, π|U ′ is étale;
(2) Let CU ′ := CU ×U U ′. This gives a pull-back family of stable maps f ′ :

(CU ′ , σ
′
1, . . . , σ

′
n) → X given by the composition CU ′ → CU

f−→X. Then
f ′ extends to a family of stable maps (CV ′ , σ

′
1, . . . , σ

′
n)→ X over V ′.

Examples 2.5. Consider the target spaceX = P2, [ℓ] ∈ H2(X,Z) the homology
class of a line. Then M0,0(X, [ℓ]) is of course (P2)∗, the dual of P2. On the other

hand,M0,1(X, [ℓ]) is the incidence correspondence I ⊆ P2 × (P2)∗, with

I = {(x, ℓ) |x ∈ ℓ}.
M0,0(X, 2[ℓ]) is a bit more complicated. There are four types of stable maps in

this moduli space. First, the domain C of f may be irreducible, with f(C) a conic,
or C may be a union of two lines, with f(C) a reducible conic. Next, f could be a
double cover of a line ℓ ⊆ P2, with the domain either irreducible or reducible. In
these two double cover cases, f has a non-trivial automorphism of order 2, and so
these points are stacky points in M0,0(P

2, 2[ℓ]).

Next consider M1,0(P
2, [ℓ]). There are no maps from an elliptic curve to P2

representing the class [ℓ], so at first glance this moduli space would appear to be
empty. However, we have maps f with domain C = C1 ∪ C2 where C1 is a P1 and
C2 is either an elliptic curve or a nodal rational curve attached to C1 at one point.
Furthermore f embeds C1 as a line and is constant on C2. Since this requires both
the choice of the image of C1 in P2 and the choice of the points on C1 and C2 where
C1 and C2 meet, we see that

M1,0(P
2, [ℓ]) =M0,1(P

2, [ℓ])×M1,1.

�

We will not go into much detail here, but a standard consequence of deformation
theory tells us that these moduli spaces have an expected dimension. This expected
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dimension arises because given a stable map f with domain an n-pointed curve of
genus g, one can compute two spaces, T 1

f and T 2
f , where T 1

f is the tangent space to

[f ] ∈ Mg,n(X,β) and T 2
f is an obstruction space, which roughly means that locally

Mg,n(X,β) is cut out by dimT 2
f equations in T 1

f . This means that the dimension

of a small open neighbourhood of [f ] in Mg,n(X,β) lies between

dimT 1
f − dimT 2

f and dimT 1
f .

The number dimT 1
f − dimT 2

f is the expected, or virtual, dimension ofMg,n(X,β),
and can be computed using Riemann-Roch, giving the formula

dim T 1
f − dim T 2

f = n+ (dimC X − 3)(1− g) +

∫

β

c1(TX).

For example, the virtual dimension ofM0,0(P
2, d[ℓ]) is 3d−1, as c1(TP2) = 3[ℓ]. This

is indeed the correct dimension, and in this caseM0,0(P
2, d[ℓ]) is a smooth Deligne-

Mumford stack. On the other hand, the expected dimension of M1,0(P
2, [ℓ]) is 3,

while we saw that in fact dimM1,0(P
2, [ℓ]) = 4. So in fact, these moduli spaces

need not be the expected dimension. More generally, they need not be smooth.
This presents a serious problem for what we want to do. For example, if the

goal is to count the number of curves of genus g representing the class β in a Calabi-
Yau threefold, (so c1(TX) = 0), the expected dimension is zero, and so if the moduli
spaceMg,0(X,β) is non-singular of dimension zero, we can just count the number
of points in this moduli space. However, we can’t expect this to happen all the
time.

Historically, there are two approaches to solving this problem. One is to deform
the complex structure on the tangent spaceX to a generic almost complex structure,
for which these moduli spaces tend to be better behaved. This approach was
pioneered by Ruan [100] and Ruan-Tian [101]. However, this approach takes
us into the realm of symplectic geometry. The alternative approach involves the
construction of a virtual fundamental class, pioneered by Behrend-Fantechi [8] and
Li-Tian [74]. Since our goal is to summarize results here, we only give the outcome
of the construction, namely a so-called virtual fundamental class

[Mg,n(X,β)]vir ∈ Ad(Mg,n(X,β))⊗Q

(or in H2d(Mg,n(X),Q)), where d is the virtual dimension ofMg,n(X,β).
We can use this class to define Gromov-Witten invariants. There are natural

maps

evi :Mg,n(X,β)→ X

with, for f : (C, x1, . . . , xn) → X a stable map, evi([f ]) = f(xi). Putting these
together gives

ev = ev1× · · · × evn :Mg,n(X,β)→ Xn.

For classes α1, . . . , αn ∈ H∗(X,Q), β ∈ H2(X,Z), we define the Gromov-Witten
invariant

〈α1, . . . , αn〉g,β =

∫

[Mg,n(X,β)]vir

ev∗(α1 × · · · × αn) ∈ Q.

Here by the integral we mean we are evaluating a cohomology class on a homology
class. This can also be performed with Chow groups if preferred. Note that if
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αi ∈ Hdi(X,Q) (we write this by saying degαi = di), then this integral is zero
unless twice the virtual dimension ofMg,n(X,β) is equal to

∑n
i=1 di, i.e.,

(2.1) 2
(
n+ (dimC X − 3)(1− g) +

∫

β

c1(TX)
)

=

n∑

i=1

di.

Intuitively, Gromov-Witten invariants can be thought of as follows. Fixing sub-
manifolds Y1, . . . , Yn of X whose Poincaré dual cohomology classes are α1, . . . , αn,
this Gromov-Witten invariant should be thought of as the number of curves of
homology class β and genus g in X which pass through Y1, . . . , Yn. This is sub-
ject to the interpretation given above, i.e., by a curve we mean a stable map, and
as regards number, we need to use the virtual fundamental class to get an actual
number. Finally, in general, these numbers are only rational, and need not be
positive.

There is one variant of Gromov-Witten invariants which we shall need in the
sequel, namely the so-called gravitational descendent invariants. On Mg,n(X,β),
there are natural line bundles Li, i = 1, . . . , n, whose fibre at a point [(C, x1, . . . , xn)]
is the cotangent line mxi/m

2
xi

, where mxi ⊆ OC,xi is the maximal ideal. Let

ψi = c1(Li) ∈ H2(Mg,n(X,β),Q).

Then for classes α1, . . . , αn ∈ H∗(X,Q), β ∈ H2(X,Z), descendent Gromov-Witten
invariants are defined by

〈ψp1α1, . . . , ψ
pnαn〉g,β =

∫

[Mg,n(X,β)]vir

ψp11 ∪ · · · ∪ ψpn
n ∪ ev∗(α1 × · · · × αn) ∈ Q.

Note that if degαi = di, this is zero unless twice the virtual dimension ofMg,n(X,β)
is equal to

∑n
i=1 di +

∑n
i=1 2pi, i.e.,

(2.2) 2
(
n+ (dimC X − 3)(1− g) +

∫

β

c1(TX)
)

=
n∑

i=1

di +
n∑

i=1

2pi.

Example 2.6. The example we shall focus on in this book is X = P2 and
g = 0, and in this caseM0,n(P

2, d[ℓ]) is a smooth Deligne-Mumford stack for d ≥ 0
(and n ≥ 3 if d = 0) of the expected dimension. One can in fact show that if
we take α1, . . . , αn ∈ H4(X,Q) to be the Poincaré dual class [pt] of a point, then
〈α1, . . . , αn〉0,d[ℓ] in fact coincides with the number of rational curves of degree d

passing through general points P1, . . . , Pn ∈ P2 when this number is expected to be
finite, which is precisely the case, using (2.1), if n − 1 + 3d = 2n, i.e., n = 3d− 1.
So, for example,

〈[pt], [pt]〉0,[ℓ] = 1,

since there is one line through two points, and

〈[pt]5〉0,2[ℓ] := 〈[pt], [pt], [pt], [pt], [pt]〉0,2[ℓ] = 1,

as there is again one conic passing through 5 points in P2. Next

〈[pt]8〉0,3[ℓ] = 12,

using the well-known fact that 8 general points in P2 are contained in a pencil
of cubic curves, and a general pencil of plane cubics contains 12 singular, hence
rational, cubics.
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In this case, we always obtain integers; there are no stacky phenomena here.
Essentially, the point is that, in this case, only curves involving multiple covers
contribute to stacky phenomena, and there are no such curves passing through a
general set of points. However, this is not the case with descendent invariants; for
example, it can be shown that

〈ψ4[pt]〉0,2[ℓ] =
1

8
.

(See Example 5.17.)

We will list here the most important properties of Gromov-Witten invariants
and descendent Gromov-Witten invariants here, without proof. See for example
[28] and [18] for more details.

For Gromov-Witten invariants, we have:
The Fundamental Class Axiom. If n + 2g ≥ 4 or β 6= 0 and n ≥ 1, and

[X ] ∈ H0(X,Q) is the fundamental class of X , then

〈α1, . . . , αn−1, [X ]〉g,β = 0.

The Divisor Axiom. If n + 2g ≥ 4 or β 6= 0 and n ≥ 1, and αn ∈ H2(X,Q),
then

〈α1, . . . , αn〉g,β =

(∫

β

αn

)
〈α1, . . . , αn−1〉g,β .

The Point Mapping Axiom. For g = 0, β = 0,

〈α1, . . . , αn〉0,0 =

{∫
X
α1 ∪ α2 ∪ α3 if n = 3,

0 otherwise.

Descendent Gromov-Witten invariants satisfy generalizations of these axioms,
and some new ones. In particular, we have:

The Fundamental Class Axiom. If n+ 2g ≥ 4 or β 6= 0 and n ≥ 1, then

〈ψp1α1, . . . , ψ
pn−1αn−1, [X ]〉g,β =

n−1∑

i=1

〈ψp1α1, . . . , ψ
pi−1αi, . . . , ψ

pn−1αn−1〉g,β ,

where the invariant on the right is taken to be zero if ψ appears with a negative
power.

The Divisor Axiom. If n + 2g ≥ 4 or β 6= 0 and n ≥ 1, and αn ∈ H2(X,Q),
then

〈ψp1α1, . . . , ψ
pn−1αn−1, αn〉g,β

=

(∫

β

αn

)
〈ψp1α1, . . . , ψ

pn−1αn−1〉g,β

+

n−1∑

i=1

〈ψp1α1, . . . , ψ
pi−1(αn ∪ αi), . . . , ψpn−1αn−1〉g,β ,

with the same caveat if a power of ψ is negative.
The Point Mapping Axiom. If n ≤ 3, then

〈ψν1α1, . . . , ψ
νnαn〉0,0 = 0

unless n = 3 and ν1 = · · · = νn = 0.
The Dilaton Axiom.

〈ψ[X ], ψp1α1, . . . , ψ
pnαn〉g,β = (2g − 2 + n)〈ψp1α1, . . . , ψ

pnαn〉g,β .
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2.1.2. Quantum cohomology. One significant insight which came out of
string theory (see [112], [110]) is that Gromov-Witten invariants can be used to
perturb the usual cup product in cohomology. The fact that this new product, called
the quantum product, remains associative then gives strong restrictions on Gromov-
Witten invariants, in particular giving a complete determination of Gromov-Witten
invariants for P2.

We first define the Gromov-Witten potential of X as follows. Choose a basis
T0, . . . , Tm of H∗(X,C). We will always use the convention that T0 ∈ H0(X,C) is
the fundamental class of X and T1, . . . , Tp generate H2(X,C). Let γ =

∑m
i=0 yiTi.

Then we define the Gromov-Witten potential as

Φ =

∞∑

n=0

∑

β∈H2(X,Z)

1

n!
〈γn〉0,β .

Here 〈γn〉0,β = 〈γ, . . . , γ〉0,β , with γ taken n times. So for a given n and β, we
obtain a term which is a sum of monomials in y0, . . . , ym of degree n. If, for a
given n, there are only a finite number of β such that 〈γn〉0,β is non-zero, then
Φ ∈ C[y0, . . . , ym℄, the ring of formal power series in y0, . . . , ym. This holds, for
example, in the Fano case, i.e, c1(TX) is ample, as follows from (2.1). In the non-
Fano case, it is sometimes necessary instead to work over a Novikov ring, but we
shall not do so here. As a result, in this case we can consider Φ as a function on a
formal neighbourhood of 0 ∈ H∗(X,C).

In the case that X has non-trivial cohomology in odd degree, there is some sub-
tlety in the definition of Φ, since Ti∪Tj = (−1)degTi+degTjTj ∪Ti. This essentially
forces us to view H∗(X,C) as a supermanifold. Assume that each Ti has some
definite degree, i.e., Ti ∈ Hdi(X,C), with degTi = di. Then from the definition of
Gromov-Witten invariants, we have

〈. . . , Ti, Tj , . . .〉g,β = (−1)degTi+deg Tj 〈. . . , Tj, Ti, . . .〉g,β .
If, with γ =

∑m
i=0 yiTi, we take the coordinates yi to be supercommuting, i.e.,

yiyj = (−1)degTi+degTjyjyi, yiTj = (−1)degTi+degTjTjyi,

then yiTi and yjTj commute for all i, j. So Φ should be viewed as a function of
supercommuting variables, and this commutation rule has to be applied uniformly.
Since our main interest here is X = P2 where there is no odd cohomology, we
will often restrict to the case of X having only even cohomology to avoid excessive
worries about signs.

Using Φ, we define the (big) quantum cohomology of X as the ring1

H∗(X,C[y0, . . . , ym℄),
with product given on generators by

Ti ∗ Tj =
∑

k

(∂yi∂yj∂yk
Φ)T k,

where T 0, . . . , Tm is the Poincaré dual basis to T0, . . . , Tm. It is often useful to
define gij to be the inverse matrix to

gij =

∫

X

Ti ∪ Tj,

1In the next section, we will redefine quantum cohomology as a family of products on the
tangent bundle of a certain manifold.
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so that T i =
∑
gijTj , and

Ti ∗ Tj =
∑

a,k

(∂yi∂yj∂yaΦ)gakTk.

It is not obvious that this product is associative; that it is associative is a
fundamental observation and can be proved from additional properties of Gromov-
Witten invariants. By writing out the equality

(Ti ∗ Tj) ∗ Tk = Ti ∗ (Tj ∗ Tk)
according to the definition above, one obtains the WDVV equation
∑

a,b

(∂yi∂yj∂yaΦ)gab(∂yb
∂yk

∂yℓ
Φ)

= (−1)degTi(degTj+degTk)
∑

a,b

(∂yj∂yk
∂yaΦ)gab(∂yb

∂yi∂yℓ
Φ),

a system of partial differential equations.
We shall not prove associativity here as this is covered in many basic references

on quantum cohomology, see e.g., [28]. Instead, following [28], let’s investigate a
standard consequence of the WDVV equation, especially with regards to Gromov-
Witten invariants for P2.

First consider 1
n! 〈γn〉0,β for β = 0. By the Point Mapping Axiom, this is zero

except for n = 3, and then

1

3!
〈γ3〉0,0 =

1

3!

∫

X

γ ∪ γ ∪ γ,

which is purely classical information. So split Φ as

Φ = Φclassical + Φquantum

with

Φquantum =
∑

n≥0

∑

β∈H2(X,Z)
β 6=0

1

n!
〈γn〉0,β

and Φclassical satisfies

∂yi∂yj∂yk
Φclassical =

∫

X

Ti ∪ Tj ∪ Tk,

and hence gives a contribution to Ti ∗ Tj of

∑

k

(∫

X

Ti ∪ Tj ∪ Tk
)
T k = Ti ∪ Tj,

i.e., the classical cup product. Recalling that we are taking T0 to be the fundamental
class of X and T1, . . . , Tp generators of H2(X,C), we can write, for β 6= 0,

1

n!
〈γn〉0,β =

∑

n0,...,nm≥0P
nj=n

ǫ(n0, . . . , nm)〈T n0
0 , . . . , T nm

m 〉0,β
yn0
0 · · · ynm

m

n0! · · ·nm!
,

where the sign ǫ(n0, . . . , nm) is determined by the supercommutation relation

(y0T0)
n0 · · · (ymTm)nm = ǫ(n0, . . . , nm)T n0

0 · · ·T nm
m yn0

0 · · · ynm
m .
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The Fundamental Class Axiom tells us that there is a non-zero contribution in the
above sum only if n0 = 0, and then the Divisor Axiom yields

∑

n≥0

1

n!
〈γn〉0,β

=
∑

n1,...,nm≥0

ǫ(0, n1, . . . , nm)

(
p∏

i=1

1

ni!

(
yi

∫

β

Ti

)ni
)
〈T np+1

p+1 , . . . , T nm
m 〉0,β ·

·
y
np+1

p+1 · · · ynm
m

np+1! · · ·nm!

=
∑

np+1,...,nm≥0

ǫ(0, . . . , 0, np+1, . . . , nm)〈T np+1

p+1 , . . . , T nm
m 〉0,β ·

·
(

p∏

i=1

eyi

R
β
Ti

)
y
np+1

p+1 · · · ynm
m

np+1! · · ·nm!
.

(2.3)

Let us write this down for P2, where T0, T1, T2 are the cohomology classes of
P2, a line, and a point respectively. We have

Φquantum(y0, y1, y2) =
∑

d>0

〈T 3d−1
2 〉0,d[ℓ]edy1

y3d−1
2

(3d− 1)!
.

Letting Γijk = ∂yi∂yj∂yk
Φquantum, we obtain the following description of the quan-

tum product:

T0 ∗ Ti = Ti

T1 ∗ T1 = T2 + Γ111T1 + Γ112T0

T1 ∗ T2 = Γ121T1 + Γ122T0

T2 ∗ T2 = Γ221T1 + Γ222T0

with

Γ111 =
∑

d≥1

d3〈T 3d−1
2 〉0,d[ℓ]edy1

y3d−1
2

(3d− 1)!

Γ112 =
∑

d≥1

d2〈T 3d−1
2 〉0,d[ℓ]edy1

y3d−2
2

(3d− 2)!

Γ122 =
∑

d≥1

d〈T 3d−1
2 〉0,d[ℓ]edy1

y3d−3
2

(3d− 3)!

Γ222 =
∑

d≥2

〈T 3d−1
2 〉0,d[ℓ]edy1

y3d−4
2

(3d− 4)!
.

Keeping in mind that Φclassical =
y2
0y2
2 +

y0y
2
1

2 , the WDVV equation with i = j = 1

and k = l = 2 gives us Γ222 + Γ111Γ122 = Γ2
112, or

Γ222 = Γ2
112 − Γ111Γ122.
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Comparing the coefficient of y3d−4
2 on the left- and right-hand sides of this last

equation gives us the Vafa-Intriligator formula (first appearing in [60])

〈T 3d−1
2 〉0,d[ℓ] =

∑

d1,d2>0
d1+d2=d

〈T 3d1−1
2 〉0,d1[ℓ]〈T 3d2−1

2 〉0,d2[ℓ]·

·
(
d2
1d

2
2

(
3d− 4
3d1 − 2

)
− d3

1d2

(
3d− 4
3d1 − 1

))
.

Since 〈T 2
2 〉0,[ℓ] = 1, all other genus zero Gromov-Witten invariants now follow from

this formula recursively. So the WDVV equation is extremely powerful in this case.

2.1.3. Frobenius manifolds. The quantum cohomology ring

H∗(X,C[y0, . . . , ym℄)
can be viewed as a family of rings, parameterized by the formal completion of
0 ∈ H∗(X,C) (a formal supermanifold if X has odd cohomology). Noting that
H∗(X,C) is the tangent space to H∗(X,C) at any point, we can view the formal
completion as a formal manifoldM coming along with a ring structure on each fibre
of TM. These ring structures aren’t arbitrary, but rather have properties turning
M into what is known as a Frobenius manifold.

To save rather tedious discussions concerning sign conventions, we will assume
from now on that X has no odd cohomology, so that we only need to define the
notion of a Frobenius manifold on an ordinary manifold, not a supermanifold.

In what follows,M will be a complex manifold, a germ of a complex manifold,
or a non-singular scheme. Later on, it will be a formal completion of a complex
manifold along a complex submanifold.

Definition 2.7. Let M be as above. A pre-Frobenius structure on M is a
triple of data (∇, g,A) where

(1) ∇ : TM → TM ⊗ Ω1
M is a flat connection.

(2) g is a metric on M, i.e., a symmetric pairing g : S2(TM) → OM which
induces an isomorphism TM ∼= T ∗M. Furthermore, g must be compatible
with ∇, i.e.,

d(g(X,Y )) = g(∇X,Y ) + g(X,∇Y ).

(3) A : S3(TM)→ OM is a symmetric tensor.

Given this data, this defines a product on each tangent space ofM, by defining
X ◦ Y via the formula

A(X,Y, Z) = g(X ◦ Y, Z).

By symmetry of A, we also have

(2.4) g(X ◦ Y, Z) = g(X,Y ◦ Z).

A pre-Frobenius manifold is a Frobenius manifold if this data satisfies two
additional properties.

(4) The product defined by A is associative.
(5) Locally onM, there is a potential function Φ such that

A(X,Y, Z) = XY ZΦ.
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Example 2.8. For X a non-singular variety, with cohomology only in even
degree and H∗(X,C) generated by T0, . . . , Tm, M = Spec C[y0, . . . , ym℄ furnishes
an example of a Frobenius manifold, assuming the Gromov-Witten potential Φ of
X lies in C[y0, . . . , ym℄ (e.g., if X is Fano). Take the metric to be constant on M,
defined by

g(∂yi , ∂yj ) =

∫

X

Ti ∪ Tj .

The connection ∇ is the trivial one, with ∂y0 , . . . , ∂ym flat sections. Finally,

A(∂yi , ∂yj , ∂yk
) = ∂yi∂yj∂yk

Φ.

The product is then the quantum cohomology product, i.e.,

Y ◦ Z = Y ∗ Z.
We can in fact consider quantum cohomology as giving a Frobenius manifold

structure on a much bigger manifold. Assume that we have chosen the generators
T1, . . . , Tp of H2(X,C) to in fact lie in H2(X,R) and to have the property that∫
β
Ti ≥ 0 for 1 ≤ i ≤ p and any class β ∈ H2(X,Z) represented by a stable curve.

For example, if H1,1(X,C) = H2(X,C), we just need to choose T1, . . . , Tp to lie in
the closure of the Kähler cone of X . We then introduce new variables κ1, . . . , κp,
with the relation

eyi = κi, 1 ≤ i ≤ p.
Now assume that for any np+1, . . . , nm, there are a finite number of β with

〈T np+1

p+1 , . . . , T nm
m 〉0,β 6= 0

(this holds e.g., if X is Fano). Noting that
∫
β T1, . . . ,

∫
β Tp are all non-negative and

determine β up to a finite number of choices, we see by (2.3) that

Φ ∈ C[κ1, . . . , κp][y0, yp+1, . . . , ym℄.
This ring is the ring of formal power series in the variables y0, yp+1, . . . , ym with
coefficients in the polynomial ring C[κ1, . . . , κp].

Now set

M = Spec C[κ1, . . . , κp][y0, yp+1, . . . , ym℄
M = Spec C[κ±1

1 , . . . , κ±1
p ][y0, yp+1, . . . , ym℄.(2.5)

The M used previously, Spec C[y0, . . . , ym℄, can be thought of as a formal neigh-
bourhood of the point in the newM with κ1, . . . , κp = 1, y0 = yp+1 = · · · = ym = 0.

The potential Φ is now a function onM. Note that ∂yi = κi∂κi , 1 ≤ i ≤ p, so that
the connection we previously defined extends to the flat connection on M whose
flat sections are ∂y0 , ∂yp+1, . . . , ∂ym and κ1∂κ1 , . . . , κp∂κp . This connection does not

extend acrossM\M. Similarly, the metric g and symmetric form A extend toM,
always using ∂yi = κi∂κi , 1 ≤ i ≤ p.

In general, when we talk about quantum cohomology for the remainder of this
chapter, we are really referring to a Frobenius manifold structure either on the
aboveM or on closely related manifolds.

This example has some additional structure.

Definition 2.9. IfM is a pre-Frobenius manifold, then

(1) A vector field e onM is called the identity if e ◦ Y = Y for all Y .
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(2) A vector field E onM is an Euler vector field if for all vector fields Y and
Z,

(2.6) E(g(Y, Z))− g([E, Y ], Z)− g(Y, [E,Z]) = Dg(Y, Z)

for some constant D and

(2.7) [E, Y ◦ Z]− [E, Y ] ◦ Z − Y ◦ [E,Z] = d0Y ◦ Z
for some constant d0.

An Euler vector field can be used to produce a grading on vector fields: given
a vector field Y , it is homogeneous of degree d if

[E, Y ] = dY.

Example 2.10. Continuing with Example 2.8, we make the same assumptions
on the generators T0, . . . , Tp, so that we have a Frobenius manifold structure on

M = Spec C[κ±1
1 , . . . , κ±1

p ][y0, yp+1, . . . , ym℄. Then ∂y0 is a flat identity: T0 is the
identity in quantum cohomology, as follows from the Fundamental Class Axiom for
Gromov-Witten invariants.

There is also an Euler vector field, defined by

E =

m∑

i=0

(
1− deg Ti

2

)
yi∂yi +

p∑

i=1

ciκi∂κi ,

where c1(TX) =
∑p

i=1 ciTi. Recall ∂yi = κi∂κi for 1 ≤ i ≤ p.
Note that with respect to this vector field E, a vector field Y of the form

Y = ya0
0 κa1

1 · · ·κap
p y

ap+1

p+1 · · · yam
m ∂yi

is homogeneous, with the degree given by taking yi to have degree

1− (deg Ti)/2

if i 6∈ {1, . . . , p}, κi having degree ci if i ∈ {1, . . . , p}, and ∂yi having degree

(deg Ti)/2− 1.

This comes from the simple calculation that

[E, Y ] =


−(1− (deg Ti)/2) +

p∑

j=1

cjaj +

m∑

j=0
j 6∈{1,...,p}

(1− (deg Tj)/2)aj


Y.

To check that E is an Euler vector field, one notes that both the left- and
right-hand sides of (2.6) and (2.7) are tensors, i.e., are OM-linear, so we only need
to check these for Y = ∂yi , Z = ∂yj . Checking (2.6) first, we see that

E(g(∂yi , ∂yj ))− g([E, ∂yi ], ∂yj )− g(∂yi , [E, ∂yj ])

= g

((
1− deg Ti

2

)
∂yi , ∂yj

)
+ g

(
∂yi ,

(
1− deg Tj

2

)
∂yj

)

=

(
2− degTi + degTj

2

)
g(∂yi , ∂yj )

= (2− dimC X)g(∂yi , ∂yj ),

as g(∂yi , ∂yj) 6= 0 only if degTi + deg Tj = 2 dimC X . Thus D = 2− dimC X .
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Next we claim that (2.7) holds with d0 = 1. Again taking Y = ∂yi , Z = ∂yj ,
we note that Y and Z are homogeneous of degrees (deg Ti)/2−1 and (deg Tj)/2−1
respectively. Thus for (2.7) to hold, Y ◦ Z must be homogeneous of degree 1 +
((deg Ti)/2−1)+((degTj)/2−1). To see this, first note that Φ itself is homogeneous.
Indeed, by (2.3) a term in Φ is of the form

〈T np+1

p+1 , . . . , T nm
m 〉0,β

(
p∏

i=1

κ

R
β
Ti

i

)
y
np+1

p+1 · · · ynm
m

np+1! · · ·nm!

and is then of degree

∑
ci

∫

β

Ti +

n∑

j=p+1

(
1− degTj

2

)
nj

=

∫

β

c1(TX) +

n∑

j=p+1

nj −
n∑

j=p+1

(
degTj

2

)
nj.

On the other hand, by (2.1), the Gromov-Witten invariant in this term is zero
unless ∫

β

c1(TX) +

n∑

j=p+1

nj −
n∑

j=p+1

(
deg Tj

2

)
nj = 3− dimC X.

Hence Φ can be viewed as homogeneous of degree 3 − dimC X , and the degree of
∂yi∂yj∂yk

Φ is

3− dimC X + ((deg Ti)/2− 1) + ((deg Tj)/2− 1) + ((deg Tk)/2− 1).

Putting this all together,

∂yi ◦ ∂yj =
∑

k,l

(∂yi∂yj∂yk
Φ)gkl∂yl

is of degree

3− dimC X + ((deg Ti)/2− 1) + ((deg Tj)/2− 1)

+ ((deg Tk)/2− 1) + ((deg Tl)/2− 1)

= 3− dimC X − ((deg Ti)/2− 1) + ((deg Tj)/2− 1)

− 2 + dimC X

= 1 + ((deg Ti)/2− 1) + ((deg Tj)/2− 1)

since gkl 6= 0 only when degTk + degTl = 2 dimC X . This shows (2.7). �

IfM is a pre-Frobenius manifold with a vector field E and d0 6= 0, we can define

a connection ∇̂ on the vector bundle p∗1TM onM×C×, where p1 :M×C× →M
is the first projection, and C× = C \ {0}. Let ℏ be the coordinate on C×. This
connection is defined by

∇̂X(Y ) = ∇X(Y ) + ℏ−1X ◦ Y
d0∇̂ℏ∂ℏ

(Y ) = ℏ∂ℏY − ℏ−1E ◦ Y + GrE(Y ),

where GrE is theOM-linear map defined on flat vector fields Y by Y 7→ [E, Y ]. This
connection is known as the first structure connection, or the Dubrovin connection.
It has the following important property:
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Theorem 2.11. The first structure connection is flat if and only ifM is Frobe-
nius and E is an Euler vector field with

[E,X ◦ Y ]− [E,X ] ◦ Y −X ◦ [E, Y ] = d0X ◦ Y.
For a proof, see [76], Theorem I.2.5.2.

2.1.4. The quantum differential equation. Suppose we are given a non-
singular variety X with cohomology only in even degrees. Let T0, . . . , Tm be gen-
erators of H∗(X,C) as usual, with T0 the fundamental class of X and T1, . . . , Tp
generators of H2(X,R) non-negative on all β ∈ H2(X,Z) represented by stable
maps. Let T 0, . . . , Tm be the Poincaré dual basis. This gives rise as in Example 2.8
to a Frobenius manifoldM with Euler vector field E and first structure connection
∇̂. We will now describe solutions of the quantum differential equation

(2.8) ∇̂∂yi
s = 0, i = 0, . . . ,m.

In particular, we will write down a fundamental set of solutions to this equation.
We first need

Proposition 2.12. The Topological Recursion Relation (TRR).

〈ψd1α1, . . . , ψ
dnαn〉0,β

=
∑
〈ψd1−1α1,

∏

i∈S1

ψdiαi, Te〉0,β1〈T e, ψd2α2, ψ
d3α3,

∏

i∈S2

ψdiαi〉0,β2

where the sum is over all 0 ≤ e ≤ m, all splittings β1 + β2 = β, and S1, S2 disjoint
index sets with S1 ∪ S2 = {4, . . . , n}.

For a proof, see for example [90].

Remark 2.13. In fact, the topological recursion relation actually shows that
one can completely reconstruct the genus zero descendent invariants from the or-
dinary genus zero Gromov-Witten invariants. So genus zero descendent Gromov-
Witten invariants do not actually carry new information, but it is useful to keep
track of them here precisely because they give rise to solutions of the quantum
differential equation.

Next, we introduce another notation: write, for α1, . . . , αn ∈ H∗(X,C), and
non-negative integers d1, . . . , dn,

〈〈ψd1α1, . . . , ψ
dnαn〉〉 :=

∞∑

k=0

∑

β∈H2(X,Z)

1

k!
〈ψd1α1, . . . , ψ

dnαn, γ
k〉0,β .

Here, as in the definition of the Gromov-Witten potential, γ =
∑m

i=0 yiTi, and γk

means we take γ k times. Note this allows us to write the Gromov-Witten potential
as

Φ = 〈〈1〉〉.
Furthermore,

∂yi〈〈ψd1α1, . . . , ψ
dnαn〉〉 = 〈〈ψd1α1, . . . , ψ

dnαn, Ti〉〉.
We can then define, for 0 ≤ i ≤ m,

si := Ti −
m∑

j=0

〈〈 Ti
ℏ + ψ

, Tj〉〉T j.
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Here Ti/(ℏ + ψ) is viewed in terms of the power series expansion

Ti
ℏ + ψ

=
∞∑

n=0

(−1)nℏ−(n+1)ψnTi.

Theorem 2.14. The si’s satisfy the quantum differential equation (2.8).

Proof. The TRR implies

〈〈ψd1+1Tj1 , ψ
d2Tj2 , ψ

d3Tj3〉〉

=

∞∑

k=0

∑

β

1

k!
〈ψd1+1Tj1 , ψ

d2Tj2 , ψ
d3Tj3 , γ

k〉0,β

=

∞∑

k=0

m∑

i=0

∑

β1,β2

S1,S2

1

k!
〈ψd1Tj1 , γ#S1 , Ti〉0,β1〈T i, ψd2Tj2 , ψd3Tj3 , γ#S2〉0,β2

=

∞∑

k=0

m∑

i=0

∑

β1,β2

a+b=k

1

a!b!
〈ψd1Tj1 , γa, Ti〉0,β1〈T i, ψd2Tj2 , ψd3Tj3 , γb〉0,β2

=
m∑

i=0

〈〈ψd1Tj1 , Ti〉〉〈〈T i, ψd2Tj2 , ψd3Tj3〉〉.

(2.9)

Note that the quantum differential equation (2.8) can be written, for s = sj , as

(2.10) ℏ∂yi(sj) = −Ti ∗ sj, for 0 ≤ i ≤ m.

Now

ℏ∂yi(sj) = −
m∑

k=0

〈〈Ti,
ℏTj

ℏ + ψ
, Tk〉〉T k.

On the other hand, ∂yi∂yj∂yk
Φ = 〈〈Ti, Tj, Tk〉〉 and the quantum product is given

by

Ti ∗ Tj =
∑

k

〈〈Ti, Tj , Tk〉〉T k.

So

Ti ∗ sj = Ti ∗ Tj −
m∑

k=0

〈〈 Tj
ℏ + ψ

, Tk〉〉Ti ∗ T k

=

m∑

ℓ=0

〈〈Ti, Tj , Tℓ〉〉T ℓ −
m∑

k,ℓ=0

〈〈 Tj
ℏ + ψ

, Tk〉〉〈〈Ti, T k, Tℓ〉〉T ℓ

=
m∑

ℓ=0

〈〈Ti, Tj , Tℓ〉〉T ℓ −
m∑

ℓ=0

〈〈 ψTj
ℏ + ψ

, Ti, Tℓ〉〉T ℓ

=

m∑

ℓ=0

〈〈Ti,
ℏTj

ℏ + ψ
, Tℓ〉〉T ℓ.

Here the next to last equality follows from (2.9). So the left- and right-hand sides
of (2.10) agree. �

It will be useful to use the axioms of descendent Gromov-Witten invariants to
rewrite the si’s as follows.
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Proposition 2.15.

si =e−(
Pp

k=0 ykTk)/ℏ ∪ Ti −
∑

β,j
nk

〈e
−(

Pp
k=0 ykTk)/ℏ ∪ Ti

ℏ + ψ
, Tj , T

np+1

p+1 , . . . , T nm
m 〉0,βT j

·
(

p∏

ℓ=1

eyℓ

R
β
Tℓ

)
y
np+1

p+1 · · · ynm
m

np+1! · · ·nm!

where the sum is over 0 ≤ j ≤ m, β ∈ H2(X,Z), and np+1, . . . , nm ≥ 0. The ex-

pression e−(
Pp

i=0 yiTi)/ℏ is interpreted in the ring H∗(X,C)⊗CC[y1, . . . , yp][y0, ℏ−1℄,
with the usual cup product.

Proof. First note that by the Fundamental Class Axiom and then the Divisor
Axiom for descendent invariants, if β 6= 0 or β = 0 and

∑m
k=p+1 nk ≥ 1,

〈 Ti
ℏ + ψ

, Tj, T
n0
0 , . . . , T nm

m 〉0,β

= 〈
∞∑

n=0

(−1)nℏ−(n+1)ψnTi, Tj, T
n0
0 , . . . , T nm

m 〉0,β

= 〈
∞∑

n=n0

(−1)nℏ−(n+1)ψn−n0Ti, Tj, T
n1
1 , . . . , T nm

m 〉0,β

=
∑

n′
k

〈
∑

n

(−1)nℏ−(n+1)ψn−n0−n
′
1−···−n

′
p(Ti ∪ T n

′
1

1 ∪ · · · ∪ T
n′p
p ), Tj, T

np+1

p+1 ,

. . . , T nm
m 〉0,β

p∏

ℓ=1

(
nℓ
n′ℓ

)(∫

β

Tℓ

)nℓ−n
′
ℓ

where the sum over n′k is over all n′1, . . . , n
′
p with 0 ≤ n′k ≤ nk and the sum over n

is over n ≥ n0 + n′1 + · · · + n′p. Note also that for β = 0, if nk = 0 for k > p but
some nk 6= 0, 0 ≤ k ≤ p, then by the Fundamental Class Axiom, Divisor Axiom,
and Point Mapping Axiom,

〈 Ti
ℏ + ψ

, Tj, T
n0
0 , · · · , T np

p 〉0,0

= 〈(−1)n0+···+np−1ℏ−(n0+···+np)(Ti ∪ T n0
0 ∪ · · · ∪ T nk−1

k ∪ · · · ∪ T np
p ), Tj , Tk〉0,0

= (−1)n0+···+np−1ℏ−(n0+···+np)

∫

X

Ti ∪ Tj ∪ T n0
0 ∪ · · · ∪ T np

p .

Thus if we expand 〈〈Ti/(ℏ + ψ), Tj〉〉 by expanding γk, we split this up into two
types of terms: terms involving β = 0 and no Tk’s for k ≥ p + 1, and the other
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terms. This gives

〈〈 Ti
ℏ + ψ

, Tj〉〉

=
∑

n0+···+np≥1

(−1)n0+···+np−1ℏ−(n0+···+np)

∫

X

Ti ∪ Tj ∪ T n0
0 ∪ · · · ∪ T np

p

yn0
0 · · · y

np
p

n0! · · ·np!

+
∑

β,nk

∑

n′k

〈
∑

n

(−1)nℏ−(n+1)ψn−n0−n
′
1−···−n

′
p(Ti ∪ T n

′
1

1 ∪ · · · ∪ T
n′p
p ), Tj , T

np+1

p+1 ,

. . . , T nm
m 〉0,β

(
p∏

ℓ=1

(
nℓ
n′ℓ

)(∫

β

Tℓ

)nℓ−n
′
ℓ

)
yn0
0 · · · ynm

m

n0! · · ·nm!
,

where the sum in the second term is over all β, nk such that we don’t have both
β = 0 and np+1 = · · · = nm = 0, and 0 ≤ n′k ≤ nk. This is then the same thing as

∑

n0+···+np≥1

(−1)n0+···+np−1ℏ−(n0+···+np)

∫

X

Ti ∪ Tj ∪ T n0
0 ∪ · · · ∪ T np

p

yn0
0 · · · y

np
p

n0! · · ·np!

+
∑

β,nk

∑

n′k

∞∑

n=0

〈 (−1)nℏ−(n+1)ψn(Ti ∪ (y0T0)
n0 ∪⋃pℓ=1(yℓTℓ)

n′ℓ)(−ℏ)−(n0+n′1+···+n
′
p)

n0!(n′1)! · · · (n′p)!
,

Tj , T
np+1

p+1 , . . . , T nm
m 〉0,β

p∏

ℓ=1

1

(nℓ − n′ℓ)!

(
yℓ

∫

β

Tℓ

)nℓ−n
′
ℓ y

np+1

p+1 · · · ynm
m

np+1! · · ·nm!

=−
∫

X

Ti ∪ Tj ∪ (e−(y0T0+···+ypTp)/ℏ − 1)

+
∑

β,nk

〈Ti ∪ e
−(y0T0+···+ypTp)/ℏ

ℏ + ψ
, Tj, T

np+1

p+1 , . . . , T nm
m 〉0,β

·
(

p∏

ℓ=1

eyℓ

R
β
Tℓ

)
y
np+1

p+1 · · · ynm
m

np+1! · · ·nm!
.

This then gives the desired form for si. �

There are two issues we would still like to understand. First, as we described
them, the solutions si to the quantum differential equation are purely formal so-
lutions, and we would like to understand whether they converge. Second, we have

shown that the si are flat sections onM×C× with respect to the connection ∇̂ in
the horizontal (M) direction, but we would like to understand how they behave in
the vertical (C×) direction.

These two questions are closely connected, but first we shall introduce a re-
placement for M which we shall work on from now on when discussing quantum
cohomology.

Recall that M = Spec C[κ±1 , . . . , κ
±
p ][y0, yp+1, . . . , ym℄. We would like to think

of this instead as a kind of formal completion of a complex analytic space. But

since we in fact from now on will have to work with the universal cover M̃ of M,

we will describe M̃ directly.
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Definition 2.16. We define M̃ to be the ringed space (Cp,OfM) where the

coordinates on Cp are y1, . . . , yp and OfM denotes the structure sheaf on M̃: on an

open set U ⊆ M̃, OfM(U) will consist of formal power series

(2.11)
∑

fi0ip+1···imy
i0
0 y

ip+1

p+1 · · · yimm
with fi0ip+1···im a holomorphic function on the open set U .

There is a map M̃ → M given by κi = eyi for 1 ≤ i ≤ p and yj = yj for
j 6∈ {1, . . . , p}. We will from now on, when we discuss structures arising from
quantum cohomology, work in this formal setting.

We also define some additional notation.

Definition 2.17. Let C{ℏ, ℏ−1} denote the ring of Laurent series which con-
verge on a punctured disk {ℏ ∈ C | 0 < |ℏ| < ǫ} for some ǫ. Let C{ℏ} be the subring
of functions holomorphic at ℏ = 0, and let O(P1 \ {0}) be the ring of holomorphic
functions on P1 \ {0} (with coordinate ℏ). We can write

C{ℏ, ℏ−1} = C{ℏ} ⊕ ℏ−1O(P1 \ {0}).
We will now define

OfM{ℏ, ℏ−1}
to be the sheaf whose value on an open set U is the ring of formal series as in (2.11)
such that each coefficient fi0ip+1···im is a holomorphic function on

{(y, ℏ) ∈ U × C | 0 < |ℏ| < ǫ(y)}
for some continuous map ǫ : U → R>0. We can then define

OfM{ℏ} ⊆ OfM{ℏ, ℏ−1}
to be the subsheaf where the coefficients fi0ip+1···im are functions holomorphic at

ℏ = 0. We can similarly define OM{ℏ} and OM{ℏ, ℏ−1} in the same way.
We will often want to consider the case when M is just an ordinary complex

manifold, as this is somewhat easier conceptually. In this case OM{ℏ, ℏ−1} will be
the sheaf which, on an open set U ⊆ M, consists of functions f holomorphic on
{(y, ℏ) ∈ U ×C | 0 < ℏ < ǫ(y)} for some continuous ǫ : U → R>0 (depending on f).
Furthermore, OM{ℏ} is the subsheaf of functions also holomorphic at ℏ = 0.

Returning to the question of the convergence of the si’s and the behaviour of
the si’s in ℏ direction, let us introduce the map S which takes

α ∈ H∗(X,C)⊗C OfM{ℏ, ℏ−1}
to

S(α) = α−
m∑

j=0

〈〈 α

ℏ + ψ
, Tj〉〉T j

We would like to consider S as a map

S : H∗(X,C)⊗C OfM{ℏ, ℏ−1} → H∗(X,C)⊗C OfM{ℏ, ℏ−1},
but a priori, S(α) is a purely formal expression, so we will avoid describing the

range of S at this point. However, we can use S to compute the effect of ∇̂ℏ∂ℏ
on

si:
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Proposition 2.18.

∇̂ℏ∂ℏ
si = S(GrE(Ti)− ℏ−1c1(TX) ∪ Ti).

Proof. We have

∇̂ℏ∂ℏ
(si) = ℏ∂ℏsi − ℏ−1E ∗ si + GrE(si).

Since 0 = ∇Esi + ℏ−1E ∗ si, we can rewrite this as

∇̂ℏ∂ℏ
(si) = ℏ∂ℏsi +∇Esi + GrE(si).

If we denote by β ∪ • the map

α 7→ β ∪ α,
we can write

S = S′ ◦ (e−(
Pp

k=0 ykTk)/ℏ ∪ •)
for a suitable OfM{ℏ, ℏ−1}-linear map S′, using the formula of Proposition 2.15.
Define an element

s ∈ H∗
(
X,C)⊗C OfM{ℏ, ℏ−1}

to be homogeneous of degree d if

(ℏ∂ℏ +∇E + GrE)(s) = ds.

Then note that an expression of the form

ℏ−(n+1)T jκ

R
β
T1

1 · · ·κ
R

β
Tp

p y
np+1

p+1 · · · ynm
m

is homogeneous of degree

−(n+ 1) + ((2 dimC X − degTj)/2− 1) +

∫

β

c1(TX) +

m∑

k=p+1

nk(1− (deg Tk)/2).

On the other hand, note that

〈ψnTi, Tj, T np+1

p+1 , . . . , T nm
m 〉0,β

is non-zero only if, by (2.2),

2 +

m∑

k=p+1

nk + dimCX − 3 +

∫

β

c1(TX) = n+
deg Ti + deg Tj

2
+

m∑

k=p+1

nk degTk
2

.

This tells us that in fact S′(Ti) is homogeneous of degree (deg Ti)/2− 1, and thus
S′ does not change degrees. So

(ℏ∂ℏ +∇E + GrE) ◦ S′ = S′ ◦ (ℏ∂ℏ +∇E + GrE),

and thus

(ℏ∂ℏ +∇E + GrE)si = S′((ℏ∂ℏ +∇E + GrE)(e−(
Pp

k=0 ykTk)/ℏ ∪ Ti)).
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On the other hand,

(ℏ∂ℏ + E + GrE)(e−y0/ℏ(e−(
Pp

k=1 ykTk)/ℏ ∪ Ti))
= (ℏ∂ℏ(e−y0/ℏ) + E(e−y0/ℏ))(e−(

Pp
k=1 ykTk)/ℏ ∪ Ti)

+ e−y0/ℏ(ℏ∂ℏ + E + GrE)(e−(
Pp

k=1 ykTk)/ℏ ∪ Ti)

=

(
y0
ℏ
e−y0/ℏ − y0

ℏ
e−y0/ℏ

)
(e−(

Pp
k=1 ykTk)/ℏ ∪ Ti)

+ e−y0/ℏ

(
ℏ∂ℏ(e−(

Pp
k=1 ykTk)/ℏ ∪ Ti)

+

p∑

j=1

−cjTjℏ−1 ∪ e−(
Pp

k=1 ykTk)/ℏ ∪ Ti

+
∑

n1,...,np≥0

(
yn1
1 · · · y

np
p

n1! · · ·np!
(−ℏ)−(n1+···+np)T n1

1 ∪ · · · ∪ T np
p ∪ Ti

)
·

· ((n1 + · · ·+ np) +
deg Ti

2
− 1)

)

= e−y0/ℏ
(
ℏ∂ℏ(e−(

Pp
k=1 ykTk)/ℏ ∪ Ti)

− ℏ−1c1(TX) ∪ e−(
Pp

k=1 ykTk)/ℏ ∪ Ti

+ (
degTi

2
− 1)e−(

Pp
k=1 ykTk)/ℏ ∪ Ti

− ℏ∂ℏ(e−(
Pp

k=1 ykTk)/ℏ ∪ Ti)
)

= e−(
Pp

k=0 ykTk)/ℏ ∪ ((
deg Ti

2
− 1)− ℏ−1c1(TX)∪)Ti.

Thus

(2.12) (ℏ∂ℏ +∇E + GrE) ◦ S = S ◦ (ℏ∂ℏ +∇E + GrE −ℏ−1c1(TX) ∪ •),
giving the desired result. �

So the sections si are flat in the directions given by ∂yi , but not in the direction
given by ∂ℏ. This is not surprising, as the differential equation

∇̂ℏ∂ℏ
s = 0

in fact has singular points at ℏ = 0 and ℏ =∞. As a result, one would expect that
any solution to this equation would be multi-valued. Indeed, we can write down a
multi-valued solution by allowing power series in log ℏ as follows.

Proposition 2.19. Let ℏ−GrE ℏc1(TX )∪• be the endomorphism

exp(−GrE log ℏ) exp((c1(TX) ∪ •) log ℏ) : H∗
(
X,C)⊗C OfM{ℏ, ℏ−1}[ log ℏ℄

→ H∗
(
X,C)⊗C OfM{ℏ, ℏ−1}[ log ℏ℄.

Then

∇̂∂yi
S(ℏ−GrE ℏc1(TX)∪•Ti) = 0

and

∇̂ℏ∂ℏ
S(ℏ−GrE ℏc1(TX)∪•Ti) = 0.
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Proof. The first vanishing holds because ∇̂∂yi
S(Tj) = 0 for all j. For the

second, by (2.12), we have

∇̂ℏ∂ℏ
(S(ℏ−GrE ℏc1(TX)∪•Ti))

= S
(
(ℏ∂ℏ +∇E + GrE −ℏ−1c1(TX) ∪ •)(ℏ−GrE ℏc1(TX)∪•Ti)

)

= S
(
−GrE ℏ−GrE ℏc1(TX)∪•Ti + ℏ−GrE ℏc1(TX)∪•(c1(TX) ∪ Ti)

+ GrE ℏ−GrE ℏc1(TX)∪•Ti − ℏ−1ℏ−GrE +1ℏc1(TX)∪•(c1(TX) ∪ Ti)
)

= 0

by a straightforward computation, remembering that GrE and c1(TX) ∪ • don’t
commute! �

It is worth exploring in greater detail what this means by considering the be-

haviour of the ordinary differential equation ∇̂ℏ∂ℏ
s = 0 at ℏ = ∞. Rewriting this

equation in terms of q = ℏ−1, we get

q∂qs = −qE ∗ s+ GrE(s).

This equation has a regular singular point at q = 0. In general, an ordinary dif-
ferential equation on a disk ∆ ⊆ C centered at the origin with coordinate q of the
form

(2.13) q∂qs = A(q) · s,
where the unknown s is a holomorphic map with values in a vector space Cn and
A is a holomorphic map A : ∆→ End(Cn), is said to have a regular singular point
at q = 0. In our example, A(q) is the endomorphism −qE ∗ •+GrE . Note that the

equation ∇̂ℏ∂ℏ
s = 0 does not have a regular singular point at ℏ = 0 as it takes the

form ℏ∂ℏs = B(ℏ) · s where B(ℏ) = ℏ−1E ∗ • −Gr has a pole at ℏ = 0.
The theory of ODEs with regular singular points is of course well-developed

classically, and in particular, one can find n linearly independent multi-valued con-
vergent solutions to (2.13) on ∆ \ {0}. In the case at hand, these must coincide
with the formal solutions described in Proposition 2.19. This shows that these
formal solutions are convergent, so in particular the solutions si to the quantum
differential equation are convergent.

To read more about the theory of ODEs with singular points in the above
context, [103] gives an excellent introduction.

As a consequence of the above discussion, we can view the map S as more than
purely formal, viewing it as an OfM{ℏ, ℏ−1}-linear map

S : H∗
(
X,C)⊗C OfM{ℏ, ℏ−1} → H∗

(
X,C)⊗C OfM{ℏ, ℏ−1}

with

S(α) = α−
m∑

j=0

〈〈 α

ℏ + ψ
, Tj〉〉T j .

2.1.5. Semi-infinite variations of Hodge structure. We will now intro-
duce yet more structure into this picture. We will define the notion of a semi-infinite
variation of Hodge structure, a notion introduced by Barannikov in [5]. These struc-
tures may seem to be, at this point, an unnecessarily complicated way of encoding
the various data studied above, but as we shall see, it emerges naturally on the
B-model side.
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Definition 2.20. A semi-infinite variation of Hodge structure parameterized
by a spaceM is a locally free OM{ℏ}-module E of finite rank together with a flat
connection

∇ : E → Ω1
M ⊗ ℏ−1E

and a pairing

(·, ·)E : E × E → OM{ℏ}
satisfying

(1) (s1, s2)E(ℏ) = (s2, s1)E (−ℏ). Here we view (s1, s2)E as a function of ℏ; on
the right-hand side, we have replaced ℏ with −ℏ.

(2) (f(−ℏ)s1, s2)E = (s1, f(ℏ)s2)E = f(ℏ)(s1, s2)E for f(ℏ) ∈ OM{ℏ}.
(3) Y (s1, s2)E = (∇Y s1, s2)E + (s1,∇Y s2)E .
(4) The pairing is non-degenerate, i.e., the induced pairing

(E/ℏE)⊗OM (E/ℏE)→ OM
is non-degenerate.

A grading on this semi-infinite variation of Hodge structure is a C-linear endo-
morphism Gr : E → E such that there exists a vector field E onM and a constant
D ∈ C such that

(5) Gr(fs) =
(
(ℏ∂ℏ + E)f)s+ f Gr(s) for f ∈ OM{ℏ}, s ∈ E .

(6) [Gr,∇Y ] = ∇[E,Y ] for all vector fields Y on M.
(7) (ℏ∂ℏ + E)(s1, s2)E = (Gr(s1), s2)E + (s1,Gr(s2))E +D(s1, s2)E .

Example 2.21. Quantum cohomology furnishes an example of a semi-infinite
variation of Hodge structure. With T0, . . . , Tm a basis for H∗(X,C) as usual, with
X having only even cohomology, we take

E = H∗(X,C)⊗C OfM{ℏ}.

We take the flat connection to be ∇̂, i.e.,

∇̂X(Y ) = ∇X(Y ) + ℏ−1X ∗ Y,
where ∇ denotes the standard flat connection on E . The pairing is

(s1, s2)E =

∫

X

s1(−ℏ) ∪ s2(ℏ).

Conditions (1) and (2) are obvious from this definition. For (3), note that for a

vector field Y on M̃,

Y (s1, s2)E =

∫

X

Y (s1(−ℏ) ∪ s2(ℏ))

=

∫

X

(Y s1(−ℏ)) ∪ s2(ℏ) + s1(−ℏ) ∪ (Y s2(ℏ))

while

(∇̂Y s1, s2)E + (s1, ∇̂Y s2)E

=

∫

X

(Y s1(−ℏ)− ℏ−1Y ∗ s1(−ℏ)) ∪ s2(ℏ) + s1(−ℏ) ∪ (Y s2(ℏ) + ℏ−1Y ∗ s2(ℏ))

=

∫

X

Y s1(−ℏ) ∪ s2(ℏ) + s1(−ℏ) ∪ (Y s2(ℏ))
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using the fact that ∫

X

(Y ∗ Z) ∪W =

∫

X

Z ∪ (Y ∗W )

by (2.4).
(4) is clear since E/ℏE ∼= H∗(X,C)⊗COfM, and the induced pairing is just the

ordinary cup product.
The grading operator is

Gr = ℏ∂ℏ + E + GrE

where E is the Euler vector field on M̃ of Example 2.10 and as usual, GrE is
OfM{ℏ}-linear with

GrE(Ti) =

(
degTi

2
− 1

)
Ti.

Note that this operator has already appeared in the proof of Proposition 2.18. We
check conditions (5)-(7). First, (5) is obvious from the Leibniz rule for ℏ∂ℏ and
∇E . For (6), first observe that if (6) holds for a vector field Y , it also holds for
fY for f ∈ OfM. Also, if the left-hand and right-hand sides agree when evaluated
on a section s of E , then they also agree when evaluated on a section fs of E , for
f ∈ OfM{ℏ}. Thus it is enough to check (6) for Y = ∂yi by evaluating on the
section Tj. The left-hand-side is

[Gr, ∇̂∂yi
](Tj) = Gr(∇̂∂yi

Tj)− ∇̂∂yi
(Gr(Tj))

= Gr(ℏ−1Ti ∗ Tj)−
(

deg Tj
2
− 1

)
ℏ−1Ti ∗ Tj

= ℏ−1

(
−Ti ∗ Tj + Gr(Ti ∗ Tj)−

(
deg Tj

2
− 1

)
Ti ∗ Tj

)

= ℏ−1

(
Gr(Ti ∗ Tj)−

deg Tj
2

Ti ∗ Tj
)
.

Now if we view Ti ∗Tj as a vector field on M̃, after identifying M̃×H∗(X,C) with

the tangent bundle to M̃, then we know that Ti ∗ Tj is homogeneous with respect
to the Euler vector field E of degree (degTi + deg Tj)/2 − 1, as follows from the
discussion of Example 2.10. So

Gr(Ti ∗ Tj) =

(
deg Ti + degTj

2
− 1

)
Ti ∗ Tj .

Thus the left-hand-side of (6) becomes

ℏ−1

(
degTi

2
− 1

)
(Ti ∗ Tj).

The right-hand-side of (6) is

∇̂[E,∂yi
]Tj = ℏ−1

(
degTi

2
− 1

)
Ti ∗ Tj,

as desired.
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Finally, for (7),

(ℏ∂ℏ + E)(s1, s2)E

=

∫

X

(ℏ∂ℏ + E)(s1(−ℏ)) ∪ s2(ℏ) + s1(−ℏ) ∪ (ℏ∂ℏ + E)(s2(ℏ))

= (Gr(s1), s2)E + (s1,Gr(s2))E −
∫

X

GrE(s1(−ℏ)) ∪ s2(ℏ) + s1(−ℏ) ∪GrE(s2(ℏ))

= (Gr(s1), s2)E + (s1,Gr(s2))E + (2− dimC X)(s1, s2)E .

�

2.1.6. The moving subspace realisation of a semi-infinite variation of

Hodge structure. We can recast this definition in terms of a moving subspace
inside a single space; this is more reminiscent of the usual notion of a variation of
Hodge structure. Suppose we are given a semi-infinite variation of Hodge structure
(E ,∇) over a complex manifold M, and assumeM is simply connected. Consider
the space

(2.14) H = {s ∈ Γ(M, E ⊗OM{ℏ} OM{ℏ, ℏ−1}) | ∇s = 0}.
Since ∇ is flat, one sees in fact that H is a free C{ℏ, ℏ−1}-module of the same rank
as E .

The pairing (·, ·)E on E also defines a symplectic form on H, by

(2.15) Ω(s1, s2) := Resℏ=0(s1, s2)Edℏ,

i.e., Ω(s1, s2) is the coefficient of ℏ−1 in (s1, s2)E . Note that this is a constant in
C, since for any vector field Y onM,

Y (s1, s2)E = (∇Y s1, s2)E + (s1,∇Y s2)E = 0,

by Definition 2.20, (3), and flatness of s1, s2.
For each point x ∈ M, we now get an embedding of Ex into H, by sending

s ∈ Ex to the section s′ ∈ H satisfying s′(x) = s; in other words, we extend s to a
flat section of E ⊗OM{ℏ}OM{ℏ, ℏ−1}. Thus we get a varying family Ex of subspaces
of H, parameterized byM.

We can think about these varying subspaces via the Pressley-Segal Grassman-
nian of semi-infinite subspaces of H. Suppose in the above semi-infinite variation
of Hodge structures that E is a free OM{ℏ}-module of rank N . Then the Pressley-
Segal Grassmannian of H is written as

LGLN (C)/L+ GLN (C).

Here LGLN(C) is the loop group of GLN (C), consisting of smooth maps γ : S1 →
GLN (C), where we think of S1 ⊆ C as a circle with center the origin of some radius
ǫ > 0. We then have a subgroup L+ GLN (C) consisting of those maps which are
boundary values of holomorphic maps

{ℏ | |ℏ| < ǫ} → GLN (C).

The significance of this construction in our situation is as follows. Suppose that
we have a rank N C{ℏ}-submodule of CN ⊗C C{ℏ, ℏ−1}. Then we can choose a
C{ℏ}-basis s1(ℏ), . . . , sN (ℏ) for this submodule, or equivalently, choose an N × N
invertible matrix whose entries are elements of C{ℏ, ℏ−1}, and whose columns span
the C{ℏ}-submodule. Now after choosing an ǫ > 0 such that all the entries of this
matrix converge on {ℏ | 0 < |ℏ| < 2ǫ}, we can restrict each entry to the circle of
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radius ǫ, getting an element of LGLN (C). An element of L+ GLN (C) is a matrix
with entries in C{ℏ}, hence acts by changing the basis of this C{ℏ}-submodule
without changing the submodule. So in particular each C{ℏ}-submodule of H of
rank N is represented by a point in the Pressley-Segal Grassmannian. Thus the
semi-infinite variation of Hodge structure E induces a map

M→ LGLN (C)/L+ GLN (C).

This map can be described more explicitly as follows. Suppose that e1, . . . , eN
are sections of E such that for each point x ∈ M, e1(x), . . . , eN (x) descend to a
C-basis for Ex/ℏEx. On the other hand, let s1, . . . , sN be a basis for H. Then there
is a matrix M = (Mij)1≤i,j≤N such that

si =

N∑

j=1

Mijej

with Mij ∈ OM{ℏ, ℏ−1}. At a point x0, we of course have

si(x0) =

N∑

j=1

Mij(x0)ej(x0),

and if M−1 = (M ij)1≤i,j≤N , then

ei(x0) =

N∑

j=1

M ij(x0)sj(x0).

Thus Ex0 is embedded in H via the mapping

ei(x0) 7→
N∑

j=1

M ij(x0)sj .

Thus, in the basis s1, . . . , sN of H, the columns of M−1 generate the image of
Ex0 . Thus the map M → LGLN (C)/L+ GLN (C) can be described explicitly by
x 7→M−1(x).

The advantage of this description in terms of M is that this makes perfect
sense in the situation arising from quantum cohomology, where we have the space

M̃, which isn’t quite a complex manifold because the variables y0, yp+1, . . . , ym are
formal. In this case, the varying family of subspaces Ex in H can be viewed as given
by M−1, an N ×N matrix with entries in OfM{ℏ, ℏ−1}.

Example 2.22. Returning to Example 2.21 given by quantum cohomology, we
take the basis e1, . . . , eN to be T0, . . . , Tm. We also have the flat sections s0, . . . , sm
of §2.1.4. The matrixM is just given by the function S, and so the moving subspace
realisation of the corresponding semi-infinite variation of Hodge structure is defined
by S−1. We define

J = S−1 : H∗(X,C)⊗C OfM{ℏ, ℏ−1} → H∗(X,C)⊗C OfM{ℏ, ℏ−1}.
Since the matrix for S defined using the basis {Ti} of H∗(X,C) has entries in
O(P1 \ {0}), and is invertible at every point of P1 \ {0}, the matrix for J also has
entries in O(P1 \ {0}).
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Proposition 2.23. For α ∈ H∗(X,C),

J(α) = e(
Pp

k=0 ykTk)/ℏ ∪
(
α+

∑

β,nk

m∑

i=0

〈α, T np+1

p+1 , . . . , T nm
m ,

Ti
ℏ− ψ 〉0,βT

i

·
(

p∏

k=1

eyk

R
β
Tk

)
y
np+1

p+1 · · · ynm
m

np+1! · · ·nm!

)
.

Proof. We will first prove, with E = H∗(X,C)⊗COfM{ℏ} as in Example 2.21,
that for α, β ∈ H∗(X,C),

(S(α), S(β))E = (α, β)E .

Indeed, applying property (3) of Definition 2.20, we see that

∂yi(S(α), S(β))E = (∇̂∂yi
S(α), S(β))E + (S(α), ∇̂∂yi

S(β))E

= 0,

since S(α), S(β) satisfy the quantum differential equation. Thus (S(α), S(β))E is a

constant function on M̃. So we can try to compute it by setting y0 = yp+1 = · · · =
ym = 0 and letting yi → −∞, i.e., letting κi → 0 for 1 ≤ i ≤ p. Taking this limit,
we then get, using the formula of Proposition 2.15,

(S(α), S(β))E =

∫

X

(
e(

Pp
k=0 ykTk)/ℏ ∪ α

)
∪
(
e−(

Pp
k=0 ykTk)/ℏ ∪ β

)

=

∫

X

α ∪ β.

This shows that S−1 is the adjoint to S with respect to the inner product (·, ·)E .
Thus we can compute J using

(Ti, e
−(

Pp
k=0 ykTk)/ℏ ∪ J(Tj))E = (e(

Pp
k=0 ykTk)/ℏ ∪ Ti, J(Tj))E

= (S(e(
Pp

k=0
ykTk)/ℏ ∪ Ti), Tj)E ,

thus reading off the coefficient of T i in e−(
Pp

k=0 ykTk)/ℏ ∪ J(Tj) as the coefficient of

T j in S(e(
Pp

k=0 ykTk)/ℏ ∪ Ti)(−ℏ), using the formula of Proposition 2.15. �

One way to view J is that it gives an embedding of bundles

J : E = H∗(X,C)⊗C OfM{ℏ} → HfM = H∗(X,C)⊗C OfM{ℏ, ℏ−1}
taking flat sections of E to constant sections of HfM.

2.1.7. From variations of semi-infinite Hodge structure to Frobenius

manifolds. We now demonstrate Barannikov’s technique of going from a variation
of semi-infinite Hodge structure to a Frobenius manifold. Let (M, E ,∇) be a varia-
tion of semi-infinite Hodge structure withM a simply connected complex manifold,
or a completion of a complex manifold along a simply connected submanifold, and
fix a base-point 0 ∈ M. This determines a space H as in (2.14) with an inclusion
E0 →֒ H as a C{ℏ}-submodule.

An opposite subspace is an O(P1 \ {0})-submodule H− of H such that the
natural map

H− ⊕ E0 →H
is an isomorphism.
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First note that the projection E0 ∩ ℏH− → E0/ℏE0 is an isomorphism. Indeed,
the map is injective since the kernel is ℏE0∩ℏH− = ℏ(E0∩H−) = 0. For surjectivity,
if s ∈ E0, then ℏ−1s = s′+ s′′ with s′ ∈ H− and s′′ ∈ E0. Then ℏs′ ∈ E0 ∩ ℏH− and
ℏs′ ≡ s mod ℏE0. Similarly, E0 ∩ ℏH− → ℏH−/H− is an isomorphism.

These isomorphisms then give rise to isomorphisms

E0 ∼= (E0 ∩ ℏH−)⊗C C{ℏ} ∼=
( E0

ℏE0

)
⊗C C{ℏ} ∼=

(
ℏH−
H−

)
⊗C C{ℏ}.

Indeed, the map (E0 ∩ ℏH)⊗C C{ℏ} → E0 is the obvious one, taking s⊗ f 7→ s · f .
By §2.1.6, we can think of E as a subbundle of the trivial bundle H ×M on

M. In general, when we have a vector space V , we shall write VM for the trivial
vector bundle with fibre V , and an element s ∈ V yields a constant section of VM
which we shall also denote by s. So we have the vector bundle HM containing E
as a subbundle, and also containing the trivial subbundle H−,M. The projection
E ∩ ℏH−,M → (ℏH−/H−)M is then an isomorphism at 0, hence is an isomorphism
in an open neighbourhood of 0. Replacing M with this open neighbourhood, we
obtain a trivialization

(2.16) τ :

(
ℏH−
H−

)
⊗C OM{ℏ} → E

given, for s ∈ ℏH− with s = s′+s′′ with s′ a section of E and s′′ a section of H−,M,
by

τ((s mod H−)⊗ f) = s′ · f.
Proposition 2.24. Given a choice of opposite subspace H−, we have:

(1) Via the trivialization (2.16), the connection ∇ on E yields a connection
∇ on (ℏH−/H−)⊗C OM{ℏ}. We can write this connection as

∇ = d+ ℏ−1A,

where A is an End(ℏH−/H−)-valued 1-form on M. For a vector field X
on M, we write AX for the corresponding section of the trivial bundle
End(ℏH−/H−)M.

(2) If H− is isotropic with respect to Ω, defined in (2.15), then we obtain a
symmetric pairing on the vector space ℏH−/H− given by

(s1, s2)ℏH−/H− = (s1, s2)E |ℏ=∞.

(Here on the right we are thinking of s1, s2 ∈ ℏH− as flat sections of
of E ⊗OM{ℏ} OM{ℏ, ℏ−1}, on which the pairing on E extends linearly.)
Furthermore, this pairing is non-degenerate and

(2.17) (AXs1, s2)ℏH−/H− = (s1, AXs2)ℏH−/H− .

(3) If the semi-infinite variation of Hodge structure has a grading operator Gr
which preserves H−, then with respect to the trivialization (2.16), we can
write

Gr = ℏ∂ℏ + E + Gr0

where Gr0 ∈ End(ℏH−/H−) is defined, for s ∈ ℏH−, by

Gr0(s mod H−) = Gr(s) mod H−.
Furthermore, for s1, s2 ∈ ℏH−/H−,

−D(s1, s2)ℏH−/H− = (Gr0(s1), s2)ℏH−/H− + (s1,Gr0(s2))ℏH−/H− .
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Proof. (1) Let us calculate∇X(τ(s⊗1)), where s ∈ ℏH− represents a constant
section of (ℏH−/H−)M. As sections, we can write s = s′ + s′′, where s′ ∈ E ,
s′′ ∈ H−,M, so that τ(s ⊗ 1) = s′ = s − s′′. Note that under the embedding
E ⊆ HM, the trivial connection on HM induces the connection ∇ on E defining the
semi-infinite variation of Hodge structure since constant sections of HM are flat
sections of E ⊗OM{ℏ} OM{ℏ, ℏ−1}. So

ℏ∇X(τ(s ⊗ 1)) = ℏ∇X(s− s′′) = −ℏX(s′′),

and as X(s′′) ∈ H−,M, we have ℏX(s′′) ∈ ℏH−,M. On the other hand,

ℏ∇X(τ(s ⊗ 1)) ∈ E ,
so

ℏX(s′′) ∈ E ∩ ℏH−,M ∼= (ℏH−/H−)M.

Thus ℏ∇X defines a section s 7→ −ℏX(s′′) of the trivial bundle End(ℏH−/H−)M
and A is the 1-form with values in this bundle given by AX(s) = −ℏX(s′′).

(2) First note that the pairing given on ℏH−/H− makes sense. Indeed, given
s1, s2 ∈ ℏH−/H−, let s′i = τ(si ⊗ 1) be the corresponding sections of E with
si = s′i + s′′i as usual. Since s′i is a section of E , (s′1, s

′
2)E ∈ OM{ℏ}. On the other

hand, if t1, t2 are sections of ℏH−,M, we can write, for any a1, a2 > 0, ti = ℏait′i
with t′i a section of H−, so using the fact that H− is isotropic with respect to Ω,
we have

0 = Ω(t′1, t
′
2) = ±Resℏ=0ℏ−a1−a2(t1, t2)Edℏ

from which we conclude that (t1, t2)E only has terms of order ≤ 0 in ℏ. Similarly,
if t1 ∈ ℏH−,M, t2 ∈ H−,M, then (t1, t2)E only has terms of order ≤ −1 in ℏ. Thus
(s′1, s

′
2)E = (s1−s′′1 , s2−s′′2)E is in fact a section ofOM, and (s′1, s

′
2)E = (s′1, s

′
2)E |ℏ=∞

makes sense and is well-defined independently of the choice of representative for
s1, s2 in ℏH−. In addition, this is the same as (s1, s2)E |ℏ=∞, as the terms in this
latter expression with non-negative powers of ℏ agree with the corresponding terms
in (s′1, s

′
2)E . Finally, note that since s1, s2 are flat sections, it follow from Definition

2.20, (3) that (s1, s2)E is in fact constant on M, and hence (s1, s2)E |ℏ=∞ gives a
well-defined element of C.

In particular, again by Definition 2.20, (3),

0 = ℏY (s′1, s
′
2)E = − (ℏ∇Y s′1, s′2)E + (s′1, ℏ∇Y s′2)E

= − (AY s1, s2)ℏH−/H− + (s1, AY s2)ℏH−/H− ,

by (1), giving the desired formula.
Non-degeneracy of the pairing on ℏH−/H− follows from the non-degeneracy of

Definition 2.20, (4).
For (3), first note that by Definition 2.20, (6), Gr takes flat sections of E

to flat sections of E . Thus Gr acts naturally on H. Furthermore, by Definition
2.20, (5), if Gr preserves H−, it also preserves ℏH−. Thus Gr defines a well-defined
endomorphism Gr0 of ℏH−/H−. The description of Gr in terms of Gr0 then follows
from Definition 2.20, (5):

Gr(τ(s⊗ f)) = Gr(f · s′) = ((ℏ∂ℏ + E)f)s′ + f Gr(s′)

= τ(s⊗ (ℏ∂ℏ + E)f + Gr0(s)⊗ f).

The last statement follows immediately from Definition 2.20, (7). �
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Definition 2.25. A semi-infinite variation of Hodge structure (M, E ,∇) is
miniversal if there is a section s0 of E such that the OM-module homomorphism

TM → E/ℏE
given by

X 7→ ℏ∇Xs0
is an isomorphism.

In the miniversal case, Proposition 2.24 along with one additional choice of
data induces a Frobenius manifold structure onM. More precisely, suppose we are
given the following data:

• A semi-infinite variation of Hodge structure E ,∇, (·, ·)E with a grading Gr.
• An opposite subspace H− ⊆ H which is isotropic with respect to Ω and

preserved by Gr.
• An element Ω0 ∈ ℏH− which represents [Ω0] ∈ ℏH−/H−, an eigenvector

of Gr0. Furthermore, the corresponding section s′0 = τ(Ω0⊗1) of E yields
miniversality.

Then viewing E as a subbundle of HM via the moving subspace construction, we
identify s′0 with a section of HM as usual, which can be viewed as a map

(2.18) Ψ :M→H.
This map can be described as follows. Because H is a direct sum H− ⊕ Eq for
q ∈ M, Ω0 + H− intersects Eq in a unique point, which is in fact Ψ(q). This is
Barannikov’s period map of the semi-infinite variation of Hodge structure. We can
then define a map

(2.19) ψ :M→ ℏH−/H−
via

q 7→ [ℏ(Ψ(q)− Ω0)].

Miniversality implies this is a local isomorphism. Indeed, at any point q ∈ M, we
need to check that the differential of ψ, ψ∗ : TM,q → ℏH−/H−, is an isomorphism.
Now the differential of Ψ is Ψ∗ : TM,q → H given by X 7→ ∇Xs′0 ∈ H−, since,
as was argued in the proof of Proposition 2.24, (1), the trivial connection on HM
restricts to the connection ∇ on E . Thus

ψ∗(X) = [ℏ∇Xs′0] ∈ ℏH−/H− ∼= Eq/ℏEq.
So ψ∗ is an isomorphism by miniversality. Note that

ψ∗(X) = AX([Ω0]).

This now gives an identification of TM with the trivial bundle (ℏH−/H−)M,
given by

X 7→ AX([Ω0]).

This allows us to transport the product (·, ·)ℏH−/H− to TM , which we call g. In

addition, the trivial flat connection on (ℏH−/H−)M gives a flat connection ∇M on
TM.

We define a product on TM by the condition that

AX◦Y [Ω0] = AXAY [Ω0]

and a tensor
A : S3TM → OM
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given by

A(X,Y, Z) = g(X ◦ Y, Z).

That this is symmetric follows from flatness of ∇, so that AX and AY commute,
and (2.17). Let e be the vector field on M satisfying Ae[Ω0] = [Ω0].

Theorem 2.26. M with the data (∇M, g,A) and vector fields e and E form
a Frobenius manifold in which e is a flat identity and E is an Euler vector field
satisfying (2.7) with constant d0 = 1 and (2.6) with constant D being 2(λ+1)+D,
where D is as in Definition 2.20, (7), and λ is the eigenvalue of [Ω0] with respect
to Gr0.

Proof. Clearly (∇M, g,A) defines a pre-Frobenius manifold structure onM.
Also e is clearly an identity, flat since [Ω0] is a constant, hence flat, section of
(ℏH−/H−)M.

By Theorem 2.11, it is enough to show that the first structure connection ∇̂M,
defined by

∇̂MX (Y ) = ∇MX (Y ) + ℏ−1X ◦ Y,
∇̂ℏ∂ℏ

= ℏ∂ℏY − ℏ−1E ◦ Y + GrE(Y ),

is flat. Let us see what these operations correspond to on E . First note that
under the identification ψ∗ : TM → (ℏH−/H−)M, ∇M is the flat connection on
(ℏH−/H−)M, so

(τ ◦ ψ∗)(∇̂MX (Y )) = τ
(
ψ∗(∇MX (Y )) + ℏ−1ψ∗(X ◦ Y )

)

= τ
(
d(ψ∗(Y ))(X) + ℏ−1AX◦Y ([Ω0])

)

= τ
(
d(AY ([Ω0]))(X) + ℏ−1AXAY ([Ω0])

)

= ∇X((τ ◦ ψ∗)(Y ))

by Proposition 2.24, (1).
Next, we compare GrE and Gr0. Let Y be a flat vector field, so that GrE(Y ) =

[E, Y ]. Then

Gr0(ψ∗(Y )) = Gr0(AY [Ω0])

= Gr(AY [Ω0]) mod H−
= Gr(ℏ∇Y Ω0) mod H−
= ℏ∇Y Ω0 + ℏ Gr(∇Y Ω0) mod H−
= ℏ∇Y Ω0 + ℏ∇Y (Gr Ω0) + ℏ∇[E,Y ]Ω0 mod H−
= AY [Ω0] + λAY [Ω0] +AGrE(Y )[Ω0]

= ψ∗
(
(λ+ 1 + GrE)(Y )

)
.

Here the third and sixth equalities hold from Proposition 2.24, (1), the fourth from
Definition 2.20, (5), and the fifth equality follows from Definition 2.20, (6).
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Consequently, for Y a flat vector field onM and f ∈ OM{ℏ}, we can compute

τ ◦ ψ∗(∇̂ℏ∂ℏ
fY ) = τ ◦ ψ∗

(
(ℏ∂ℏf)Y − ℏ−1fE ◦ Y + f GrE(Y )

)

= τ
(
(ℏ∂ℏf)ψ∗(Y )− ℏ−1fAEψ∗(Y ) + f(Gr0−λ− 1)ψ∗(Y )

)

= (ℏ∂ℏf − f∇E)(τ ◦ ψ∗)(Y )

+ τ(Gr0(ψ∗(fY )))− (λ+ 1)τ ◦ ψ∗(fY )

= (ℏ∂ℏ + E)(f)(τ ◦ ψ∗)(Y ) + τ(Gr0(ψ∗(fY )))

−∇E(τ ◦ ψ∗)(fY )− (λ+ 1)(τ ◦ ψ∗)(fY )

= Gr(τ ◦ ψ∗(fY ))−∇E(τ ◦ ψ∗)(fY )− (λ + 1)(τ ◦ ψ∗)(fY ),

the last equality by Proposition 2.24, (3). Thus ∇̂ℏ∂ℏ
coincides with Gr−∇E −

(λ+ 1) on E .
Now ∇ is a flat connection, and hence ∇̂M is flat in the directions tangent to

M. So we just need to show

(2.20) [∇̂Mℏ∂ℏ
, ∇̂MX ] = 0

for X a vector field onM. Note that flatness of ∇ implies that for vector fields X
and Y on M,

[∇X ,∇Y ] = ∇[X,Y ].

Transporting (2.20) to E , we need to show that

[Gr−∇E − (λ+ 1),∇X ] = 0.

Computing the left-hand side gives, by Definition 2.20, (6),

[Gr,∇X ]− [∇E ,∇X ] = ∇[E,X] −∇[E,X] = 0.

This show that ∇̂M is flat, and hence M is a Frobenius manifold.
Finally, we check the value of the constant D. We have, for X and Y flat vector

fields on M,

E(g(X,Y ))− g([E,X ], Y )− g(X, [E, Y ])

= E
(
(ψ∗(X), ψ∗(Y ))ℏH−/H−

)
− (ψ∗(GrE(X)), ψ∗(Y ))ℏH−/H−

− (ψ∗(X), ψ∗(GrE(Y )))ℏH−/H−

= − ((Gr0−(λ+ 1))ψ∗(X), ψ∗(Y ))ℏH−/H−

− (ψ∗(X), (Gr0−(λ+ 1))ψ∗(Y ))ℏH−/H−

= (D + 2(λ+ 1))(ψ∗(X), ψ∗(Y ))ℏH−/H−

= (D + 2(λ+ 1))g(X,Y ).

�

Noting that the map ψ is a local isomorphism betweenM and the vector space
ℏH−/H−, as mentioned earlier, this gives a linear structure onM. The flat vector
fields with respect to ∇M are precisely the constant vector fields on ℏH−/H−.
Thus linear coordinates on ℏH−/H− induce coordinates on M whose associated
vector fields are flat. We call these induced coordinates flat coordinates, given to
us canonically by the choice of data above.
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Example 2.27. We return to Example 2.21 and its continuation Example 2.22
coming from quantum cohomology. The space H is identified with

H∗(X,C)⊗C C{ℏ, ℏ−1},
and we take

H− := H∗(X,C)⊗C ℏ−1O(P1 \ {0}) ⊆ H.
Recall from Example 2.22 that the embedding of E = H∗(X,C)⊗C C{ℏ} in HfM is
given by the map J, which takes flat sections of E to constant sections of HfM. At

the point x of M̃ with coordinates y0 = · · · = ym = 0, we have

J(α) = α+O(ℏ−1),

and hence the image of the fibre of Ex under J intersects H− only at 0. Thus
H = H− ⊕ Ex.

The induced isomorphism

τ : (ℏH−/H−)⊗C OfM{ℏ} → E
is a map

τ : H∗(X,C)⊗C OfM{ℏ} → E ,
which is defined by

τ(s⊗ f) = f · s′,
where s = s′ + s′′ with s′ a section of E ⊆ HfM and s′′ a section of H

−,fM. We do

this as

s′ = J(s), s′′ = s− J(s),

noting from the explicit formula for J that s − J(s) is a section of H−, fM and

J(s) ∈ E ⊆ HfM since J gives the embedding of E in HfM.

To check that H− is isotropic with respect to Ω, we first need to extend the
pairing on E to elements of H−. As J : E ⊗C{ℏ} C{ℏ, ℏ−1} → HfM gives the

identification of E ⊗C{ℏ} C{ℏ, ℏ−1} with the bundle HfM, we interpret (s1, s2)E for

s1, s2 ∈ HfM as (J−1s1, J
−1s2)E . But J−1 = S by definition, and S−1 is the adjoint

to S under this pairing by the argument of Proposition 2.23, so

(J−1s1, J
−1s2)E = (s1, s2)E .

It is then clear that if s1, s2 ∈ H−, then

(s1, s2)E = (constant)ℏ−2 + higher order terms in ℏ−1,

so Ω(s1, s2) = 0. Hence H− is isotropic with respect to Ω.
Next note that H− is preserved by Gr. Again, Gr is defined on E , so given

s ∈ H−, we should interpret Gr(s) as J ◦ Gr ◦J−1(s) = J ◦ Gr ◦S(s), which lies in
H− by Proposition 2.18 and the definition of Gr. Furthermore, again by Proposition
2.18, note for s ∈ ℏH−,

(2.21) Gr(s) = GrE(s) mod H−.
In particular, the hypotheses of Proposition 2.24, (1)-(3) are satisfied.

We will now use this to produce a Frobenius manifold structure on M̃, by
choosing [Ω0] = T0 ∈ ℏH−/H− represented by T0 ∈ ℏH−. We need to verify:
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• The corresponding section J(T0) of E yields miniversality. Note that J(T0)
is the description of this section of E as a subbundle ofHfM. As an abstract
bundle E ∼= H∗(X,C) ⊗C OfM{ℏ}, with the embedding J : E → HfM.
Under this identification, the section J(T0) of E as a subbundle of HfM is

identified with the section J−1(J(T0)) = T0 of E as an abstract bundle.
Then

ℏ∇∂yi
(T0) = ℏ∂yi(T0) + T0 ∗ Ti

= Ti.

Clearly T0, . . . , Tm form a basis for E/ℏE , hence we obtain miniversality.
• [Ω0] is an eigenvector of Gr0. Note, using (2.21) for the second equality,

that

Gr0[Ω0] = Gr(T0) mod H−
= GrE(T0) mod H−
= − T0 mod H−
= − [Ω0].

So [Ω0] is an eigenvector with eigenvalue −1.

So the chosen data gives a Frobenius manifold structure on M̃. Note also that

ψ : M̃ → ℏH−/H−
is given by

(y0, . . . , ym) ∈ M̃ 7→ℏ(J(T0)− T0) mod H−

=

m∑

i=0

yiTi
(2.22)

by the formula for J of Proposition 2.23.
Let us check that this induced Frobenius manifold structure is in fact the

Frobenius manifold of quantum cohomology. Indeed, from the definition of AX ,
A∂yi

Tj = Ti ∗ Tj . Thus ψ∗ is the identity, the multiplication ◦ coincides with that

given by ∗, and the connection ∇fM is the flat connection. The metric is clearly the
correct one, T0 is the identity, and the Euler vector field E is the standard one.

We see from the above discussion that the function J(T0) plays a special role.
This function has a name:

Definition 2.28. The Givental J-function of X is

JX := J(T0).

Remark 2.29. Note that JX satisfies the property

ℏ∂yiJX = J(Ti).

This can be verified either by direct calculation, or by noting that, as J gives the
embedding of E in HfM,

J(Ti) = J(T0 ∗ Ti) = J(ℏ∇∂yi
T0) = ℏ∂yiJ(T0) = ℏ∂yiJX .

Hence the function JX , along with the pairing and the grading operator, completely
determines the semi-infinite variation of Hodge structure.
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Example 2.30. Let us write down the Givental J-function for X = P2, using
the formula of Proposition 2.23. For β 6= 0, the Fundamental Class Axiom says
that

〈T0, T
m
2 , ψνTi〉0,β = 〈Tm2 , ψν−1Ti〉0,β .

Furthermore, by (2.2), this is non-zero unless m + 3β = 2m + i + ν − 1, i.e.,
m = 3β − i− ν + 1. On the other hand, for β = 0,

〈T0, T
m
2 , ψνTi〉0,0 = 0

unless m + 1 = 2m + i + ν, i.e., m = 1 − i − ν. But m must be at least 1 in
order for this to be non-zero, since M0,2(X, 0) is empty, and hence we only get a
contribution when i = ν = 0. In particular, 〈T0, T2, T0〉0,0 =

∫
X
T0 ∪ T2 ∪ T0 = 1.

Putting this together into the formula of Proposition 2.23 and using T i = T2−i, we
get

JP2 =e(y0T0+y1T1)/ℏ ∪
(
T0 +

2∑

i=0

(
y2ℏ−1δ2,i

+
∑

d≥1

∑

ν≥0

〈T 3d+i−2−ν
2 , ψνT2−i〉0,dℏ−(ν+2)edy1

y3d+i−2−ν
2

(3d+ i− 2− ν)!

)
Ti

)
.

2.2. The B-model

We will now consider the mirror to Pn, and explain the B-model version of the
structures explored in the previous section.

The mirror to a Calabi-Yau manifold is a Calabi-Yau manifold. On the other
hand, Pn is a Fano manifold, and the mirror to a Fano manifold X is what is known
as a Landau-Ginzburg model. In mathematical terms, this is a pair (X̌,W ) where
X̌ is a variety and W : X̌ → C is a regular function. The regular function, known
as the Landau-Ginzburg potential, plays a crucial role throughout.

Mirrors of toric Fano manifolds were first described by Givental in [33] and a
physics derivation was given by Hori and Vafa in [58]. A crucial point will be the
construction of a Frobenius manifold from the data (X̌,W ) via the intermediary of
a semi-infinite variation of Hodge structure. Mirror symmetry in this case is then
the prediction that this B-model Frobenius manifold coincides with the Frobenius
manifold arising from quantum cohomology of X . The construction of a Frobenius
manifold from (X̌,W ), in some specific cases, was accomplished by Sabbah [103]
and Barannikov [4]. We shall follow Barannikov’s approach here. This should be
viewed as a generalization of work of Kyoji Saito, who demonstrated in [104] how
to associate a Frobenius manifold structure to a germ of a function W on Cn.

Since we will deal primarily with the case of Pn, and more specifically with P2,
let us give the mirror explicitly in this case so the reader can keep an example in
mind. This construction will be explored in more detail in §2.2.3 and Chapter 5,
but for the moment, the following will do.

We describe the mirror X̌ to Pn as

(2.23) X̌ = (C×)n ⊆ Cn+1

given by the equation

x0 · · ·xn = 1,



68 2. THE A- AND B-MODELS

where x0, . . . , xn are coordinates on Cn+1. The potential W is then given by

W = x0 + · · ·+ xn.

2.2.1. The twisted de Rham complex. We now fix a non-singular vari-
ety X and a regular function W : X → C, a Landau-Ginzburg potential. The
first question to consider is: what is the relevant cohomology group associated to
(X,W )? The answer takes several forms.

Consider the twisted de Rham complex

(Ω•X , d+ dW∧).
This is the complex

Ω0
X → Ω1

X → Ω2
X → · · ·

where the differential is ω 7→ dω + dW ∧ ω. Here ΩpX is the sheaf of p-forms on
X . There are two possible interpretations for ΩpX here: it could be the sheaf of
algebraic p-forms in the Zariski topology, or it could be the sheaf of holomorphic
p-forms in the analytic topology. We need the following theorem, originally due
to Barannikov and Kontsevich, though unpublished, and then Sabbah [102] and
Ogus-Vologodsky [89].

Theorem 2.31. If W : X → C is projective, then

Hi
Zar(X, (Ω

•
X , d+ dW∧)) ∼= Hi

Zar(X, (Ω
•
X , dW∧)) ∼= Hi

An(X, (Ω
•
X , d+ dW∧)).

Here the subscripts Zar and An mean we are dealing with the algebraic version in the
Zariski topology or the holomorphic version in the analytic topology. Furthermore,
Hi denotes hypercohomology.

The examples of Landau-Ginzburg potentials we are interested in, say the mir-
ror to Pn, are in fact not projective, but this turns out not to be too important: we
can often find partial compactifications X ⊆ X such that W extends to W : X → C

projective. While in general there may be some subtle difference between working
with X versus X, in fact in the cases we consider there will be no difference. We
discuss this in detail in §3.5.

Example 2.32. Assume we are in the situation of the above theorem and
that W only has isolated critical points. Then it is not difficult to compute
Hi(X, (Ω•X , dW∧)) using the hypercohomology spectral sequence

Ep,q2 = Hp(X,Hq(Ω•, dW∧))⇒ Hn(X, (Ω•X , dW∧)).
Here Hp is sheaf cohomology while Hq denotes the cohomology of the complex
(Ω•X , dW∧).

First, let’s compute Hq(Ω•X , dW∧). It is a basic fact of multilinear algebra that
if V is a finite-dimensional vector space and v ∈ V is non-zero, then the complex

∧0
V
∧v−→
∧1

V
∧v−→
∧2

V
∧v−→· · ·

is exact. Since dW = 0 exactly on the critical locus of W , which we call Crit(W ),
the sheaf Hq(Ω•X , dW∧) is supported on Crit(W ). Furthermore, if q < dimX =: n,
then we will show inductively that Hq(Ω•X , dW∧) = 0. Certainly H0(Ω•X , dW∧) =
0, since it is on the one hand supported on Crit(W ) and on the other hand contained
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in the locally free sheaf Ω0
X . If Hq′(Ω•X , dW∧) = 0 for q′ < q, then we obtain a

resolution

0→ Ω0
X
dW∧−→ · · · dW∧−→Ωq−1

X −→ker(ΩqX → Ωq+1
X )→Hq(Ω•X , dW∧)→ 0.

Now let F = coker(Ωq−2
X

dW∧−→Ωq−1
X ); the sheaf F has projective dimension at most

q − 1, hence depth at least n − (q − 1) > 1 (see [57], Proposition III 6.12A). On

the other hand, ker(ΩqX → Ωq+1
X ) has depth at least 1, since it is torsion-free. But

then, provided Hq(Ω•X , dW∧) is non-zero, the depth of Hq(Ω•X , dW∧) is at least 1,
(see [57], III Exercise 3.4), contradicting it having support on the zero-dimensional
set Crit(W ). Thus Hq(Ω•X , dW∧) = 0.

Next, examining Hn(Ω•X , dW∧), if we have local coordinates x1, . . . , xn on X

near a critical point, then we have Ωn−1
X → ΩnX given by

dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn 7→ ±
∂W

∂xi
dx1 ∧ · · · ∧ dxn.

Hence the image of this map is locally just the Jacobian ideal of W .
Since Hq(Ω•X , dW∧) is now non-zero only for q = n and for q = n the support

of this sheaf is zero-dimensional, the spectral sequence degenerates at the E2 term
and we get

Hp(X, (Ω•X , dW∧)) =

{
0 p 6= n

Γ(X, coker(Ωn−1
X

dW∧−→ΩnX)) p = n.

�

Example 2.33. Suppose (X,W ) is the mirror to Pn given in (2.23), with a
slight modification. We in fact consider a possible variation of the Landau-Ginzburg
potential by setting x0 · · ·xn = κ where κ ∈ C×, rather than x0 · · ·xn = 1. This
gives a one-parameter family of Landau-Ginzburg models parameterized by κ. Of
course, as mentioned before, we need to partially compactify X to apply the above
theory, but in fact this won’t add any additional critical points, so the computation
will be the same. See §3.5 for more details on this partial compactification and
computation. So without the partial compactification, we trivialize ΩnX via the
n-form

Ω =
dx1 ∧ · · · ∧ dxn

x1 · · ·xn
,

and then

Hn(X, (Ω•X , dW∧)) =
C[x±1 , . . . , x

±
n ]

(∂W/∂x1, . . . , ∂W/∂xn)
·Ω.

Here we eliminate the variable x0 = κ/(x1 · · ·xn). The ring C[x±1 , . . . , x
±
n ]/ Jac(W ),

where Jac(W ) = (∂W/∂x1, . . . , ∂W/∂xn) is the Jacobian ideal, is known as the
Milnor ring of W .

It is a finite dimensional C-algebra; let us compute it. It is more convenient to
use the generating set xi∂W/∂xi of the Jacobian ideal, noting that

xi
∂W

∂xi
= xi −

κ

x1 · · ·xn
.

Thus the critical points of W occur when

x1 = · · · = xn =
κ

x1 · · ·xn
,
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i.e., (x1, . . . , xn) = (µ, . . . , µ) with µ = µ−nκ, i.e., µ is an (n + 1)-st root of κ.
Furthermore, the Milnor ring has no nilpotents. So it is of dimension n + 1 as a
C-vector space, the same as the dimension of H∗(Pn,C). �

Returning to the twisted de Rham complex, let us note that we can modify
this twisting to get a whole family of twisted de Rham complexes parameterized
by ℏ ∈ C×. We take the complex (Ω•X , d+ ℏ−1dW∧). Of course, the dimension of
Hp(X, (Ω•X , d + ℏ−1dW∧)) is independent of ℏ, as the complex (Ω•X , ℏ

−1dW∧) is
isomorphic to (Ω•X , dW∧).

2.2.2. Homology. Given a Landau-Ginzburg model (X,W ), we obtain a nat-
ural homology theory dual to the cohomology of the twisted de Rham complex. To
simplify the discussion, we will assume as in Example 2.32 that Crit(W ) is zero-
dimensional, so that only Hn(X, (Ω•X , d+ℏ−1dW∧)) is non-zero, where n = dimX .
Furthermore, if X is affine, any element of Hn(X, (Ω•X , d+ℏ−1dW∧)) is represented
by an n-form. Indeed, we can see this via a second hypercohomology spectral se-
quence,

Ep,q1 = Hp(Hq(X,Ω•X), d+ ℏ−1dW∧)⇒ Hn(X, (Ω•X , d+ ℏ−1dW∧)).
where we take the q-th sheaf cohomology of each entry in the complex Ω•X , and then
take the p-th cohomology of the resulting complex. Since X is affine, Hq(X,ΩrX) =
0 for q > 0, and thus the spectral sequence degenerates, showing that

Hn(X, (Ω•X , d+ ℏ−1dW∧)) ∼= Hn(Γ(X,Ω•X), d+ ℏ−1dW∧).
In this situation, for a fixed ℏ ∈ C×, we consider a homology group that we

write as

Hn(X,ReW/ℏ≪ 0; C).

By this, we mean a homology theory of cycles which are allowed to be unbounded,
but only unbounded in the directions in which ReW/ℏ→ −∞.

We will not be more precise here; it is possible to do so, but this for us is a
technical point. The important point is that

Hn(X,ReW/ℏ≪ 0; C)

is naturally dual to

Hn(X, (Ω•X , d+ ℏ−1dW∧)).
Indeed, given a cycle Ξ ∈ Hn(X,ReW/ℏ ≪ 0; C), and ω ∈ H0(X,ΩnX) algebraic
representing an element of Hn(X, (Ω•X , d+ℏ−1dW∧)), we can compute the so-called
oscillatory integral ∫

Ξ

eW/ℏω.

With the right definition ofHn(X,ReW/ℏ≪ 0; C), this integral converges precisely
because ReW/ℏ → −∞ in the unbounded direction of Ξ. Furthermore, note that
if η is an (n− 1)-form on X ,

d(eW/ℏη) = eW/ℏ(dη + ℏ−1dW ∧ η).
By Stokes’ theorem,

∫

Ξ

eW/ℏω =

∫

Ξ

eW/ℏω + d(eW/ℏη),
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so ω and ω+(d+ℏ−1dW∧)η give the same integrals. They also represent the same
element of Hn(X, (Ω•X , d+ ℏ−1dW∧)), so we obtain what turns out to be a natural
perfect pairing

(2.24) Hn(X,ReW/ℏ≪ 0; C)×Hn(X, (Ω•X , d+ ℏ−1dW∧))→ C.

There is also a natural intersection pairing

(2.25) Hn(X,ReW/ℏ≪ 0; C)×Hn(X,ReW/(−ℏ)≪ 0; C)→ C.

Roughly, two cycles in the first and second homology groups on the left can only
intersect in some bounded region of X , and the intersection number is well-defined
as the cycles cannot be deformed so that intersection points run off to infinity.

Example 2.34. We consider the mirror to P2, with (X̌,W ) = ((C×)2,W ). Here
(C×)2 = V (x0x1x2 − 1) ⊆ C3, and W = x0 + x1 + x2. As we saw in Example 2.33,
H2(X̌, (Ω•

X̌
, d + ℏdW∧)) is three-dimensional. We will describe a basis Ξ0,Ξ1,Ξ2

for H2(X̌,ReW/ℏ≪ 0; C).
To describe this basis, let’s identify (C×)2 with a trivial T 2-bundle over R2 via

the map

Log : (C×)2 → R2

Log(x1, x2) = (log |x1|, log |x2|).

We take Ξ0 = Log−1(0, 0). This is a compact cycle, so certainly represents a class
in H2(X̌,ReW/ℏ ≪ 0; C) for any ℏ. However, for this to actually be a cycle, we
have to choose an orientation. Using the map Log, we can identify (C×)2 with
R2 × T 2, taking coordinates y1, y2 on R2 and coordinates θ1, θ2 on T 2, so that
xj = exp(yj + iθj). Then we can orient Ξ0 using dθ1 ∧ dθ2.

Next we define Ξ1. Let ρ0, ρ1, ρ2 ⊆ R2 be the one-dimensional cones of the fan
in Example 1.14. Let

S0 = {(x1, x2) ∈ Log−1(ρ0) | arg(x−1
1 x−1

2 ) = arg(ℏ) + π},
S1 = {(x1, x2) ∈ Log−1(ρ1) | argx1 = arg(ℏ) + π},
S2 = {(x1, x2) ∈ Log−1(ρ2) | argx2 = arg(ℏ) + π}.

Each Si is a cylinder with boundary on Log−1(0, 0), which we depict as a square
with opposite sides identified in Figure 2. We take S3 to be a surface contained in
Log−1(0, 0) which bounds ∂S0∪∂S1∪∂S2, and take Ξ1 to be the piecewise smooth
cycle

Ξ1 = S0 ∪ S1 ∪ S2 ∪ S3.

We orient, say, S1 ⊆ Ξ1 using −dy1 ∧ dθ2. One can check that this extends to an
orientation on all of Ξ1.

For example, Figure 2 depicts such a surface S3 when ℏ = 1. To verify that Ξ1

lives in H2(X̌,ReW/ℏ ≪ 0; C), note that on S0, |x1| and |x2| tend to zero, while
|x0| = 1/|x1x2| → ∞ as we head in the non-compact direction of S0. As

arg(x−1
1 x−1

2 ) = arg ℏ + π,

in fact x−1
1 x−1

2 /ℏ is real and goes to −∞. Thus this term dominates in W/ℏ, so
ReW/ℏ → −∞. The same argument works along S1 and S2. Thus Ξ1 lies in
H2(X̌,ReW/ℏ≪ 0; C).
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Figure 2. The surface S3 contained in a two-torus. The opposite
sides of the square are identified.

Note that we had an arbitrary choice for S3, and this can always be modified by
adding a multiple of Log−1(0, 0). In fact, if we make one choice, say for ℏ = 1, and
vary ℏ continuously via ℏ = e2πit, 0 ≤ t ≤ 1, we can choose S3 in a continuously
varying way. As we complete the loop, we will find that Ξ1 has been replaced by
Ξ1 − 3Ξ0, if we orient Ξ0 and Ξ1 as indicated below. This demonstrates that there
is no canonical choice for S3.

We will describe Ξ2 only for ℏ = −1 to avoid complexity. Just take

Ξ2 = {(x1, x2) ∈ X̌ |x1, x2 real, x1, x2 > 0}.
Then again ReW/ℏ → −∞ in the non-compact directions. We orient Ξ2 using
dy1 ∧ dy2,

We leave it to the reader to build a Ξ2 which depends on ℏ as in the example
of Ξ1. However, note that the Ξ2 we have described actually works for any ℏ with
Re ℏ < 0.

We can also calculate intersection numbers under the pairing (2.25). We just
note the simplest one: the cycle Ξ0 is independent of ℏ, and is a fibre of Log. Of
course any two fibres are homologous. So Ξ0 · Ξ0 = 0 and Ξ0 · Ξ1(ℏ) = 0 for any ℏ,
as Ξ0 can be moved to be disjoint from Ξ1(ℏ). (Here we indicate the dependence
of Ξ1 on ℏ). On the other hand, Ξ0 and Ξ2 meet transversally at one point, and
with the given choice of orientation, Ξ0 · Ξ2 = −1, where we think of

Ξ0 ∈ H2(X̌,ReW ≪ 0; C) and Ξ2 ∈ H2(X̌,Re(−W )≪ 0; C).

�

The description of cycles given in the above example is not the conventional one;
rather, we give it because these cycles are more closely related (but not identical) to
the cycles mirror to T0, T1 and T2 of H∗(P2,C). The more conventional description
of the generators of Hn(X,ReW/ℏ≪ 0; C) is in terms of Lefschetz thimbles.

Suppose that the critical locus of W is reduced: the critical locus is given a
scheme structure via the spectrum of the Milnor ring. Then each critical point is
non-degenerate, in the sense that if X is n-dimensional, then in a neighbourhood
of each critical point there are local holomorphic coordinates z1, . . . , zn such that
W = z2

1 + · · ·+ z2
n. This is the case, for example, for the mirror (X̌,W ) of Pn.

Put a metric on X , and consider the function ReW/ℏ as a Morse function on
X . Locally near each critical point, there are real coordinates y1, . . . , y2n such that
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ReW/ℏ = y2
1 + · · ·+ y2

n − y2
n+1 − · · · − y2

2n. So each critical point is a critical point
of index n. The stable manifold ∆+

p of a critical point p is the union of gradient

flow lines of ReW/ℏ which go to p as time t→ +∞, and the unstable manifold ∆−p
of a critical point p is the union of gradient flow lines of ReW/ℏ which go to p as
time t→ −∞. Of course, ∆+

p and ∆−p depend on ℏ, which we consider fixed in this
discussion.

Both ∆+
p and ∆−p are n-dimensional submanifolds, and provided W is proper,

clearly

∆+
p ∈ Hn(X,ReW/ℏ≪ 0; C)

and

∆−p ∈ Hn(X,Re(−W/ℏ)≪ 0; C).

If W is not proper, we can choose a properification X ⊆ X, W : X → C proper,
and choose a metric so that ∆±p ⊆ X when p ∈ Crit(W ) is contained in X . So we
still get

∆±p ∈ Hn(X,Re(±W/ℏ)≪ 0; C).

These cycles are known as Lefschetz thimbles.
For a general choice of metric, ∆±p ∩∆±p′ = ∅ unless p = p′, and ∆+

p ∩∆−p = {p}.
Thus with the proper orientation, we can assume that under the intersection pairing
(2.25),

(2.26) ∆+
p ·∆−p′ = δpp′ .

We will need the following standard approximation for oscillatory integrals over
these cycles describing the asymptotic behaviour of these integrals as ℏ→ 0. This
approximation is known as the stationary phase approximation:

Proposition 2.35. Let X, W be as above, with W having only isolated non-
degenerate critical points. Suppose f(x, ℏ) is a holomorphic function on

X̌ × {|ℏ| < ǫ} ⊆ X̌ × C,

algebraic when restricted to X̌ × {ℏ} for any ℏ with |ℏ| < ǫ. Then for p a critical
point of W ,

∫

∆+
p

f(x, ℏ)eW/ℏω =
(−2πℏ)n/2√
Hess(W )(p)

eW (p)/ℏ(f(p, 0) +O(ℏ))

where ω is a nowhere vanishing algebraic n-form on X, n = dimX, f is a regular
function, and the Hessian Hess(W ) at p is det

(
∂2W/∂xi∂xj

)
, evaluated at p, with

x1, . . . , xn local coordinates in which ω = dx1 ∧ · · · ∧ dxn.
Proof. (Sketch) First note that we can write

∫

∆+
p

f(x, ℏ)eW/ℏω =

∫

∆+
p

f(x, ℏ)e(W−W (p))/ℏeW (p)/ℏω

= eW (p)/ℏ

∫

∆+
p

f(x, ℏ)e(W−W (p))/ℏω,

so we can assume W (p) = 0 at the expense of a factor of eW (p)/ℏ. The main point
now is that the asymptotic behaviour as ℏ→ 0 comes from the integral

(2.27)

∫

∆+
p ∩Bǫ

f(x, ℏ)eW/ℏω,
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where Bǫ is a ball of radius ǫ centered at p. This is because

(2.28)

∫

∆+
p \Bǫ

f(x, ℏ)eW/ℏω → 0

as ℏ → 0, since ReW/ℏ is bounded away from zero and negative on ∆+
p \ Bǫ.

Thus eW/ℏ → 0 rapidly as ℏ → 0, hence (2.28). The integral (2.27) can then be
approximated by replacing f(x, ℏ) by its value at x = p, ℏ = 0, and replacing W by
the second order (leading) term in its Taylor expansion,

W =
∑

i,j

1

2

∂2W

∂xi∂xj
xixj + higher order terms.

Letting A = ((∂2W/∂xi∂xj)(p))i,j , so that Hess(W )(p) = detA, we can make

a change of coordinates y =
√
Ax for a choice of square root of A so that the second

order part of W is now (y2
1 + · · ·+ y2

n)/2 and locally near p,

ω = dy1 ∧ · · · ∧ dyn/
√

Hess(W )(p).

Now take ∆+
p to be defined for ℏ = 1; we can then let ℏ → 0 in an angular

sector in the ℏ-plane containing 1. If we write yj = uj + ivj , then

ReW =
1

2
(u2

1 + · · ·+ u2
n − v2

1 − · · · − v2
n),

so the stable manifold for ReW is given by u1 = · · · = un = 0. Thus, in this
angular sector, we can approximate (2.27) by the standard Gaussian integral

f(p, 0)√
Hess(W )(p)

∫

Rn

e−(v21+···+v2n)/2ℏd(iv1) ∧ · · · ∧ d(ivn)

=
f(p, 0)√

Hess(W )(p)

√
(2πℏ)nin

= f(p, 0)
(−2πℏ)n/2√
Hess(W )(p)

.

This gives the desired asymptotic behaviour. �

2.2.3. The B-model semi-infinite variation of Hodge structure. We
first need to discuss the B-model moduli space on which the B-model semi-infinite
variation of Hodge structure lives. In the case of the mirror of Pn, we start with
(X̌,W0), with W0 = x0 + · · · + xn, X̌ = V (x0 · · ·xn − 1) ⊆ Cn+1. The B-model
moduli space is the universal unfolding of W0. In the context of complex manifolds,
the universal unfolding is a germ of a complex manifold 0 ∈ M, along with a
holomorphic function

W :M× X̌ → C,

such that:

• W |{0}×X̌ = W0.

• For any germ 0 ∈ Y of a complex space, and holomorphic function

W ′ : Y × X̌ → C
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such that W ′|{0}×X̌ = W0, there exists a commutative diagram

Y × X̌

��

η
//M× X̌

��

Y ϕ
//M

where ϕ : (0 ∈ Y ) → (0 ∈ M) is a map of germs whose induced map
on Zariski tangent spaces is unique, the vertical arrows are projections,
η|{0}×X̌ : {0} × X̌ → {0} × X̌ is the identity, and W ′ = W ◦ η.

In fact, a standard fact (see e.g., [109]) says that the universal unfolding of
W0, assuming W0 has isolated critical points, is a germ of 0 in the Milnor ring,

C[x±1 , . . . , x
±1
n ]/(∂W0/∂x1, . . . , ∂W0/∂xn),

thought of as an affine space. If f0, . . . , fn are elements of C[x±1
1 , . . . , x±1

n ] repre-
senting a basis for this vector space, giving coordinates t0, . . . , tn on a germ M of
the origin, then the equation for the universal unfolding W of W0 onM× X̌ is

W := W0 +

n∑

i=0

tifi.

For example, we might take as a basis fi = W i
0 , 0 ≤ i ≤ n. We leave it to the

reader to check that this is indeed a basis of the Milnor ring.
Ideally, we would like M to be the space on which the B-model semi-infinite

variation of Hodge structure lives. However, there is a problem which emerges when
n ≥ 2: when ti 6= 0 for i ≥ 2, W0 +

∑
tiW

i
0 has more critical points than W0 does.

For example, consider the case n = 2, and the perturbation

W = W0 + t2W
2
0 = W0(1 + t2W0)

of W0 for t2 small. Then W factors as

X̌
W0−→C

f−→C,

with f(x) = x(1 + t2x). Of course f is a 2 : 1 cover, branched where f ′(x) = 0, i.e.,
at x = −1/2t2. So the fibres of X̌ are disconnected in general, and W0 = −1/2t2
is a multiple fibre of W . This is drastically different behaviour than we wish, and
is known as wild behaviour. Clearly as t2 → 0, the extra critical points move out
to ∞, which is why we didn’t see this behaviour at t2 = 0. But we need to avoid
these sorts of potentials.

There are a number of different approaches to dealing with this problem. The
approach we shall take here is to consider t2, . . . , tn only as formal variables. For
example, we could take M = Spec C[t0, t1][t2, . . . , tn℄. More in keeping with the

discussion of the A-model, we will work directly with a moduli space M̃ similar to
the one defined in §2.1.4.

Definition 2.36. Define M̃ to be the ringed space (C,OfM) where C is viewed
as a complex manifold with coordinate t1, and sections of OfM over an open set
U ⊆ C consist of formal power series

∑
fi0i2···int

i0
0 t

i2
2 · · · tinn



76 2. THE A- AND B-MODELS

with fi0i2···in a holomorphic function on U . Let X̌ be the subspace of M̃ × Cn+1

defined by the equation

et1 = x0 · · ·xn,
with x0, . . . , xn coordinates on the Cn+1 factor. Setting

W0 = x0 + · · ·+ xn,

we can then define

(2.29) W = t0 +W0 +

n∑

i=2

tiW
i
0.

We denote by

π : X̌ → M̃
the projection.

One can check that this is indeed universal in a neighbourhood of each point of

M̃; the details of the particular choice of description ofW won’t be important for us.

We will be in particular interested in the point 0 ∈ M̃ where t0 = t1 = · · · = tn = 0.
We can then consider the subscheme Crit(W ) ⊆ X̌ of critical points of W . This

is defined by the ideal generated by ∂W/∂x0, . . . , ∂W/∂xn. Computing, one finds

∂W

∂xi
=
∂W0

∂xi

(
1 +

n∑

i=2

itiW
i−1
0

)
.

Since t2, . . . , tn are formal parameters, 1 +
∑n

i=2 itiW
i−1
0 is invertible, so the ideal

generated by the ∂W/∂xi’s is the same as the ideal generated by the ∂W0/∂xi’s.
Thus Crit(W ) is given by the locus x0 = · · · = xn = µ for µ ranging over the (n+1)-

st roots of et1 , by Example 2.33. So Crit(W ) is étale over M̃, and π∗OCrit(W ) is

a locally free sheaf of OfM-modules of rank n + 1. On M̃, one can find sections

p1, . . . , pn+1 : M̃ → Crit(W ).

On M̃ × C×, with coordinate ℏ on C×, we define a local system R of C-
vector spaces as follows. We note that a local system is only concerned about the

underlying topological space of M̃×C×, and has nothing to do with the structure
sheaf OfM. With this in mind, the fibre of R over (t1, ℏ) ∈ C× C× will be

Hn(π−1(t1),Re(W |π−1(t1)/ℏ)≪ 0; C).

Here W |π−1(t1) = x0 + · · ·+xn with x0 · · ·xn = et1 , as we are ignoring the variables
t0, t2, . . . , tn. This function has n+1 critical points. Thus we do not need to worry
about the dimension of this space jumping.

Let R = R ⊗C OfM×C× ; this is a locally free sheaf of rank n + 1 on M̃ × C×,

and carries a Gauss-Manin connection ∇GM whose flat sections are the sections of
R. We then have the dual locally free sheaf

R∨ = HomO fM×C×
(R,OfM×C×)

with the dual local system R∨ ⊆ R∨, again given by flat sections of a connection
∇GM .

Note that a section of R∨ on an open set U × V , with U ⊆ M̃, V ⊆ C× open
sets, can be given explicitly via differential forms

fΩ,
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where f is a holomorphic function on π−1(U)×V with f |π−1(u)×{v} being algebraic
for each u ∈ U, v ∈ V , and

Ω =
dx1 ∧ · · · ∧ dxn

x1 · · ·xn
.

The form fΩ defines a map R → OfM×C× over U × V by taking a section Ξ of R
over U × V to ∫

Ξ

eW/ℏfΩ ∈ OfM×C×
.

We write [fΩ] for the section of R∨ determined in this way.
Let us be more precise about what this means in the formal setting we are

working in. Using the expression for W given in (2.29), we write

eW/ℏ = e(x0+···+xn)/ℏg

where g is a formal power series in the variables t0, t2, . . . , tn, with each coefficient
appearing being an algebraic function in x0, . . . , xn and ℏ. Thus the integral of
each term in this expansion converges, being

∫

Ξ

e(x0+···+xn)/ℏhΩ

for h satisfying h|π−1(u)×{v} algebraic for each u ∈ U , v ∈ V . Indeed, the expo-

nential decay of e(x0+···+xn)/ℏ dominates the polynomial growth of h. Thus we see
that fΩ defines an element of R∨.

There is a standard technique to describe the Gauss-Manin connection at the
level of forms, which we sketch here. Given an n-form fΩ on π−1(U) × V , fΩ
represents a section of R∨. We now consider the total space X̌ × C× as a space
with the Landau-Ginzburg potential ℏ−1W . If in fact fΩ were closed with respect
to d + d(ℏ−1W )∧ on π−1(U) × V , then fΩ would in fact represent a flat section
of R∨. The Gauss-Manin connection measures the failure of (d+ d(ℏ−1W )∧)(fΩ)
to be zero on the total space by evaluating this (n+ 1)-form on tangent vectors X

on X̌ × C× lifted from M̃ × C×. In particular, if X is in fact the lift of a tangent

vector from M̃ to X̌ × C× which projects to zero in the C× direction, then

ι(X)(d+ d(ℏ−1W )∧)(fΩ) = (X(f) + ℏ−1X(W )f)Ω,

while

ι(ℏ∂ℏ)(d+ d(ℏ−1W )∧)(fΩ) = (ℏ∂ℏf − ℏ−1Wf)Ω.

From this, we get

(2.30) ∇GMX [fΩ] = [
(
X(f) + ℏ−1X(W )f

)
Ω]

and

(2.31) ∇GMℏ∂ℏ
[fΩ] = [

(
ℏ∂ℏf − ℏ−1Wf

)
Ω].

One checks easily that these classes only depend on the class of fΩ and not on fΩ
itself or the lift X .

Definition 2.37. We define the B-model semi-infinite variation of Hodge struc-

ture on M̃ as follows. The bundle E is theOfM{ℏ}-module such that Γ(U, E) consists
of sections of R∨ over open sets of the form

U × {ℏ | |ℏ| < ǫ}
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given by forms fΩ with f holomorphic for |ℏ| < ǫ, including at ℏ = 0, and f
algebraic when restricted to π−1(u)× {ℏ}. The connection

∇ : E → Ω1
fM ⊗ ℏ−1E

is given by the Gauss-Manin connection on R∨, namely for a section s of E ,
∇Xs = ∇GMX s,

where X on the right-hand side is the lift of X to M̃ × C× which projects to zero
in the C× direction.

Alternatively, one can think of this as follows: we can extend the locally free

sheaf R∨ from M̃×C× to M̃×C, by dictating that a section [fΩ] of R∨ extends if
f extends as a holomorphic function across ℏ = 0. Two forms f1Ω and f2Ω define
the same section if for each ℏ in a neighbourhood of 0 ∈ C, (f1−f2)Ω is in the image
of ℏd+ dW∧; note for ℏ 6= 0 this is the same as being in the image of d+ ℏ−1dW∧.
It then follows from [102] that this extension of R∨ is in fact a vector bundle.
The fibre of R∨ over (u, 0) as a vector bundle is then Hn(π−1(u), (Ωnπ−1(u), dW∧)).
Sections of this vector bundle near ℏ = 0 give sections of E . In particular, E/ℏE is
a rank n+ 1 vector bundle with fibres being Hn(π−1(u), (Ωnπ−1(u), dW∧)).

Let

(−) : M̃ × C× → M̃× C×

denote the map

(u, ℏ) 7→ (u,−ℏ).

Then the pairing (2.25) induces a pairing

(·, ·) : (−)∗R∨ ×R∨ → OfM×C×
.

This gives a pairing (·, ·)E on E defined by

(s1, s2)E(ℏ) =
(−1)n(n+1)/2

(2πiℏ)n
((−)∗s1, s2).

For the grading operator, we begin by taking a vector field E on M̃ given by

E = (n+ 1)∂t1 +
n∑

i=0

(1 − i)ti∂ti .

We then define the grading operator by

(2.32) Gr(s) = ∇GMℏ∂ℏ+E(s)− s.
�

Proposition 2.38. The data E, ∇ and (·, ·)E yield a semi-infinite variation of
Hodge structure. The operator Gr is a grading operator.

Proof. First note that ∇ indeed takes E to Ω1
fM ⊗ ℏ−1E , by (2.30). Further-

more, we can describe the pairing (·, ·)E using the basis {∆±p } of Lefschetz thimbles.
By (2.26), we can write

(2.33) (s1, s2)E =
(−1)n(n+1)/2

(2πiℏ)n

∑

p

(∫

∆−p

s1(−ℏ)

)(∫

∆+
p

s2(ℏ)

)
.
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Thus by the stationary phase approximation (Proposition 2.35), we have

(
[fΩ], [gΩ]

)
E

= ±
∑

p

f(p, 0)g(p, 0)

Hess(W (p))
+O(ℏ)

∈ OfM{ℏ}.
So (·, ·)E takes values in OfM{ℏ}, as needed.

As the Gauss-Manin connection is by definition flat, ∇ is flat. Axioms (1)-(3)
of Definition 2.20 are obviously satisfied by the definitions. To see (4), we proceed

as follows. Recall that we have Crit(W ) ⊆ X̌ and sections p : M̃ → Crit(W ) of the

projection π : Crit(W ) → M̃, giving a family of critical points. There are n + 1
such sections. For each p, choose a holomorphic function fp on X̌ , regular on fibres
of π, such that fp ◦ p′ = δpp′ , so that as functions on Crit(W ), {fp} form a basis of
sections for the vector bundle π∗OCrit(W ). Then

(
[fp′Ω], [fp′′Ω]

)
E

= ±
∑

p

fp′(p, 0)fp′′(p, 0)

Hess(W (p))
+O(ℏ)

= ± δp′p′′

HessW (p′)
+O(ℏ).

Now by construction, the forms fpΩ represent a basis for

Hn(π−1(u), (Ω•π−1(u), dW∧))

for each point u ∈ M̃, as the functions fp clearly form a basis for the Milnor ring
of W |π−1(u). Thus the classes [fpΩ] also give a local basis for the rank n+ 1 vector
bundle E/ℏE , as the fibres of this vector bundle are precisely

Hn(π−1(u), (Ω•π−1(u), dW∧)).
It is then clear that the non-degeneracy condition of Definition 2.20, (4), holds.

We next turn to the grading operator. First note that

(2.34) π∗(

n∑

i=0

xi∂xi) = (n+ 1)∂t1 ,

using et1 = x0 · · ·xn. Thus we can lift E to the vector field
n∑

i=0

xi∂xi +
n∑

i=0

(1− i)ti∂ti

on X̌ , and calculate

E(W ) =

(
n∑

i=0

xi∂xi +

n∑

i=0

(1 − i)ti∂ti

)
W0 +

n∑

i=0
i6=1

tiW
i
0




= W0 +

n∑

i=0
i6=1

(i+ (1− i))tiW i
0

= W.

In fact, it is easy to see that E is the only vector field on M̃ which has a lift to X̌
which preserves W .
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Applying Gr to a section [fΩ] of E , using (2.30), (2.31), and E(W ) = W , we
see that

Gr([fΩ]) = [(ℏ∂ℏf + E(f)− f)Ω].

So we see that indeed Gr(E) ⊆ E . Now axiom (5) of Definition 2.20 is obvious, (6)
follows from the flatness of ∇GM , and (7) is checked as follows. By (2.33), we have

(ℏ∂ℏ + E)(s1, s2)E = (ℏ∂ℏ + E)

(
(−1)n(n+1)/2

(2πiℏ)n

∑

p

(∫

∆−p

s1(−ℏ)

)(∫

∆+
p

s2(ℏ)

))

= − n(s1, s2)E

+
(−1)n(n+1)/2

(2πiℏ)n

(∫

∆−p

(∇GMℏ∂ℏ+Es1)(−ℏ)

)(∫

∆+
p

s2(ℏ)

)

+
(−1)n(n+1)/2

(2πiℏ)n

(∫

∆−p

s1(−ℏ)

)(∫

∆+
p

∇GMℏ∂ℏ+Es2(ℏ)

)

= − n(s1, s2)E

+
(−1)n(n+1)/2

(2πiℏ)n

(∫

∆−p

(Gr(s1) + s1)(−ℏ)

)(∫

∆+
p

s2(ℏ)

)

+
(−1)n(n+1)/2

(2πiℏ)n

(∫

∆−p

s1(−ℏ)

)(∫

∆+
p

(Gr(s2) + s2)(ℏ)

)

= (Gr(s1), s2)E + (s1,Gr(s2))E + (2− n)(s1, s2)E .

Thus Gr is a grading operator with D = 2− dimC X . �

2.2.4. The B-model Frobenius manifold. We now have the B-model semi-
infinite variation of Hodge structure E ,∇, (·, ·)E with a grading operator Gr on M̃
from the previous section. According to §2.1.7, with an appropriate additional

choice of certain data, we will obtain a Frobenius manifold structure on M̃. In order
for this to coincide with the A-model Frobenius manifold arising from X = Pn, this
data cannot be chosen arbitrarily. However, in order to specify this data, we need
to examine the nature of the local system R in more detail. In particular, we would
like to understand the monodromy of this local system. As R is a local system

on M̃ × C×, and M̃ is simply connected, the only interesting monodromy comes

from a loop in the C× factor, so we can in fact restrict to the point 0 ∈ M̃ and
consider the local system on C× whose fibres are Hn

(
X̌,ReW0/ℏ ≪ 0; C

)
, with

X̌ = V (x0 · · ·xn − 1) and W0 = x0 + · · ·+ xn.

Proposition 2.39. Let X̌ = V (x0 · · ·xn − 1) ⊆ Spec C[x0, . . . , xn], and W0 =
x0 + · · ·+ xn. Then for any local section Ξ of the local system R on C× with fibre
over ℏ ∈ C× given by Hn(X̌,ReW0/ℏ≪ 0; C), the integral

ψ =

∫

Ξ

eW0/ℏΩ

satisfies the ordinary differential equation

(2.35)

(
− 1

n+ 1
ℏ∂ℏ

)n+1

ψ = ℏ−(n+1)ψ.
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Proof. Let ωi = x0 · · ·xi−1Ω. Let Ωj = ι(xj∂xj )Ω. Then applying d +

ℏ−1dW0∧ to x0 · · ·xi−1Ωj , keeping in mind that x0 · · ·xn = 1, we obtain the n-
form (

(xj∂xj − x0∂x0)(x0 · · ·xi−1) + ℏ−1(xj − x0)(x0 · · ·xi−1)
)
Ω,

so in particular,
(
(xj∂xj − xi∂xi)(x0 · · ·xi−1) + ℏ−1(xj − xi)(x0 · · ·xi−1)

)
Ω

is in the image of d+ ℏ−1dW0∧. So in Hn(X̌, (Ω•
X̌
, d+ ℏ−1dW0∧)), we have

[(xj∂xj )(x0 · · ·xi−1)Ω] = −[ℏ−1(xj − xi)ωi].
Summing over all j, 0 ≤ j ≤ n, we obtain the equality

[iωi] = −[ℏ−1(W0 − (n+ 1)xi)ωi].

As ∇GMℏ∂ℏ
[ωi] = −[ℏ−1W0ωi] by (2.31), we obtain

1

n+ 1
(−∇GMℏ∂ℏ

+ i)[ωi] = ℏ−1[ωi+1].

From this it follows inductively that

1

(n+ 1)i
(−∇GMℏ∂ℏ

)i[ω0] = ℏ−i[ωi].

Since ωn+1 = ω0 as x0 · · ·xn = 1, we obtain

1

(n+ 1)n+1
(−∇GMℏ∂ℏ

)n+1[ω0] = ℏ−(n+1)[ω0].

Thus the integral of ω0 over Ξ satisfies the equation (2.35). �

Note that (2.35) is an (n+1)-st order ODE, so there will be n+1 independent
solutions. We can write down a fundamental system of solutions quite easily.

Proposition 2.40. Working over the ring C[α]/(αn+1), write

ℏ−(n+1)α = exp(−(n+ 1)α log ℏ) =

n∑

i=0

(−(n+ 1))i logi ℏ

i!
αi.

Then the coefficients of 1, α, . . . , αn in the expression

(2.36) ξ(ℏ, α) = ℏ−(n+1)α
∞∑

d=0

ℏ−(n+1)d
d∏

i=1

1

(α+ i)n+1

form a fundamental system of solutions to (2.35).

Proof. The coefficients of αi, i = 0, . . . , n, are linearly independent, as can
be seen by noting that the coefficient of αi is of the shape

f logi ℏ + lower order terms in log ℏ,

with f 6= 0. To see that the coefficients are in fact solutions, note that for a function
ϕ on C× with values in C[α]/(αn+1),

− 1

n+ 1
ℏ∂ℏ(ℏ−(n+1)αϕ) = αℏ−(n+1)αϕ− 1

n+ 1
ℏ−(n+1)αℏ∂ℏϕ.

Thus (2.35) is satisfied by ψ = ℏ−(n+1)αϕ if ϕ satisfies the equation
(
α− 1

n+ 1
ℏ∂ℏ

)n+1

ϕ = ℏ−(n+1)ϕ.



82 2. THE A- AND B-MODELS

Taking

ϕ =
∞∑

d=0

ℏ−(n+1)d
d∏

i=1

1

(α+ i)n+1
,

one sees that

(α− 1

n+ 1
ℏ∂ℏ)ϕ =

∞∑

d=0

(α+ d)ℏ−(n+1)d
d∏

i=1

1

(α + i)n+1
,

so

(α− 1

n+ 1
ℏ∂ℏ)n+1ϕ =

∞∑

d=1

ℏ−(n+1)d
d−1∏

i=1

1

(α+ i)n+1
,

(noting that for d = 0, (α+ d)n+1 = 0) while

ℏ−(n+1)ϕ =

∞∑

d=0

ℏ−(n+1)(d+1)
d∏

i=1

1

(α+ i)n+1
.

Comparing coefficients of ℏ−(n+1)d, these agree. �

A consequence of this proposition is the following:

Lemma 2.41. If Ξ0, . . . ,Ξn is a local basis of sections of R, the integrals∫
Ξi
eW0/ℏΩ, i = 0, . . . , n, form a fundamental system of solutions of (2.35).

Proof. Recall the extension of R∨ across ℏ = 0 as described in Definition
2.37. As 1,W0, . . . ,W

n
0 span the Jacobian ring of W0, the sections of the vector

bundle R∨|{0}×C (where 0 ∈ M̃ is the origin) given by the classes [W i
0Ω], 0 ≤ i ≤ n,

yield a basis for the fibre of R∨|{0}×C at ℏ = 0, and hence yield a basis of sections
of R∨|{0}×C in some neighbourhood V = {ℏ ∈ C | |ℏ| < ǫ}. In particular, since
(2.24) is a perfect pairing, the (n+ 1)× (n+ 1) matrix

(∫

Ξi

W j
0 e
W0/ℏ

)

0≤i,j≤n

has rank n+ 1 at every point of V . Now

(2.37)

(
−ℏ2 ∂

∂ℏ

)j ∫

Ξi

eW0/ℏΩ =

∫

Ξi

W j
0 e
W0/ℏΩ.

Thus the Wronskian of the system of solutions
∫

Ξ0

eW0/ℏΩ, . . . ,

∫

Ξn

eW0/ℏΩ

of (2.35) is non-vanishing on V , and hence these integrals give a fundamental system
of solutions. �

In particular, one can choose a local basis Ξ0, . . . ,Ξn of R such that
∫
Ξi
eW0/ℏΩ

in fact coincides with the coefficient of αi in ξ, i.e.,

(2.38)

n∑

i=0

αi
∫

Ξi

eW0/ℏΩ = ℏ−(n+1)α
∞∑

d=0

ℏ−(n+1)d
d∏

i=1

1

(α+ i)n+1
mod αn+1.

From now on, we will denote by Ξ0, . . . ,Ξn this particular basis of R.
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Remark 2.42. We have seen several choices of bases of cycles. In general,
we have the cycles ∆+

p , where p runs over critical points of W0. This basis has
little to do with the basis Ξ0, . . . ,Ξn. On the other hand, in dimension two, we
explicitly described a basis of H2(X̌,ReW0/ℏ ≪ 0; C) in Example 2.34. Denoting
by Ξ′0,Ξ

′
1,Ξ
′
2 the basis described there, in fact the relationship between the two

bases can be understood via direct evaluation of the integrals. It is a somewhat
enjoyable exercise to evaluate the oscillatory integrals explicitly for Ξ′i. One finds
the following relationship:

Ξ0 =
1

(2πi)2
Ξ′0

Ξ1 =
1

2πi
Ξ′1 +

3γ

(2πi)2
Ξ′0

Ξ2 = Ξ′2 +
3γ

2πi
Ξ′1 −

1

(2πi)2

(
π2

4
+

27

2
γ2

)
Ξ′0.

Here

γ = lim
n→∞

(
− log(n) +

n∑

k=1

1

k

)

is Euler’s constant. The integral over Ξ′0 is a triviality, coming from a residue cal-
culation. The integral over Ξ′1 is more complicated, involving exponential integrals,
and the third integral is a real challenge. However, one may apply results of Iritani
[61] to describe this third integral in terms of certain characteristic classes of the
structure sheaf of P2. �

Now Ξ0, . . . ,Ξn are defined as local sections of the local system R on C×.
As we pass around a counterclockwise loop in the ℏ-plane, following the sections
Ξ0, . . . ,Ξn, when we get back to the beginning of the loop, we will find that the Ξi’s
will have been transformed into some linear combination of the Ξi’s. This linear
transformation is the monodromy transformation for the local system R. To see
exactly what this transformation is, we can study the behaviour of the integrals

ξi =

∫

Ξi

eW0/ℏΩ.

Since eW0/ℏΩ of course gives a single-valued section of R∨, the multi-valuedness of
the integral must arise precisely from the monodromy in the Ξi.

This multi-valuedness is as follows. Note that ξ =
∑n
i=0 α

iξi = ℏ−(n+1)αϕ for
some ϕ single-valued. As we follow a counterclockwise loop in the C× plane around
the origin, ℏ−(n+1)α = exp(−(n+ 1)α log ℏ) is replaced by

exp(−(n+ 1)α(log ℏ + 2πi)) = ℏ−(n+1)α exp(−(n+ 1)2πiα).

From this, one sees that passing around this loop, ξ is replaced by ξe−(n+1)2πiα and
ξk is transformed as

ξk 7→
k∑

j=0

(−(n+ 1)2πi)k−j

(k − j)! ξj .

This means that the cycles Ξk are transformed in precisely the same way:

Ξk 7→
k∑

j=0

(−(n+ 1)2πi)k−j

(k − j)! Ξj .
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To describe the dual monodromy on R∨, it is convenient to write the dual
basis to Ξ0, . . . ,Ξn as 1 = α0, α1, . . . , αn ∈ C[α]/(αn+1). This allows us to write,
for example, the section [fΩ] of R∨ in terms of this basis as

[fΩ] =

n∑

i=0

αi
∫

Ξi

feW/ℏΩ.

The effect of monodromy on this dual basis is then given by the transpose
inverse transformation, which is easily seen to be

αk 7→ exp((n+ 1)2πiα)αk.

In particular, ℏ−(n+1)ααk, k = 0, . . . , n, is a single-valued, globally defined section of
R∨, as the multi-valuedness of αk is cancelled by the multi-valuedness of ℏ−(n+1)α.

We now pass to the entire moduli space M̃. The local sections Ξ0, . . . ,Ξn
now extend to multi-valued sections of the local system R on all of M̃ × C×, and
similarly the dual basis 1, α, . . . , αn, giving globally defined sections ℏ−(n+1)ααk of

R∨ on M̃×C×. So we can view ℏ−(n+1)ααk as a section of E ⊗O fM{ℏ}
OfM{ℏ, ℏ−1}.

Furthermore, since αk is flat, ∇(ℏ−(n+1)ααk) = 0, and hence

{ℏ−(n+1)ααi | i = 0, . . . , n}
form a basis for H as a free C{ℏ, ℏ−1}-module.

We can now be precise about the data we shall take to determine the Frobenius

manifold structure on M̃:

• We take H− to be the O(P1 \ {0})-submodule of H generated by

{(ℏα)kℏ−1ℏ−(n+1)α | 0 ≤ k ≤ n}.
• We take Ω0 to be the flat section of E ⊗O fM{ℏ}

OfM{ℏ, ℏ−1} whose value

at 0 ∈ M̃ is [Ω].

Proposition 2.43. (1) H = E0 ⊕H−.
(2) H− is isotropic with respect to the symplectic form Ω defined in (2.15).
(3) Gr preserves H−, the flat section Ω0 ∈ ℏH− represents an eigenvector of

Gr0 with eigenvalue −1, and the corresponding section s′0 = τ(Ω0 ⊗ 1) of

E yields miniversality in a neighbourhood of 0 ∈ M̃.
As a consequence, by Theorem 2.26, we obtain a Frobenius manifold structure

in a neighbourhood of 0 ∈ M̃ with a flat identity and Euler vector field E.

Proof. E0 is given by sections of R∨|{0}×C (using the extension of R∨ across
ℏ = 0 given in Definition 2.37) in a neighbourhood of ℏ = 0. As observed in the
proof of Lemma 2.41, there is a basis of such sections given by [W i

0Ω], 0 ≤ i ≤ n,
and hence E0 is generated as a C{ℏ}-module by the these classes. Now, by (2.37),
we can write

n∑

j=0

αj
∫

Ξj

W i
0e
W0/ℏΩ =

(
−ℏ2 ∂

∂ℏ

)i



n∑

j=0

αj
∫

Ξj

eW0/ℏΩ




=

(
−ℏ2 ∂

∂ℏ

)i
(ξ).
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From the explicit formula (2.36) for ξ, the behaviour of (ℏ2∂ℏ)iξ is

(αℏ)iℏ−(n+1)α + terms in H−.
So clearly H = E0 ⊕H−, and (1) holds.

Next, note that as αi is a flat section of R∨, ((−)∗αi, αj) is constant. Further-
more, as ℏ−(n+1)ααi is a single-valued section of R∨,

(
(−)∗(ℏ−(n+1)ααi), ℏ−(n+1)ααj

)

is single-valued. On the other hand, expanding ℏ−(n+1)α in terms of powers of log ℏ,
one obtains a formula for

(
(−)∗(ℏ−(n+1)ααi), ℏ−(n+1)ααj

)
whose ℏ-dependence is

as a polynomial in log ℏ. Thus, in order for it to be single valued, it must in fact
be independent of ℏ. Thus

0 = ℏ∂ℏ

(
(−)∗(ℏ−(n+1)ααi), ℏ−(n+1)ααj

)

=
(
− (−)∗((n+ 1)ℏ−(n+1)ααi+1), ℏ−(n+1)ααj

)

+
(
(−)∗(ℏ−(n+1)ααi),−(n+ 1)ℏ−(n+1)ααj+1

)
.

So in fact

(2.39)
(
(−)∗(ℏ−(n+1)ααi+1), ℏ−(n+1)ααj

)
= −

(
(−)∗(ℏ−(n+1)ααi), ℏ−(n+1)ααj+1

)
.

From this we conclude that

(2.40) (ℏ−(n+1)ααi, ℏ−(n+1)ααj)E =

{
0 i+ j > n,

(Constant) · ℏ−n i+ j ≤ n.
So to prove H− is isotropic, we just note that for k, ℓ ≥ 1,

Ω
(
(ℏα)iℏ−(n+1)α−k, (ℏα)jℏ−(n+1)α−ℓ

)

= Resℏ=0

(
(ℏα)iℏ−(n+1)α−k, (ℏα)jℏ−(n+1)α−ℓ

)
E
dℏ

=

{
0 i+ j > n

Resℏ=0Constant · ℏi+j−k−ℓ−ndℏ i+ j ≤ n
= 0.

For (3), note that for m ≥ 1,

Gr((ℏα)kℏ−(n+1)αℏ−m) = ∇GMℏ∂ℏ+E(ℏk−mαkℏ−(n+1)α)− (ℏα)kℏ−(n+1)αℏ−m

= (k −m− (n+ 1)α− 1)(ℏα)kℏ−(n+1)αℏ−m

∈ H−,
so Gr preserves H−. We see also that Ω0 ∈ ℏH−, as ξ, which represents the flat
section Ω0, takes the form ξ = ℏ−(n+1)α(1 +O(ℏ−(n+1)d)). In addition,

(2.41) Gr0
(
(ℏα)kℏ−(n+1)α

)
= (k − 1)(ℏα)kℏ−(n+1)α,

so [Ω0] is an eigenvector of Gr0 of eigenvalue −1.
Finally, we need to show minversality. In particular, let s′0 = τ([Ω0] ⊗ 1). By

definition, s′0 is obtained by writing the constant section Ω0 of HfM (whose value

at 0 ∈ M̃ is given by [Ω]) as a sum s′0 + s′′0 , where s′0 is a section of E and s′′0
is a section of H

−,fM. In other words, s′0 will be represented by some fΩ, with

f a holomorphic function on X̌ × {|ℏ| < ǫ} and regular on fibres of X̌ . Since
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Ω0 = ℏ−(n+1)α mod H−, and we need [fΩ] ≡ Ω0 mod H−, the requirement on
fΩ is that

[fΩ] = ℏ−(n+1)α
n∑

i=0

ϕi(t, ℏ
−1)(αℏ)i

where

ϕi(t, ℏ
−1) = δ0,i +

∞∑

j=1

ϕi,j(t)ℏ
−j .

Here, we have written t = (t0, . . . , tn). Furthermore, as [Ω] ∈ E0, in fact s′0 = [Ω] at

0 ∈ M̃, so we can assume that f |t=0 ≡ 1. These two conditions uniquely determine
the class represented by fΩ.

Now once s′0 = [fΩ] is given, we check miniversality at 0, by computing using
(2.30) and (2.34) that

ℏ∇∂/∂ti [fΩ] =

{
[(ℏ(∂f/∂ti) + fW i

0)Ω] i 6= 1

[(ℏ(∂f/∂t1) + f
n+1 (W0 +

∑n
i=2 itiW

i
0))Ω] i = 1

So in E/ℏE at 0 ∈ M̃, this is just [W i
0Ω] if i 6= 1 and 1

n+1 [W0Ω] if i = 1. We

know that [W i
0Ω], 0 ≤ i ≤ n, form a basis for E/ℏE at 0 ∈ M̃ as W i

0 , 0 ≤ i ≤ n,

form a basis for the Milnor ring of W0. So we have miniversality at 0 ∈ M̃, hence

miniversality in a neighbourhood of 0 ∈ M̃. �

2.2.5. Mirror symmetry for Pn. We can now, at last, state mirror symme-
try for X = Pn. To summarize, we now have two sets of data, the A-model data
and the B-model data. The A-model data consists of a semi-infinite variation of
Hodge structure EA,∇A, (·, ·)EA on M̃A, with an opposite subspace HA− ⊆ HA at

0 ∈ M̃A and an element ΩA0 ∈ ℏHA−. This data comes from quantum cohomology of
Pn. The B-model data consists of exactly the same sort of data, this time labelled

with B’s, arising from the construction of the previous two sections on M̃B.
In particular, we have

ℏHA−/HA− ∼= H∗(X,C) = C[T1]/(T
n+1
1 ),

the latter equality as a ring with the classical cup product; of course Ti = T i1, with
T1 the generator of H2(X,C). Also,

ℏHB−/HB− ∼= C[α]/(αn+1),

with αi being identified with ℏ−(n+1)α(ℏα)i. There is then an obvious choice of
isomorphism

ℏHA−/HA− ∼=ℏHB−/HB−
T i1 7→ℏ−(n+1)α(ℏα)i.

(2.42)

From this data we obtain Barannikov’s period maps (2.18) ΨA and ΨB, hence maps
of germs (2.19)

ψA : (M̃A, 0)→ ℏHA−/HA−
and

ψB : (M̃B, 0)→ ℏHB−/HB−
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which are local isomorphisms by miniversality near 0 ∈ M̃. Using the identification
(2.42) of ℏHA−/HA− and ℏHB−/HB−, we obtain the mirror map

m : (M̃A, 0)→ (M̃B, 0).

Theorem 2.44 (Mirror symmetry for Pn). m identifies the A- and B-model
semi-infinite variations of Hodge structure. More specifically, the identification
(2.42) yields isomorphisms

EA τ
−1
A−→(ℏHA−/HA−)⊗C OfM{ℏ} ∼= (ℏHB−/HB−)⊗C OfM{ℏ}

τB−→EB

which identifies the connections, the inner product, and the gradings. Furthermore,
the opposite subspaces HA− and HB− and the elements ΩA0 and ΩB0 are identified
under these isomorphisms.

We will not give the proof here. This is proved by Barannikov in [4], though not
precisely in these words. He shows an isomorphism of the corresponding Frobenius
manifolds, but the data of the semi-infinite variation of Hodge structure is recov-
erable from the Frobenius manifold structure. The basic idea in the proof is that
the Frobenius manifold for the quantum cohomology of Pn is semi-simple and as a

consequence is completely determined by its behaviour at one point, say 0 ∈ M̃A.

One finds the same structure on M̃B at 0, and hence these two Frobenius manifolds
coincide in a neighbourhood of 0.

This statement is rather abstract, and for the purposes of Chapter 5, it is
convenient to rewrite this statement in a much more down-to-earth form.

Proposition 2.45. Theorem 2.44 is equivalent to the following statement:

There is a neighbourhood U of 0 ∈ M̃B and a section s of EB over U defined by
a form fΩ on π−1(U)×{|ℏ| < ǫ} with f a holomorphic function which is algebraic
on fibres of π and f |π−1(0)×C ≡ 1, satisfying the following conditions:

(1) If we write

s(t, ℏ) =

n∑

i=0

αi
∫

Ξi

eW/ℏfΩ,

then

s(t, ℏ) = ℏ−(n+1)α
n∑

i=0

ϕi(t, ℏ
−1)(αℏ)i

for functions ϕi satisfying

ϕi(t, ℏ
−1) = δ0,i +

∞∑

j=1

ϕi,j(t)ℏ
−j

for 0 ≤ i ≤ n. If we set

yi(t) = ϕi,1(t), 0 ≤ i ≤ n,

y0, . . . , yn form a system of coordinates on M̃B in a neighbourhood of 0,
which are called flat coordinates.

(2) If we write the Givental J-function as

J(y0, . . . , yn, ℏ
−1) =

n∑

i=0

Ji(y0, . . . , yn, ℏ
−1)Ti,
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then in the C-vector space C[y0, . . . , yn, ℏ−1℄,
(2.43) Ji = ϕi.

(3) Under the map M̃A → M̃B given by yi 7→ yi, the Euler vector fields EA
and EB are identified.

(4) ∫

Pn

Ti ∪ Tj = (ℏ−(n+1)α(ℏα)i, ℏ−(n+1)α(ℏα)j)EB

∣∣
ℏ=∞

.

Proof. First suppose that Theorem 2.44 holds. We already saw in the proof
of Proposition 2.43, (3), that s′0 = τ(Ω0 ⊗ 1) is in fact given precisely by the

description of the section s in (1). In particular, the map ψB : (M̃B, 0)→ ℏHB−/HB−
is given by ψB(t) = ℏ(s(t, ℏ−1) − ℏ−(n+1)α) mod HB−. Thus in terms of the basis

{ℏ−(n+1)α(ℏα)i} of ℏHB−/HB−, we see that

ψB(t) =

n∑

i=0

ϕi,1(t)ℏ
−(n+1)α(ℏα)i.

This shows (1). On the other hand, from (2.22),

ψA(y0, . . . , yn) =

n∑

i=0

yiTi.

Thus the mirror map m : M̃A → M̃B is just given by yi 7→ yi. By Example 2.27,
τA([T0]) = JPn , and as τB([Ω0]) = s, we obtain (2.43). In addition, (3) is clear since
the Euler vector fields coincide under the mirror map. Furthermore, by Proposition
2.24 and Example 2.27, the left- and right-hand sides of the equality in (4) are the
pairings on ℏHA−/HA− and ℏHB−/HB− induced by (·, ·)EA and (·, ·)EB respectively, so
they must agree under the identification (2.42).

For the converse, suppose we are given fΩ giving a section of EB satisfying all
the given properties. The map yi 7→ yi defines the mirror map

m : (M̃A, 0)→ (M̃B, 0).

As observed in Remark 2.29, JPn completely determines J, hence the embedding

J : EA →HAfM,

and similarly, by miniversality of the section s of EB defined by fΩ, s determines
the embedding

EB →HBfM.
The equality (2.43) then guarantees that after identifying

HAfM = (ℏHA−/HA−)⊗C OfM{ℏ, ℏ−1}
HBfM = (ℏHB−/HB−)⊗C OfM{ℏ, ℏ

−1}

using (2.42), the subbundles EA ⊆ HAfM and EB ⊆ HBfM are identified. By condition

(4), (·, ·)EA and (·, ·)EB are identified. Next, [ΩA0 ] = T0 and [ΩB0 ] = ℏ−(n+1)α and
HA−, HB− are clearly identified under (2.42). Finally, by (3) and Proposition 2.24,
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(3), in order to show that GrA and GrB coincide, it is enough to show that GrA0
and GrB0 coincide. But

GrA0 (Ti) = GrA(Ti) mod HA−
= GrE(Ti) mod HA−

=

(
deg Ti

2
− 1

)
Ti

= (i− 1)Ti

while by (2.41),

GrB0 (ℏ−(n+1)α(αℏ)i) = (i− 1)ℏ−(n+1)α(αℏ)i,

so GrA0 and GrB0 coincide. �

2.3. References and further reading

The discussion of Gromov-Witten invariants and quantum cohomology owes a
great deal to the exposition by Fulton and Pandharipande [28]. Another useful
source is the book of Cox and Katz [18]. For a great deal of information about
Frobenius manifolds, see Manin’s book, [76]. The expositions of Coates-Iritani-
Tseng [17] and Iritani [61] were immensely useful for the discussion of the quantum
differential equation and semi-infinite variations of Hodge structure.

For the B-model, I have mainly relied on Barannikov’s paper [4], with help
from Iritani [61] and Douai-Sabbah [20], [21]. For an important alternative point
of view for the B-model, see Sabbah’s book [103]. For a more general discussion of
some of the structures involved in semi-infinite variations of Hodge structures, see
the article of Katzarkov, Kontsevich and Pantev [67].



CHAPTER 3

Log geometry

Log geometry was introduced by Illusie and Fontaine [59] and K. Kato [65].
The origins of log geometry, and in particular the term log, come from logarithmic
differentials.

Suppose, for example, one wishes to study an open variety, say a non-singular
quasi-projective variety X . If X is contained in X, a projective variety with D =
X \ X normal crossings1, then Ωq

X
(logD) is defined to be the subsheaf of i∗Ω

q
X

(where i : X →֒ X is the inclusion) locally generated by

dx1

x1
, . . . ,

dxp
xp

, dxp+1, . . . , dxn,

if locally D is given by x1 · · ·xp = 0. Of course dxi

xi
= d log(xi), hence the term

logarithmic.
The initial importance of these sheaves was illustrated by Deligne’s construction

of a mixed Hodge structure on X . In particular, the exterior derivative takes
logarithmic forms to logarithmic forms, and the complex Ω•

X
(logD) with exterior

derivative as differential in fact computes the cohomology of X : we have

Hq(X,Ω•
X

(logD)) ∼= Hq(X,C).

As in Chapter 2, Hq denotes hypercohomology. This is an important step in putting
a mixed Hodge structure on Hq(X,C).

Another important application of the sheaf of log differentials came with Steen-
brink’s construction of the limiting mixed Hodge structure for a normal crossings
degeneration. One considers a flat family f : X → S, where S is a non-singular
one-dimensional scheme and for s ∈ S, Xs is non-singular except for a closed
point 0 ∈ S. Furthermore, f is always given in suitable local coordinate charts
as (x1, . . . , xn) 7→ x1 · · ·xp for some p ≤ n. One then has the sheaf of relative log
q-forms,

ΩqX/S(logX0) := ΩqX (logX0)/(f
∗Ω1

S(log 0) ∧ Ωq−1
X (logX0)).

In particular, Ω1
X/S(logX0) is locally generated by

d log x1, . . . , d log xp, dxp+1, . . . , dxn

modulo the relation d log x1+· · ·+d log xp = 0. Restricting ΩqX/S(logX0) to X0 gives

a sheaf we will write, for the moment, as Ωq
X †0

to distinguish it from the ordinary

sheaf of differentials ΩqX0
. Now one can check easily that ΩqX/S(logX0) is locally

free, and hence so is Ωq
X †0

, whereas ΩqX0
is not locally free. The exterior derivative

1A normal crossings divisor D is a divisor such that there are coordinates x1, . . . , xn on X

in a neighbourhood of any point of D such that D is given by x1 · · · xp = 0 for some p ≤ n.
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still makes sense, either on ΩqX/S(logX0) or on Ωq
X †0

. If f is proper, one can show

(see [107]) that Rpf∗Ω
q
X/S(logX0) is locally free. Away from X0, ΩqX/S(logX0)

is just the ordinary sheaf of q-forms, so away from 0, Rpf∗Ω
q
X/S(logX0) is the

vector bundle whose fibre at s is just the Dolbeault cohomology groupHp(Xs,ΩqXs
).

The fibre at 0 coincides with Hp(X0,Ω
q

X †0
). These groups are part of the data

determining the limiting mixed Hodge structure associated to this degeneration.
The point here is that the sheaf of logarithmic differentials is much better

behaved than the ordinary sheaf of differentials, and somehow gives X0 some of the
properties of a smooth variety.

The concept of a log structure is an abstraction of this idea. Essentially, it is a
way of making certain singular schemes behave as if they were smooth; as Kazuya
Kato described it, a log structure is a magic powder (poudre magie) which makes
a singular variety smooth.

We will give the precise definition of a log structure in §3.2, and explore its
meaning. First, we give a brief review of toric geometry. For a more detailed but
pleasant introduction to the subject, see Fulton’s book [27].

3.1. A brief review of toric geometry

3.1.1. Monoids. We will work frequently with monoids and monoid rings.
For us, a monoid P is a set with an associative and commutative operation with
an identity element. The operation, P ×P → P , is usually, but not always, written
additively, in which case the identity is written as 0 ∈ P .

Given a field k, we define the monoid ring

k[P ] :=
⊕

p∈P

kzp,

where zp is a symbol, and multiplication is k-bilinear and is determined by

zp · zp′ = zp+p
′

.

A standard example is the additive monoid of natural numbers

N := {0, 1, 2, . . .}.
Then k[N] ∼= k[x] and k[Nr] ∼= k[x1, . . . , xr].

A homomorphism of monoids is a map f : P → Q between monoids such that
f(0) = 0 and f(p+ p′) = f(p) + f(p′).

We say a monoid P is finitely generated if there is a surjective homomorphism
Nr → P for some r.

The (Grothendieck) group of a monoid P is the group

P gp := {p− p′ | p, p′ ∈ P}/ ∼,
where p−p′ is a formal symbol and the equivalence relation is given by p−p′ ∼ q−q′
if p+q′ = q+p′. The group operations are given by (p−p′)+(q−q′) = (p+q)−(p′+q′)
and −(p− p′) = p′ − p.

A monoid P is integral if the canonical map P → P gp is injective.
One can divide monoids by congruence relations : given a monoid P , an equiv-

alence relation E ⊆ P ×P is a congruence relation if whenever (q1, q2) ∈ E, p ∈ P ,
we have (q1 +p, q2 +p) ∈ E. The set of equivalence classes of a congruence relation
is then easily seen to inherit a monoid structure from P . If Q ⊆ P is a submonoid,
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then Q induces a congruence relation on P by a ∼ b if a + q = b + r for some
q, r ∈ Q. Thus in this case the quotient P/Q makes sense as a monoid.

Given homomorphisms fi : Q→ Pi, i = 1, 2 of monoids, one can construct the
fibred coproduct P1 ⊕Q P2 as the quotient of P1 ⊕ P2 by the congruence relation
(p1, p2) ∼ (p′1, p

′
2) if there exists q, r ∈ Q with

p1 + f1(r) = p′1 + f1(q) and p2 + f2(q) = p′2 + f2(r).

For many other facts about monoids, see [88].

3.1.2. Toric varieties from fans. We fix in this section data

M := Zn, N := HomZ(M,Z)

MR := M ⊗Z R, NR := N ⊗Z R.

Let σ ⊆MR be a strictly convex rational polyhedral cone, as in Definition 1.7,
with dual cone σ∨ ⊆ NR given by

σ∨ = {n ∈ NR|〈n,m〉 ≥ 0 ∀m ∈ σ}
as in Example 1.31, (1). Then σ∨ ∩N is a monoid. It is a standard fact, known as
Gordan’s Lemma, which follows from Carathéodory’s theorem, that this monoid is
finitely generated. Thus k[σ∨ ∩N ] is a finitely generated algebra and

Xσ := Spec k[σ∨ ∩N ]

is the affine toric variety defined by the cone σ.

Examples 3.1. (1) Let σ be the first quadrant. Then σ∨ is also the first
quadrant, and σ∨ ∩ N is the monoid N2. The monoid ring k[σ∨ ∩ N ] is then a
polynomial ring k[x, y], so Xσ

∼= A2
k.

(2) Let σ be the cone in R2 generated by (1, 0) and (1, e) for e a positive
integer. Then σ∨ is generated by (0, 1) and (e,−1). Note that the monoid σ∨ ∩Z2

isn’t generated by (0, 1) and (e,−1), however, since (1, 0) cannot be expressed as
an integral linear combination of these two vectors. In fact, as a monoid, it is
generated by (0, 1), (e,−1) and (1, 0). These generators satisfy the obvious relation
(0, 1) + (e,−1) = e(1, 0). As a consequence, the monoid ring is isomorphic to
k[x, y, t]/(xy − te), where x = z(0,1), y = z(e,−1), and t = z(1,0). So Vσ is a surface
with an Ae−1 singularity.

Now let Σ be a fan in MR, as defined in Definition 1.7. Then, for each cone
σ ∈ Σ, we obtain an affine toric variety. Furthermore, if τ, σ ∈ Σ with τ a face of
σ, then σ∨ ⊆ τ∨, giving an inclusion of monoid rings. This in fact describes Xτ as
an open subset of Xσ. For σ1, σ2 ∈ Σ with τ = σ1 ∩ σ2, we can then glue together
Xσ1 and Xσ2 along the common open subset Xτ ⊆ Xσ1 and Xτ ⊆ Xσ2 . After
performing these gluings, we obtain the toric variety XΣ, a separated algebraic
variety over k.

Properties of the fan Σ are reflected in properties of the variety XΣ. For
example,

(1) XΣ is proper over Spec k if and only if Σ is a complete fan. (See Definition
1.7).

(2) XΣ is non-singular if and only if each cone σ ∈ Σ is standard, i.e., there
exists a basis e1, . . . , en of M such that σ is generated by e1, . . . , ep for
some p ≤ n.
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Example 3.2. Consider the fan Σ for P2 described in Example 1.14. There
are seven cones in the fan, 0, ρ0, ρ1, ρ2 and σ0,1, σ1,2, σ2,0 as depicted in Figure 14
of Chapter 1. The dual cones are

0∨ = NR

ρ∨0 = {(a, b)|a+ b ≤ 0}
ρ∨1 = {(a, b)|a ≥ 0}
ρ∨2 = {(a, b)|b ≥ 0}
σ∨0,1 = {(a, b)|a+ b ≤ 0, a ≥ 0}
σ∨1,2 = {(a, b)|a ≥ 0, b ≥ 0}
σ∨2,0 = {(a, b)|a+ b ≤ 0, b ≥ 0}.

Note that σ∨i,i+1 ∩ N ∼= N2 for each i (indices taken modulo 3), from which we

conclude that XΣ is covered by three copies of A2
k. To see XΣ is P2, we define

maps Xσi,i+1 → P2 which are compatible with the gluing maps. In particular, if P2

has homogeneous coordinates x0, x1, x2 and Ui is the standard affine subset with
xi 6= 0, then we identify Xσi,i+1 with Ui+2 via the identifications

k[σ∨0,1 ∩N ] = k[x0/x2, x1/x2], with z(0,−1) = x0/x2, z
(1,−1) = x1/x2,

k[σ∨1,2 ∩N ] = k[x1/x0, x2/x0], with z(1,0) = x1/x0, z
(0,1) = x2/x0,

k[σ∨2,0 ∩N ] = k[x2/x1, x0/x1], with z(−1,1) = x2/x1, z
(−1,0) = x0/x1.

One checks easily that these identifications are compatible with the inclusionsXρi ⊆
Xσi−1,i , Xσi,i+1 . For example, we can identify k[ρ∨1 ∩N ] with k[x1/x0, x2/x0, x0/x2]

with z(1,0) = x1/x0, z
(0,1) = x2/x0 and z(0,−1) = x0/x2. Then the obvious inclu-

sions

k[x0/x2, x1/x2] ⊆ k[x1/x0, x2/x0, x0/x2] ⊇ k[x1/x0, x2/x0]

coincide, under the above identifications, with

k[σ∨0,1 ∩N ] ⊆ k[ρ∨1 ∩N ] ⊇ k[σ∨1,2 ∩N ].

This shows that XΣ is isomorphic to P2. �

The construction of toric varieties from fans is functorial in the following sense.
Suppose that M1 and M2 are lattices, and we have a group homomorphism ϕ :
M1 → M2. If Σ1 is a fan in M1 ⊗ R and Σ2 is a fan in M2 ⊗ R, we say ϕ is a
map of fans if for every σ1 ∈ Σ1, there exists a σ2 ∈ Σ2 such that ϕ(σ1) ⊆ σ2.
This implies that the transpose map tϕ : N2 → N1 satisfies tϕ(σ∨2 ) ⊆ σ∨1 . Hence
tϕ induces a map k[σ∨2 ∩N2]→ k[σ∨1 ∩N1], hence a map Xσ1 → Xσ2 . These maps
are compatible for various choices of σ1, so they patch to give a morphism

ϕ : XΣ1 → XΣ2 .

This morphism is proper if the induced map ϕR : M1⊗Z R→M2⊗Z R satisfies
the condition that ϕ−1

R (|Σ2|) = |Σ1|.
This morphism is birational provided it induces an isomorphism on the affine

subsets corresponding to the cones 0 ∈ Σ1 and 0 ∈ Σ2; this only happens if ϕ :
M1 →M2 is an isomorphism. Thus ϕ is a proper birational morphism if and only
if ϕ is an isomorphism and Σ1 is a refinement of the fan Σ2.
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Example 3.3. Consider the cone σ ⊆MR
∼= Rn generated by a basis e1, . . . , en.

This gives an affine toric varietyXσ
∼= Ank . Now subdivide the cone σ by considering

the fan Σ given by

Σ = {τ | τ a proper face of σ} ∪ {τ + R≥0(e1 + · · ·+ en) | τ a proper face of σ}.
We have introduced one new ray in the fan, generated by e1 + · · · + en. We then
have a birational morphism XΣ → Xσ. As an exercise, show that this morphism is
the blow-up of Xσ at the origin.

The lattices M and N have the following interpretation in the context of toric
varieties. First, since a fan always contains the cone 0, and X0 = Spec k[N ] is
an algebraic torus, XΣ always contains an open subset isomorphic to an algebraic
torus. This subset is often referred to as the big torus in XΣ, or the big torus orbit.

In general, if L is a lattice, we use the notation

G(L) := Spec k[HomZ(L,Z)]

to denote the algebraic torus determined by L. The set of k-valued points of G(L)
is L⊗Z k×.

Now the torus G(M) acts on XΣ. This action G(M)×k XΣ → XΣ is given on
an affine set Xσ by the ring map

k[σ∨ ∩N ]→ k[N ]⊗k k[σ∨ ∩N ]

given by
zn 7→ zn ⊗ zn.

This action is clearly compatible on different open sets Xσ, hence we obtain a torus
action on XΣ.

The cones of the fan Σ are in fact in one-to-one correspondence with orbits of
G(M) acting on XΣ. Indeed, the torus orbit corresponding to τ ∈ Σ is

Xτ \
⋃

ω(τ

Xω,

the union being over all proper faces of τ . For a point x in this orbit, the subtorus
G(Rτ ∩M) ⊆ G(M) is the stabilizer of x. We denote the closure of this orbit as
Dτ . The correspondence τ 7→ Dτ is inclusion reversing. We call the subvarieties
Dτ , for τ ∈ Σ, the toric strata of XΣ.

Dτ itself is a toric variety, whose fan is given by the quotient fan Σ(τ) (see
Definition 1.10). Note that if ρ is a ray, then Dρ is a (Weil) divisor on XΣ.

Next consider N . This may be interpreted as the character lattice of the alge-
braic torus G(M), i.e., N = Hom(G(M),Gm). Here Gm = G(Z) is the multiplica-
tive group. An element n ∈ N gives a map Z → N , hence a map k[Z] → k[N ],
yielding the character G(M)→ Gm. This character is usually written as zn, which
can be thought of as the regular function which on the set of k-valued points
M ⊗Z k× of Gm(M) is given by m⊗ z 7→ z〈n,m〉.

Given a fan Σ, zn is a regular function on G(M) ⊆ XΣ, hence defines a rational
function onXΣ. Since toric varieties are always normal, it makes sense to talk of the
order of vanishing of zn on a Weil divisorDρ, for ρ ∈ Σ[1], the set of one-dimensional
cones in Σ. This order of zero is in fact 〈n,mρ〉, where mρ is a primitive integral
generator of the ray ρ. Thus ∑

ρ∈Σ[1]

〈n,mρ〉Dρ
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is a principal divisor.
One can show that the Weil divisor class group of XΣ is given as follows. Let

TΣ denote the free abelian group generated by Σ[1] as in §1.3, with generators tρ
for each ρ ∈ Σ[1]. Recall the map r : TΣ →M defined by r(tρ) = mρ, where mρ is
a primitive generator of ρ. The transpose map tr : N → T∨Σ is given by

n 7→
∑

ρ∈Σ[1]

〈n,mρ〉t∗ρ.

Then Cl(XΣ) ∼= coker tr. Here, an element ψ : TΣ → Z of T∨Σ corresponds to the
Weil divisor

∑
ρ∈Σ[1] ψ(tρ)Dρ, and tr(n) is the divisor of zeroes and poles of zn.

If r is in fact surjective, which is the case, for example, if XΣ is non-singular and
proper over Spec k, we get an exact sequence

(3.1) 0→ KΣ → TΣ →M → 0.

Then the dual exact sequence is

(3.2) 0→ N → T∨Σ → Cl(XΣ)→ 0,

A divisor induced by ψ ∈ T∨Σ is Cartier if ψ is induced by a PL function ϕ : |Σ| → R

with ϕ(mρ) = ψ(tρ).
Given a Cartier divisor D defined by a PL function ϕ, the divisor D is very

ample if and only if ϕ is strictly convex.
Of course, a Cartier divisor defines a line bundle. Given a Cartier divisor

specified by a PL function ϕ, it is easy to describe this line bundle Lϕ in terms
of a trivialisation. For each maximal cone σ ∈ Σ, ϕ|σ is given by some nσ ∈ N .
Then Lϕ is naturally identified with the trivial line bundle OXσ · z−nσ . Using this
trivialization, the transition map from Xσ to Xσ′ is given by multiplication by
znσ′−nσ .

If τ ∈ Σ, then the restriction of the line bundle Lϕ to the toric stratum Dτ is
easily described: it is given by the PL function ϕ(τ) on the fan Σ(τ) (see Definition
1.10). This is well-defined up to a choice of a linear function, which is sufficient for
specifying the line bundle Lϕ|Dτ .

3.1.3. Toric varieties from polyhedra. In the case of toric varieties pro-
jective over affine toric varieties, there is in fact a dual point of view which is very
important.

Let ∆ ⊆ NR be a lattice polyhedron with at least one vertex. We can define a
variety as follows. First, let C(∆) ⊆ NR ⊕ R be defined by

C(∆) = {(rn, r)|n ∈ ∆, r ≥ 0}.
This is the cone over ∆. The overline denotes closure. This cone is rational poly-
hedral, with

C(∆) ∩ (NR ⊕ {0}) = Asym(∆),

the asymptotic cone of ∆, defined to be the Hausdorff limit of r∆ as r → 0. If ∆
is compact, then of course Asym(∆) = {0}.

Now k[C(∆) ∩ (N ⊕ Z)] is a finitely generated k-algebra which has a natural
grading given by the projection N ⊕ Z→ Z, i.e, deg z(n,d) = d. The degree 0 piece
of this ring is k[Asym(∆) ∩N ], so we get a variety

P∆ := Proj k[C(∆) ∩ (N ⊕ Z)]

which is projective over Spec k[Asym(∆) ∩N ].
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P∆ is in fact a toric variety: it is isomorphic to XΣ̌∆
, where Σ̌∆ is the normal

fan to ∆ as defined in Definition 1.9.

Example 3.4. Let ∆ = Conv{(0, 0), (1, 0), (0, 1)}. Then k[C(∆) ∩ (N ⊕ Z)] ∼=
k[x0, x1, x2], via z(0,0,1) 7→ x0, z

(1,0,1) 7→ x1, and z(0,1,1) 7→ x2. The grading is the
standard one. So P∆

∼= P2. Note that the normal fan to ∆ is the fan for P2 given
in Example 3.2. More generally, the standard n-simplex gives rise to Pn.

Using polyhedra in this way to define toric varieties gives a more geometric
picture. There is a one-to-one inclusion reversing correspondence between faces of
∆ and cones in the normal fan of ∆, hence a one-to-one correspondence between
faces of ∆ and toric strata of P∆ which is now inclusion preserving. As a result,
one can think of the faces of ∆ as indicating in a geometric way the combinatorics
of how various strata intersect. Also, if σ is a face of ∆, then Dσ̌

∼= Pσ, where
σ̌ = N∆(σ), the normal cone to ∆ along σ. Thus it is very easy to read off the
geometry of the toric variety and its toric strata from this picture.

Remark 3.5. We note several basic facts here. First, since P∆ is defined as
a Proj, it comes along with a natural line bundle OP∆(1). This line bundle is
determined by the PL function ϕ∆ : |Σ̌∆| → R as defined in Definition 1.9. There
is a basis for Γ(P∆,OP∆(1)) indexed by the integral points of ∆, i.e., by the set
∆ ∩ N . This is clear since these integral points index a basis of the degree one
part of k[C(∆) ∩ (N ⊕ Z)]. Second, a face σ ⊆ ∆ determines a cone N∆(σ) in the
normal fan to ∆, and by (1.3) the dual of this cone is precisely the tangent wedge
Tσ∆. Hence a face σ ⊆ ∆, as well as determining a closed toric stratum of P∆, also
determines an open affine subset of P∆ given by Spec k[(Tσ∆) ∩N ].

This is a convenient description for trivializing the line bundle OP∆(1). For
each vertex v of ∆, we can trivialize OP∆(1) on Spec k[(Tv∆) ∩ N ] in such a way
that the section corresponding to some n ∈ ∆ ∩ N becomes the monomial zn−v.
The transition map between trivializations on open sets corresponding to vertices
v and v′ is then given by multiplication by zv−v

′

.

The following is a key example for this book.

Example 3.6. The Mumford degeneration. Consider the following situation,
which already appeared in §1.1. Let ∆ ⊆ NR be a compact lattice polyhedron, P a
polyhedral decomposition of ∆ into lattice polyhedra, and ϕ : ∆→ R a PL convex
function with integral slopes. We then have similarly as in §1.1 the polyhedron

∆̃ = {(n, r) ∈ NR ⊕ R|n ∈ ∆, r ≥ ϕ(n)}.
The asymptotic cone to ∆̃ is 0 × R≥0 ⊆ NR × R, so k[C(∆̃) ∩ (N ⊕ Z ⊕ Z)] is a
k[N]-algebra. The toric variety P∆̃ is then equipped with a projective morphism
π : P∆̃ → A1

k.
To get a clearer idea of what π does for us, let us first describe the normal fan

Σ̌∆̃ to ∆̃. Note that ∆̃ has two sorts of faces. If p : NR ⊕ R → NR denotes the

projection, then there are vertical faces of ∆̃ which project non-homeomorphically
via p to faces of ∆, and horizontal faces of ∆̃, which project homeomorphically to
elements of P. If σ is a vertical face, then the normal cone σ̌ := N∆̃(σ) lies in
MR × {0}, and in fact is a cone in the normal fan to ∆. On the other hand, the
maximal horizontal faces σ, for which ϕ|p(σ) has slope mσ ∈M , have normal cone
a ray generated by (−mσ, 1).
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Figure 1

Now the morphism π : P∆̃ → A1
k is of course a regular function and is defined

by the monomial zρ where ρ = (0, 1) ∈ Asym(∆̃) ⊆ NR ⊕ R. Since the primitive
generators of the rays of Σ̌∆̃ are either of the form (m, 0) or (m, 1) for various
m ∈ M , zρ does not vanish on divisors corresponding to rays of the first type,
but vanishes precisely to order one on divisors corresponding to rays of the second
type. Hence π−1(0) is isomorphic to a union of toric divisors of P∆̃ corresponding to
codimension one horizontal faces. These divisors are in one-to-one correspondence
with elements of Pmax, and we can write

π−1(0) =
⋃

σ∈Pmax

Pσ.

Of course these toric varieties intersect precisely as dictated by P. For example,
suppose ∆ and P are as depicted in Figure 1. Then π−1(0) is a union of three P2’s
and one P1 × P1.

Next, observe that P∆̃ \π−1(0) is isomorphic to P∆×Gm. Indeed, we just need

to localize the ring k[C(∆̃)∩ (N ⊕Z⊕Z)] at the element z(0,1,0). This is the same

thing as replacing ∆̃ with ∆×R, and P∆×R = P∆ ×k Spec k[Z] = P∆ ×k Gm. This
shows that P∆̃ \ π−1(0) ∼= P∆ ×k Gm.

Putting this all together, we see that π is a degeneration of toric varieties, with
π−1(t) ∼= P∆ for t 6= 0, and π−1(0) is a union of toric varieties whose intersections
are described by P.

3.2. Log schemes

We begin immediately with the definition.

Definition 3.7. A pre-log structure on a scheme X is a sheaf of monoidsMX

on X along with a homomorphism of sheaves of monoids

αX :MX → OX
where the monoid structure on OX is given by multiplication.

A pre-log structure is a log structure if

αX : α−1
X (O×X)→ O×X

is an isomorphism. Here O×X denotes the sheaf of invertible elements of OX .
A log scheme is a scheme X equipped with a log structure αX : MX → OX .

We will usually write a log scheme as X†, with MX , αX implicit in the notation.
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A morphism of log schemes f : X† → Y † is a morphism of schemes f : X → Y
along with a homomorphism of sheaves of monoids f# : f−1MY →MX such that
the diagram

f−1MY

f#

//

αY

��

MX

αX

��

f−1OY
f∗

// OX

is commutative. Here, f∗ is the usual pull-back of regular functions defined by the
morphism f .

These definitions, while straightforward, are ones I have always found hard to
really absorb and internalize, and learning to think about log structures can take
some time. I will try to aid this process by giving a large number of examples.

Before going on to these examples, however, there are several comments to
make. First, we should mention briefly the connection between this definition and
the discussion of log differentials. Essentially, the idea is that the sheaf of monoids
MX specifies “things we are allowed to take d log of”. We will make this precise
when we talk about log differentials in §3.3.

Second, we have not specified in which topology the sheafMX lives. In general,
when working with schemes, one should work with sheaves in the étale topology
rather than the Zariski topology, as there are certainly important examples of log
structures in which significant information would be lost if one only considers Zariski
open subsets; see Example 3.14. If one instead works with complex analytic spaces,
then one can always work comfortably with the analytic topology, and the reader
uncomfortable with the notion of étale topology is best off thinking about things
in the analytic topology. Nevertheless, for most of the log structures which will
appear in this book, the Zariski topology will be sufficient.

Since we will, however, officially be working in the étale topology, it is worth
making a few remarks for those unfamiliar with it. Many more details can be found
in Milne’s book [83]. In the étale topology, one replaces the notion of an open set
U ⊆ X with an étale morphism U → X . An étale neighbourhood of a point x ∈ X
is an étale map U → X whose image contains x. A sheaf F in the étale topology
then associates an abelian group, (or monoid, etc.), F(U) to each étale morphism
U → X . These come with restriction maps as usual: given U → V → X , we
have a map F(V ) → F(U). We then require F to satisfy the usual sheaf axioms,
appropriately stated (see, e.g., [83], Chapter II, §1).

When we talk about stalks of sheaves, we need to choose a geometric point of
the scheme X . Let x ∈ X have residue field k(x), and fix a separable closure k(x̄)
of k(x). Let x̄ = Spec k(x̄), and let x̄ → X be the induced map. This is called a
geometric point of X . Then we define the stalk Fx̄ of F at x̄ as the direct limit of
groups (monoids, etc.,) F(U) running over diagrams

x̄ //

!!
DD

DD
DD

DD
U

��

X
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For example, the sheaf OX , in the étale topology, is defined by OX(U) =
Γ(U,OU ), where OU is the usual structure sheaf on U . The stalks OX,x̄ are con-
siderably bigger than the usual local rings OX,x.

These details will not play a particularly important role for us in this text, but
it seems necessary to introduce this notation so that the statements given here are
technically correct.

Examples 3.8. (0) If X is a scheme, and MX = O×X , αX the inclusion, we
obtain a log structure on X known as the trivial log structure. A log morphism
between schemes carrying the trivial log structure is the same thing as a morphism
of schemes.

(1) The fundamental example. Let X be a scheme, D ⊆ X a closed subset of
pure codimension one. Let j : X \D →֒ X be the inclusion, and consider

M(X,D) := (j∗O×X\D) ∩OX .

This is the sheaf of regular functions on X which are invertible on X \D. We take
αX :M(X,D) →֒ OX to be the inclusion. This is obviously a log structure, and is
known as the divisorial log structure induced by D.

(2) Let k be a field, X = Spec k. Let MX = k× ⊕ Q, where Q is a monoid
whose only invertible element is 0 ∈ Q. Let αX : k× ⊕Q→ k be given by

αX(x, q) :=

{
x q = 0

0 q 6= 0

This is a log structure. There are two special cases: if Q = {0}, then we get the
trivial log structure on X . If Q = N, we get what is known as the standard log
point. We usually write the standard log point as Spec k†.

There is a relationship between divisorial log structures and the standard log
point, which arises from the following general construction.

Definition 3.9. Let α : PX → OX be a pre-log structure on X . Then the log
structure associated to this pre-log structure is given by the sheaf of monoids

MX :=
PX ⊕O×X

{(p, α(p)−1) | p ∈ α−1(O×X)}
and αX :MX → OX is given by

αX(p, f) := α(p) · f.
This is clearly a log structure.

Definition 3.10. If f : X → Y is a morphism of schemes and Y has a log
structure αY :MY → OY , then the pull-back log structure on X is the log structure
associated to the pre-log structure given by the composition

α : f−1(MY )
αY−→f−1(OY )

f∗−→OX .
We will write the sheaf of monoids of this pull-back log structure as f∗MY .

Example 3.11. Let X = Spec k, Y = Spec k[x] = A1
k, and let f : X → Y map

X to the origin in Y . Consider the divisorial log structure on A1
k given by {0} ⊆ Y ,

and pull it back to X via f . Now, f−1MY is just the stalk of the sheafMY at 0;
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this consists of germs of functions of the form ϕ ·xn, n ≥ 0, where ϕ is an invertible
function defined in an (étale) neighbourhood of 0. The map

α : f−1MY → f−1OY → OX = k

is then evaluation at x = 0 of ϕ · xn, and hence

α(ϕ · xn) =

{
ϕ(0) n = 0,

0 n > 0.

This defines a pre-log structure on X . Taking the associated log structure, we
consider

f−1MY ⊕ k×

{(ϕ,ϕ(0)−1) |ϕ ∈ O×
Y,0̄
} .

This is in fact isomorphic to k× ⊕ N via the map

f−1MY ⊕ k× ∋ (ϕ · xn, s) 7→ (ϕ(0) · s, n).

Furthermore,

αX(ϕ · xn, s) =

{
ϕ(0) · s n = 0

0 n > 0

and hence the pull-back log structure on X yields the standard log point. �

It is often useful to think of log structures by considering the exact sequence

1−→O×X
α−1

X−→MX−→MX−→0.

The sheaf of monoidsMX , written additively, is called the ghost sheaf of X†, and
should be viewed as containing combinatorial information about the log structure.

Example 3.12. Suppose X is locally Noetherian and normal, D ⊆ X a closed
subset of pure codimension one. Then for x ∈ X , let r be the number of irreducible
components of D containing x. There is a map

q :M(X,D),x̄ → Nr

given by associating to a regular function f ∈ M(X,D),x̄ the vanishing orders of
f along the r components of D containing x. This map clearly factors through
M(X,D),x̄. On the other hand, if f1, f2 ∈M(X,D),x̄ ⊆ OX,x̄ have the same vanishing

orders along D, then f1f
−1
2 vanishes to order zero on every prime divisor in a

neighbourhood of x̄. Since X is normal, it then follows (see e.g., the argument
given in [57], page 132) that f1 = f2 · h for h ∈ O×X,x̄. Thus M(X,D),x̄ is a
submonoid of Nr. �

Note that if f : X → Y is a morphism of schemes and Y carries a log structure
yielding a pull-back log structure on X , then MX = f−1MY . Indeed, we have a
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diagram

1

��

1

��

K
= //

��

K

��

1 // f−1O×Y ⊕O×X

��

// f−1MY ⊕O×X //

��

f−1MY
//

=

��

0

1 // O×X

��

//MX
//

��

MX
// 0

1 1

where K is both the kernel of the map f−1O×Y ⊕O×X → O×X , given by (ϕ1, ϕ2) 7→
f∗(ϕ1) · ϕ2, and the kernel of the map f−1MY ⊕ O×X → MX . (Kernels do not
in general exist for morphisms of monoids, but do if the morphism is given as the
quotient by a subgroup.) This latter kernel, by definition, is given by

{(ϕ1, ϕ2) ∈ f−1MY ⊕O×X | f∗αY (ϕ1) = ϕ−1
2 }.

One checks easily that the snake lemma works in this context.

Example 3.13. Let X = A2
k = Spec k[x, y], and let D ⊆ X be given by xy = 0,

i.e., D = V (xy). Then we obtain the divisorial log structure M(X,D) on X , and

M(X,D) is the sheaf (i1∗N)⊕ (i2∗N), where i1 : V (x) →֒ X and i2 : V (y) →֒ X are
the inclusions of the two coordinate axes. The mapM(X,D) → (i1∗N)⊕(i2∗N) takes
a regular function f on an open set U invertible on U \D to the order of vanishings
of f on U ∩V (x) and U ∩V (y). As in Example 3.12, this map is surjective and has
kernel O×X .

If we pull-backM(X,D) via the inclusion D →֒ X , we obtain a log structure on

D, withMD = i1∗N⊕i2∗N (now thinking of i1, i2 as the inclusions of the coordinate
axes into D). In particular, there are sections of MD which cannot be thought of
as functions on D. One should think of the log structure on D as remembering
some information about how D sits inside X .

Example 3.14. Suppose we have a divisor D ⊆ X of the following form. D is
an irreducible, non-normal surface whose normalization D̃ is isomorphic to E×P1,
where E is an elliptic curve. Let τ ∈ E be a two-torsion point and P ∈ P1 a
point. We assume that the map D̃ → D identifies the point e×{P} with the point
(e+τ)×{P}. Let E′ be the quotient of E by translation by τ . Then there is a map
D → E′, a fibre of which is a union of two P1’s meeting at a point. The singular
locus of D is isomorphic to E′. Now we have the divisorial log structure M(X,D)

on X , which we can restrict to a log structure ME′ on E′ using the identification
of E′ with the singular locus of D. Note that ME′ is now a locally constant sheaf
with fibre N2, but only in the étale topology or the analytic topology, not in the
Zariski topology. Locally at a point in E′ in either of these two topologies, D
has two irreducible components, but globally, these components get interchanged.
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So the locally constant sheaf ME′ has non-trivial monodromy, interchanging the
generators of N2. We can’t see this monodromy in the Zariski topology.

This explains why, in general, the Zariski topology is not sufficient. However,
this type of example will never occur in the cases needed in this book.

Example 3.15. Our next, rather extended, example explores the data carried
by log morphisms. We will find that a log morphism can carry a lot of extra data.
LetX† be the affine plane of Example 3.13. We can think of this example as follows.
Fix M = Z2, MR, N,NR as usual, and let σ ⊆ MR be the first quadrant. Then
X = Xσ, since σ∨ ∩N = N2.

Now consider a log morphism f : Spec k† → X† from the standard log point,
with image the origin. The additional information associated to the log morphism
is a commutative diagram

M(X,D),0̄

αX

��

f#

// k× ⊕ N

α
Spec k†

��

OX,0̄
f∗

// k

Here f∗ is just evaluation of a germ of a function at 0, and M(X,D),0̄ consists of
germs of functions invertible on X \D, i.e., locally of the form ϕ ·zn for n ∈ σ∨∩N
and ϕ ∈ O×

X,0̄
. Note that f# induces a map N2 = M(X,D),0̄ → MSpeck† = N,

a monoid homomorphism, so this is discrete data determined by the morphism.
This map is given by n 7→ 〈n,m〉 for some m ∈ σ ∩M . Furthermore, m ∈ Int(σ).
Indeed, suppose m = (a, 0) for some a ∈ N. Then f#(z(0,1)) = (x, 0) ∈ k× ⊕ N

for some x ∈ k×, and x = αSpec k†(f
#(z(0,1))) = f∗αX(z(0,1)) = 0, a contradiction.

Similarly, m = (0, a) leads to a contradiction.
Note also that if ϕ is invertible, then f∗αX(ϕ) = ϕ(0), so f#(ϕ) = (ϕ(0), 0).

From this we conclude that f# is completely determined bym and a map of monoids
g : σ∨ ∩N → k×, so that

(3.3) f#(ϕzn) = (ϕ(0)g(n), 〈n,m〉).
So we see the map is completely specified by m ∈ Int(σ) ∩M and g ∈M ⊗Z k×.

Let us elaborate on this to attempt to explain to a certain extent what this ad-
ditional data means. Consider a subdivision of the cone σ obtained by introducing
another ray R≥0m

′, where m′ ∈ Int(σ) ∩M is primitive. This gives a fan Σ with
three rays, ρ1 = R≥0(1, 0), ρ2 = R≥0(0, 1), ρ = R≥0m

′, and two two-dimensional
cones. The identity map on M induces a map of fans from Σ to σ, since each cone
of Σ is contained in σ, and hence we obtain a morphism

π : X̃ := XΣ → Xσ = X.

As an exercise in toric geometry, one can check that this map is proper, and induces
an isomorphism X̃ \ Dρ

∼= X \ {(0, 0)}. This map is called a toric, or weighted,
blow-up, and if m′ = (1, 1), this is just the ordinary blow-up of A2

k at the origin.
(See Example 3.3.)

Let D̃ ⊆ X̃ be the union of the toric divisors on X̃; note that D̃ = π−1(D).

Thus we obtain a log structure M(X̃,D̃) on X̃, and a log morphism π : X̃† → X†,

since functions on X which only vanish on D pull-back to functions on X̃ which
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only vanish on D̃. Now given f : Spec k† → X† as described above, let us ask:
when does this map lift to give a commutative diagram

X̃†

π

��

Spec k†

f̃

::uuuuuuuuu

f
// X†

such that the image of Spec k† lies in Dρ \ Sing(D̃)? (This is the open torus orbit
of Dρ.)

To answer this question, first consider what it means to give the map f̃ . This
works in the same way as giving the map f . Choose a basis n1, n2 of N such that
〈n1,m

′〉 = 1 and 〈n2,m
′〉 = 0, so that the cone ρ∨ is generated by n1 and ±n2

and zn1 vanishes to order one along Dρ. We specify the image of f̃ to be a point

x ∈ Dρ\Sing(D̃), and nowM(X̃,D̃),x̄ locally consists of functions of the form ϕ·zan1

for a ∈ N and ϕ invertible in a neighbourhood of x̄. Then the map f̃# is given by

f̃#(ϕ · zan1) = (ϕ(x)g̃(a), ab) ∈ k× ⊕ N,

for some g̃ : N→ k× and b ∈ N, b 6= 0.
For π ◦ f̃ to agree with f , we need f̃# ◦ π# = f#. Now for

ϕ · zβ1n1+β2n2 ∈ M(X,D),0̄,

we have

f̃# ◦ π#(ϕ · zβ1n1+β2n2) =f̃#((ϕ ◦ π) · zβ1n1+β2n2)

=(ϕ(π(x)) · zβ2n2(x) · g̃(β1), β1b).

Here, zβ2n2(x) means the value of the rational function zβ2n2 at x. Note that zn2 in
fact is a coordinate on Dρ. From the previous formula for f#, we see first that we
need β1b = β1〈n1,m〉+ β2〈n2,m〉 for all β1, β2 such that β1n1 + β2n2 ∈ σ∨. So in
particular, we must have 〈n2,m〉 = 0, i.e., m is proportional to m′, and b = 〈n1,m〉.
So we must have m = bm′. Second, we need g(β1n1 + β2n2) = (zn2(x))β2 · g̃(β1).
So in particular, g determines zn2(x), hence the point x itself.

So morally, the choice of log point is specifying a toric blow-up along with a
point on the exceptional divisor of that toric blow-up. There is still some residual
information, namely the choice of b and g̃(1). However, in Example 3.17, we will
consider a situation where this extra degree of freedom disappears.

Example 3.16. Consider next a morphism X† → Spec k† from a log scheme
X† to the standard log point. First of all X is a scheme over k, and we have a
map f# : k××N→MX . The map k× →MX is completely determined, given by
c 7→ α−1

X (c). So f# is completely determined by a map N →MX . This in turn is
determined by giving a section ρ ∈ Γ(X,MX) which is the image of 1 ∈ N. Note
that we require αX(ρ) = f∗(αSpec k†(0, 1)) = 0.

So a log scheme over the standard log point is just a log scheme over k along
with a section ρ ofMX with αX(ρ) = 0.

Example 3.17. Returning to the situation of Example 3.15, consider the map
π : X → A1

k given by the monomial z(1,1). The fibre over 0 ∈ A1
k is just D. We

have the divisorial log structure M(A1
k
,0), and a log morphism π : X† → (A1

k)
†,
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again because functions on A1
k invertible outside of 0 pull-back to functions on X

invertible outside of D. Restricting these log structures to D and 0 respectively
gives a log morphism

π0 : D† → Spec k†.

In terms of Example 3.16, this log morphism is determined by the section of MD

given by restricting the section z(1,1) ofM(X,D) to D.

For d > 0 an integer, let ηd : Spec k† → Spec k† be the log morphism such that

η#
d (c, β) = (c, dβ).

This can be thought of as a degree d base-change, as it is induced by the morphism
of log schemes

ξd : (A1
k)
† → (A1

k)
†

given, on the level of schemes, by the ring homomorphism x 7→ xd.
Now consider log points f : Spec k† → D† giving a commutative diagram

D†

π0

��

Spec k†

f

88rrrrrrrrrrr

ηd

// Spec k†

Assuming that the image of f is the origin in D, one can check easily that the
data determining f#, before imposing the condition that this diagram commutes,
is exactly the data appearing in (3.3). The condition that the above diagram

commutes means that f# ◦ π#
0 = η#

d . But for (c, β) ∈ k× ⊕ N,

f# ◦ π#
0 (c, β) =f#(cz(β,β))

=(cg(β, β), 〈m, (β, β)〉).
Thus for this to be η#

d (c, β), we require g(1, 1) = 1 and 〈m, (1, 1)〉 = d. This tells

us that g ∈ ((1, 1)⊥ ∩M)⊗Z k×, a one-dimensional torus, and m is subject to the
constraint 〈m, (1, 1)〉 = d. In particular, for d = 1, there are no such maps, since,
as in Example 3.15, we need m ∈ Int(σ).

Roughly put, this can be viewed as detecting certain residual data about multi-
sections of π : X → A1. Suppose we are given a commutative diagram

X

π

��

A1
k

f̄

<<yyyyyyyyy

ξd

// A1
k

with f̄(0) = 0. If d = 1, this is in fact impossible, since a section of the map
π can never intersect a singular point of a fibre. On the other hand, for d > 1,
this is possible, and there is always a unique toric blow-up X̃ → X such that the
map f̄ lifts to a map f̃ : A1

k → X̃ such that f̃(0) is in the big torus orbit of the
exceptional divisor. Restricting all these maps to D† and Spec k† then gives a map
f : Spec k† → D† as above, and the log morphism f is remembering which toric
blow-up is necessary and what f̃(0) is. �

The category of log schemes is in general far too broad: there are many very
perverse examples. A crucial notion is that of a fine log structure.
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Definition 3.18. Let P be a monoid, X a scheme. Denote by P the constant
sheaf onX with stalk P , and suppose we have a pre-log structure P → OX . Then we
say P → OX is a chart for the associated log structure. Two charts α1 : P → OX ,
α2 : P → OX are said to be equivalent if there exists a map ϕ : P → O×X such that

α2(p) = α1(p) · ϕ(p) ∀p ∈ P.
Equivalent charts are easily seen to induce isomorphic log structures.

A log structure on X is fine if there is an étale open cover {Ui} such that on Ui,
there is a finitely generated integral monoid Pi and a pre-log structure Pi → OUi

whose associated log structure is isomorphic to the log structure pulled back from
X .

A monoid P is saturated if it is integral and whenever p ∈ P gp with mp ∈ P
for some positive integer m, one has p ∈ P .

A log structure on X is fine saturated if it is fine andMX,x̄ is saturated for all
x̄ ∈ X .

Example 3.19. Let P be a toric monoid, i.e., a monoid of the form P = σ∨∩N
for some σ ⊆ MR a strictly convex rational polyhedral cone, and let X = Xσ =
Spec k[P ]. The map

P → Γ(X,OX) = k[P ]

given by

p 7→ zp

induces a morphism of sheaves of monoids

P → OX ,
hence an associated log structure on X .

If ∂X denotes the toric boundary of X , i.e., the complement of the big torus
orbit in X , then in fact this log structure on X is the divisorial log structure coming
from ∂X ⊆ X . Indeed, the map P → OX factors as

P →M(X,∂X)
αX−→OX

via P ∋ p 7→ zp ∈ M(X,∂X), since zp is a regular function on X invertible on the
big torus orbit X \ ∂X . This gives a map

P ⊕O×X →M(X,∂X)

whose kernel on an open set U ⊆ X consists precisely of pairs (p, z−p) such that
z−p is invertible on U . Furthermore, locally at x ∈ X , a function defined in a
neighbourhood U of x which is invertible on U \ ∂X is always of the form ϕ · zp for
ϕ on U invertible and p ∈ P . So P ⊕ O×X → M(X,∂X) is surjective, showing that
the log structure associated to this chart is the divisorial log structure. �

This example demonstrates that a chart on an (étale) open subset U of X can
be thought of as a map U → Spec Z[P ] such that the log structure on U is the
pull-back of the divisorial log structure on Spec Z[P ] induced by the toric boundary
of Spec Z[P ].

Example 3.20. Here is an example of a log structure which occurs naturally,
but is not fine. Let X = Spec k[x, y, w, t]/(xy − wt), and let D ⊆ X be the divisor
given by t = 0, inducing a divisorial log structure M(X,D). I claim that this log
structure is not fine at 0 = (0, 0, 0, 0) ∈ X . Indeed, suppose there is an étale
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neighbourhood U → X of 0 and a chart P → OU for M(X,D). Denoting the pull-

back ofM(X,D) to U byMU , this means we have an isomorphism (P ⊕O×U )/K →
MU , where dividing out by K defines the log structure associated to the pre-log
structure P → OU . In particular, there is a surjective map P → MU . This is
surjective on stalks and for any geometric point x̄ ∈ U we have a commutative
diagram

P = Γ(U,P ) //

∼=

��

Γ(U,MU )

��

P = P x̄ //MU,x̄

so Γ(U,MU ) → MU,0̄ must be surjective. However, if ϕ ∈ OX,0̄ is a function

whose zero locus is contained in D, then ϕ = ψ · tn with ψ ∈ O×
X,0̄

. Indeed, in

a neighbourhood of 0, the only Cartier divisor with support in D is a multiple of
D. Thus there is some non-negative integer n such that t−n · ϕ does not vanish
along D and hence, by normality, t−n · ϕ is an invertible regular function. Thus
MX,0̄ = N →֒ N2 via the diagonal embedding as in Example 3.12. On the other
hand, for p a point in X with coordinates x = y = 0 and w 6= 0, both of the
irreducible components of D are Cartier, and M(X,D),p̄ = N2. Thus there is some

étale neighbourhood of 0 on which Γ(U,M(X,D)) = N, and this cannot surject to

M(X,D),p̄ = N2. Thus the log structure can’t be fine. �

The following notion is often useful:

Definition 3.21. A morphism f : X† → Y † is strict if f# : f−1MY →MX

induces an isomorphism between the pull-back of the log structure on Y to X and
the log structure on X .

Examples 3.22. (1) Let f : X → A1
k be a smooth morphism, and consider the

divisorial log structures on X and A1
k given by f−1(0) ⊆ X and 0 ∈ A1

k. Then f is
a strict morphism of log schemes.

(2) Let X be obtained by blowing up A1
k × P1

k at the point (0, (1 : 0)), and let
f : X → A1

k be the composition of the blow-down followed by projection to A1
k.

Give X the divisorial log structure given by the total transform of

(A1
k × {(1 : 0)}) ∪ ({0} × P1

k) ∪ (A1
k × {(0 : 1)}),

and give A1
k the divisorial log structure coming from 0 ∈ A1

k. Then f , as a morphism
of log schemes, is strict everywhere except at the proper transforms of A1

k×{(1 : 0)},
A1

k × {(0 : 1)}, and the double point of f−1(0). �

We next define the notion of log smoothness. Like ordinary morphisms of
schemes, where smoothness can be defined using an infinitesimal lifting criterion,
we can give the same condition in the log case. However, for practical purposes, it
is better to give an equivalent definition.

Definition 3.23. A morphism f : X† → Y † of fine log schemes is log smooth
if étale locally on X and Y it fits into a commutative diagram

X //

��

Spec Z[P ]

��

Y // Spec Z[Q]
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with the following properties:

(1) The horizontal maps induce charts P → OX and Q→ OY for X† and Y †.
(2) The induced morphism

X → Y ×SpecZ[Q] Spec Z[P ]

is a smooth morphism of schemes.
(3) The right-hand vertical arrow is induced by a monoid homomorphism

Q → P with ker(Qgp → P gp) and the torsion part of coker(Qgp → P gp)
finite groups of orders invertible onX . Here P gp denotes the Grothendieck
group of P , see §3.1.1.

In this book, we will be exclusively concerned about schemes over fields of
characteristic zero, so the last item is not so significant for us. In addition, most of
the time P and Q will be toric monoids, hence P gp and Qgp will be torsion-free.

Examples 3.24. (1) Take Y = Spec k with the trivial log structure, Q = 0,
X = Spec k[P ], P a toric monoid, so that X ∼= Y ×SpecZ[Q] Spec Z[P ]. Give X the

log structure described in Example 3.19, given by the chart P → k[P ]. Then X†

is log smooth over Spec k. Of course, the toric variety X need not be smooth over
Spec k in the usual sense, so this is a first example where the log structure “makes”
X smooth.

(2) Let X = Spec k[P ], Y = Spec k[N], and suppose we are given ρ ∈ P , ρ 6= 0,
defining a map N → P via 1 7→ ρ. This induces a morphism X → Y , which is
obtained via base-change from Spec Z[P ] → Spec Z[N], hence is log smooth with
the log structures on X and Y as in Example 3.19. We can make a further base-
change

X0

��

// X

��

Spec k // Y

where Spec k maps to 0 ∈ Y = A1
k. Pulling back the log structure on X and Y

gives us a morphism of log schemes X†0 → Spec k†, where Spec k† is the standard
log point. Again,

X0
∼= Spec k×Spec Z[N] Spec Z[P ],

so this map is log smooth.
This is the crucial example for us: it explains how the log structure on the

singular scheme X†0 actually makes X†0 smooth over Spec k†, even though X0 may
be reducible or even non-reduced!

(3) Globalizing (2), consider the degeneration of toric varieties π : P∆̃ → A1
k of

Example 3.6. Then we obtain divisorial log structures induced by ∂P∆̃ ⊆ P∆̃ and
0 ∈ A1

k on P∆̃ and A1
k respectively, giving a log morphism

π : P
†

∆̃
→ (A1

k)
†.

The map π# : π−1M(A1
k
,0) → M(P∆̃,∂P∆̃) is just pull-back of functions. Then one

checks easily that f is log smooth on standard affine subsets of P∆̃, the map π
coinciding with (2) above on these affine open subsets. Furthermore, restricting
the log structures to π−1(0) and 0 gives a log smooth morphism

π−1(0)† → Spec k†.
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Remark 3.25. Unlike in the case of ordinary schemes, log smooth morphisms
need not be flat. For example, consider the map

X = Spec Z[N2]→ Y = Spec Z[N2]

defined by the homomorphism of monoids N2 → N2 given by (a, b) 7→ (a + b, b).
This describes X as an open patch of the blow-up of Y at the origin, hence is not
flat. In general, a morphism Spec Z[P ]→ Spec Z[Q] induced by a homomorphism of
integral monoids h : Q→ P will be flat if f is integral. A homomorphism of integral
monoids is integral if whenever q1, q2 ∈ Q, p1, p2 ∈ P , and h(q1) + p1 = h(q2) + p2,
there exists q3, q4 ∈ Q and p ∈ P such that

p1 = h(q3) + p, p2 = h(q4) + p, q1 + q3 = q2 + q4.

We say a morphism of fine log schemes f : X† → Y † is integral if the induced
morphisms f# :MY,f(x̄) →MX,x̄ are integral for all x̄ ∈ X .

Example 3.26. In Chapter 4, we will need to make use of log smooth curves. A
local description of such curves was given by F. Kato in [64]. The precise description
is as follows. Let f : C† → W † be log smooth and integral of relative dimension
one, W = Spec(A), where (A,m) a complete local ring over an algebraically closed
field k. Suppose also C† and W † are fine saturated log schemes. Let 0 ∈ W be the
closed point, Q =MW,0̄. There is necessarily a chart σ : Q → A defining the log
structure on W . Let C0 be the fibre of f over 0 ∈ W and x̄ a geometric point of
C0. Then, étale locally at x̄, C† is isomorphic to one of the following log schemes:

(1) V = SpecA[u], where the log structure is induced by the chart

Q→ OV , q 7→ f∗σ(q).

(2) V = SpecA[u, v]/(uv − t) for some t ∈ m, with the log structure induced
by the chart

N2 ⊕N Q→ OV , ((a, b), q) 7→ uavbf∗σ(q).

Here the fibred sum is defined using the diagonal map N→ N2 and N→ Q
a homomorphism determined by f given by 1 7→ α ∈ Q, with σ(α) = t.

(3) V = SpecA[u] with the log structure induced by the chart

N⊕Q→ OV , (a, q) 7→ uaf∗σ(q).

The three cases should be viewed as follows. In a neighbourhood of type (1),
the morphism is actually smooth, not just log smooth, and there is no interesting
information, locally, given by the log structure. The log structure is just the pull-
back of the log structure on the base. For neighbourhoods of type (2), C0 is nodal.
For neighbourhoods of type (3), u = 0 is the image of a section W → C, which
we can think of as a marked point. The log structure is the sum of the pull-back
log structure on the base and the divisorial log structure associated to the divisor
u = 0.

We shall call points of types (1), (2) and (3) on C smooth points, double points,
and log marked points respectively. �

Example 3.27. Let us consider the double point case in the above example
when W = Spec k, equipped with the standard log structure coming from the chart
N→ k given by

n 7→
{

1 n = 0,

0 n > 0.
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According to Example 3.26, (2), the description of the log structure on V =
Spec k[u, v]/(uv) depends on the choice of the element α ∈ Q = N. We take
this to be an integer e > 0 (the case e = 0 is ruled out by the requirement that
σ(α) = t, and t is zero in our case).

Let

Se := N2 ⊕N N,

where N→ N2 is the diagonal map and N→ N is multiplication by e. This monoid
will prove to be especially important in the next chapter. It can be described
in terms of generators α1 =

(
(1, 0), 0

)
, α2 =

(
(0, 1), 0

)
, and ρ =

(
(0, 0), 1

)
, with

α1 + α2 = eρ. It is also the monoid given by σ∨ ∩ N , where σ ⊆ MR is the cone
generated by (1, 0) and (1, e). See Example 3.1, (2). Yet another description is as
the submonoid of N2 generated by α1 = (e, 0), α2 = (0, e) and ρ = (1, 1).

Then the chart given by Example 3.26, (2), in this case is

Se → k[u, v]/(uv),
(
(a, b), c

)
7→
{
uavb c = 0,

0 c 6= 0.

Note that the log structure induced by this chart can be thought of as follows. Let

Ve := Spec k[Se].

This is a toric surface with an Ae−1 singularity, with the toric boundary given by
the equation zρ = 0. Then the chart above induces an embedding

V →֒ Ve,

identifying V with ∂Ve. The log structure on V is then the restriction of the
divisorial log structure given by V ⊆ Ve to V .

Example 3.28. Fix positive integers e1, e2 and w, and suppose e2 = we1. Let
ζ be a w-th root of unity. Consider the two curves C1, C2 given as follows:

C1 = Spec k[x, y]/(xy),

C2 = Spec k[u, v]/(uv),

with the log structure on C1 and C2 given by charts as follows:

Se1 → k[x, y]/(xy),
(
(a, b), c

)
7→
{

(ζx)ayb c = 0,

0 c 6= 0;

Se2 → k[u, v]/(uv),
(
(a, b), c

)
7→
{
uavb c = 0,

0 c 6= 0.

Note that MCi is a quotient of Sei ⊕ O×Ci
, so given β ∈ Sei , (β, 1) represents an

element sβ of MCi . Thus we can write any section of MCi as ϕ · sβ for some

invertible ϕ and β ∈ Sei . Using this notation, let C†i → Spec k† be given by the
section sρi of MCi corresponding to ρi =

(
(0, 0), 1

)
∈ Sei . Despite the fact that

the chart for C1 depends on the choice of ζ, in fact the log scheme C†1 does not
depend on this choice, as any two choices of ζ yield equivalent charts. However,

the log morphism C†1 → Spec k† does depend on this chart.

So we now have specified log curves C†i , i = 1, 2, and log smooth morphisms

C†i → Spec k†. Consider the map f : C1 → C2 of schemes given by u 7→ xw,
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v 7→ yw. We wish to lift f to a morphism of log schemes f † : C†1 → C†2 , giving a
commutative diagram

(3.4) C†1
f†

//

��

C†2

��

Spec k†
= // Spec k†

To do this, we need to identify maps f# making the diagram

f−1MC2

f#

//

αC2

��

MC1

αC1

��

f−1OC2 f∗
// OC1

commute.
Since we want (3.4) to be commutative, we need f#(sρ2 ) = sρ1 . Also, note

that

f∗αC2(s((1,0),0)) = f∗u = xw,

f∗αC2(s((0,1),0)) = f∗v = yw.

So we must have

f#(s((1,0),0)) = ϕx · s((w,0),0),
f#(s((0,1),0)) = ϕy · s((0,w),0),

where ϕx, ϕy are invertible functions on C1 with ϕx = 1 when x 6= 0 and ϕy = 1
when y 6= 0. But since

se2ρ1 = f#(se2ρ2) = f#(s((1,0),0) · s((0,1),0))
= ϕxϕys((w,w),0)

= ϕxϕys((0,0),we1)

= ϕxϕys
e2
ρ1 ,

we must have ϕx · ϕy = 1, so ϕx = ϕy = 1.

Thus the log morphism f † : C†1 → C†2 is determined by the data C†1 → Spec k†

and C†2 → Spec k†.
How do we interpret the existence of the w different choices for this data?

These choices reflect different ways in which we can deform C1 covering a standard
deformation of C2. We can deform C2 via

X2 = Spec k[u, v, t]/(uv − te2)→ A1
k = Spec k[t].

If we substitute u 7→ xw, v 7→ yw, we can factor

xwyw − te2 =

w∏

i=1

(xy − ζite1)
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where ζ is a primitive w-th root of unity. Thus we have commutative diagrams

X i
1 = Spec k[x, y, t]/(xy − ζite1) //

��

X2

��

A1
k =

// A1
k

for each 1 ≤ i ≤ w. Here the vertical maps to A1
k = Spec k[t] are given by t 7→ t.

This gives different deformations of C1 over the given deformation of C2. We leave
it as an exercise to the reader that, restricting this diagram to obtain a diagram as
in (3.4), we obtain the w possibilities for (3.4) obtained from the w choices of ζ.

This will prove to be important in Chapter 4, where these different choices of
log structure yield genuinely different stable curves.

3.3. Log derivations and differentials

We finally return to the original motivation for introducing log structures. We
will define log derivations, leading to the logarithmic tangent bundle in the log
smooth case, and to the sheaf of log differentials.

Let π : X† = (X,MX)→ S† = (S,MS) be a morphism of log schemes.

Definition 3.29. A log derivation on X† over S† with values in a sheaf of
OX -modules E is a pair (D,Dlog), where D : OX → E is an ordinary derivation of
X over S and Dlog : Mgp

X → E is a homomorphism of sheaves of abelian groups
with Dlog ◦π# = 0; these fulfill the compatibility condition

D
(
αX(m)

)
= αX(m) ·Dlog(m)(3.5)

for all m ∈MX , where αX :MX → OX is the log structure.
We denote by ΘX†/S† the sheaf of log derivations of X† over S† with values in

OX . �

In many cases a log derivation (D,Dlog) is already determined by D.

Proposition 3.30. Assume that there is an open, dense subset U ⊆ X such
that π|U : U † → S† is strict, and that E has no sections with support in X \ U .
Then the forgetful map

(D,Dlog) 7−→ D

from the sheaf of log derivations on X†/S† with values in E to the sheaf of usual
derivations on X/S with values in E is injective.

Proof. Let V ⊆ X be an open subset. Then each m ∈ MX(U ∩ V ) may be
written as h · π#(n) for h ∈ O×X and n ∈ MS . Hence Dlog(m) is determined by
D via (3.5). Thus if D = 0 then Dlog |U = 0, which under the assumption on E
implies Dlog = 0. �

We may thus often think of log derivations as usual derivations with certain
vanishing behaviour determined by the log structure:

Example 3.31. Let X be a normal integral scheme over a field k, and Y ⊆ X
a pure codimension one subscheme, yielding the divisorial log structureM(X,Y ) on
X . Then ΘX†/k consists of the usual derivations of X which preserve the ideal of

Y . To see this, first note that if U ⊆ X \ Y , MX |U = O×X , so the hypothesis of
Proposition 3.30 is satisfied and ΘX†/k is a subsheaf of ΘX/k. Now if (D,Dlog)
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is a log derivation and f ∈ IY/X , then at the generic point η of an irreducible
component of Y , we can write f = f ′ · tp for t a generator of IY/X at η, p > 0, and
f ′ a regular function. Then t defines an element ofM(X,Y ) in a neighbourhood of

η, so Df = tpDf ′+pf ′tp−1Dt = tp(Df ′+pf ′Dlog t) is in IY/X in a neighbourhood
of η. Thus Df vanishes along every component of Y , so is in IY/X .

Conversely, if D is an ordinary derivation preserving IY/X , then for f ∈M(X,Y )

we define Dlog f as Df
f ; that this is a regular function is immediately checked again

as above at the generic points of Y . �

Examples 3.32. (1) Let P be a toric monoid, X = Spec k[P ], with the log
structure on X given by the chart P → k[P ], or alternatively, the divisorial log
structure ∂X ⊆ X . We have a map X† → Spec k, where Spec k has the trivial
log structure. Let us compute ΘX†/k. By Example 3.31, this is the subsheaf of
the sheaf of ordinary derivations ΘX/k preserving the ideal of ∂X . We will first
see that the ideal of ∂X is generated by monomials zp with p ∈ Int(P ). Here, by
Int(P ) we mean the following. Since P is a toric monoid, it is of the form σ ∩ P gp

for some cone σ ⊆ P gp ⊗Z R. Then Int(P ) = Int(σ) ∩ P gp. To see why this is the
correct ideal, consider the dual cone σ∨. The toric divisors of X are in one-to-one
correspondence with the one-dimensional faces of σ∨, and for p ∈ P , zp vanishes on
a toric divisor if and only if p is non-zero on the corresponding edge of σ∨. Thus
zp vanishes on all toric divisors if and only if p is nowhere zero on σ∨ \ {0}, i.e.,
p ∈ Int(P ).

Now consider ordinary derivations on the big torus orbit ofX , Xo = Spec k[M ],
where M = P gp, N = HomZ(M,Z). The module of derivations of k[M ] can be
identified with ⊕

m∈M

zm(N ⊗Z k),

where zm(n⊗ 1) is the derivation, written as zm∂n, which acts by

zm∂n(zm
′

) = 〈n,m′〉zm+m′ .

Now such a derivation extends to a derivation of k[P ] if it preserves k[P ], and
it yields a log derivation if it preserves the ideal of ∂X , which is generated by
{zp | p ∈ Int(P )}. So let us test a derivation zm∂n.

It is clear that if m ∈ P , then zm∂n both preserves k[P ] and preserves the ideal
of ∂X , as P and Int(P ) are closed under addition by elements of P .

Next, suppose m 6∈ P . As above, assume P comes from a cone σ. Then there
is some edge of σ∨ with primitive generator n such that 〈n,m〉 < 0. Suppose
first that n′ ∈ N is not proportional to n, and consider zm∂n′ . Then we can find
m′ ∈ P ∩ n⊥ such that 〈n′,m′〉 6= 0, and then zm∂n′z

m′ = 〈n′,m′〉zm′+m 6= 0, and
〈n,m′ +m〉 < 0, so zm∂n′ does not preserve k[P ].

If n′ is proportional to n, we can take n′ = n. There exists an m′ ∈ Int(P )

such that 〈n,m′〉 = 1. But then zm∂nz
m′ = zm+m′ , and 〈n,m + m′〉 ≤ 0. Thus

zm∂n does not preserve the ideal of ∂X .
So we see that the module of log derivations on X is

⊕

p∈P

zp(N ⊗Z k) = k[P ]⊗Z N.

Thus, as a sheaf,

ΘX†/k = OX ⊗Z N.
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(2) Next suppose we have a monomial zρ ∈ k[P ] inducing a map

X → Spec k[N] = A1
k

with the log structure on A1
k induced by the chart N → k[N] (or equivalently, by

the divisor 0 ∈ A1
k). We obtain a log smooth morphism X† → (A1

k)
†. Then

ΘX†/(A1
k
)† = OX ⊗Z ρ

⊥.

Indeed, ΘX†/(A1
k
)† is precisely the submodule of ΘX†/k of derivations annihilating

pull-backs of functions on A1
k, i.e., annihilating zρ. �

There also exists a universal log derivation, which brings in the sheaf of log
differentials:

Lemma 3.33. Given a morphism π : X† → S† of log schemes, let

Ω1
X†/S† =

(
Ω1
X/S ⊕ (OX ⊗ZMgp

X )
)/
K,

with K the OX-module generated by

(dαX(m),−αX(m)⊗m) and (0, 1⊗ π∗(n)),

for m ∈ MX, n ∈ MS. Then the pair (d, dlog) of natural maps

d : OX d−→ Ω1
X/S −→ Ω1

X†/S† , dlog :Mgp
X

1⊗ ·−→ OX ⊗Mgp
X −→ Ω1

X†/S† ,

is a universal log derivation. In other words, for any OX-module E and a log deriva-
tion (D,Dlog) on X† over S† with values in E, there exists a map Φ : Ω1

X†/S† → E
of OX-modules such that D = Φ ◦ d and Dlog = Φ ◦ dlog.

Proof. We first verify that (d, dlog) is a log derivation. Of course d is an
ordinary derivation. Also,

(
d(αX(m)),−αX(m)⊗m

)
,
(
0, 1⊗ (π#n)

)
∈ K,

and hence d(αX(m)) = αX(m) dlog(m) and dlog ◦π# = 0, so (d, dlog) is a log
derivation.

We next verify the universal property. Let (D,Dlog) be a log derivation with
values in the sheaf of OX -modules E :

D : OX −→ E , Dlog :Mgp
X −→ E .

By the universal property of Ω1
X/S there is a unique morphism ϕ : Ω1

X/S → E
fulfilling

D = ϕ ◦ d.
Define

Φ : Ω1
X/S ⊕ (OX ⊗ZMgp

X ) −→ E , Φ(γ, h⊗m) = ϕ(γ) + h ·Dlog(m).

This descends to the quotient by K because

ϕ
(
dαX(m)

)
− αX(m) ·Dlog(m) = 0, Dlog(π#(n)) = 0,

for every m ∈ MX , n ∈ MS . Thus we obtain Φ : Ω1
X†/S† → E . Clearly Φ ◦ d = D

and Φ ◦ dlog = Dlog. Uniqueness follows since Ω1
X/S ⊕ (OX ⊗ZMgp

X ) is generated

as OX -modules by Ω1
X/S and by 1⊗Mgp

X . On these subsets Φ is determined by ϕ

and by Dlog respectively. �

The OX -module Ω1
X†/S† is the sheaf of log differentials.
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Remark 3.34. First, we remark that by the universal property, we have the
relation

ΘX†/S† = HomOX (Ω1
X†/S† ,OX).

Second, if α : P → OU is a chart for the log structure on X , then in the formula
for Ω1

X†/S† one may replaceMgp
X by P gp and αX by α. In fact, any h ∈ O×X gives

a relation (
dh,−h⊗ α−1

X (h)
)
∈ K.

Therefore, for any m ∈ P gp the log differential
(
0, 1⊗ (α−1

X (h) ·m)
)

may be written

as h−1(dh, 0 ⊗ 1) + (0, 1 ⊗m), which is the sum of an ordinary differential and a
log differential involving only m. �

Definition 3.35. Given a morphism f : X† → Y † of log schemes over S†,
there is a natural functorial morphism

f∗ : f∗Ω1
Y †/S† → Ω1

X†/S†

induced by f∗ : f∗Ω1
Y/S → Ω1

X/S and f∗ ⊗ f# : f−1(OY ⊗Mgp
Y )→ OX ⊗Mgp

X .

Dually, this gives a morphism

f∗ : ΘX†/S† → f∗ΘY †/S† .

Examples 3.36. (1) As in Example 3.32, take X = Spec k[P ] with P a toric
monoid and with X carrying the usual log structure given by the standard chart
P → k[P ]. Consider

Ω1
X†/k = (Ω1

X/k ⊕ (OX ⊗Z P
gp))/K.

Note that Ω1
X/k is generated by differentials of the form d(zp), and

(d(zp),−zp ⊗ p) ∈ K,
so under the equivalence relation induced by K, every element of Ω1

X/k is equivalent

to an element of OX ⊗ P gp. Furthermore, there is no non-zero element of K in
0⊕ (OX ⊗Z P

gp), so OX ⊗Z P
gp injects into Ω1

X†/k. Thus

Ω1
X†/k = OX ⊗Z P

gp = OX ⊗Z M,

where as before M = P gp, N = HomZ(M,Z). Of course, this gives another, much
easier, computation of

Θ1
X†/k = HomOX (Ω1

X†/k,OX) = OX ⊗Z N.

Note that, under this identification, ∂n is the element of the dual of Ω1
X†/k which

takes the value 〈m,n〉 on dlogm. Since d(zm) = zm dlogm, we see ∂n(d(z
m)) =

〈m,n〉zm. This fits with the description of ∂n given in Example 3.32, (1).
(2) Similarly, given ρ ∈ P , we get a regular function zρ : X → A1

k, which gives
a log morphism X† → (A1

k)
†. We obtain Ω1

X†/(A1
k
)†

by dividing out by the image of

OX ⊗Z Ngp in OX ⊗Z M , i.e.,

Ω1
X†/(A1

k
)† = OX ⊗Z M/Zρ.

(3) We can further restrict the morphism of (2) to the fibre over zero, to get a

log morphism X†0 → Spec k†. We then note that Ω1
X†0/k

= OX0 ⊗Z M via exactly

the same argument as in (1). Then

Ω1
X†0/k†

= OX0 ⊗Z M/Zρ,



116 3. LOG GEOMETRY

exactly as in (2).
(4) If f : X† → Y † is log smooth, then Ω1

X†/Y † is locally free: we leave the

details to the reader, based on the above examples.
(5) If X is a non-singular variety over a field k, D ⊆ X a normal-crossings

divisor, then we obtain the divisorial log structure M(X,D) on X , and Ω1
X†/k

∼=
Ω1
X(logD). This is the subsheaf of j∗Ω

1
(X\D)/k (with j : X \ D →֒ X the inclu-

sion) locally generated by dx1

x1
, . . . ,

dxp

xp
, dxp+1, . . . , dxn, where x1, . . . , xn are local

coordinates such that D is given by x1 · · ·xp = 0.
(6) Let C† → Spec k† be a log smooth curve, as in Example 3.26. Then ΘC†/k†

is a line bundle. Let C0 ⊆ C be an irreducible component. We will describe ΘC†/k†

by describing ΘC†/k† |C0 . (This does not completely determine ΘC†/k† if C is not of

genus zero, as there is a k× choice for gluing these line bundles at the double points
of C). Let x1, . . . , xn ∈ C0 be the points of C0 which are either double points in C
or log marked points. Then we claim that

ΘC†/k† |C0
∼= ΘC0/k(−

n∑

i=1

xi).

Indeed, by Proposition 3.30, ΘC†/k† is a subsheaf of ΘC/k. It is clear that one

obtains equality at smooth points of C† → Spec k†.
On the other hand, let’s understand ΘC†/k† at special points. At a double

point x ∈ C, we have MC,x = Se for some e, in the notation of Example 3.28.
Then C and its log structure can be described as follows. Let N = Z2, and σ ⊆ NR

be generated by (0, 1) and (e, 1). Then the corresponding toric variety Xσ has a
regular function zρ with ρ = (0, 1) ∈ M , giving a morphism Xσ → A1

k. Locally
near x, C is the fibre over 0 ∈ A1

k, with the log structure induced by the divisorial
log structure on Xσ given by ∂Xσ ⊆ Xσ. So we are precisely in the situation of
Example 3.36, (3), above, with, locally,

ΘC†/k† = Hom(Ω1
C†/k† ,OC) = OC ⊗Z ρ

⊥.

Of course, ρ⊥ = Z(1, 0) ⊆ N .
If n ∈ N , we write as ∂n the corresponding log derivation in ΘC†/k† , with

∂n(z
m) = 〈m,n〉zm. Thus in particular, if we write, in our local description, C =

Spec k[z, w]/(zw) ⊆ Spec k[z, w, t]/(zw − te), with z = z(1,0), w = z(−1,e), t = zρ,
then ∂(1,0)z = z, ∂(1,0)w = −w. Thus if we restrict this derivation to an irreducible
component C0 of C, which, say, we can take to be V (w), we get the derivation z∂z
on C0 = Spec k[z]. Thus the restriction of ΘC†/k† to C0 is locally given by the sheaf
of vector fields with a zero at the origin.

We perform a similar analysis at the log marked points. Here C is locally given
by specifying the cone σ ⊆ NR generated by (1, 0) and (0, 1), and taking ρ = (0, 1) ∈
M so that again ΘC†/k† is locally generated by ∂(1,0). Taking z = z(1,0), t = zρ, we
see that ∂(1,0) = z∂z as ordinary derivations, and C = C0 = Spec k[z, t]/(t), so we
see locally ΘC†/k† |C0 again consists of the sheaf of vector fields with a zero at the
log marked point. This proves the claim. �



3.4. LOG DEFORMATION THEORY 117

3.4. Log deformation theory

In this section we will briefly survey log deformation theory, referring the reader
to [65] and [63] for full details and a more general setup. Here, we try to keep the
discussion relatively simple, just doing what we need for Chapter 4.

First, let us review the basic idea behind deformation theory for smooth va-
rieties. Suppose we are given a smooth, separated variety X over Spec k, and we
would like to construct a k-th order deformation of X . By this we mean the fol-
lowing. Let Rk = k[t]/(tk+1), and let Ok = SpecRk, so O0 = Spec k. The natural
surjections Rk → Rℓ for ℓ < k give closed embeddings Oℓ → Ok. Given a morphism
Xk → Ok, the restriction of Xk to Oℓ is the base-change Xk ×Ok

Oℓ → Oℓ. So a
k-th order deformation of X → Spec k is a flat morphism Xk → Ok such that the
restriction of Xk to O0 is isomorphic to X → Spec k.

If we wish, then, to construct a deformation of X , we proceed step-by-step.
Suppose we have constructed a (k − 1)-st order deformation Xk−1 → Ok−1, and
we wish to lift this to a deformation Xk → Ok which restricts to Xk−1 over Ok−1.
This can be done as follows.

Begin by choosing an affine open cover {Ui} of X . Let Uij = Ui ∩ Uj . Now
the first fact we need is that the (k − 1)-st order deformation of any non-singular
affine variety U is trivial, i.e., isomorphic to U ×k Ok−1. But given a (k − 1)-st
order deformation Xk−1 of X , the restriction of OXk−1

to Ui induces a (k − 1)-st

order deformation Uk−1
i of Ui. This must be trivial, i.e., there is an isomorphism

θk−1
i : Uk−1

i → Ui ×k Ok−1. This gives rise to gluing maps

θk−1
ij : Uij ×k Ok−1 → Uij ×k Ok−1

which are defined by the composition

Uij ×k Ok−1
(θk−1

i )−1

−→ Uk−1
ij

θk−1
j−→Uij ×k Ok−1.

Note that

θk−1
jℓ ◦ θk−1

ij = θk−1
iℓ

on Uijℓ = Ui ∩ Uj ∩ Uℓ.
To construct Xk, we just try to lift these identifications, by choosing identifi-

cations

θkij : Uij ×k Ok → Uij ×Ok
which restrict to the given θk−1

ij . There are many such liftings, and the choice of

liftings form a torsor over Γ(Uij ,ΘX/k), where ΘX/k is the tangent bundle of X ,
or module of derivations with values in OX . To see this explicitly, consider a local
situation where X = SpecA, and we are given a homomorphism fk−1 : A[t]/(tk)→
A[t]/(tk) of Rk−1-algebras which is the identity modulo t. Let fk, f̄k be two lifts
of fk−1 to homomorphisms of Rk-algebras A[t]/(tk+1) → A[t]/(tk+1). Then for
a ∈ A, we have

f̄k(a)− fk(a) = tkψ(a),

for some ψ(a) ∈ A. It is not difficult to see that ψ must be a derivation of A (see in
fact the proof of Proposition 3.39). Furthermore, given fk and a derivation ψ, the
above equation defines f̄k, and the fact that this is a homomorphism of Rk-algebras
follows from the fact that ψ is a derivation for A over k. Note also that if fk−1

is the identity, then there is a canonical lifting fk of fk−1, namely the identity, so
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the set of all possible liftings of the identity homomorphism A[t]/(tk) → A[t]/(tk)
to A[t]/(tk+1)→ A[t]/(tk+1) is identified canonically with Γ(X,ΘX/k).

Having chosen one set of lifts θkij , we now want to impose the condition

θkjℓ ◦ θkij = θkiℓ

on Uijℓ, in order for these morphisms to induce compatible gluings. Of course,

θkjℓ ◦ θkij ◦ (θkiℓ)
−1 ≡ id mod tk.

Thus the automorphism θkjℓ ◦ θkij ◦ (θkiℓ)
−1 of Uijℓ × Ok is a lifting of the identity,

and hence is determined by an element ψijℓ ∈ Γ(Uijℓ,ΘX/k). Of course (Uijℓ, ψijℓ)

is a Čech 2-cocycle defining an element ob(Xk−1/Ok−1) ∈ H2(X,ΘX/k).
This element is precisely the obstruction to lifting Xk−1 to Xk. Indeed, this

cohomology class is zero if and only if there exists a Čech cochain (Uij , ψij) for ΘX/k

such that ψij+ψjℓ−ψiℓ = ψijk. Then if we modify our initial choice of lifting θkij by

subtracting tkψij from (θkij)
∗, we can replace ψijℓ with ψijℓ− (ψij +ψjℓ−ψjℓ) = 0.

Thus with this new choice, θkjℓ◦θkij = θkiℓ and the open sets Ui×Ok glue. Conversely,

if we can find liftings θkij which glue, then the 2-cocycle ob(Xk−1/Ok−1) clearly

vanishes in H2(X,ΘX/k).

Furthermore, we have a choice of liftings. For any Čech one-cocycle (Uij , ψij)
for ΘX/k, we can replace a given choice of lifting θkij by adding tkψij to (θkij)

∗

without affecting the compatibility of gluings.
Any such choice of lifting can be modified by the Čech differential of a one-

cochain (Ui, ψi) and this will give an isomorphic lifting Xk. This isomorphism is
induced via the identifications Uki → Uki which are the identity modulo tk and are
hence determined by the derivation tkψi.

We conclude that the set of liftings of Xk−1 → Ok−1 to Xk → Ok, up to
isomorphism, forms a torsor over H1(X,ΘX/k).

In conclusion, this argument sketches a proof of

Proposition 3.37. Given a non-singular separated variety X/k and a lifting
of X/k to a flat deformation Xk−1/Ok−1, there exists an element

ob(Xk−1/Ok−1) ∈ H2(X,ΘX/k)

such that Xk−1/Ok−1 lifts to Xk/Ok if and only if ob(Xk−1/Ok−1) = 0. Further-
more, if there exists a lifting Xk/Ok of Xk−1/Ok−1, the set of all such liftings is a
torsor over H1(X,ΘX/k).

This is really just a special case of deformation theory, and a more in-depth
study would explain a lot more. However, this example forms a good model for
what we will need.

Keeping the above framework in mind, let’s consider the log version. Suppose
we are given a log smooth morphism X† → Spec k†. We would like to understand

log smooth deformations of the form X†k → O†k.
Now the very first issue that distinguishes this situation from the ordinary

situation described above is that there is not a unique choice of log structure on Ok:
we will restrict to fine log structures defined by charts N→ Rk whose composition
N→ Rk → k sends 0 to 1 and all other elements of N to 0. Thus the restriction of
the induced log structure on Ok to Spec k is the standard log structure on Spec k.
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The second issue is that in log smooth deformation theory, deformations are
usually not locally trivial. For example, the map Spec k[x, y] → Spec k[t] given by
t 7→ xy is a log smooth deformation of the singular (but log smooth) variety xy = 0;
of course this is not locally trivial.

The main point, however, is that if we want a log smooth deformationX†k → O†k
of X† → Spec k† over O†k for some choice of log structure O†k on Ok, then the local

structure of the deformationX†k → O†k is determined completely by the log structure
on Ok. This follows from the following proposition, which we state without proof.
See [65], Proposition 3.14 or [63], Proposition 8.3.

Proposition 3.38. Let X† → Spec k† be log smooth, with X affine. Given

a fine log structure O†k on Ok whose restriction to O0 = Spec k is the standard

log point, there is, up to isomorphism, a unique log smooth lifting X†k → O†k of

X† → Spec k†.

For example, if X = Spec k ×SpecZ[N] Z[P ] for some monoid homomorphism
N → P , we take Xk = Ok ×SpecZ[N] Spec Z[P ], where the map Ok → Spec Z[N] is
determined by the chart N → Rk defining the log structure on Ok. If, say, this
chart is trivial, sending 1 to 0, then Xk is a trivial deformation of X , but if the
chart is given, say, by 1 7→ t, then Xk is a k-th order smoothing of X .

We can now proceed as before. Suppose we are givenX† → Spec k† log smooth,

and log structures O†k−1, O
†
k on Ok−1, Ok respectively, with the log structure O†k

restricting to O†k−1 and the standard log structure on Spec k. Suppose also we have

a log smooth lifting X†k−1 → O†k−1 of X† → Spec k†, and we want to lift this to

X†k → O†k.

As before, we choose an open affine covering {U †i } of X†. By the above propo-

sition, each U †i → Spec k† lifts uniquely to (Uk−1
i )† → O†k−1, and hence X†k−1 is

obtained by gluing the log schemes (Uk−1
i )† via log automorphisms

θk−1
ij : (Uk−1

ij )† → (Uk−1
ij )†

over O†k−1. We then choose lifts

θkij : (Ukij)
† → (Ukij)

†.

Here, (Uki )† is again the unique lift of (Uk−1
i )† to a log smooth scheme over O†k.

We then apply the following proposition:

Proposition 3.39. Let X† → Spec k† be log smooth with X affine, and suppose

we are given log smooth X†k−1 → O†k−1 which restricts to X† → Spec k† and with a

given log smooth lifting X†k → O†k. Then:

(1) Given a log automorphism θk−1 : X†k−1 → X†k−1 over O†k−1 which restricts

to the identity on X†, the set of lifts of θk−1 to a log automorphism θk :

X†k → X†k over O†k is a torsor over Γ(X,ΘX†/k†).

(2) The set of log automorphisms θk : X†k → X†k over O†k which restrict to the

identity on X†k−1 is canonically isomorphic to Γ(X,ΘX†/k†).

Proof. We will first observe without proof that θk−1 always lifts to an auto-
morphism θk. This follows from the infinitesimal lifting criterion for log smoothness:
see [65], Proposition 3.4 and Corollary 3.11, or [63], Theorem 4.1.
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A log automorphism of X†k over O†k is induced by an automorphism of sheaves
of Rk-algebras,

θ∗k : OXk
→ OXk

and an automorphism

θ#k :MXk
→MXk

compatible with θ∗k and the log structure on O†k. Suppose we are given two such

automorphisms, θk and θ̄k, which restrict to the same automorphism θk−1 of X†k−1.

Then define a log derivation (D,Dlog) on Xk with values in tkOXk
= tkOX as

follows. For f a section of OXk
, define

Df = θ̄∗k(f)− θ∗k(f) ∈ tkOXk
= tkOX .

Then D is an ordinary derivation:

D(f · g) = θ̄∗k(f) · θ̄∗k(g)− θ∗k(f) · θ∗k(g)
= θ̄∗k(f) · (θ̄∗k(g)− θk(g))

+(θ̄∗k(f)− θ∗k(f)) · θ∗k(g)
= fDg + (Df)g.

Here the third equality follows since Df and Dg lie in tkOXk
and θ∗k and θ̄∗k are

the identity modulo t.

Next define Dlog as follows. For m ∈MXk
, we have θ̄#k (m) ≡ θ#k (m) mod tk,

and since θ#k and θ̄#k induce the identity onMXk
=MX , we have

θ
#

k (m) = hm · θ#k (m),

where hm ∈ 1 + tkOXk
. Define Dlog(m) = hm − 1. Then (D,Dlog) forms a log

derivation over O†k: we have

D(αXk
(m)) = θ̄∗k(αXk

(m))− θ∗k(αXk
(m))

= αXk
(θ̄#k (m))− αXk

(θ#k (m))

= αXk

(
(1 + Dlog(m))θ#k (m)

)
− αXk

(θ#k (m))

= Dlog(m) · αXk
(θ#k (m))

= Dlog(m) · αXk
(m).

The last line again follows since Dlog(m) ∈ tkOXk
. Furthermore, if π : X†k →

O†k is the given morphism, then Dlog(π#(m)) = 0 since θ̄#k (π#(m)) = π#(m) =

θ#k (π#(m)), as θk and θ̄k are automorphisms over O†k.
Note that D(f) and Dlog(m) only depend on f and m modulo t. Thus

(D,Dlog) can be viewed as a log derivation in Γ(X,ΘX†/k†) (or more precisely,

in tkΓ(X,ΘX†/k†)). Furthermore, going backwards, giving θk and (D,Dlog) deter-

mines θ̄k.
This gives (1). For (2), we take θk to be the identity, so any θ̄k is canonically

determined by a derivation in Γ(X,ΘX†/k†). �

We can then follow the same argument we gave in the usual deformation theory
setting to obtain:
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Proposition 3.40. Suppose we are given a log smooth morphism X† → Spec k†

with X separated over k and a lifting of this morphism to a log smooth morphism

X†k−1 → O†k−1, for some choice of log structure on Ok−1. Given a lift of this

log structure to Ok, there exists an element ob(X†k−1/O
†
k−1) ∈ H2(X,ΘX†/k†)

such that X†k−1 → O†k−1 lifts to a log smooth morphism X†k → O†k if and only

if ob(X†k−1/O
†
k−1) = 0. Furthermore, the set of such liftings, up to isomorphism,

is a torsor over H1(X,ΘX†/k†).

The nicest situation in which to apply this proposition is whenH2(X,ΘX†/k†) =
0, in which case there are no obstructions. This is the case, for example, if X is a
curve.

For the purposes of Chapter 4, we will need to consider a more complicated
deformation theory problem. Suppose we have a toric variety X with the standard
log structure, induced by ∂X ⊆ X , along with a morphism π : X† → (A1

k)
† induced

by a monomial function on X . We will keep this fixed in the following discussion.

Consider also a log smooth curve C†0 → Spec k† = O†0, and suppose we have a
commutative diagram

(3.6) C†0
f0

//

��

X†

π

��

O†0 α0

// (A1
k)
†

Here α0 : O0 → A1
k maps to the origin. We would like to understand liftings of the

diagram (3.6) to diagrams

(3.7) C†k
fk

//

��

X†

π

��

O†k αk

// (A1
k)
†

where the bottom horizontal arrow determines the log structure on Ok: indeed,
giving a morphism αk : Ok → A1

k is the same thing as giving a map N→ Rk, which
yields the chart for the log structure on Ok.

We shall use the notation [fk : Ck/Ok → X ] for the data of a diagram (3.7).

Theorem 3.41. Suppose C0 is rational. Consider the map

f0∗ : ΘC†0/k† → f∗0 ΘX†/(A1)†

dual to the functorial map of sheaves of differentials

f∗0 : f∗0 Ω1
X†/(A1)† → Ω1

C†0/k†
.

Suppose that f0∗ is injective, with cokernel Nf0 , the logarithmic normal sheaf of
f0. Let

[fk−1 : Ck−1/Ok−1 → X ]

be a lift of

[f0 : C0/O0 → X ].
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Then the set of isomorphism classes of lifts

[fk : Ck/Ok → X ]

restricting to

[fk−1 : Ck−1/Ok−1 → X ]

is a torsor over H0(C0,Nf0).
Proof. First note that since C0 is a curve, H2(C0,ΘC†0/k†) = 0, so there are

no obstructions to lifting C†k−1 → O†k−1 to C†k → O†k. The set of such liftings forms

a torsor over H1(C0,ΘC†0/k†). Choose one such lifting. As above, cover C0 with

affine open sets Ui, with unique thickenings (Uk−1
i )†, (Uki )† determined by O†k−1

and O†k respectively. We have gluing maps

θk−1
ij : (Uk−1

ij )† → (Uk−1
ij )†

θkij : (Ukij)
† → (Ukij)

†
(3.8)

with θk−1
ij = θkij mod tk. We also have maps fk−1

i : (Uk−1
i )† → X† determined by

fk−1; these must satisfy compatibility on Uk−1
ij :

fk−1
i = fk−1

j ◦ θk−1
ij .

As usual in deformation theory, we first choose lifts fki : (Uki )† → X† of fk−1
i .

The fact that such a lift exists is actually the infinitesimal lifting criterion for log
smoothness: see [65], Proposition 3.4, or [63], Theorem 4.1. Again, we state this
without proof.

The set of choices of lifts fki is in fact a torsor over H0(Ui, f
∗
0 ΘX†/(A1)†) (see

[65], Proposition 3.9). Indeed, giving a section of f∗0 ΘX†/(A1)† is the same as giving

a log derivation on X with values in f0∗OC0 . Now given two lifts fki and f̄ki of

fk−1
i , we obtain such a derivation (D,Dlog) by

Dg = (f̄ki )∗(g)− (fki )∗(g)

for a function g on X , and Dlog(m) = hm − 1, for m a section of MX , where
hm ∈ O×Uk

i

is defined by

(f̄ki )#(m) = hm(fki )#(m).

This is a log derivation just as in the proof of Proposition 3.39, and vanishes on the
pull-backs of functions on A1, hence gives a log derivation of X†/(A1)† with values
in tkOUk

i

∼= OUi . This is then an element of Γ(Ui, f
∗
0 ΘX†/(A1)†). Conversely, giving

fki and such a log derivation (D,Dlog) clearly determines f̄ki . If (D,Dlog) =: ψi,
we write

f̄ki = fki + tkψi.

Once we choose liftings fki of fk−1
i , we can then compare, for each i and j,

fki with fkj ◦ θkij on Ukij . These are two different liftings of the same map fk−1
i =

fk−1
j ◦ θk−1

ij , and hence differ by an element ψij ∈ Γ(Uij , f
∗
0 ΘX†/(A1)†). These yield

a Čech 1-cocycle for f∗0 ΘX†/(A1)† on C0. However, ΘX†/(A1)† is a trivial vector
bundle since X is a toric variety, by Example 3.32, (2). Since C0 is assumed to be
rational, H1(C0, f

∗
0 ΘX†/(A1)†) = 0. Thus there is no obstruction to lifting, and we
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obtain a lifting [fk : Ck/Ok → X ]. It only remains to classify all choices of such
liftings, up to isomorphism.

Consider then two sets of liftings of the data θk−1
ij , fk−1

i , given by θkij , f
k
ij and

θ̄kij , f̄
k
ij . Then θ̄kij and θkij differ by some tkψij for ψij ∈ H0(Uij ,ΘC†0/k†), and

f̄ki differs from fki by tkηi for some ηi ∈ H0(Ui, f
∗
0 ΘX†/(A1)†). The compatibility

condition

f̄ki = f̄kj ◦ θ̄kij
becomes

fki + tkηi = fkj ◦ θkij + (f0∗(ψij) + ηj)t
k.

Hence ηi = f0∗(ψij) + ηj , so the data (ηi)i determine a section of Nf0 .
Conversely, given a section of Nf0 determined by (η̄i)i, η̄i ∈ Γ(Ui,Nf0), we can

lift these to ηi ∈ Γ(Ui, f
∗
0 ΘX†/(A1)†), with ηi − ηj = f0∗(ψij) for some ψij . Since

f0∗ is assumed to be injective, this determines the ψij ’s, and hence determines

θ̄kij , f̄
k
i from θkij , f

k
i . A different set of lifts (η′i) will change the Čech one-cocycle

{(Uij , ψij)} by a coboundary, and hence determine an isomorphic lift. Hence the
set of all possible lifts is a torsor over H0(C0,Nf0). �

We have more decorations needed for the next chapter, as follows. We wish
to mark C0, considering points x0

1, . . . , x
0
s ∈ C0, which we think of as sections

x0
i : O0 → C0 of C0 → O0. We consider liftings [fk : Ck/Ok → X ] along with

sections xki : Ok → Ck of Ck → Ok lifting x0
i . We write the data of such a lift as

[fk : Ck/Ok → X,xk].

Theorem 3.42. Given [f0 : C0/O0 → X,x0] such that the points x0
1, . . . , x

0
s ∈

C†0 are all log smooth points, with C0 rational and f0∗ injective as in Theorem 3.41,
let Nf0,x0 be defined to be the cokernel of the composition

ΘC†0/k†

(
−

s∑

i=1

x0
i

)
→֒ ΘC†0/k†

f0∗−→f∗0 ΘX†/(A1)† .

Given a lifting

[fk−1 : Ck−1/Ok−1 → X,xk−1],

the set of liftings

[fk : Ck/Ok → X,xk]

of

[fk−1 : Ck−1/Ok−1 → X,xk−1]

is a torsor over H0(C0,Nf0,x0).

Proof. We just need to modify the argument of Theorem 3.41, taking into
account the additional data. First, we understand liftings Ck/Ok,x

k, without tak-

ing into account the map f0. Fix some C†k → O†k lifting C†k−1 → O†k−1. Now the

set of lifts xki : Ok → Ck of xk−1
i : Ok−1 → Ck−1 is in fact a torsor over the Zariski

tangent space to C0 at x0
i . Indeed, first of all, a lift exists, as Ck → Ok is smooth at

x0
i . (This is a standard fact about smooth morphisms: it is just the formal lifting

criterion for smoothness; see for example [53], §17). Next, given two lifts xki , x̄
k
i of

xk−1
i and g ∈ mCk,x0

i
, the maximal ideal of OCk,x0

i
, we have

(x̄ki )
∗(g)− (xkj )

∗(g) ∈ (tk) ⊆ Rk.
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This induces a linear functional mCk,x0
i
→ tkk, which clearly descends to give a

linear functional mC0,x0
i
/m2

C0,x0
i
→ tkk. This is an element of the Zariski tangent

space to C0 at x0
i . Conversely, given such a linear function, we can modify (xkj )

∗

to obtain (x̄ki )
∗.

Note that as x0
i is always a log smooth point, in fact the fibres of the vector

bundles ΘC†0/k† and ΘC0/k agree at x0
i , and both fibres coincide with the Zariski

tangent space to C0 at x0
i .

Suppose we are given a log automorphism ψ : C†k → C†k over O†k which is the

identity modulo tk, hence induced by ψ ∈ Γ(C0,ΘC†0/k†). Furthermore, suppose we

are given lifts xki : Ok → Ck of xk−1
i , and set

x̄ki = ψ ◦ xki .
Then the difference between x̄ki and xki is the image of ψ in the Zariski tangent
space of C0 at x0

i .
This can be summarized by the exact sequence

(3.9) 0→ ΘC†0/k†(−x0)→ ΘC†0/k† →
s⊕

ℓ=1

ΘC†0/k† ⊗ k(x0
ℓ )→ 0.

Here ΘC†0/k†(−x0) denotes the sheaf ΘC†0/k† twisted by the line bundle

OC0(−
s∑

ℓ=1

x0
ℓ ),

and k(x0
ℓ ) denotes the residue field of C0 at x0

ℓ . Taking sections over an open affine
set U of C0, with induced thickenings (Uk−1)†, (Uk)†, the space of liftings of the

maps {xk−1
ℓ |x0

ℓ ∈ U} to maps xkℓ for x0
ℓ ∈ U is a torsor over

Γ(U,

s⊕

ℓ=1

ΘC†0/k† ⊗ k(x0
ℓ )).

The set of liftings of an automorphism of (Uk−1)† to (Uk)† is a torsor over

Γ(U,ΘC†0/k†),

and the set of such liftings which leave given liftings xkℓ of xk−1
ℓ fixed for all ℓ with

x0
ℓ ∈ U is a torsor over Γ(U,ΘC†0/k†(−x0)).

Now as usual, cover C†k−1 with affine open subsets (Uk−1
i )† and fix lifts (Uki )†.

For each i, let j1, . . . , jsi be the indices such that x0
jℓ
∈ Uk−1

i for 1 ≤ ℓ ≤ si.

Assuming we have lifts xk−1
jℓ

: Ok−1 → Uk−1
i , we can extend these to lifts xkjℓ :

Ok → Uki . On the other hand, consider the map coming from (3.9)

Ψi : Γ(Ui,ΘC†0/k†)→
si⊕

ℓ=1

ΘC†0/k† ⊗ k(x0
jℓ).

This map is surjective since Ui is affine. Thus, up to automorphisms of (Uki )† which
are the identity modulo tk, there is a unique choice of liftings xkjℓ .

So we can now assume we have fixed open sets (Uki )† and liftings xkjℓ : Ok → Uki .
We just need to glue these together. We follow the usual procedure. However,
we need to match up those liftings xkℓ which land in Ukij . One follows the usual
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deformation theory argument as given in Proposition 3.40 and sees that the set of
all liftings Ck/Ok,x

k of Ck−1/Ok−1,x
k−1 form a torsor over

H1(C0,ΘC†0/k†(−x0)).

Repeating the argument of Theorem 3.41 then gives the desired result. �

The final decoration is as follows. We now assume that we are also given, on
top of the above data, sections σ1, . . . , σs : A1 → X of π. Assume we start with
[f0 : C0/O0 → X,x0] chosen so that f0(x

0
i ) = σi(0) for 1 ≤ i ≤ s. In other

words, we are imposing conditions on where the marked points of C0 map. Note
we can write this condition also as f0 ◦ x0

i = σi ◦ α0. We then wish to find liftings
[fk : Ck/Ok → X,xk] which satisfy

fk ◦ xki = σi ◦ αk.
(Recall that αk : Ok → A1

k is the given map.)

Theorem 3.43. Suppose we are given the same hypotheses as Theorem 3.42,
with the additional hypothesis that f0◦x0

i = σi◦α0 for 1 ≤ i ≤ s. Denote by TX/A1,σi

the fibre of the vector bundle ΘX†/(A1)† at σi(0), or equivalently, the fibre of the

vector bundle f∗0 ΘX†/(A1)† at x0
i . These can be written either as ΘX†/(A1)†⊗k(σi(0))

or as f∗0 (ΘX†/(A1)†)⊗ k(x0
i ). Then there is a natural map

Ξ : H0(C0,Nf0,x0)→
s∏

i=1

TX/A1,σi(0).

The map H0(C0,Nf0,x0)→ TX/A1,σi(0) is given by lifting a section of Nf0,x0 locally

in a neighbourhood of x0
i to a section of f∗0 ΘX†/(A1)† and then evaluating the section

at x0
i to get an element of TX/A1,σi(0). Then given a lift

[fk−1 : Ck−1/Ok−1 → X,xk−1]

of

[f0 : C0/O0 → X,x0]

with fk−1 ◦ xk−1
i = σi ◦ αk−1 for all i, there exists a lift

[fk : Ck/Ok → X,xk]

of

[fk−1 : Ck−1/Ok−1 → X,xk−1]

with fk ◦ xki = σi ◦ αk for all i if Ξ is surjective. Furthermore, if a lift exists, the
set of such lifts is a torsor over kerΞ.

Proof. We first note that Ξ is well-defined. Indeed, two local lifts of a section
s of Nf0,x0 to f∗0 ΘX†/(A1)† differ by a vector field on C0 vanishing at x0

i . Applying

f0∗ to this vector field gives a section of f∗0 ΘX†/(A1)† vanishing at x0
i , and hence Ξ

is well-defined.
To obtain the result, one now just considers thickenings (Uki )† as usual, along

with fixed maps xkℓ : Ok → Uki for various ℓ. All possible lifts fk, xk are then
obtained by modifying the gluings of the sets (Uki )†, as well as modifying the map
fk : (Uki )† → X . Note that modifications of the gluings don’t affect the maps
fk ◦ xkℓ . So if fk : (Uki )† → X† is replaced by f̄k which differs from fk by a section
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ψ of f∗0 ΘX†/(A1)† , we see that for a function g on X defined in a neighbourhood of

σℓ(0) = f0(x
0
ℓ ),

(xkℓ )
∗ ◦ f̄∗k (g) = (xkℓ )

∗(f∗k (g) + tkψ(g))

= (xkℓ )
∗ ◦ f∗k (g) + tkψ(g)(x0

ℓ ).

So this changes (xkℓ )
∗ ◦ f∗k by the element of TX/A1,x0

ℓ
given by evaluating ψ at x0

ℓ .

Since we wish to ensure that

(xkℓ )
∗ ◦ (fk)

∗ = α∗k ◦ σ∗ℓ ,
and the right-hand side is completely determined, the result follows. �

3.5. The twisted de Rham complex revisited

This section doesn’t properly belong here. It explains a technical point we
evaded in §2.2.1. Namely, Theorem 2.31 only applies in the case that W : X → C

is projective.
Since this is not the case for the chief example of interest, namely the mirror

Landau-Ginzburg model for Pr, we proceed as follows. If W : X → C is not pro-
jective, but only quasi-projective, then we find a non-singular variety X containing
X such that D := X \X is normal crossings and W extends to give W : X → C

projective. Then we consider the twisted log de Rham complex

(Ω•
X

(logD), d+ dW∧)
with Ωp

X
(logD) =

∧p
Ω1
X

(logD), and the differential d+ dW∧, as before, given by

ω 7→ dω+dW ∧ω. Then we have, in analogy with Theorem 2.31, proved by Sabbah
in [102],

Theorem 3.44. In the above situation,

Hi
Zar

(
X, (Ω•

X
(logD), d+ dW∧)

) ∼= Hi
Zar

(
X, (Ω•

X
(logD), dW∧)

)

∼= Hi
An

(
X, (Ω•

X
(logD), d+ dW∧)

)
.

In fact, when W : X → C is not proper, the correct cohomology groups to use
are the ones appearing in the above theorem.

We will now carry out this procedure for the mirror of Pr. In the end, we
will see we get the same answer we did in §2.2.1, so this calculation may be safely
skipped, but it does give a good example of toric techniques in action.

Let M = Zr, N = HomZ(M,Z) etc., as usual, and let ∆ ⊆ NR be the lattice
polytope given by

∆ := Conv({e0, e1, . . . , er}),
where e1, . . . , er is the standard basis of N and

e0 = −
r∑

i=1

ei.

Note that ∆ is in fact a reflexive polytope (see Example 1.28) with dual

∆∗ := Conv{e∗0, e∗0 + (r + 1)e∗1, . . . , e
∗
0 + (r + 1)e∗r},

where e∗1, . . . , e
∗
r is the dual basis for M and

e∗0 = −
r∑

i=1

e∗i .
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Now ∆ defines a projective toric variety P∆. We define

X ∼= (C×)r

to be the open torus orbit of P∆. We identify this X with the X used in Example
2.33. In that example, we took W = ze1 + · · ·+ zer + κze0 in the current notation.
Now any n ∈ ∆ ∩ N , via Remark 3.5, can be thought of as a section of OP∆(1).
This line bundle can be trivialized on the open torus orbit of P∆ in such a way that
a section determined by n ∈ ∆ ∩N corresponds to the regular function zn on X .
Since 0 ∈ ∆, this determines a section which corresponds to the regular function
z0 = 1 on X . Thus the expression for W on X can also be written as

W =
ze1 + · · ·+ zer + κze0

z0
,

and by writing it as this ratio, it in fact extends to P∆ as a ratio of two sections of
OP∆(1), and hence defines a rational function

W : P∆
−−−>P1

k.

There are now two problems that have be dealt with. First, P∆ is quite singular,
and these singularities need to be resolved. Second, W is only rational, so some
further blow-up will be necessary to resolve the singularities of W .

To address these problems, we first resolve the singularities of P∆ torically. The
normal fan of ∆ is in fact the set of cones generated by proper faces of ∆∗. To
resolve P∆, we can refine the normal fan by choosing a polyhedral decomposition
P of ∂∆∗ into standard simplices. Then the fan Σ consisting of cones generated
by elements of P is a refinement of the normal fan of ∆, and defines a non-singular
toric variety XΣ along with a proper birational map π : XΣ → P∆. Then W ◦π can
be expressed as the ratio of two sections s1/s0 of π∗OP∆(1). We write this function
again as

W : XΣ−−−>P1
k.

We note that W fails to be defined when s1 = s0 = 0.
To understand how to resolve the singularities of W , we look at an affine open

subset of XΣ, determined by a cone σ ∈ Σ which is generated by σ̄ = σ ∩ ∂∆∗.
Without loss of generality, we can assume that σ̄ is a maximal cell in P. Note
that for each maximal proper face ω̄ of ∆∗, there is a unique vertex v of ∆ such
that 〈v,m〉 = −1 for all m ∈ ω̄. Take ω̄ to be the unique face of ∆∗ containing σ̄
and let ω be the cone generated by ω̄. Then in particular there is a unique i such
that 〈ei,m〉 = −1 for all m ∈ σ̄. Note that Xω is the open affine subset of P∆

corresponding to the vertex ei of ∆, and π maps Xσ into Xω. Thus we can study
W by using the trivialization of OP∆(1) on the open set Xω given in Remark 3.5,
i.e.,

W =
ze1−ei + · · ·+ zer−ei − κze0−ei

z−ei
.

Now the cone σ is generated by somem1, . . . ,mr ∈M with m1, . . . ,mr ∈ σ̄ forming
a basis for M , and Xσ

∼= Ark. Since 〈−ei,mj〉 = 1 for each j, the denominator of W
vanishes precisely once on each toric divisor of Ark, i.e., each coordinate hyperplane.
On the other hand, we can write the numerator of W as a polynomial

c0 +

r∑

i=1

ciz
ni
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where n1, . . . , nr form a basis for NR (but not N) and each ci is either 1 or κ, hence
non-zero.

Claim. The zero locus of c0 +
∑r
i=1 ciz

ni is non-singular and intersects each
toric stratum of Xσ transversally.

Proof. It is enough to show that if we restrict c0 +
∑r
i=1 ciz

ni to a torus orbit
of Xσ, we get a non-zero equation which defines a non-singular hypersurface in this
torus orbit. Note that the restriction is non-zero as the constant term c0 is non-
zero. Suppose, without loss of generality, we restrict to the toric stratum Dτ of Xσ

corresponding to the cone τ generated by m1, . . . ,mp. Let Np := {m1, . . . ,mp}⊥ ⊆
N . Then the big torus orbit in this stratum is isomorphic to Spec k[Np], and a
monomial zni on Xσ restricts to a non-zero monomial on Dτ if and only if ni ∈ Np.
Assume, again without loss of generality, that ni ∈ Np only for 1 ≤ i ≤ q. Then
the restriction of the numerator of W to this torus orbit is

c0 +

q∑

i=1

ciz
ni.

Now let N ′p be the sublattice of Np generated by n1, . . . , nq. Then the canonical
inclusionN ′p →֒ Np defines a smooth map of algebraic tori Spec k[Np]→ Spec k[N ′p].

Writing k[N ′p] = k[x±1
1 , . . . , x±1

q ], with xi = zni , we see that the numerator of W is

the pull-back under this map of tori of the function c0 +
∑q
i=1 cixi. The zero-set of

the latter function is a hyperplane, hence is non-singular, and the pull-back then
also defines a non-singular hypersurface. �

This now shows that s1 = 0 defines a non-singular hypersurface in XΣ. On the
other hand, s0, as mentioned above, vanishes precisely on the toric boundary of
XΣ. By the above claim, s1 = 0 intersects the toric boundary transversally, so we
now have a local description of how s1 = 0 and s0 = 0 intersect. This allows us to
describe the blow-up of s1 = s0 = 0 inside XΣ. In particular, (étale or analytically)
locally, we can describe s0 = 0 as the locus y1 · · · yp = 0 and s1 = 0 as the
locus yp+1 = 0, for some local coordinates y1, . . . , yr. So we can describe the local
structure of the blow-up using these equations, blowing up y1 · · · yp = yp+1 = 0.
In Ark × P1

k, with u, v homogeneous coordinates on P1
k, this blow-up is given by the

equation
uy1 · · · yp = vyp+1.

In the coordinate chart where v = 1, we have yp+1 = uy1 · · · yp, and eliminating the
variable yp+1, W becomes the regular function u on a non-singular variety. On the
other hand, if u = 1, we get y1 · · · yp = vyp+1, which defines a singular hypersurface,
but y1 · · · yp = 0 at any singular point. In particular, W = 1/v has a pole at such
points, but W is well-defined everywhere.

Thus, if X̃Σ is the blow-up of XΣ along the locus s1 = s2 = 0, W : X̃Σ → P1
k

is now a morphism. Let X = W−1(A1
k), with A1

k = P1
k \ {∞}. What we have seen

above is that X is non-singular and W : X → C is proper. Furthermore, we had
identified X with the big torus orbit of XΣ, and X̃Σ was obtained via a blow-up of
a locus contained in the toric boundary of XΣ. Hence we still have X ⊆ X ⊆ X̃Σ

naturally. This is the desired compactification.
To finish this story, we need to compute D := X \ X and understand the

complex (Ω•
X

(logD), dW∧). First, note that s0 = 0 defines the toric boundary of
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XΣ, so that D is the total transform of s0 = 0 restricted to X. So in the two charts
given above for the local description of the blow-up, D is given by y1 · · · yp = 0,
i.e., is normal crossings, and W is given by u or v−1. Now dW = du or d(v−1), and
since we are away from the pole of W so that v 6= 0, we see in fact dW is locally
non-vanishing in Ω1

X
(logD). Thus, as in §2.2.1, the complex (Ω•

X
(logD), dW∧) is

exact in a neighbourhood of D. Since this complex, when restricted to X , gives the
usual complex (Ω•X , dW∧), we see that the cohomology of the complex satisfies

Hi(Ω•
X

(logD), dW∧) ∼= Hi(Ω•X , dW∧),
so from the hypercohomology spectral sequence,

Hi(X, (Ω•
X

(logD), dW∧)) ∼= Hi(X, (Ω•X , dW∧)).
Hence the calculation of §2.2.1 in fact remains valid.

3.6. References and further reading

Fulton’s book [27] provides an excellent introduction to toric varieties; Oda’s
book [87] also covers more advanced topics. The foundational material on log
schemes can all be found in the original paper of K. Kato [65]; a much more in
depth exposition of log geometry is given in [88]. In addition, material on log
smooth deformation theory and log smooth curves can be found in [63] and [64].
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CHAPTER 4

Mikhalkin’s curve counting formula

4.1. The statement and outline of the proof

We will first give the statement of Mikhalkin’s Theorem, whose proof will be
given in the remainder of the chapter.

We fix, as usual, M = Zn, N = HomZ(M,Z), etc., and also fix a complete fan Σ
in MR. Using the notation of §1.3, this gives the lattice TΣ and a map r : TΣ →M ;
pick ∆ =

∑
ρ∈Σ[1] dρtρ in the kernel of r. If n = 2, then in §1.3 we defined the

number N0,trop
∆,Σ counting (with multiplicity) tropical curves in the moduli space

M0,|∆|−1(Σ,∆) passing through |∆| − 1 general points.
We first need to define the analogous holomorphic or algebro-geometric count.

We will count stable curves as in Chapter 2, but we place certain restrictions on
the curves we consider. In addition, we need to specify the homology class of the
curve. For the first point, we use

Definition 4.1. A curve C ⊆ XΣ is torically transverse if it is disjoint from
all toric strata of the toric variety XΣ of codimension > 1. (In particular, C does
not have an irreducible component contained in a codimension one stratum, as then
this irreducible component would also intersect a higher codimension stratum.)

If f : C → XΣ is a stable map, we say it is torically transverse if f(C) ⊆ XΣ

is torically transverse and no irreducible component of C maps into ∂XΣ. �

For the degree, we use the following:

Proposition 4.2. If XΣ is non-singular, then

H2(XΣ,Z) ∼= ker r.

The isomorphism takes β ∈ H2(XΣ,Z) to
∑

ρ∈Σ[1]

(β.Dρ)tρ ∈ TΣ.

Proof. From (3.2), we see that Cl(XΣ) = HomZ(ker r,Z), but since XΣ is
non-singular (and all toric varieties are rational), Cl(XΣ) ∼= Pic(XΣ) ∼= H2(XΣ,Z).
Thus ker r ∼= H2(XΣ,Z). More explicitly, an element of T∨Σ of the form

∑
aρt
∗
ρ

represents the divisor in Cl(XΣ) given by
∑
aρDρ. Furthermore, the pairing

H2(XΣ,Z) × H2(XΣ,Z) → Z which makes H2(XΣ,Z) the dual of H2(XΣ,Z) is
given by the intersection pairing (β,Dρ) 7→ β ·Dρ. This gives the explicit descrip-
tion of the isomorphism. �

So ∆ ∈ ker r determines ∆ ∈ H2(XΣ,Z). Thus we can write, as in Chapter 2,
M0,|∆|−1(XΣ,∆) for the moduli space of stable maps of genus zero into XΣ with
|∆| − 1 marked points and representing the homology class ∆.

133
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Definition 4.3. Suppose Q1, . . . , Q|∆|−1 ∈ XΣ are general points. Define

N0,hol
∆,Σ = #




f ∈M0,|∆|−1(XΣ,∆)

∣∣∣∣∣
f : (C, x1, . . . , x|∆|−1)→ XΣ is torically

transverse and f(xi) = Qi for
1 ≤ i ≤ |∆| − 1




.

It is not yet clear that this is a finite number, but this shall be shown in
the course of proving the main theorem. However, once we know this, then we
know it does not depend on the choice of Q1, . . . , Q|∆|−1 (provided they are chosen
generally) as the set being counted fits into one algebraic family as Q1, . . . , Q|∆|−1

vary, so the cardinality is the same for any two general choices of points. We can
then state the main theorem:

Theorem 4.4. Suppose n = 2. Then N0,hol
∆,Σ is finite, and

N0,trop
∆,Σ = N0,hol

∆,Σ .

Note that we do not know yet that N0,trop
∆,Σ is independent of the choice of points

in MR; this follows from the above theorem. However, we shall see a different proof
of this independence in the next chapter which is purely combinatorial.

The proof we give is not the original proof of Mikhalkin, but rather the proof
of Siebert and Nishinou [86]. The latter proof works in all dimensions, whereas
Mikhalkin’s original proof only works in two dimensions. We will, however, restrict
to two dimensions. The definition of N0,trop

∆,Σ in higher dimensions is somewhat
more complicated, as is some of the combinatorics involved in the proof. We don’t
actually save very much by restricting to the two-dimensional case though, so after
reading this chapter, it should be easy to consult [86] for the general case.

The basic idea is to construct a one-parameter degeneration of the toric variety
XΣ very similar in flavour to Example 3.6. This degeneration will be adapted for
the particular choice of points P1, . . . , P|∆|−1 ∈MR used to define N0,trop

∆,Σ . We will
then construct a correspondence between tropical curves in MR passing through
P1, . . . , P|∆|−1, “log stable curves” in the central fibre of the degeneration, and
ordinary stable curves in the general fibre of this degeneration.

More specifically, choose points P1, . . . , Ps ∈ MQ = M ⊗Z Q, with s = |∆| −
1. Note here that we are only considering points with rational, rather than real,
coordinates. This turns out not to change the earlier discussion: the general position
arguments of Lemma 1.20 work just as well over Q, so we can assume these points
have been chosen so that there are only a finite number of marked genus zero
tropical curves h : (Γ, x1, . . . , x|∆|−1) → MR in XΣ with h(xi) = Pi, and these
curves are all simple. Denote the set of these curves by

M0,s(Σ,∆, P1, . . . , Ps).

Definition 4.5. Given the data of Σ and P1, . . . , P|∆|−1 ∈ MQ general with
dimMQ = 2, a finite polyhedral decomposition P of MR is said to be good if it
satisfies the following properties:

(1) For σ ∈P, σ has faces of rational slope and vertices in MQ. Furthermore,
each σ ∈P has at least one vertex.

(2) If σ ∈ P, then Asym(σ), the asymptotic cone to σ, is an element of the
fan Σ. Furthermore, every cone of Σ appears as the asymptotic cone of
some σ ∈P.
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Figure 1

(3) The image of any h ∈ M0,s(Σ,∆, P1, . . . , Ps) lies in the one-dimensional
skeleton of P.

(4) Each Pi is a vertex of P.

Proposition 4.6. There exists a good polyhedral decomposition.

Proof. If P and P ′ are two polyhedral decompositions satisfying conditions
(1) and (2), then

P
′′ = {σ ∩ σ′ |σ ∈P, σ′ ∈P

′}
also satisfies these two conditions. We apply this as follows. Take for P the poly-
hedral decomposition obtained by taking the maximal cells to be the closures of the
connected components of MR \ S, where S is the union of images of parameterized
tropical curves in M0,s(Σ,∆, P1, . . . , Ps) and elements of Σ[1]. (The latter is not
necessary if dρ > 0 for all ρ, with ∆ =

∑
ρ dρtρ.) This P satisfies (1), (2), and (3).

Take P ′ to be the polyhedral decomposition obtained by taking the maximal cells
to be the closures of the connected components of MR \ S′, where

S′ =
⋃

ρ∈Σ[1]

s⋃

i=1

(Pi + ρ).

Then P ′ satisfies conditions (1), (2), and (4). The refinement P ′′ of P, P ′ given
above satisfies conditions (1)-(4). �

For example, if we take five points in MR contained in one tropical curve of
degree 2 in P2 depicted on the left in Figure 1, we can take P to be as given on
the right.

Without loss of generality, we can in fact assume that P is a lattice polyhedral
decomposition by replacing M with the superlattice 1

pM , where p is the common

denominator of coordinates of all vertices of P. This of course makes the points
P1, . . . , Ps lie in M too, but does not change the number N0,trop

∆,Σ . We will fix this
good P for the remainder of our discussion.

We now introduce the notation

M̃ = M ⊕ Z, Ñ = HomZ(M̃,Z),

and define the fan ΣP in M̃R as follows. For σ ∈P, let

C(σ) = {(rm, r) | r ≥ 0,m ∈ σ} ⊆ M̃R
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be the cone over σ, as in §3.1.3. Then we set ΣP to be the fan consisting of all
faces of cones C(σ) for σ ∈P. It is easy to see ΣP is a fan. In addition, note that
C(σ)∩ (MR⊕{0}) is Asym(σ), as in §3.1.3. Also, by property (2) of Definition 4.5,
Asym(σ) ∈ Σ. Furthermore, every cone of Σ arises in this way. Thus

Σ = {τ ∈ ΣP | τ ⊆MR ⊕ {0}}.
Putting this together, we now have a toric variety

X := XΣP
,

which comes along with a regular function π : X → A1
k induced by the monomial

z(0,1), (0, 1) ∈ Ñ = N ⊕Z. Note that π−1(0) is the union of toric divisors on which
z(0,1) vanishes. These are precisely the divisors corresponding to cones of ΣP of
the form C(v) for v ∈P a vertex. In particular π−1(0) is a union of toric varieties.
On the other hand, if one removes these divisors from XΣP

, one obtains the toric

variety corresponding to the fan Σ as a fan, not in MR, but in M̃R. As a result,
X \ π−1(0) ∼= XΣ ×Gm.

The degeneration π : X → A1
k is the degeneration of XΣ we shall work with.

We will use the following notation for the toric strata of X0 := π−1(0). Each
cell τ ∈P yields a cone C(τ) ∈ ΣP , hence a toric stratum DC(τ). This stratum is
contained in X0. To simplify notation, we will write this as Dτ . The fan defining
Dτ is written as Στ , and lives in MR/Tττ . This can be defined in terms of the
polyhedra in P containing τ as

Στ := {Tτσ/Tττ |σ ∈P such that τ ⊆ σ}.
We will denote by ∂X0 the union of one-dimensional toric strata of X0 not

contained in Sing(X0). This is precisely the union

(4.1) ∂X0 :=
⋃

ω∈P
[1]

ω non-compact

Dω,

as it is precisely the Dω’s for ω non-compact which are not contained in two irre-
ducible components of X0. Alternatively, one can write

∂X0 = ∂X \X0 ∩X0.

Next, we explain the role of the points P1, . . . , Ps. Let

Li = Z(Pi, 1) ⊆ M̃
be the rank one sublattice generated by (Pi, 1). Then we have an inclusion of tori

G(Li) ⊆ G(M̃), which acts on X . Now choose points Q1, . . . , Qs in the open torus

orbit of X , and consider the closed subset of X given by G(Li) ·Qi. Here we are

using the canonical action of G(M̃), hence G(Li), on X .

Proposition 4.7. π|G(Li)·Qi
is an isomorphism of G(Li) ·Qi with A1

k.

Proof. Note that the composition G(Li)→ G(M̃)
π−→G(Z) is an isomorphism,

since it is induced by the isomorphism of lattices given by the composition Li →
M̃ → Z. Thus π|G(Li)·Qi

is an isomorphism onto its image. Note that G(Li) ·Qi is

closed in π−1(A1
k \ {0}). Since π is proper, when we take the closure of G(Li) ·Qi

in X , we get precisely one additional point sitting in π−1(0), and π|G(Li)·Qi
is an

isomorphism. �
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Thus, in our setup, the choice of P1, . . . , Ps ∈M yields sections

σ1, . . . , σs : A1
k → X

of π. So we get a one-parameter family of choices of s points in XΣ, degenerating
to choices of points in X0.

We can now describe precisely the three worlds which appear in this picture.
The tropical world. One considers marked parameterized tropical curves of

genus 0 through the points P1, . . . , Ps in MR.

The log world. One considers log morphisms f : (C†, x1, . . . , xs) → X†0 from
genus zero log curves C† with marked points x1, . . . , xs such that

f(xi) = σi(0) ∈ X0

and X0 is given the log structure induced by the divisorial log structure coming
from the inclusion ∂X ⊆ X .

The classical world. The numbers N0,hol
∆,Σ in fact make sense over any alge-

braically closed field of characteristic zero, and do not depend on the choice of
field. So we can consider the field K = k((t)), the algebraic closure of k((t)). The
inclusion k[t] ⊆ K gives a map SpecK → A1

k, and

X ×A1
k

K ∼= XΣ ×k K

is the toric variety defined by Σ over the field K. Furthermore, the sections
σ1, . . . , σs : A1

k → X determine points σ1, . . . , σs : SpecK → XΣ ×k K. Using

these s points, one considers N0,hol
∆,Σ . A curve contributing to this count is a tor-

ically transverse curve over SpecK. There will then turn out to be a natural
correspondence between these curves and curves in the log world.

A diagram of the proof of Theorem 4.4 is then

§4.3

§4.4

Classical worldLog world

Tropical world

§4.5

§4.2

In other words, we will first show, in §4.2, how certain log curves give rise to tropical
curves via the “dual intersection complex” construction. In §4.3, we show how to
build log curves from tropical curves, in fact showing that for a given tropical curve
h, there are Mult(h) log curves associated to it. In particular, this demonstrates
the origin of the multiplicity.

In §4.4, we show how each torically transverse curve over SpecK gives rise to
a log curve, and in §4.5, via logarithmic deformation theory, we will show each log
curve deforms to give rise to a torically transverse curve over SpecK. Finally, in
§4.6, we put this all together to give a proof of Theorem 4.4.
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So on with the details.

4.2. Log world → tropical world

We fix in this section the data we have described in the previous section: a fan
Σ in MR two-dimensional, a degree ∆ ∈ ker r, s = |∆|−1, points P1, . . . , Ps ∈M , a

good lattice polyhedral decomposition P, and general points Q1, . . . , Qs ∈ G(M̃).
We then obtain from this data a degeneration of toric varieties π : X → A1

k

with sections σ1, . . . , σs : A1
k → X with the image of σi being G(Li) ·Qi.

As before, let X0 = π−1(0), equipped with the log structure induced by the
divisorial log structure on X coming from the inclusion ∂X ⊆ X . The morphism

π0 : X†0 → Spec k† obtained by restricting π : X† → (A1
k)
† as in Example 3.24, (3),

is log smooth.

Definition 4.8. A torically transverse log curve in X†0 is a diagram

C†
f

//

g

��

X†0

π0

��

Spec k† =
// Spec k†

of log morphisms where g is log smooth and integral, C is a curve with C† fine
saturated, the scheme morphism underlying f is a stable map, and for every vertex
v ∈P, f−1(Dv)→ Dv is a torically transverse stable map.

The following gives crucial restrictions on log curves which allow us to make
the connection with tropical geometry.

Proposition 4.9. Let f : C† → X†0 be a torically transverse log curve. If
x ∈ C is a point such that f(x) ∈ Sing(X0), then

(1) x is a double point of C, contained in two distinct irreducible components
C1, C2 of C, and f(Ci) ⊆ Dvi , i = 1, 2, for v1, v2 ∈ P distinct vertices
joined by an edge ω of P.

(2) Let wi be the multiplicity of the intersection of Ci at x with Dω ⊆ Dvi .
By this, we mean the order of vanishing of the regular function f∗(ϕ) on
Ci at x, where ϕ is a regular function defined in a neighbourhood of f(x)
in Dvi such that ϕ = 0 defines Dω. Then w1 = w2.

(3) There is an e ≥ 1 such that

MC,x = Se := N2 ⊕N N

where the fibred sum is defined by the diagonal map N → N2 and N →
N multiplication by e. Alternatively, Se can be described as the monoid
generated by α1, α2 and ρ subject to the relation α1 + α2 = eρ. (See
Example 3.27.)

(4) If ℓ is the affine length of ω, then ewi = ℓ.

Proof. Let us first describe the local situation in X near f(x). By the toric
transversality condition, f(x) cannot lie in a zero-dimensional stratum. So f(x)
must lie in a one-dimensional stratum, say Dω for ω ∈P an edge with endpoints v1
and v2. Without loss of generality, let us write v1 = (0, 0) ∈M and v2 = (ℓ, 0) ∈M ,
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where ℓ is the affine length of ω. Then the cone C(ω) defines an affine open subset
XC(ω) ⊆ X . For convenience, we write this affine open subset as Xω.

Note that the cone C(ω)∨ is generated in ÑR = R3 by (0,±1, 0), (1, 0, 0),

(−1, 0, ℓ), and C(ω)∨ ∩ Ñ = Z ⊕ Sℓ, with (0, 1, 0) generating Z and α1 = (1, 0, 0),
α2 = (−1, 0, ℓ), ρ = (0, 0, 1) generating Sℓ. Note that X0 ∩Xω = D1 ∪D2, the two
divisors corresponding to v1 and v2.

Replace C with an open neighbourhood of x whose image under f is contained
in Xω. We can assume that this open neighbourhood is small enough so that
no point other than x maps into Sing(X0) and C has at most two irreducible
components. Here we are using toric transversality of f to ensure that no component
of C maps into Sing(X0). So we now have a commutative diagram

C†
f

//

g

��

(Xω ∩X0)
†

π0

��

// X†ω

π

��

Spec k† =
// Spec k† // (A1

k)
†

Replace f with the composition of f with the inclusion (Xω ∩X0)
† → X†ω, so we

now have a commutative diagram

(4.2) C†
f

//

g

��

X†ω

π

��

Spec k† // (A1
k)
†

First suppose that f(C) is contained in, say, D1, with f(x) ∈ D1 ∩D2. Note that
zα1 ∈ Γ(Xω,MXω ), so f#(zα1) ∈ Γ(C,MC). On the other hand, zα1 vanishes on
D2 but not on D1, so zα1 ∈ Γ(Xω \D2,O×Xω

), so in fact αC(f#zα1) = f∗αX(zα1) =

f∗(zα1) ∈ Γ(C \ {x},O×C ). Noting that f∗(zα1) is not invertible at x, we conclude

that the image of f#(zα1) in MC has support exactly at the point x.
Now there are three possibilities for the behaviour of C† at x, by Example 3.26.

In Case (1) of that example, where x is a smooth point of C, MC is locally the
constant sheaf N, hence there are no such sections with support only at x.

In Case (2), where x is a double point,MC again has no sections with support
only at x. To see this, note that from the description in Example 3.26, (2), C locally
looks like Spec k[u, v]/(uv) near x. Furthermore, the description in Example 3.27
tells us the log structure. It is induced by the inclusion C ⊆ Ve, where

Ve = Spec k[u, v, t]/(uv − te)
for some e > 0 and C = V (t) ⊆ Ve. This inclusion induces a divisorial log structure
on Ve, which pulls back to the log structure on C. Since MVe is supported on C,
MC has a section with support only at x only ifMVe does. But as sections ofMVe

have support along Cartier divisors of Ve supported on C, there can be no section
with support only at x. Hence the second case is ruled out.

In Case (3) of Example 3.26, where x is a log marked point, locally near x we
haveMC = N⊕Nx, which does have a section supported only at x. However, we rule
this case out as follows. First note that by Example 3.26, (3), the map g : C† →
Spec k† is determined by some ρC ∈ Γ(C,MC) which maps to ρ̄C ∈ Γ(C,MC),
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locally of the form (1, 0) in N ⊕ Nx. Second, by the commutativity of (4.2), since
π is given by zρ ∈ Γ(Xω,MXω ), we have f#zρ = ρC . But f#(zℓρ) = f#(zα1zα2).

Consider the image f#(zα1) of f#(zα1) in MC,x̄. Since f#(zα1) has support at x
and is non-zero, we must have

f#(α1) = (0, a)

for some a > 0. Then there is no choice for the image f#(zα2) of f#(zα2) inMC,x̄

to get

(ℓ, 0) = ℓρ̄C = (0, a) + f#(zα2)

inMC,x̄. This rules out the third case of Example 3.26.
In conclusion, f(C) is not contained in either D1 or D2. The only way this can

happen is if x is a double point of C, the intersection of two irreducible components
C1 and C2 with f(C1) ⊆ D1, f(C2) ⊆ D2. This demonstrates (1).

For (2)-(4), note that MC,x̄ = Se for some e ≥ 0. The diagram (4.2), at the
level of stalks of the ghost sheaves, is

(4.3) Se =MC,x̄ MXω ,f(x) = Sℓ
f̄#

oo

N

17→ρ̄C

OO

MA1
k
,0̄ = N

=
oo

17→ρ

OO

Let w1, w2 be the integers defined in the statement of (2). We note that, in the
local description of C near x given by Example 3.26, (2), with C1 = V (v) and
C2 = V (u), we have

f∗(zα1) =uw1 · ϕ1

f∗(zα2) =vw2 · ϕ2
(4.4)

with ϕ1, ϕ2 invertible functions on C near x. Indeed, this is precisely the definition
of w1 and w2.

Let us use this information to compute f#(zα1) and f#(zα2). Given the de-
scription of the chart defining the log structure on C given in Example 3.26, (2),
f#(zαi) can be written, locally near x, as a section of Se⊕O×C , say

(
((ai, bi), qi), ψi

)
,

with

f∗(zαi) = αCf
#(zαi) =

{
uaivbiψi qi = 0

0 qi 6= 0

Thus in fact from (4.4),
(
(a1, b1), q1

)
=
(
(w1, 0), 0

)
,

(
(a2, b2), q2

)
=
(
(0, w2), 0

)
.

This tells us that the map f̄# in (4.3) must satisfy

f̄#
(
(1, 0), 0

)
=
(
(w1, 0), 0

)

f̄#
(
(0, 1), 0

)
=
(
(0, w2), 0

)

f̄#
(
(0, 0), 1

)
=
(
(0, 0), 1

)
,

(4.5)



4.2. LOG WORLD → TROPICAL WORLD 141

the latter by commutativity of (4.3). But since in Se,
(
(0, 0), e

)
=
(
(1, 1), 0

)
and

in Sℓ,
(
(0, 0), ℓ

)
=
(
(1, 1), 0

)
, we have in Se,

(
(ℓ, ℓ), 0

)
=
(
(0, 0), ℓe

)
= f̄#

(
(0, 0), ℓe

)
= f̄#

(
(e, e), 0

)
=
(
(ew1, ew2), 0

)
.

From this we conclude w1 = w2 = ℓ/e.
This gives the remainder of the proposition. �

Having understood these restrictions on a torically transverse log curve, we can
now define its associated tropical curve.

Definition 4.10. Let f : C† → X†0 be a torically transverse log curve over
Spec k†. Two irreducible components of C are said to be indistinguishable if they
intersect in a node not mapping into Sing(X0).

We define an equivalence relation on the set of irreducible components of C,
with two irreducible components C1 and Cn said to be equivalent if there is a chain
C1, C2, . . . , Cn of irreducible components with Ci and Ci+1 indistinguishable for
1 ≤ i ≤ n− 1.

Let Γ̃f be the weighted graph (with some non-compact edges and possibly with
some bivalent vertices) such that:

(1) The set of vertices of Γ̃f are the irreducible components of C modulo
equivalence. If C′ is an irreducible component of C, we write VC′ for the
vertex corresponding to the equivalence class of C′.

(2) The set of bounded edges of Γ̃f are in one-to-one correspondence with
nodes of C mapping into Sing(X0). If y is such a node, denote by Ey
the corresponding edge. If y ∈ C1 ∩ C2 with C1, C2 distinct components
of C (these components exist by Proposition 4.9) then Ey has endpoints
VC1 and VC2 . If f(x) ∈ Dω with ω ∈ P an edge of affine length ℓ, and
MC,x = Se, then the weight w(Ex) of the edge Ex is ℓ/e. By Proposition
4.9, (4), this is a positive integer and coincides with either of the two
integers w1, w2 defined in (2) of that proposition.

(3) The set of unbounded edges of Γ̃f is in one-to-one correspondence with the
set f−1(∂X0), where ∂X0 is defined in (4.1). Let p ∈ f−1(∂X0) correspond
to an unbounded edge Ep. If p ∈ C′, an irreducible component of C,
then the endpoint of Ep is VC′ , and the weight w(Ep) is the intersection
multiplicity of C′ with ∂X0 at f(p).

Given this weighted graph, we then define a tropical curve

h : Γ̃f →MR

by

(1) h(VC′) = v ∈P if f(C′) ⊆ Dv.
(2) h(Ey) is the line segment joining h(VC1), h(VC2), for y ∈ C1 ∩ C2.
(3) h(Ep) is the edge ω ∈ P corresponding to the one-dimensional toric

stratum of ∂X0 containing f(p).

Note that Γ̃f can contain bivalent vertices, which we did not allow in our
definition of tropical curve (Definition 1.11). These bivalent vertices arise from
irreducible components of C (or equivalence classes) which only contain two nodes
mapping under f to Sing(X0). To get an actual tropical curve, one can remove the
bivalent vertices, replacing a chain of edges connected via bivalent vertices with a
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single edge. This gives a new graph, Γf , which has the same homeomorphism type

as Γ̃f . So we can view h as giving a map

h : Γf →MR.

There are two issues which one might have to worry about. First, given a chain of
edges connected by bivalent vertices, one needs to check that these edges all have
the same weight, so that there is a well-defined choice of weight for the edge of Γf
corresponding to this chain. Second, one needs to check that this entire chain is
mapped by h to an affine line segment, so that h maps the new edge in Γf to an

affine line segment. Both of these facts will follow from balancing for Γ̃f , in the
following proposition.

Proposition 4.11. If f : C† → X†0 is a torically transverse log curve, then
h : Γf →MR is a parameterized tropical curve.

Proof. We will first show that the balancing condition (2) of Definition 1.11

holds for h : Γ̃f → MR. Once we know this, then any two edges adjacent to a

bivalent vertex of Γ̃f have the same weight and map into the same affine line of
MR. This then shows that the corresponding h : Γf →MR is now a parameterized
tropical curve. Indeed, each edge of Γf now has a well-defined weight, as discussed
above, and maps to an affine line segment. Any vertex in Γf is already a vertex in

Γ̃f , hence the balancing condition still holds for h : Γf →MR.

To show balancing for Γ̃f , let V be a vertex, and C′ ⊆ C the union of irreducible
components in the equivalence class corresponding to the vertex V . Necessarily
h(C′) ⊆ Dv for some vertex v ∈ P. Let Σv be the fan in MR defining Dv,
with m1, . . . ,mr ∈ M primitive generators of the rays of Σv, corresponding to
toric divisors D1, . . . , Dr of Dv. These divisors are Cartier away from the zero-
dimensional toric strata of Dv, hence (f |C′)∗(Di) is a Cartier divisor on C′.

Let

wi := deg(f |C′)∗(Di).

Clearly wi is the sum of weights of edges of Γ̃f adjacent to V mapping into V +
R≥0mi, by the definition of the weights. So we need to show that

∑r
i=1 wimi = 0.

To show this we show for any n ∈ N that

r∑

i=1

wi〈n,mi〉 = 0.

Note that 〈n,mi〉 is the order of vanishing of zn onDi, so
∑
wi〈n,mi〉 is the number

of zeroes and poles of (f |C′)∗(zn) on C′. Of course, this is zero. �

Finally, we consider a decoration of the above situation. Recall we have fixed

points P1, . . . , Ps ∈M , Q1, . . . , Qs ∈ G(M̃), giving sections σi of π. Let qi = σi(0).

Definition 4.12. Let (C†, x1, . . . , xs) denote a log curve over Spec k† along
with a choice of points x1, . . . , xs ∈ C which are all smooth points (not log marked
points). Then a torically transverse marked log curve passing through q1, . . . , qs is

a log morphism f : (C†, x1, . . . , xs) → X†0 over Spec k† such that f is a torically

transverse log curve in X†0 with f(xi) = qi.

Given such a map, we associate to f a graph Γ̃f as in Definition 4.10, but with
one additional unbounded edge Exi for each xi, with Exi having endpoint VC′ if
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xi ∈ C′ ⊆ C. We set w(Exi) = 0, and h : Γ̃f → MR is defined exactly as before,
with h|Exi

constant.

As before, we can remove any remaining bivalent vertices (there may be fewer
in this marked case, since what would have been a bivalent vertex in the unmarked
case may now have acquired a third, unbounded, marked edge adjacent to it). This
gives

h : Γf →MR.

We also denote by

h : Γ̂f →MR

the tropical curve given by Definition 4.10 associated to the unmarked map f :

C† → X†0 . This is obtained from Γf by removing the marked edges Exi and
removing any additional bivalent vertices produced.

Finally, we observe that h : Γf → MR is now a marked tropical curve with
h(xi) = Pi:

Proposition 4.13. (1) Keeping in mind that Pi is a vertex of P, we
have qi ∈ Int(DPi).

(2) h : Γf →MR is a marked parameterized tropical curve with h(Exi) = Pi.

Proof. (1) Consider the affine open subset XPi ⊆ X determined by the cone

C(Pi) ∈ ΣP . Let n1, n2 ∈ Ñ be a basis for (Pi, 1)⊥, and n3 = (0, 0, 1) ∈ Ñ . Then

±n1,±n2 and n3 generate C(Pi)
∨ ∩ Ñ , so

XPi
∼= Spec k[x±1

1 , x±1
2 , x3],

with xi = zni . Furthermore XPi ∩DPi is given by x3 = 0.
Now let Qi be given in these coordinates by Qi = (a1, a2, a3), ai ∈ k×, i =

1, 2, 3. Then for z ∈ G(Li) = k×, z · Qi = (a1, a2, za3). Clearly (a1, a2, 0) ∈
G(Li) ·Qi ∩XPi , so qi = (a1, a2, 0) ∈ DPi .

(2) If xi ∈ C′, then h(Exi) = h(VC′) = v for some v ∈ P, and of course then
f(C′) ⊆ Dv. Since f(xi) = qi ∈ Int(DPi), we must have v = Pi. �

4.3. Tropical world → log world

We continue with the data P1, . . . , Ps ∈M , a good lattice polyhedral decompo-

sition P, and general points Q1, . . . , Qs ∈ G(M̃). This gives points q1, . . . , qs ∈ X0

with qi = G(Li) ·Qi ∩X0.
Now suppose we are given a marked tropical curve

h : (Γ, x1, . . . , xs)→MR

with h(xi) = Pi.

We would like to find all log curves f : (C†, x1, . . . , xs)→ X†0 passing through
q1, . . . , qs whose associated tropical curve is h. Now in general, such a curve h
could be quite complicated. Each vertex of the curve can be represented by a union
of curves of various genera, and these can move in families. The simplest case,
however, is that h is a simple curve, in the sense of Definition 1.19. In this case,
we can be much more precise.

So now assume h is a simple curve of genus zero. To ensure that we only have
a finite number of such curves, we are assuming as usual that s = |∆| − 1, where
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∆ is the degree of h. Since P contains all rational tropical curves passing through
P1, . . . , Ps, the image of h is contained in the one-skeleton of P.

As we noted in the previous section, the initial construction of the tropical
curve associated to a log curve yields a graph with possibly bivalent vertices. By
subdividing edges of Γ to obtain a graph Γ̃, along with h : Γ̃→MR, we can assume
that for a point y ∈ Γ̃, h(y) is a vertex of P if and only if y is a vertex of Γ̃ or

y is contained in a marked unbounded edge. Of course, Γ̃ may now have bivalent
vertices.

The main theorem of the section is:

Theorem 4.14. Given the above situation, suppose that for each edge E of
Γ̃, the affine length of h(E) is divisible by the weight w(E). Then the number of
torically transverse marked log curves

f : (C†, x1, . . . , xs)→ X†0

with f(xi) = qi whose associated tropical curve is h is Mult(h).

Remark 4.15. The hypothesis about the divisibility of the affine length of each
edge is necessary by the construction of the tropical curve associated to a log curve.
On the other hand, after a further rescaling of the lattice M , one can always achieve
this divisibility. We will make this rescaling step more precise later.

Before embarking on the proof, we first examine the nature of irreducible com-
ponents of C, noting that simplicity of Γ implies that all vertices of Γ̃ are either
bivalent or trivalent.

Definition 4.16. Let Y be a complete toric surface. A line on Y is a non-
constant, torically transverse map ϕ : P1 → Y such that #ϕ−1(∂Y ) ≤ 3 and
#ϕ−1(D) ≤ 1 for any toric divisor D of Y .

Given a line, fix the following notation. Let u1, . . . , up ∈ M be the primitive
generators of the rays in the fan defining Y corresponding to those toric divisors
D1, . . . , Dp ⊆ Y such that ϕ−1(Di) 6= ∅ for 1 ≤ i ≤ p. Furthermore, let wi be
the order of vanishing of ϕ∗(zi), where zi is a local equation for Di. This gives
the order of tangency of ϕ with Di. Then as in the proof of Proposition 4.11, the
balancing condition holds: ∑

i

wiui = 0.

Since p ≤ 3, this implies in particular that p = 2 or 3. We refer to these two cases
as the bivalent and trivalent cases respectively.

We say that a line with associated data u = (u1, u2, . . .), w = (w1, w2, . . .), is
of type (u,w), and we write L(u,w) for the set of all lines in the toric surface Y of

this type (modulo automorphisms of the domain P1). We will now classify lines,
first dealing with the bivalent case:

Lemma 4.17. Let (u,w) =
(
(u1, u2), (w1, w2)

)
, and let E be the sublattice of

dimension one of M generated by u1 (or equivalently, u2, by the balancing condi-
tion). There is a natural map g : Y → P1 induced by the map of lattices M →M/E.
Then each ϕ ∈ L(u,w) has image g−1(p) ⊆ Y for some p ∈ P1 \ ∂P1, and the map

ϕ : P1 → g−1(p) is a w1-fold branched cover of g−1(p), totally branched precisely at
the two points g−1(p) ∩ ∂Y .
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Proof. Since ρi = R≥0ui is a cone in the fan ΣY defining Y , and u2 = −u1,
every cone in ΣY is contained in one of the two half-planes containing Rui, and
hence maps into a ray in (M/E) ⊗Z R. Thus the projection M → M/E defines a
map of fans from ΣY to the fan in (M/E)⊗Z R defining P1. We can then write the
toric boundary of Y as ∂Y = D1 ∪D2 ∪ g−1(0) ∪ g−1(∞). Since ϕ(P1) is disjoint
from g−1(0) and g−1(∞), we see that ϕ(P1) must be a fibre of g, but not g−1(0) or
g−1(∞). All fibres of g are isomorphic to P1 except g−1(0) and g−1(∞). In order
for ϕ−1(∂Y ) to consist of only two points, ϕ must be totally branched at ∂Y , giving
the result. �

Corollary 4.18. In the case of Lemma 4.17,

L(u,w)
∼= G(M/E).

Proof. This is just observing that there is a unique cover as described in the
Lemma, so ϕ ∈ L(u,w) is completely determined by a point in p ∈ G(M/E) =

P1 \ ∂P1. �

Next, we consider the trivalent case, so fix (u,w) =
(
(u1, u2, u3), (w1, w2, w3)

)
.

For convenience, we can assume that ΣY , the fan defining Y , only has three rays,
defined by ρi = R≥0ui. Indeed, there is always a toric blow-down α : Y → Y ′ to
such a surface, and by toric transversality, the set of lines of type (u,w) on Y and
Y ′ are the same.

Lemma 4.19. In the above situation, let ΣY be the complete fan with exactly
three rays, generated by u1, u2 and u3. Consider the map

Z2 →M

given by
(a, b) 7→ aw1u1 + bw2u2.

This induces a map of fans from the standard fan for P2 as given in Example 1.14,
ΣP2 , in R2, to ΣY , and hence a map

f(u,w) : P2 → Y.

Any line ϕ : P1 → Y of type (u,w) is isomorphic to the composition of a torically
transverse linear embedding P1 → P2 with f(u,w).

Proof. The map Z2 →M clearly takes the first quadrant to the cone spanned
by u1 and u2. Note that this map also takes (−1,−1) to −w1u1−w2u2 = w3u3 by
the balancing condition, from which it follows that the cone in ΣP2 generated by
(1, 0) and (−1,−1) is taken to the cone in ΣY generated by u1 and u3, while the
cone in ΣP2 generated by (0, 1) and (−1,−1) is taken to the cone in ΣY generated
by u2 and u3. This gives the map of fans, hence f(u,w) : P2 → Y .

Now let C be the normalization of an irreducible component of P1×Y P2, with
the map P1 → Y being ϕ and the map P2 → Y being f(u,w). We have the projection

ϕ̃ : C → P2. It will be sufficient to show that first, ϕ̃ is the embedding of a straight
line in P2 and second, the composition C → P1 ×Y P2 → P1 is an isomorphism.

First note that the degree of f(u,w) is the same as the degree of the map of big

torus orbits G(Z2) → G(M), and that this is just the index of the image of Z2 in
M , i.e., the index δ of the sublattice of M generated by w1u1 and w2u2.

We also compute the degree of branching of f(u,w) along the divisor Di. With-
out loss of generality, consider the divisor D1, and we can assume that u1 = (1, 0),
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u2 = (a, b) in some basis for M . Let ρi be the cone generated by ui. Then ρ∨1 is
generated by (0,±1) and (1, 0), and the map f(u,w) on the affine charts of P2 and
Y determined by the cones R≥0(1, 0) and ρ1 respectively is given by the map of
rings

k[x, y±1]→ k[x, y±1]

defined by

x 7→ xw1yw2a, y 7→ yw2b.

Since y is a unit, and the divisor D1 is given by x = 0, we see that f(u,w) has w2b
branches over D1, and each branch is ramified over D1 with order of ramification
w1. More generally, since the degree of f(u,w) is δ (being bw1w2 in this case), we
see that f(u,w) has δ/wi branches over Di, with ramification order of each branch
being wi. Note that this ramification order agrees with the intersection index of ϕ
with Di at the unique point of intersection.

Now consider the diagram

C

%%KKKKKKKKKK

ψ

!!

ϕ̃

''
P1 ×Y P2

π2

//

π1

��

P2

f(u,w)

��

P1
ϕ

// Y

Locally near, say, D1, in the above coordinates, we have ϕ∗(x) = unit · tw1 , where
t is a local parameter on P1 in a neighbourhood of ϕ−1(D1), with t vanishing at
ϕ−1(D1). On the other hand, f∗(u,w)(x) = xw1 ·yw2a = xw1 ·unit, so tw1 = xw1 ·unit

is a local equation in the ideal of P1 ×Y P2 inside P1 × P2 in a neighbourhood
of a point p of P1 ×Y P2 with ϕ(π1(p)) ∈ D1. From this we see that there are w1

branches of P1×Y P2 passing through p, each branch mapping locally isomorphically
to P1 via π1. After normalizing, these w1 branches are separated, so if p′ ∈ C with
ψ(p′) = p, ψ is unramified in a neighbourhood of p′. We also see that if t′ is a
local parameter for C in a neighbourhood of p′, then ϕ̃∗(x) = unit · t′. So ϕ̃ is
transversal to f−1

(u,w)(D1). As the same analysis works at D2 and D3, we see that ψ

is unramified, hence is an isomorphism as P1 is simply connected. Furthermore, ϕ̃
is transversal to each toric divisor of P2, and hence is the embedding of a straight
line. �

Corollary 4.20. In the situation of Lemma 4.19, G(M) acts simply transi-
tively on L(u,w). In particular, L(u,w) is (non-canonically) isomorphic to G(M).

Proof. Any line ϕ : P1 → Y lifts to at most δ = deg f(u,w) distinct lines in P2,

and δ is the order of the kernel of the homomorphism G(Z2)→ G(M). Now G(Z2)
clearly acts simply transitively on the set of torically transverse linear embeddings
ϕ̃ : P1 → P2, and then ker(G(Z2)→ G(M)) acts transitively on the set of lifts ϕ̃ of
ϕ to P2. This shows that the action of G(M) on L(u,w) is simple transitive. �

We will now put this together to create the underlying morphism of schemes
f : C → X0 of the desired log curves. We shall call such curves pre-log curves:
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Definition 4.21. A torically transverse pre-log curve in X0 is a stable map
f : C → X0 with C a curve, such that for every vertex v ∈ P, f−1(Dv) → Dv is
a torically transverse curve, and f satisfies conclusions (1) and (2) of Proposition
4.9.

Since we only used (1) and (2) of Proposition 4.9 to construct the tropical curve
associated to a torically transverse log curve, we can in fact associate a tropical
curve to any torically transverse pre-log curve.

Now return to the situation at the beginning of the section in which we are
given a marked tropical curve

h : (Γ, x1, . . . , xs)→MR

with h(xi) = Pi, and associated to this the curve h : Γ̃ → MR with extra vertices.

We can associate to h : Γ → MR another tropical curve h : Γ̂ → MR obtained by
removing all marked edges from Γ and as usual removing any resulting bivalent

vertices. The graph Γ̂ will then have distinguished edges E1, . . . , Es with the end-
point of Exi in Γ now contained in the interior of Ei. Note a priori that the Ei’s
need not be distinct (in fact they will be distinct, but we won’t need this). If an

edge E of Γ̂ is equal to Ei for some i, we will say that E is a marked edge of Γ̂.

Proposition 4.22. For each edge E of Γ̂, choose an orientation. This gives
a choice of the endpoints of E, which we denote by ∂−E and ∂+E (if E is non-
compact, then by ∂−E only). After making this choice, let

u(∂−E,E) ∈M
denote a primitive tangent vector to h(E) pointing from h(∂−E) to h(∂+E) (or in
the unbounded direction of h(E)). Then the map

Φ : Map(Γ̂[0],M)→


 ∏

E∈bΓ[1]\bΓ[1]
∞

M/Zu(∂−E,E)


×

(
s∏

i=1

M/Zu(∂−Ei,Ei)

)

H 7→
((
H(∂+E)−H(∂−E)

)
E
,
(
H(∂−Ei)

)
i

)
.

(4.6)

is an inclusion of lattices of finite index. Call this index D.
Then D is the number of marked torically transverse pre-log curves, up to iso-

morphism, of the form f : (C, x1, . . . , xs) → X0 with f(xi) = qi and associated
tropical curve h.

Proof. Tensoring Φ with R, we obtain a description of deformations of the

tropical curve h : Γ̂ → MR preserving the incidence conditions with the points Pi.

Indeed, given H ∈ Map(Γ̂[0],MR), we can modify h by taking a vertex V to h(V )+
H(V ). A compact edge E is then mapped to the edge joining h(∂−E) +H(∂−E)
and h(∂+E) +H(∂+E). A non-compact, non-contracted edge E is mapped to the
ray R≥0u(∂−E,E) + h(∂−E) +H(∂−E). Now in general, such a deformation is not
a tropical curve, and if we want to deform h so it remains a tropical curve without
changing the combinatorial type and ensuring that the image of Ei still contains
Pi, we need two conditions to be satisfied:

(1) For each compact edge E, (h(∂+E) +H(∂+E))− (h(∂−E) +H(∂−E)) is
parallel to u(∂−E,E), or equivalently,

H(∂+E)−H(∂−E) = 0 in M/Zu(∂−E,E).
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(2) For each i, H(∂−Ei) = 0 in M/Zu(∂−Ei,Ei). This, along with (1) for
E = Ei, guarantees that the affine line spanned by the image of Ei still
passes through Pi.

Put more succinctly, H provides a deformation of h as a tropical curve only if
H is in the kernel of the map Φ tensored with R. If H is sufficiently close to the
origin, then it will produce a deformation of h. Since by assumption h is rigid, the
kernel of Φ is in fact zero. A dimension count then shows that the the image of Φ
is a sublattice of finite index, say D.

Now for every V ∈ Γ̃[0], write u(V ), w(V ) for the data of the primitive tangent
vectors to unmarked edges adjacent to V (pointing away from h(V )) and their
weights.

Necessarily, the curve C we are trying to build is glued from lines in the toric
surfaces Dh(V ) for V running over Γ̃[0]. For a given V , the set of lines of type

(u(v),w(v)) in Dh(V ) is L(u(V ),w(V )). Now for V ∈ Γ̃[0] trivalent with no adjacent

marked edge, L(u(V ),w(V )) is a torsor over G(M) by Corollary 4.20. For V ∈ Γ̃[0]

bivalent or trivalent with an adjacent marked edge, with adjacent unmarked edges
E±(V ), L(u(V ),w(V )) is a torsor over G(M/u(V,E±(V ))) by Corollary 4.18. Note that
the trivalent vertices with no adjacent marked edges are precisely the vertices of

Γ̂, while the remaining vertices are those vertices of Γ̃ which are not vertices of Γ̂.
Thus

∏
V ∈Γ̃[0] L(u(V ),w(V )) is a torsor over

G(Map(Γ̂[0],M))×
∏

V ∈Γ̃[0]\bΓ[0]

G(M/u(V,E−(V ))).

In order to get a torically transverse pre-log curve, we need to match up the various
lines and marked points. We do this by defining a map

(4.7) Φ′ :
∏

V ∈Γ̃[0]

L(u(V ),w(V )) →
∏

E∈Γ̃[1]\Γ̃
[1]
∞

G(M/u(∂−E,E))×
s∏

i=1

G(M/Zu(∂−Ei,Ei))

as follows.
(1) Given an element (ϕV )V ∈Γ̃[0] of the domain of this map, the component

of the image of this element under the map Φ′ corresponding to E ∈ Γ̃[1] \ Γ̃
[1]
∞

is defined as follows. Let V ± = ∂±E, v± = h(V ±), and let ω be the edge of P

joining v+ and v−, so that Dv+ ∩ Dv− = Dω. We have ϕV ± : C± ∼= P1 → Dv± ,
and let p± = ϕv±(C±) ∩Dω. The two points p± lie in the big torus orbit in Dω

by transversality, and this orbit is isomorphic to G(M/Zu(∂−E,E)). We then take
the component of the image under Φ′ of (ϕV )V corresponding to E to be the ratio
p+/p−. This is 1 precisely if p− = p+.

(2) Given an element (ϕV )V ∈Γ̃[0] , the component of the image of Φ′ correspond-

ing to Ei is defined as follows. Let Vi ∈ Γ̃[0] be the vertex adjacent to Exi , so h(Vi) =
Pi. Since Pi lies in the interior of h(Ei), the projectionM →M/Zu(∂−Ei,Ei) defines

a map of toric varieties gi : DPi → P1 ⊇ G(M/Zu(∂−Ei,Ei)). By Lemma 4.17, the

image of ϕVi is a fibre g−1
i (ri). We then take the component of the image under

Φ′ of (ϕV )V corresponding to Ei to be (gi(qi))/ri. This makes sense. Indeed, by
Proposition 4.13, qi ∈ DPi \ (∂DPi) so gi(qi) ∈ P1 \ ∂P1. Note that this ratio is 1
precisely when qi lies in the image of ϕVi .
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We can use the map Φ′ as follows. Given ϕ : (C, x1, . . . , xs) → X a tori-
cally transverse pre-log curve with ϕ(xi) = qi and associated tropical curve h, the

elements of Γ̃[0] are in one-to-one correspondence with equivalence classes of irre-
ducible components of C. For V ∈ Γ̃[0], if CV denotes the union of irreducible
components in the equivalence class corresponding to V , then as h is simple,
ϕV := ϕ|CV : CV → Dh(V ) is a line. Indeed, as h is simple, there are at most
3 points on CV mapping into Sing(X0), as there is by construction a one-to-one
correspondence between such points and bounded edges of Γ adjacent to V . Fur-
thermore, again by simplicity, each of these points maps to different irreducible
components of Sing(X0), since no two edges of Γ adjacent to V can map to the
same segment in MR. Since the image of any non-contracted component of CV
intersects Sing(X0) in at least two points, CV can contain only one non-contracted
component. Furthermore, since C is rational and ϕ is stable, in fact CV cannot
contain any contracted component. Hence CV is irreducible and ϕV is a line. We
obtain

(ϕV )V ∈
∏

V ∈Γ̃[0]

L(u(V ),w(V )).

Furthermore, the image of this element under Φ′ is (1, . . . , 1). Indeed, the fact that
the components of type (1) above are 1 is just saying that the lines ϕ∂−E and ϕ∂+E

pass through the same point in Dω, and the fact that the components of type (2)
above are 1 is saying that the line ϕVi passes through the point qi.

Conversely, given (ϕV )V ∈
∏
V ∈Γ̃[0] L(u(V ),w(V )) which maps to (1, . . . , 1) under

Φ′, it is clear we can reverse the process, gluing the CV ’s to obtain a torically
transverse pre-log curve ϕ : C → X0. We also need to mark this curve: for 1 ≤
i ≤ s, choose a point xi ∈ CVi mapping under ϕVi to qi. There are w(Ei) choices,
but there is an automorphism of CVi leaving the two points of ϕ−1

Vi
(∂DPi) fixed and

which takes any one choice of xi to any other choice. Thus we conclude that up to
isomorphism, the set of torically transverse pre-log maps f : (C, x1, . . . , xs) → X0

passing through q1, . . . , qs and with associated tropical curve h is precisely the
inverse image of (1, . . . , 1) under Φ′. We wish to compute the cardinality of this
set, i.e., the degree of Φ′.

Now Φ′ is a map of torsors over algebraic tori whose corresponding map of
character lattices is Φ′′, which can be described as follows. For each vertex V ∈
Γ̃[0] \ Γ̂[0], let E(V ) denote the unique edge of Γ̂ containing V . For an edge E of Γ̃,

write Ê for the edge of Γ̂ containing E. Then we can write

Φ′′ :
∏

V ∈bΓ[0]

M ×
∏

V ∈Γ̃[0]\bΓ[0]

M/Zu(∂−E(V ),E(V ))

→
∏

E∈Γ̃[1]\Γ̃
[1]
∞

M/Zu(∂− bE, bE) ×
s∏

i=1

M/Zu(∂−Ei,Ei).

(4.8)

Given (mV )V ∈Γ̃[0] with mV ∈ M if V ∈ Γ̂[0] and mV ∈ M/Zu(∂−E(V ),E(V )) if

V ∈ Γ̃[0] \ Γ̂[0], the image of (mV ) under Φ′′ has the following components. The

component corresponding to an edgeE ∈ Γ̃[1]\Γ̃[1]
∞ ism∂+E−m∂−E . The component

corresponding to Ei is mVi .

We can relate Φ′′ to Φ as follows. Let S ⊆ Γ̃[1] \ Γ̃[1]
∞ be the set of edges E such

that Ê is compact and ∂+Ê is a vertex of E; clearly there is a bijection between S
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and Γ̂[1] \ Γ̂
[1]
∞ . Then we split

∏

E∈Γ̃[1]\Γ̃
[1]
∞

M/Zu(∂− bE, bE) =
∏

E∈S

M/Zu(∂− bE, bE) ×
∏

E∈Γ̃[1]\(Γ̃
[1]
∞∪S)

M/Zu(∂− bE, bE).

Now Φ′′ induces an isomorphism between
∏

V ∈Γ̃[0]\bΓ[0]

M/Zu(∂−E(V ),E(V ))

and ∏

E∈Γ̃[1]\(Γ̃
[1]
∞∪S)

M/Zu(∂− bE, bE).

We will now show that the index of Φ and the index of Φ′′ agree. Since the
index of Φ′′ is the degree of the map Φ′, the result will follow.

Introducing short-hand notation, let

L1 = Map(Γ̂[0],M),

L2 =
∏

E∈bΓ[1]\bΓ[1]
∞

M/Zu(∂−E,E),

L3 =

s∏

i=1

M/Zu(∂−Ei,Ei),

M1 =
∏

V ∈Γ̃[0]\bΓ[0]

M/Zu(∂−E(V ),E(V )),

M2 =
∏

E∈Γ̃[1]\(Γ̃
[1]
∞∪S)

M/Zu(∂− bE, bE),

so that we have maps

Φ :L1 → L2 ⊕ L3

Φ′′ :L1 ⊕M1 → L2 ⊕M2 ⊕ L3

with Φ′′ inducing an isomorphism M1 →M2.
Now consider the diagram

L1
Φ //

Ψ1

��

L2 ⊕ L3

Ψ2

��

L1 ⊕M1
Φ′′

// L2 ⊕M2 ⊕ L3

where

Ψ1

(
(mV )V ∈bΓ[0]

)
=
(
(mV )V ∈bΓ[0] , (m∂−E(V ))V ∈eΓ[0]\bΓ[0]

)

and Ψ2 is the natural inclusion. Then one checks easily that this diagram is com-
mutative and hence, by the snake lemma, the cokernels of Φ and Φ′′ are isomorphic.
But the order of the cokernel is the index of the image, hence the result. �

Given a torically transverse pre-log curve f : C → X0 given by Proposition
4.22, we now wish to count the number of non-isomorphic choices of log morphism

f : C† → X†0 with the given underlying morphism of schemes. Now in general,
we have a bit too much freedom to put log marked points on C, so we impose
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the condition that f should be strict where X†0 → Spec k† is strict (see Definition

3.21). Note that X†0 → Spec k† is strict away from Sing(X0) ∪ ∂X0. Indeed, in
a neighbourhood of a point in X0 \ (Sing(X0) ∪ ∂X0), the log structure on X0 is
just MX0 = O×X0

⊕ N. So this constraint of strictness requires that all points of
C mapping to points not in Sing(X0) ∪ ∂X0 are smooth points, rather than log
marked points, of C. Double points of C map to double points of X0, in any event,
by the construction of f : C → X0, and so by Proposition 4.9, (1), any log marked
point of C† must map into ∂X0. This is the only real consequence of imposing
strictness.

Proposition 4.23. Let f : (C, x1, . . . , xs)→ X0 be a torically transverse pre-
log curve constructed from the simple tropical curve h using Proposition 4.22. As-

sume further that each edge h(E), for E ∈ Γ̃[1] \ Γ̃
[1]
∞ , has affine length divisible by

w(E). (Note that this can always be achieved by rescaling M .) Then the number
of non-isomorphic maps

f † : (C†, x1, . . . , xs)→ X†0

with underlying scheme morphism f which are strict where X†0 → Spec k† is strict
is 

 ∏

E∈bΓ[1]\bΓ[1]
∞

w(E)


 ·

s∏

i=1

w(Ei).

Proof. Let Co ⊆ C be the open subset of C given by

Co := C \ f−1(Sing(X0) ∪ ∂X0).

Then the requirement is that f † : (Co)† → X†0 be strict, so on Co, the log structure
is just the pull-back of the log structure on X0. Thus there is no choice for the log
structure on Co. We need to understand how many ways there are of extending
this log structure to C.

We will split the discussion up as follows. We are interested in classifying

extensions of f † : (Co)† → X†0 to f † : C† → X†0 over Spec k†, up to isomorphism.

More precisely, suppose we have two such extensions, which we write as f †i : C†i →
X†0 , for i = 1, 2. Here the underlying scheme of C†i is C. We say that these

extensions are isomorphic if there is a log isomorphism κ† : C†1 → C†2 such that

f †1 = f †2 ◦ κ†. We say that such an isomorphism κ† is scheme-theoretically trivial if
the underlying scheme morphism of κ† is the identity.

We will then prove the result in three steps. First, we will show that there is a

unique extension of f † : (Co)† → X†0 across points x ∈ C with f(x) ∈ ∂X0. Second,
we will classify extensions of f † across double points of C up to scheme-theoretically
trivial isomorphism. Third, we will take into account isomorphisms which are not
scheme-theoretically trivial.

Step 1. Extension across points x ∈ C with f(x) ∈ ∂X0. Let x ∈ C be a
point with f(x) ∈ ∂X0. By toric transversality, f(x) lies in a one-dimensional
torus orbit of X . Let σ ∈ ΣP be the two-dimensional cone corresponding to this
orbit, necessarily of the form R≥0(v, 1) + R≥0(v

′, 0) for v ∈P and some primitive
v′ ∈ M generating a ray of Σ. Note that after applying an element of GL3(Z), we
can assume v′ = (1, 0) and v = (0, 0), so that the open affine subset Xσ ⊆ X is
Xσ = Spec k[t, u, y±1], with t = z(0,0,1) yielding the regular function π, u = z(1,0,0)
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and y = z(0,1,0). With these variables, we have (∂X) ∩ Xσ = V (tu). The one-
dimensional orbit containing f(x) is given by t = u = 0. Let st and su denote the
sections ofMX over Xσ corresponding to t and u respectively. We also denote by
st and su the restriction of these sections toMX0 . Hence, locally near f(x), MX0

consists of sections of the form sat s
b
uϕ, where ϕ is invertible in a neighbourhood of

f(x).
How do we put a log structure on C in a neighbourhood of x so that f † extends

to a log morphism across x? Suppose there is an extension f † : C† → X†0 of

f † : (Co)† → X†0 . Then, in a neighbourhood of x, we must have αCf
#(su) = f∗(u),

and f∗(u) is invertible outside of x in a neighbourhood of x. Thus the image of
f#(su) in MC has support precisely at x in this neighbourhood. This shows that
x must be a log marked point.

Given this, there is a unique way of extending f † : (Co)† → X† to x. In
a neighbourhood of x, we can write MC = M(C,x) ⊕ NρC , where M(C,x) is the

divisorial log structure defined by x ∈ C and ρC defines the morphism of C† to
Spec k†. We then necessarily have f#(st) = ρC , f#(su) = f∗(u) ∈ M(C,x). This

gives the unique extension of f † : (C0)
† → X†0 over Spec k† across x.

Thus the points of C mapping to ∂X0 do not cause any problems: there are no
choices.

Step 2. Extension across nodes x ∈ C. Suppose x ∈ C is a node. Let E be the
corresponding edge of Γ̃, ℓ the affine length of h(E), and e = ℓ/w(E). We know from
Proposition 4.9, (4), that a desiredMC would necessarily haveMC,x̄ = Se. We will
show that there are in fact precisely µ := w(E) choices for f † in a neighbourhood
of x up to scheme-theoretically trivial isomorphism.

Write C locally near x as C = Spec k[z, w]/(zw), and write X locally near f(x)
as

X = Spec k[u, v, y±1, t]/(uv − tℓ),
so

X0 = Spec k[u, v, y±1]/(uv).

Here, in the corresponding notation of the proof of Proposition 4.9, u = zα1 , v =
zα2 , t = zρ. Note that, by Proposition 4.9, (2), we have in a neighbourhood of x,

f∗(u) = zµ · unit, f∗(v) = wµ · unit.

With a local change of coordinates on C near x we can assume these units are 1.
Now u, v and t are sections ofMX and to avoid confusion, we write these sections
as su, sv, st for sections ofMX and u, v, t for regular functions. We can then restrict
su, sv and st to sections ofMX0 , which we also call su, sv and st. Note that

αX0(su) = u, αX0(sv) = v, αX0(st) = 0.

We are looking for a commutative diagram

(4.9) f−1MX0

f#

//

αX0

��

MC

αC

��

f−1OX0 f∗
// OC
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First, we construct µ such extensions of f † in a neighbourhood of x. For any
ζ ∈ k× with ζµ = 1, consider the chart Se → OC defined in a neighbourhood of x,
defining a log structureMC in that neighbourhood, given by

(4.10)
(
(a, b), c

)
7→
{

(ζ−1z)awb c = 0,

0 c 6= 0.

This describes MC locally as a quotient of Se ⊕ O×C , so an element of Se induces

an element ofMC . For each
(
(a, b), c

)
∈ Se, denote by s((a,b),c) the corresponding

section of MC . Then define sz = s((1,0),0), sw = s((0,1),0), so that αC(sz) = ζ−1z,

αC(sw) = w. We define the map C† → Spec k† by the section s((0,0),1); this is log

smooth by Example 3.26, (2). We define f# : f−1MX →MC by

(4.11) f#(su) = sµz , f#(sv) = sµw, f#(st) = s((0,0),1).

This makes (4.9) commutative and hence gives, for each choice of ζ, a choice of log
structure on C in a neighbourhood of x and an extension of f † across x.

There are now two things we need to show. First, we need to show that none
of these µ choices are identified via a scheme-theoretically trivial isomorphism.
Second, we need to show that all possible extensions are of the above form.

For the first point, suppose that two choices of µ-th root, ζ1, ζ2, give rise to

C†1 , C
†
2 , with maps f †i : C†i → X†0 . Suppose there is a scheme-theoretically trivial

isomorphism κ† : C†1 → C†2 , i.e., a commutative diagram

MC2

κ#
//

αC2

��

MC1

αC1

��

O×C =
// O×C

Then we must have

αC2(sz) =ζ−1
2 z = αC1(κ

#(sz))(4.12)

αC2(sw) =w = αC1(κ
#(sw))(4.13)

Of course, since κ must be an isomorphism over Spec k†, we must have κ#(st) = st.
Now it is clear κ# must induce the identity onMCi , so we must have κ#(sz) = ϕz ·sz
and κ#(sw) = ϕw · sw for ϕz, ϕw invertible functions in a neighbourhood of x. But
(4.12) tells us that ϕz = ζ1/ζ2 at points where z 6= 0, and (4.13) tells us that
ϕw = 1 at points where w 6= 0, but applying κ# to the relation szsw = set shows
that ϕzϕw = 1. This is only possible if ζ1 = ζ2 and ϕz = ϕw = 1.

For the second point, suppose we are given a diagram (4.9). Consider the
induced map f̄# : f−1MX0 → MC . On stalks at x, we have no choice but for
f̄# : Sℓ → Se to be given by

f̄#
(
(1, 0), 0

)
=
(
(µ, 0), 0

)
,

f̄#
(
(0, 1), 0

)
=
(
(0, µ), 0

)
,

f̄#
(
(0, 0), 1

)
=
(
(0, 0), 1

)
.

Indeed, this was shown in the proof of Proposition 4.9: see (4.5). Thus we can
find sections s′z, s

′
w of MC in a neighbourhood of x such that f#(su) = (s′z)

µ,
f#(sv) = (s′w)µ. These sections are well-defined up to a µ-th root of unity. Since
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αC((s′z)
µ) = zµ, αC((s′w)µ) = wµ, there is a unique choice of s′z, s

′
w subject to the

constraint that αC(s′z) = z, αC(s′w) = w. Thus, applying f# to the relationship
susv = sℓt gives (s′zs

′
w)µ = sℓt inMC , or s′zs

′
w = ζset for ζ a µ-th root of unity. Now

define a map Se →MC by
(
(a, b), c

)
7→ (ζ−1s′z)

a(s′w)bsct .

Composing this map with αC defines a chart for the log structureMC as given by
(4.10). Given the notation

sz = s((1,0),0), sw = s((0,1),0),

we have s′z = ζsz , s
′
w = sw, and the map f# is exactly as given in (4.11).

Step 3. Non-trivial identifications. So far, it appears that we have given∏
E∈Γ̃[1]\Γ̃

[1]
∞
w(E) choices of log morphisms. However, we haven’t taken into ac-

count isomorphisms between these choices which aren’t scheme-theoretically triv-

ial. Let f †i : (C†i , x1, . . . , xs) → X†0 be two of the choices constructed above, and

suppose κ† : C†1 → C†2 yields an isomorphism between these choices.
Of course κ† induces an isomorphism κ# : κ−1MC2 →MC1 , so we can assume

κ† is strict, completely determined by the underlying automorphism κ : C → C of
schemes.

Now since such an automorphism must satisfy f ◦ κ = f , we are somewhat
limited as to what κ can do. An automorphism of C induces an automorphism κ̃
of Γ̃, by κ̃(V ) = V ′ if κ(CV ) = CV ′ . We must have h ◦ κ̃ = h. Since h is injective

on the set of vertices of Γ̂, as h is simple, it follows that κ̃ is the identity, and hence
for each irreducible component C′ of C, κ(C′) = C′.

Let us consider elements of Aut(C, x1, . . . , xs) which preserve components.
These elements form the subgroup which is the connected component of the identity
of Aut(C, x1, . . . , xs), which we write as Aut0(C, x1, . . . , xs). Note that all compo-
nents of C have at least 3 special points (nodes, marked points, or log marked

points) except for those components corresponding to bivalent vertices of Γ̃, and
these have two special points. The automorphism group of a component with more
than 2 special points is trivial, and the automorphism group of one with two special

points is Gm. Hence Aut0(C, x1, . . . , xs) is (Gm)#Γ̃
[0]
b , where Γ̃

[0]
b denotes the set of

bivalent vertices of Γ̃.
We now analyze the effect of these automorphisms on the log structure. Let

E ∈ Γ̂[1] and let µ = w(E). Assume first that E 6= Ei for any i. In Γ̃, we can
assume that E splits up into edges F1, . . . , Fr with ∂Fi = {Vi−1, Vi} for 1 ≤ i ≤ r
if E bounded, and 2 ≤ i ≤ r if E is unbounded. If E is unbounded, we also have
∂F1 = {V1}, so that F1 is unbounded. Let pi ∈ C be the special point corresponding
to Fi: if Fi is bounded, then pi is a double point, while if Fi is unbounded, then
f(pi) ∈ ∂X0 and pi is a log marked point.

If Fi is a bounded edge, then note that (CVi−1 \ {pi−1}) ∪ (CVi \ {pi+1}) ⊆ C
is isomorphic to Spec k[zi, wi]/(ziwi), with zi non-zero on CVi−1 and wi non-zero
on CVi . If F1 is unbounded, then CV1 \ {p2} = Spec k[w1]. Since each CVi is
a P1, we also have, when both Fi and Fi+1 are bounded, zi+1 = w−1

i . For Fi
bounded, h(Fi) is an edge ωi ∈ P of length ℓi and XC(ωi) ⊆ X can be written

as Spec k[ui, vi, y
±1
i , t]/(uivi − tℓi). In case F1 is unbounded, h(F1) = ω1, we write

XC(ω1) = Spec k[t, v1, y
±1
1 ]. We have on XC(ωi) ∩ XC(ωi+1), ui+1 = v−1

i . By the
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description of bivalent lines in Proposition 4.17, note f∗(ui) = zµi for 2 ≤ i ≤ r and
f∗(vi) = wµi for 1 ≤ i ≤ r − 1.

Let ηi : Aut0(C, x1, . . . , xs) → k× be the projection to the component corre-
sponding to CVi . Then for κ ∈ Aut0(C, x1, . . . , xs), we can describe the action of κ
on the component CVi , which has coordinates wi = z−1

i+1, by

κ∗wi = ηi(κ) · wi, κ∗zi+1 = ηi(κ)
−1 · zi+1.

So pulling back by κ is compatible with f∗ui = zµi , f∗vi = wµi if and only if ηi(κ)
µ =

1 for all i. Now consider the data ζ1, . . . , ζr (or ζ2, . . . , ζr if F1 is unbounded) of
µ-th roots of unity determining the charts forMC in neighbourhoods of the double
points p1, . . . , pr (or p2, . . . , pr). So the chart at pi is given by

(
(a, b), c

)
7→
{

(ζ−1
i zi)

awbi c = 0

0 c 6= 0

and applying κ replaces this chart with the chart

(
(a, b), c

)
7→
{

(ζ−1
i ηi−1(κ)

−1zi)
a(ηi(κ)wi)

b c = 0

0 c 6= 0

This chart is equivalent (see Definition 3.18) to the chart

(
(a, b), c

)
7→
{

((ηi−1(κ)ηi(κ)
−1ζi)

−1zi)
awbi c = 0

0 c 6= 0

via multiplication of the first chart with the function Se → O×C given by
(
(a, b), c

)
7→ ηi(κ)

a/ηi(κ)
b.

Thus, taking

ηi(κ) =

r∏

j=i+1

ζ−1
j

for 1 ≤ i ≤ r − 1, we see that applying κ replaces ζi with



r∏

j=i

ζ−1
j






r∏

j=i+1

ζj


 ζi = 1

for 2 ≤ i ≤ r. If F1 is bounded, then ζ1 is replaced by
∏r
i=1 ζi, and this is now a

fixed µ-th root of unity, while if F1 is unbounded, then we have eliminated all of
the ζi’s. Thus, up to isomorphism, in the bounded case there are only w(E) choices
for the log structures at the double points corresponding to F1, . . . , Fr, while in the
unbounded case there is a unique choice for the log structures at the double points
corresponding to F2, . . . , Fr.

Next, suppose E = Ei. Using the same notation as in the previous case, this
means there is some 1 ≤ i ≤ r − 1 with Vi the vertex of Epi in Γ̃. Thus CVi

has three special points, so we only can have automorphisms κ with ηi(κ) = 1.
From the argument in the unmarked case, it then becomes clear that there are
w(Ei)

2 possibilities in the bounded case and w(Ei) possibilities in the unbounded
case. This now accounts for the total number of isomorphism classes of maps

f † : (C†, x1, . . . , xs)→ X†0 . �
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Proof of Theorem 4.14: We just need to show the identity

(4.14) D ·


 ∏

E∈bΓ[1]\bΓ[1]
∞

w(E)


 ·

(
s∏

i=1

w(Ei)

)
= Mult(h).

First note that Mult(h) can be computed using Γ or Γ̂: the vertices of Γ which
become bivalent after removing a marked unbounded edge do not contribute to the

multiplicity of h. We go by induction on the number of vertices of Γ̂. First, if Γ̂ has

one vertex, then Γ̂ has no compact edges, three unbounded edges, and two of these,
E1 and E2, are marked edges, say with tangent directions u1, u2 ∈ M primitive.
Then Φ is the obvious projection

Φ : M →M/Zu1 ×M/Zu2;

the index of the projection is just |u1 ∧ u2|, so

D ·
2∏

i=1

w(Ei) = w1w2|u1 ∧ u2| = Mult(h).

In the general case, say with s marked points, Γ̂ has s + 1 = |∆| unbounded
edges, s − 1 vertices and s − 2 bounded edges. At least one unbounded edge E is

umarked. Let V = ∂−E. If we remove the edge E and vertex V of Γ̂, we obtain two

connected components Γ̂1, Γ̂2 with two new non-compact edges (which previously
had V as a vertex). There are two cases.

Case 1. Both Γ̂1 and Γ̂2 have vertices. We then get tropical curves hi : Γ̂i →
MR, i = 1, 2, obtained by restricting h to Γ̂i, but extending the new non-compact
edges so that hi is proper. Let E′ and E′′ be these new non-compact edges of

Γ̂1 and Γ̂2 respectively. Note that Γ̂1 and Γ̂2 now pass through some subset of
the points P1, . . . , Ps; in fact, they must split up so that neither h1 nor h2 can be
deformed preserving this incidence property; otherwise h itself would move in a
one-parameter family. Thus we can inductively apply the result to h1 and h2.

Let u1, . . . , us−2 be primitive tangent vectors to the images under h of the

bounded edges of Γ̂ ordered so that u1, . . . , uℓ−2 are associated to bounded edges

of Γ̂1, uℓ−1 to E′, uℓ to E′′, and uℓ+1, . . . , us−2 are associated to bounded edges of

Γ̂2. Let v1, . . . , vℓ be the primitive tangent vectors associated to marked edges of

Γ̂1, and vℓ+1, . . . , vs ∈M the same for Γ̂2. Let Φ1,Φ2 be the maps defined in (4.6)
for h1 and h2 respectively, and Di the order of the cokernel of Φi. Note that we
have

Φ1 : Map(Γ̂
[0]
1 ,M)→

ℓ−2∏

i=1

M/Zui ×
ℓ∏

j=1

M/Zvj =: B′

and

Φ2 : Map(Γ̂
[0]
2 ,M)→

s−2∏

i=ℓ+1

M/Zui ×
s∏

j=ℓ+1

M/Zvj =: B′′

while the original map Φ is given by

Φ : Map(Γ̂
[0]
1 ,M)×Map(Γ̂

[0]
2 ,M)×Map({V },M)→ B′×B′′×M/Zuℓ−1×M/Zuℓ

given by

(H1, H2, H
′) 7→ (Φ1(H1),Φ2(H2), H1(V

′)−H ′(V ), H2(V
′′)−H ′(V )),
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where V ′ ∈ Γ̂
[0]
1 , V ′′ ∈ Γ̂

[0]
2 are vertices adjacent to E′ and E′′ respectively. Then

| cokerΦ| = | cokerΦ1| · | cokerΦ2| · | coker(M →M/Zuℓ−1 ×M/Zuℓ)|

and so

D ·


 ∏

E∈bΓ[1]\bΓ[1]
∞

w(E)


 ·




s∏

j=1

w(Ej)




=

2∏

i=1


Di ·




∏

E∈bΓ[1]
i \

bΓ[1]
i,∞

w(E)







∏

Ej∈bΓ[1]
i

w(Ej)





 · w(E′)w(E′′)|uℓ−1 ∧ uℓ|

= Mult(h1)Mult(h2)MultV (h)

= Mult(h),

the second-to-last line by the induction hypothesis.

Case 2. One of Γ̂1, Γ̂2 consists just of an unbounded edge, say Γ̂2, in which

case, Γ̂2 must pass through a marked point; otherwise, h moves in a one-parameter
family. Then Φ takes the form, using the same notation as in Case 1,

Φ : Map(Γ̂
[0]
1 ,M)×Map({V },M)→ B′ ×M/Zus−2 ×M/Zvs

(H1, H
′) 7→ (Φ1(H1), H1(V

′)−H ′(V ), H ′(V ))

and one sees that

| cokerΦ| = | cokerΦ1| · |us−2 ∧ vs|.

From this one obtains similarly the desired result. �

4.4. Classical world → log world

The main point of this section, intuitively, is as follows. We are given as usual a
degeneration π : X → A1

k of the toric variety XΣ. Suppose we are given a family of
curves in the general fibers. We would like to know that in the limit this family gives
rise to a torically transverse log curve on X0. This may not be true for a general
choice of degeneration or general family of curves. However, we shall see that there
is always a good choice of toric degeneration which comes close to achieving this
goal. With an additional restriction on the family of curves, one can then achieve
the goal of obtaining a torically transverse log curve on X0.

Let us start to make this more precise, sketching what we shall do. We are
interested in the following situation. We are given π : X → A1

k defined as usual by
some polyhedral decomposition P of MR — in general, we shall assume only that
P satisfies conditions (1) and (2) in Definition 4.5, as we will not choose points
P1, . . . , Ps ∈ MR in this section. Suppose furthermore we are given a discrete
valuation ring R with residue field k and quotient field L, and suppose we are given
a dominant map SpecR → A1

k mapping the closed point p of SpecR to 0 ∈ A1
k.

We now want to think of a family of curves in the general fibres of X → A1
k as a
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commutative diagram

(4.15) (C∗, x∗1, . . . , x
∗
k)

f∗
//

��

X \X0

π

��

SpecL
ψ

// A1
k \ {0}

where f∗ is a torically transverse stable map.
We would like to fill in the family C∗ → SpecL in some nice way. In general,

we can’t do this, but according to the stable reduction theorem for stable maps
(Proposition 2.4), we can do so after a base-change. Specifically, there is some d ≥ 1
with the following property. If R′ = R[t]/(td − u) for u a uniformizing parameter
of R, then R′ is a discrete valuation ring with field of fractions L′ = L[t]/(td − u),
a degree d extension of L. Then, making the base-change (C′)∗ = C∗ ×L L′, we
obtain a diagram

((C′)∗, x∗1, . . . , x
∗
k)

f∗
//

��

X \X0

π

��

SpecL′ // A1
k \ {0}

which can then be extended to a diagram

(C′, x1, . . . , xk)
f

//

��

X

π

��

SpecR′ // A1
k

where f is now a stable map. The trouble is that even though f∗ is torically
transverse, there is no reason to expect that f0 : C′p → X0 is torically transverse:
f0 could contract some components to one-dimensional strata of X0, or map some
points of C′p to zero-dimensional strata. To guarantee that this doesn’t happen, we
need to blow-up X . We will do this via toric blow-ups, i.e., by subdividing the fan
ΣP defining the toric variety X . Because f is already well-behaved outside of X0,
we will be able to do this so that we don’t change X \X0.

In this way, it will be possible to blow-up X to a toric variety X̃, chosen before
we apply stable reduction, to get a diagram

(4.16) (C′, x1, . . . , xk)
f

//

��

X̃

π

��

SpecR′ // A1
k

with f stable, and f0 : C′p → X̃0 now torically transverse: the image of f0 is disjoint

from the zero-dimensional strata of X̃0 and no irreducible component of C′p maps

into a one-dimensional stratum of X̃0. Achieving this blow-up X̃ will occupy most
of the effort in this section.

In fact, we would like to do this so that X̃ comes from a refinement of P. This

is always the case: to obtain X̃, we refined ΣP to get a fan Σ̃ in M̃R. Since we did
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this so that X̃ \ X̃0
∼= X \X0, in fact we only added cones generated by elements

(m, r) ∈ M̃ with r > 0. Thus, by taking

P̃ = {σ ∩ (MR ⊕ {1}) |σ ∈ Σ̃},
we obtain a polyhedral decomposition P̃ of MR refining P. Specifying P̃ is
equivalent to specifying Σ̃. However, P̃ might have non-integral vertices, as some
of the rays we added to obtain Σ̃ might have primitive generators of the form
(m, r) with r > 1. We would like to work only with refinements of P with integral
vertices. To rectify this, we can choose e a positive integer such that for any vertex
v of P̃, ev ∈M . Then we can make a base-change of diagram (4.16) via A1

k → A1
k

given by t 7→ te, replacing X̃ with the normalization of X̃ ×A1 A1. It is easy to

see that this is the toric variety given by the fan Σ̃ with the lattice M ⊕ eZ ⊆ M̃R

instead of M̃ . This procedure preserves the polyhedral decompositions P and P̃,
but replaces the lattice M with the lattice 1

eM , making all vertices of P̃ integral.

Once we make this base-change for the map X̃ → A1
k, we replace SpecR′ with an

irreducible component of SpecR′×A1 A1 and C′ with the corresponding irreducible
component of C′×A1 A1. Thus we can assume we have a diagram (4.16) in which X̃

is specified by a polyhedral decomposition P̃ of MR with integral vertices. One can
then use results of earlier sections to study the map f0 : C′p → X̃0, and understand
when this yields a torically transverse stable log curve.

This is the outline of what we are going to do. We can now make a precise
statement.

Theorem 4.24. Let π : X → A1
k be as usual defined by some polyhedral decom-

position P satisfying conditions (1) and (2) in Definition 4.5. Let R be a discrete
valuation ring with residue field k and quotient field L, and suppose we are given
a dominant map ψ : SpecR→ A1

k mapping the closed point p of SpecR to 0 ∈ A1
k.

Suppose furthermore we have a commutative diagram (4.15) where f∗ is a torically
transverse stable map. Then:

(1) Possibly after making a base-change A1
k → A1

k given by t 7→ te and re-
placing R by R[t]/(td − u) for u a uniformizing parameter of R, there is

a refinement P̃ of P with integral vertices defining a toric blow-up X̃ of
X such that the diagram (4.15) extends to a diagram

(4.17) (C, x1, . . . , xk)
f

//

��

X̃

π

��

SpecR
ψ

// A1
k

such that the restriction f0 of f to the fibre Cp over the closed point of
SpecR is a torically transverse pre-log curve and ψ∗(t) is a uniformizing
parameter for R.

(2) Given (1), we obtain an induced diagram of log schemes

(4.18) (C†, x1, . . . , xk)
f†

//

��

X̃†

π

��

(SpecR)† // (A1
k)
†
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Here the log structures in (4.18) are the divisorial ones induced by

f−1(∂X̃) ⊆ C, ∂X̃ ⊆ X̃, {p} ⊆ SpecR, and {0} ⊆ A1
k.

If in addition,
• Cp is genus zero;
• the tropical curve associated to the pre-log curve f0 is simple;

• f−1
(
∂(X̃ \ X̃0)

)
is a disjoint union of sections of C → SpecR;

then the induced log map C†p → Spec k† is log smooth, and in particular

f †0 yields a torically transverse log curve.

Before proving this theorem, we need a few lemmas.

Lemma 4.25. Let X be a toric variety and W ⊆ X a proper closed subset
with no irreducible component contained in ∂X. Then there exists a toric blow-up
φ : X̃ → X such that the proper transform W̃ of W in X̃ does not contain any
zero-dimensional stratum.

Proof. Any toric blow-up is given by a refinement of the fan Σ defining X .
Note that if we obtain the desired result using some refinement of Σ, then a further
refinement of Σ will still do the trick. As a consequence, we only need to solve the
problem for a single cone σ, since if we have a refinement Σσ of each cone σ in
Σ which does the trick on the corresponding open affine subset, we can choose a
refinement of Σ which restricts to refinements of Σσ for each σ ∈ Σ.

So we can assume, if X is n-dimensional, that σ is an n-dimensional cone
and X = Xσ (if dimσ < n, then Xσ does not have a zero-dimensional stratum).
Furthermore, we can replace W with a hypersurface containing W which does not
contain a toric stratum of Xσ.

Suppose W is defined by an equation

f =
∑

p∈σ∨∩N

apz
p ∈ k[σ∨ ∩N ],

and let

∆f = Conv




⋃

p such that ap 6= 0

(p+ (σ∨ ∩N))


 ⊆ NR.

This is the Newton polyhedron of f . Let Σ̃ be the normal fan to ∆f . It clearly is

a refinement of Σ, and hence defines a blow-up φ : X̃ → X of X . We need to show
that φ has the desired properties.

Consider an n-dimensional cone τ ∈ Σ̃; this will be the normal cone N∆f
(v) for

some vertex v of ∆f . So in particular, τ∨ is the tangent cone Tv(∆f ), so ∆f ⊆ v+τ∨
and av 6= 0. Now φ : Xτ → Xσ is induced by the inclusion of cones σ∨ → τ∨, and
every monomial in f ◦ φ is divisible by zv. Thus the proper transform W̃ of W in
Xτ is defined by the equation

∑

p∈σ∨∩N

apz
p−v = 0,

and this polynomial has a non-zero constant term. Since all the non-constant
monomials vanish at the zero-dimensional stratum of Xτ , W̃ does not contain the
zero-dimensional stratum, as desired. �
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We need a slightly stronger version of this:

Lemma 4.26. Let X be a toric variety and W ⊆ X a proper closed subset with
no irreducible component contained in ∂X. Suppose the codimension of W in X is
> c. Then there is a toric blow-up φ : X̃ → X such that the proper transform W̃
of W in X̃ is disjoint from any toric stratum of dimension ≤ c.

Proof. Via induction on c, we can assume W is disjoint from toric strata of
dimension less than c by performing some toric blow-up. Thus we just need to show
that we can find X̃ so that W̃ is disjoint from any c-dimensional torus orbit. Now
a c-dimensional torus orbit in X is contained in an affine open subset Xτ for some
τ ∈ Σ with codim τ = c. We can argue as in the proof of Lemma 4.25 that we just
have to deal with the case where X = Xτ .

So assume Σ consists of the faces of τ , and let Σ be the fan Σ, but viewed as a
fan in the smaller subspace Rτ . Any choice of a linear projection M → (Rτ) ∩M
defines a map of fans from Σ to Σ, giving a map ψ : X = XΣ → XΣ =: Y .
Note that dimY = dimX − c, and that the unique c-dimensional stratum of X is
mapped to the unique zero-dimensional stratum of Y . Also, dimψ(W ) ≤ dimW <
dimX−c = dimY , so ψ(W ) ⊆ Y is a proper subset with no irreducible component
contained in ∂Y . Thus, by Lemma 4.25, there is a subdivision of Σ giving a toric
blow-up Ỹ → Y such that the proper transform of ψ(W ) in Ỹ is disjoint from the

zero-dimensional toric stratum of Ỹ . But the subdivision of Σ of course also yields
a subdivision of Σ, hence a blow-up X̃ → X . Since the proper transform W̃ of W
maps to the proper transform of ψ(W ) in Ỹ , W̃ is now disjoint from c-dimensional

toric strata in X̃. �

Proof of Theorem 4.24. Step 1. We will show that, after suitable base-changes,
there is a diagram (4.17) such that ψ∗(t) is a uniformizing parameter of R and

for each irreducible component D̃v of X̃0, the map f−1(D̃v) → D̃v is a torically
transverse stable map.

Let C̃∗ → C∗ be the normalization of C∗. Let y∗1 , . . . , y
∗
p be the points of the

conductor locus, i.e., the points in C̃∗ over the double points of C∗. These points
need not be defined over the field L, but are defined over a finite extension L′,
necessarily the field of fractions of R[t]/(td − u) for some d. By replacing L by L′,
we can assume that these points are defined over L, so that C∗ is obtained by gluing
together pairs of points on C̃∗ defined over L. On a given component D∗ of C̃∗, we
have some set {x∗ik} of points mapping to marked points of C∗, along with some

additional points {y∗jk}. It is then enough to show that there exists an X̃ which

works for each curve (D∗, x∗i1 , . . . , x
∗
ik
, y∗j1 , . . . , y

∗
jℓ

) over SpecL appearing in C̃∗, so

that we obtain torically transverse stable maps (D,x1, . . . , xik , yj1 , . . . , yjℓ) → X̃.
We can then glue these various curves together along pairs of sections labelled by
the y’s in the same way C∗ is obtained by gluing together pairs of points labelled
by the y∗’s. In this way, we reduce to the case that C∗ is geometrically irreducible.
Indeed, in what follows, we will construct a refinement P̃ for each irreducible
component C∗; we can then take a common refinement, which by construction will
not destroy the desired properties needed for each irreducible component. We can
also, by making base-changes A1

k → A1
k, t 7→ te, always assume that the refinements

only have integral vertices. We shall automatically do this in what follows without
comment.
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Now let W be the closure of the image of C∗ → X . Then W is a closed subset
of dimension at most two, and since the composition C∗

f∗−→X π−→A1
k is dominant

(as it is also the composition C∗ → SpecL→ A1
k), the dimension of W must be at

least one. We now have two cases.

Case 1. dimW = 1. Note that this can only happen if f∗ is constant on C∗,
so that W is just the closure of its generic point f(C∗). Now, since codimW = 2,

we can use Lemma 4.26 to refine Σ̃ to get X̃ and assume that W is disjoint from
any 1-dimensional toric stratum of X̃. Furthermore, X̃ can be chosen so that
X̃ \ X̃0

∼= X \X0, since W is disjoint from ∂(X \X0): otherwise f∗ : C∗ → X \X0

would not be torically transverse. Thus we can assume X̃ comes from a refinement
P̃ of P.

Now observe that since π is proper, so is the projection W → A1
k, and this

projection is also dominant. The map f∗ : C∗ → W factors through SpecL as f
is constant on C∗. We now appeal to stable reduction for stable curves (a special
case of Proposition 2.4, applied in the case where the target space X is a point),
obtaining, again possibly after base change, a family (C, x1, . . . , xs) → SpecR of
stable curves. By the valuative criterion for properness applied to W → A1

k, we
obtain a commutative diagram

SpecR //

��

W

��

SpecL // A1
k

and the composition C → SpecR → W →֒ X̃ now gives the desired map f :
(C, x1, . . . , xs) → X̃. Since W is disjoint from any one-dimensional toric stratum,

f−1(D̃v) → D̃v is a torically transverse stable map for any irreducible component

D̃v of X̃0 intersecting W , and is empty for the other irreducible components of X̃0.

Case 2. dimW = 2. In this case, by Lemma 4.26, we can subdivide Σ to obtain
X̃ so that the proper transform of W is disjoint from zero-dimensional strata of X̃;
again, this can be done so that X̃ \ X̃0 = X \X0. So we assume this comes from a

refinement P̃ of P.
Let τ ∈ P̃ be an edge, Dτ ⊆ X̃ the corresponding one-dimensional stratum,

and Xτ := XC(τ) the corresponding open affine subset of X̃ . Then Xτ
∼= Gm × Ve,

where
Ve = Spec k[x, y, t]/(xy − te)

for e the affine length of τ . Let C∗τ = f−1(Xτ ) ⊆ C∗, and compose C∗τ
f−→Xτ with

the projection Xτ → Ve, getting a map h : C∗τ → Ve. There is an open subset
U ⊆ C∗τ on which h is étale, non-empty if h is dominant (see [83], Proposition 3.8).
Let Zτ ⊆ Ve be the smallest closed subset containing the image of C∗τ \ U and the
images of the marked points of C∗τ . Since the image of C∗τ is disjoint from ∂Ve
(given by t = 0), no irreducible component of Zτ is contained in ∂Ve. Thus we can
apply Lemma 4.26, and blow-up Ve so that the proper transform of Zτ is disjoint
from the zero-dimensional stratum of Ve. This corresponds to a subdivision of the
edge τ , so we can choose a further subdivision of P̃ which induces this subdivision
on τ . After doing so, we can assume that Zτ is disjoint from the zero-dimensional
stratum of Ve. We do this for every τ ∈ P̃ with dim τ = 1 such that W ∩Dτ 6= ∅.
This gives X̃ in this case.
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Why does this work? First, by the stable reduction theorem for stable maps,
Proposition 2.4, we obtain a marked stable map f : (C, x1, . . . , xk)→ X̃ over SpecR

extending f : (C∗, x∗1, . . . , x
∗
k) → X̃, possibly after another base-change. Now the

image of this extended f is contained in the proper transform W̃ of W in X̃, and W̃ ,
by construction, avoids zero-dimensional strata of X̃. In particular, no irreducible
component of f(C0) can be contained in a one-dimensional toric stratum of X̃, as

it would also then contain a zero-dimensional stratum of X̃.
This is not quite enough: we still need to show that no irreducible component

of C0 is contracted by f to a point in a one-dimensional stratum of X̃. So suppose
there is some such irreducible component being contracted into a one-dimensional
stratum of X̃ indexed by τ ∈ P̃. This defines as before Xτ , Cτ = f−1(Xτ ) ⊆ C,
and Xτ

∼= Gm×Ve for some e. We have the set Zτ ⊆ Ve as above, disjoint from the
singular point of Ve. Note that if the projection h : C∗τ → Ve were not dominant,

then Zτ contains the image of C∗τ , hence the image of W̃ ∩Xτ under the projection

to Ve. In particular, W̃ is then disjoint from the one-dimensional stratum of Xτ .
Thus we can assume that h is dominant. Let Z̃τ ⊆ Xτ be the inverse image of

Zτ under the projection Xτ → Ve. Set Z ′τ = f−1(Z̃τ ). The map f : Cτ \ Z ′τ → X̃
factors as

Cτ \ Z ′τ
f ′−→ SpecR×A1

k

(Xτ \ Z̃τ )→ X̃,

where f ′ is proper. We know that f ′ is finite except over some finite (possibly
empty) subset

T ⊆ SpecR×A1
k

(Xτ \ Z̃τ )
where the fibres of f ′ aren’t finite, since f ′ is proper and quasi-finite except over T
(because h is dominant). Now consider the Stein factorization of f ′ as

Cτ \ Z ′τ
f ′′−→Yτ g−→SpecR×A1

k

(Xτ \ Z̃τ )→ X̃

where f ′′ is an isomorphism away from (f ′)−1(T ). Thus Yτ → X̃ glues to f |C\f−1(T )

to give a map g′ : C′ → X̃. This map is marked by compositions xi : SpecR→ C →
C′, since by construction Cτ \Z ′τ does not contain any of the marked points. I now

claim that this new map g′ : (C′, x1, . . . , xk) → X̃ is a stable map, contradicting

stability of f : (C, x1, . . . , xk)→ X̃ unless T was empty.
To do so, we need to show that C′0 has at worst double points. Consider the

composition h : Yτ → SpecR×A1 (Ve \Zτ ). By construction, this map is finite and
is étale outside of the locus given by t = 0. On the other hand, if it is branched
over a component of t = 0, then the fibre over p of Yτ → SpecR has non-reduced
components, which is impossible as f : C → X̃ is a stable map. Thus h is étale
except over a finite subset of SpecR×A1 (Ve \ Zτ ). In fact, the only possible point
where this map can fail to be étale is at the singular point of SpecR×A1 (Ve \Zτ ),
by purity of the branch locus (see e.g., [1], X, 3.1). However, étale locally the only
finite maps étale over the complement of this singular point look like the canonical
covers Ve′ → Ve where e′|e. Thus one sees that the fibre over p of Yτ can only have
at worst double points.

This completes the argument for Case 2.

Now consider the map ψ : SpecR → A1
k in the diagram (4.17) we have now

constructed. Suppose ψ∗(t) ∈ md
R \ md−1

R for some d ≥ 1, so ψ∗(t) = ud for a
uniformizing parameter u. If d = 1, we are done. Otherwise, make a degree d
base extension A1

k → A1
k: then R ×A1 A1 = R[t]/(td − ud) consists of d irreducible
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components, each isomorphic to SpecR. We may then use any of these irreducible
components to get a diagram (4.17) such that ψ∗(t) = u.

Step 2. Having obtained the diagram (4.17), we now wish to show that the
restriction f0 of f to C0 is a torically transverse pre-log curve. In view of Step 1,
we just need to show that the conclusions (1) and (2) of Proposition 4.9 hold.

Let p ∈ C0 be a closed point mapping to the singular locus of X̃0. Consider
the induced homomorphism of complete local k[t℄-algebras

f∗0 : ÔX̃,f0(p) → ÔC,p.

Now p is either a smooth point of C0 or a double point of C0. In the former
case, the map C → SpecR is itself smooth at p, and as a consequence, the log
structure on C induced by f−1(∂X̃) ⊆ C is log smooth at p. Restricting this log

structure to C0 gives a curve C†0 → Spec k† which is log smooth at p, along with

a log morphism C†0 → X̃†0 over Spec k†. But since f(p) is in the singular locus of

X̃0, this contradicts Proposition 4.9 (the argument there was purely local). Thus
we can assume p is a double point of C0. Note that

ÔC0,p = k[x, y℄/(xy),
from which it follows that

ÔC,p = k[x, y, t℄/(xy − fte)
for some e > 0 and some f ∈ k[x, y, t℄. It is easy to check that this k[t℄-algebra is
then isomorphic to

k[x, y, t℄/(xy − λte)
for λ either 0 or 1 and e > 0.

If λ = 0, then C is locally (in the étale topology) reducible in a neighbourhood
of p. By restricting f to one of these components, we obtain a contradiction as
above in the case that p was a smooth point of C.

If λ = 1, then again by taking the log structure on C induced by f−1(∂X̃) ⊆ C,
C† → SpecR† is log smooth in a neighbourhood of p, so we can apply Proposition
4.9 to conclude that f0 is a torically transverse pre-log curve. This completes the
proof of (1) of Theorem 4.24.

Step 3. All that remains to be shown is that in the situation of (2) of Theorem
4.24, C† → SpecR† is in fact log smooth. In fact, the argument of Step 2 showed
that this was the case in neighbourhoods of all points p ∈ C0 mapping into Sing(X0).
This is also the case for any smooth point p ∈ C0 not mapping into Sing(X0)∪∂X0,

and the condition that f−1
(
∂(X̃ \ X̃0)

)
is a disjoint union of sections of C →

SpecR yields log smoothness at smooth points p mapping into ∂X̃0.
Finally, the assumption that the tropical curve h : Γ → MR associated to the

pre-log curve f0 is simple implies that if v ∈P is a vertex with h−1(v) non-empty,
then either h−1(v) is a single trivalent vertex of Γ or h−1(v) consists of one or more
points in the interior of edges of Γ. In the former case, f−1(Dv), being rational since
C0 is rational, consists of a single line, while in the latter case, f−1(Dv) consists
of a disjoint union of bivalent lines. In particular, C0 has no double points not

mapping into Sing(X0). Thus C†0 → Spec k† is log smooth, as desired. �
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4.5. Log world → classical world

We return to our basic situation, with data P1, . . . , Ps ∈ M , a good lattice

polyhedral decomposition P, and general points Q1, . . . , Qs ∈ G(M̃) with s =
|∆| − 1. This gives sections σ1, . . . , σs : A1

k → X and points q1, . . . , qs ∈ X0 with
qi = σi(0).

The main theorem of this section is

Theorem 4.27. Let f0 : (C†0 , x1, . . . , xs) → X†0 be a torically transverse log
curve of genus zero with f(xi) = qi, with associated tropical curve h : Γ →
MR. Suppose that h is simple. Then there exists a unique marked rational curve
(C∞, x

∞
1 , . . . , x

∞
s ) over Spec k[t℄ with a commutative diagram

(C∞, x
∞
1 , . . . , x

∞
s )

f∞
//

��

X

��

Spec k[t℄
ψ∞

// A1

such that

(1) ψ∞ is induced by the natural inclusion k[t] →֒ k[t℄.
(2) σi ◦ ψ∞ = f∞ ◦ x∞i .
(3) If C∞ is given the log structure induced by f−1

∞ (∂X) ⊆ C∞ and Spec k[t℄
the log structure pulled back from A1, then the induced log morphism on

(C0, x1, . . . , xs)→ X0

over Spec k† coincides with the given f0.

Proof. Step 1. Finite order deformation theory.
We will apply the deformation theory of §3.4, in particular Theorem 3.43. We

first note that the hypotheses of Theorem 3.43 apply to the data

[f0 : C0/O0 → X,x0],

where f0 : C†0 → X† is now the composition of the original f0 and the inclusion
X0 →֒ X , and x0

i = xi. Of course C0 is rational by assumption, and f0∗ : ΘC†0/k† →
f∗0 ΘX†/(A1)† is injective. Indeed, f0∗ is injective at each generic point of C0 since
ϕ0 is étale onto its image in a neighbourhood of each generic point. Since ΘC†0/k†

is locally free, as f0 is log smooth, it cannot contain a torsion subsheaf. Hence
ker f0∗ = 0.

We will now show that the map Ξ of Theorem 3.43 is in fact an isomorphism.
This then shows that for any lift

[fk−1 : Ck−1/Ok−1 → X,xk−1]

with σi ◦ ψk−1 = fk−1 ◦ xk−1
i , there exists a unique lift

[fk : Ck/Ok → X,xk]

such that σi ◦ ψk = fk ◦ xki .
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First, note that we have a diagram

0

��

0

��

ΘC†0/k† |{x1,...,xs}

��

0 // ΘC†0/k†(−x) //

��

f∗0 ΘX†/(A1)†
//

=

��

Nf0,x //

��

0

0 // ΘC†0/k†
//

��

f∗0 ΘX†/(A1)†
// Nf0 //

��

0

ΘC†0/k† |{x1,...,xs}

��

0

0

by the snake lemma, so in fact Nf0,x splits as a sum of the skyscraper sheaf
ΘC†0/k† |{x1,...,xs} and Nf0 . If we restrict Ξ to ΘC†0/k† ⊗ k(xi), it is just given by

f0∗ : ΘC†0/k† ⊗ k(xi)→ TX/A1,σi(0).

Set TC0/k,xi
:= ΘC†0/k†⊗k(xi), the Zariski tangent space to C0 at xi. Thus to show

Ξ is an isomorphism, it is enough to show that

Ξ′ : H0(C,Nf0 )→
s∏

i=1

TX/A1,σi(0)/f0∗(TC0/k,xi
)

is an isomorphism. We now compute more explicitly the domain and range of Ξ′.
As usual, let

h : Γ̃→MR

be obtained from Γ by adding vertices so that for a point y ∈ Γ̃, h(y) is a vertex of

P if and only if y is a vertex of Γ̃ or y is contained in a marked unbounded edge.
Let

h : Γ̂→MR

be obtained from Γ by removing the unbounded labelled edges, and removing any
resulting bivalent vertices.

The range is easy: Since ΘX†/(A1)† is canonically M ⊗OX , we have

TX/A1,σi(0)
∼= M ⊗Z k

canonically. On the other hand, let Vi be the vertex of Γ̃ which is the boundary of
the marked edge Exi . Then the curve CVi is a line. Let ui be a tangent vector to the
image under h of either unmarked edge adjacent to Vi. Then we know by Lemma

4.17 that f0(CVi) is an orbit of G(Zui) ⊆ G(M) ⊆ G(M̃). Thus f0∗TC0/k,xi
=
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(Zui)⊗Z k ⊆M ⊗Z k. So the range of Ξ′ is

s∏

i=1

(M/Zui)⊗Z k =

s∏

i=1

(M/Zu(∂−Ei,Ei))⊗Z k

in the notation of Proposition 4.22.
Next, we describe the domain of Ξ′, H0(C0,Nf0). First, we restrict Nf0 to each

component CV of C0, noting that the exact sequence

0→ ΘC†0/k† → f∗0 ΘX†0/k† = M ⊗Z OC → Nf0 → 0

restricts to an exact sequence

0→ ΘC†0/k† |CV →M ⊗Z OCV → Nf0 |CV → 0.

By Example 3.36, (6), ΘC†0/k† |CV is just ΘCV /k(−
∑
pi), where {pi} is the set of

special points on CV , i.e., points of type (2) and (3) of Example 3.26 on C†0 . The

number of such points is precisely the valency of V in Γ̃, not counting marked edges.
As this valency is either 2 or 3, not counting marked edges, we refer to these two
possibilities as the bivalent and trivalent cases respectively. Thus ΘC†0/k† |CV

∼= OP1

or OP1(−1) in the bivalent and trivalent cases respectively.
Note again in the bivalent case that since f0(CV ) is an orbit of G(Zu), where u

is tangent to either edge adjacent to V , the image of H0(CV ,ΘC†0/k† |CV ) in M ⊗Z k

is (Zu)⊗ k. Thus in the bivalent and trivalent cases,

H0(CV ,Nf0 |CV ) =

{
(M/Zu)⊗Z k V bivalent

M ⊗Z k V trivalent.

To understand whether we can glue a collection of sections

(sv) ∈
⊕

V ∈Γ̃[0]

H0(CV ,Nf0 |CV )

to get a section of H0(C0,Nf0), we shall show that at a double point x ∈ C0

corresponding to an edge E of Γ̃, f0∗ maps the one-dimensional space ΘC†0/k†⊗k(x)
isomorphically to the subspace of ΘX†/k† ⊗ k(f0(x)) = M ⊗Z k spanned by the
tangent vectors of h(E), which can be described as Zu(∂−E,E) ⊗Z k ⊆M ⊗Z k.

Indeed, to see this, write C locally as usual as Spec k[z, w]/(zw) and X locally
in a neighbourhood of f(x) as Spec k[u, v, y±, t]/(uv − tℓ) for some ℓ, with ℓ the
affine length of h(E). We can assume f∗0u = zµ, f∗0 v = wµ, where µ = w(E),
f∗0 (t) = 0, f∗0 (y) = g(z, w). Then a local generator of ΘC†/k† ⊗ k(x) is z∂z − w∂w
(see Example 3.36, (6)), while local generators of ΘX†/(A1)† at f(x) are u∂u − v∂v
and ∂y. One then sees easily that at x, f0∗(z∂z − w∂w) = µ(u∂u − v∂v). As an
element of ΘX†/k† ⊗ k(f0(x)) = M ⊗Z k, u∂u − v∂v is seen to be an element of M
tangent to the edge h(E), as this derivation vanishes on y.

As a consequence, given (sV ) ∈ ⊕H0(CV ,Nf0 |CV ), sV and sV ′ glue at a
double point x ∈ CV ∩ CV ′ if, as elements of M ⊗Z k, they differ by an element of
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Zu(∂−E,E). So the kernel of the map

Φ̃ :
∏

V ∈bΓ[0]

M ⊗Z k×
∏

V ∈Γ̃[0]\bΓ[0]

(M/Zu(∂−E(V ),E(V )))⊗Z k

→
∏

E∈Γ̃[1]\Γ̃
[1]
∞

(M/Zu(∂−E,E))⊗Z k

given by

(sV )V ∈Γ̃[0] 7→ (s∂+E − s∂−E)
E∈Γ̃[1]\Γ̃

[1]
∞

is H0(C0,Nf0). One easily checks that Φ̃ is surjective. Thus Ξ′ is an isomorphism
if and only if

Φ′′ :
∏

V ∈bΓ[0]

(M ⊗Z k)×
∏

V ∈Γ̃[0]\bΓ[0]

(M/Zu(∂−E(V ),E(V )))⊗Z k

→
∏

E∈Γ̃[1]\Γ̃
[1]
∞

(M/Zu(∂−E,E))⊗Z k×
s∏

i=1

(M/Zu(∂−Ei,Ei))⊗Z k

is an isomorphism. This map is given by

(sV )V ∈Γ̃[0] 7→
(
(s∂+E − s∂−E)

E∈Γ̃[1]\Γ̃
[1]
∞
, (sVi)1≤i≤s

)

where Vi is the vertex of Exi .
This map coincides with the map Φ′′ of (4.8), after tensoring the latter map with

k. We saw in the proof of Proposition 4.22 that this was indeed an isomorphism.
Thus Ξ is an isomorphism, so there exists a unique lift

[fk : CK/Ok → X,xk]

of

[fk−1 : Ck−1/Ok−1 → X,xk−1]

for any choice of log structure O†k lifting the log structure on O†k−1.

Step 2. Taking the limit. Now use the log structure on Ok given by the chart

N→k[t]/(tk+1)

n 7→tn.
This gives us [fk : Ck/Ok → X,xk] for all k by Step 1. Forgetting the log structure

on C†k → O†k, fk : Ck/Ok → X can be viewed as a family of stable maps in X ,
and hence gives a map from Ok to the stack of stable maps of genus zero with s
marked points with target X . These maps are compatible, and hence give a map
O∞ = Spec k[t℄ into the stack of stable maps, i.e., give a diagram

C∞
f∞

//

��

X

��

O∞ // A1

with f∞ a stable map of curves. This gives a diagram as desired in Theorem 4.27.
We still need to show that this diagram satisfies condition (3) of the theorem.

We first argue that C†∞ → O†∞, with log structure on C∞ induced by the inclusion
f−1
∞ (∂X) ⊆ C∞, is in fact log smooth. This just needs to be checked in étale
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neighbourhoods of double points and marked points of C0. At a double point q, as
observed in Step 2 of the proof of Theorem 4.24, we have

ÔC∞,q ∼= k[x, y, t]/(xy − λte)
for λ ∈ 0, 1. By applying the characterization of log smoothness of Example 3.26

to C†k → O†k for large k, in fact λ = 1 and e is determined by the requirement

that MC0,q̄ = Se. Thus C†∞ → O†∞ is log smooth at q. For log smoothness at a

marked point p, it is enough to observe that f−1
∞ (∂(X \X0)) is a disjoint union of

sections as in Step 3 of the proof of Theorem 4.24. This holds because the same is

necessarily true for f−1
k (∂(X \X0)) as fk : C†k → O†k is log smooth. Thus we see

f∞ is log smooth with the induced log structure.
We can now restrict this log structure to C0, obtaining another torically trans-

verse log curve (C′0)
† → X†0 over Spec k†. This in fact must coincide with the

original curve C†0 → X†0 . Indeed, from the proof of Proposition 4.23, the log struc-
ture on C0 is uniquely determined away from the nodes, and at the nodes the local
description of Example 3.26 tells us the two log structures coincide. This shows
existence.

For uniqueness, given such a f∞ : C∞ → X , we obtain a log map f †∞ : C†∞ →
X† over O†∞ → (A1)†, where the log structure on C∞ is induced by f−1

∞ (∂X) ⊆ C∞
and the log structure onO∞ is the pull-back of the log structure on A1. This induces

a log structure on the fibre over the closed point of O∞, C†0 , and the assumption

is that this coincides with the original given C†0 → X†0 over Spec k†. It is then not
difficult to see from the description of log smooth curves of Example 3.26 that this
implies that that C†∞ → O†∞ is log smooth. But then, by the above deformation

theory, C†k
∼= C†∞ ×O†∞ O†k is uniquely determined for each h, so C†∞ is unique. �

4.6. The end of the proof

We now complete the proof of Theorem 4.4, i.e., we show that

N0,trop
∆,Σ = N0,hol

∆,Σ .

Here we have fixed points P1, . . . , Ps ∈ MQ so that all tropical rational curves
passing through P1, . . . , Ps are simple. Recall that we have rescaled the lattice M
so that Pi ∈M for each i. Furthermore, after having chosen the good decomposition
P, we can rescale the lattice again to ensure that for every genus zero tropical curve
h : (Γ, x1, . . . , xs) → MR with h(xi) = Pi, the image of each edge of Γ̃ has affine
length divisible by its weight, so that the hypotheses of Theorem 4.14 always hold.

Then, after choosing sections σ1, . . . , σs : A1 → X as usual, hence points qi =
σi(0) ∈ X0, we obtain, by Theorem 4.14, precisely N0,trop

∆,Σ torically transverse
marked log curves

f : (C†, x1, . . . , xs)→ X†0

of genus zero with f(xi) = qi. Let M0,log
∆,Σ (σ1, . . . , σs) denote the set of these

torically transverse marked log curves.
On the other hand, let K = k((t)). There is a canonical map SpecK → A1

k

coming from the inclusion k[t] →֒ K, and the fibred product X ×A1
k

SpecK is

isomorphic to XΣ ×k K. Furthermore, each section σi then defines a K-valued
point of XΣ ×k K, which we also denote by σi.
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We wish to show that there is a one-to-one correspondence between

M0,log
∆,Σ (σ1, . . . , σs)

and the set M0,hol
∆,Σ (σ1, . . . , σs) of torically transverse curves of genus zero

f : (C, x1, . . . , xs)→ XΣ ×k K

over the field K with f(xi) = σi. This will prove the theorem. Indeed, since
K is an algebraically closed field of characteristic zero and the answer should be
independent of which algebraically closed field of characteristic zero we use, the

number of such torically transverse curves in XΣ ×k K is N0,hol
∆,Σ .

To show this one-to-one correspondence, start with a log curve

[f0 : C0/O0 → X,x0]

inM0,log
∆,Σ (σ1, . . . , σs). By Theorem 4.27, this gives a curve

[f∞ : C∞/O∞ → X,x∞].

We have a natural map SpecK → O∞ coming from the inclusion k[t℄ ⊆ K, hence
a curve C = C∞ ×O∞ SpecK over SpecK, along with a map

f : C → X ×A1 SpecK = XΣ ×k K.

This is the desired torically transverse curve over K.
Conversely, suppose we are given a curve f : C → XΣ×kK in the moduli space

M0,hol
∆,Σ (σ1, . . . , σs). Since

K =
∞⋃

d=1

k((t1/d)),

and C is finite type over K, in fact there is some d such that C is defined over the
field k((t1/d)). This gives us a diagram as in (4.15), with C∗ = C and L = k((t1/d)).

Then applying Theorem 4.24, after replacing L with L = k((t1/de)) for some e,
making a base-change A1 → A1, and blowing up X , we obtain a diagram (4.17).

Note that the blow-up X̃ → X corresponds to a subdivision of P. This then gives
rise to a torically transverse pre-log curve

f0 : (C0, x
0
1, . . . , x

0
s)→ X̃0

by restricting the map f of (4.17) to the fibre over the closed point of SpecR.
This has some associated tropical curve h : Γ → MR, necessarily passing through
P1, . . . , Ps. Since P1, . . . , Ps were chosen generically, h must be simple, and so by
Theorem 4.24, (2), f0 is a torically transverse log curve.

But we have already classified all the torically transverse log curves with asso-
ciated tropical curve passing through P1, . . . , Ps, and hence this log curve is one of
the ones contributing to N0,trop

∆,Σ . In particular, this log curve gives a unique family

already defined over Spec k[t℄. Thus we in fact have de = 1 and no base-change
A1

k → A1
k is required. In particular, all the torically transverse curves defined over

K are in fact defined over k((t)), and we have a one-to-one correspondence between
these curves and torically transverse log curves.

This completes the proof of Mikhalkin’s theorem.
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4.7. References and further reading

The exposition in this chapter is based on the paper [86] of Nishinou and
Siebert. That paper covers a similar result in all dimensions. The original proof was
given by Mikhalkin in [80] after announcing the result in [79]. After Mikhalkin’s
original announcement, Shustin also provided an independent proof of the result in
[105]. In the case of P2, Gathmann and Markwig [31] gave a purely combinatorial
argument, by showing that the tropical curve counts satisfy the WDVV equation.
There is a growing literature involving other generalizations of Mikhalkin’s results
which are too numerous to list here.



CHAPTER 5

Period integrals

In Chapter 4, we proved Mikhalkin’s formula for curve-counting in toric sur-
faces. Specializing to the case of P2, one essentially obtains the A-model for
P2, as these formulae compute the Gromov-Witten invariants 〈T 3d−1

2 〉0,d count-
ing the number of rational curves of degree d passing through 3d − 1 points. We
should note that for arbitrary toric surfaces X , Mikhalkin’s formula does not com-
pute Gromov-Witten invariants because there will always be contributions to such
Gromov-Witten invariants from curves which are not torically transverse, e.g., have
components mapping into the toric boundary of X . However, for P2, we do ob-
tain Gromov-Witten invariants. This allows one to define quantum cohomology
for P2 purely tropically, and one obtains from this the full A-model variation of
semi-infinite Hodge structures.

This then raises the following question: Is it possible to describe the B-model
tropically, in such a way that it becomes transparent that the A- and B-models
coincide? At first glance, it is not at all obvious how perturbations of a potential
function W0 and oscillatory integrals involving these functions can be computed
tropically. However, as we shall demonstrate in this chapter, one can indeed carry
out these computations tropically, and in particular give a completely tropical de-
scription of the B-model. This chapter is based entirely on the paper [42].

5.1. The perturbed Landau-Ginzburg potential

Our main goal is to find a canonical description of W0 and its perturbation by
giving the “correct” universal unfolding of W0. The important clue is the inter-
pretation of Cho and Oh [16] of the potential W0 in terms of Maslov index two
holomorphic disks. We will not explain this here at the level of symplectic geometry,
but pass immediately to the tropical version. At the same time, we shall initially
work in a broader context of arbitrary toric varieties, putting the description of the
mirror to Pn discussed already in Chapter 2 in the context of a broader setup of
mirror symmetry for toric varieties introduced by Givental (see [33]).

5.1.1. Givental’s mirrors of toric varieties. To begin, we fix once and
for all a lattice M = Zn, N = HomZ(M,Z) the dual lattice, MR = M ⊗Z R,
NR = N ⊗Z R. Fix a complete fan Σ in MR. We shall assume that XΣ is a non-
singular toric variety. We adopt the same notation used in §1.3: we let TΣ be the
free abelian group generated by the elements of Σ[1], the one-dimensional cones of Σ,
with ρ ∈ Σ[1] corresponding to a generator tρ. We have the map r : TΣ →M given
by r(tρ) = mρ, the primitive generator of ρ, and the assumption of non-singularity
implies r is surjective. So there is a natural exact sequence

0−→KΣ−→TΣ
r−→M−→0

173
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defining KΣ. Dualizing this sequence gives

0→ N → HomZ(TΣ,Z)→ PicXΣ → 0,

as discussed in §3.1.2. After tensoring with C×, we get an exact sequence

0−→N ⊗ C×−→Hom(TΣ,C
×)

κ−→PicXΣ ⊗ C×−→0.

We should think of κ as providing the family of mirrors to XΣ. We define the
Kähler moduli space of XΣ to be

MΣ := PicXΣ ⊗ C× = Spec C[KΣ],

so we have a morphism

κ : Hom(TΣ,C
×) = Spec C[TΣ]→MΣ.

Note that a fibre of κ over a closed point of MΣ is canonically isomorphic to
Spec C[M ].

In keeping with Chapter 2, after passing to complex manifolds, we can pass to
the universal cover ofMΣ, which we shall write as the vector space

M̃Σ := PicXΣ ⊗ C,

with the map M̃Σ →MΣ given by D ⊗ y 7→ D ⊗ ey. We then set

X̌Σ := Hom(TΣ,C
×)×MΣ M̃Σ,

pulling back the family given by κ to M̃Σ. So far, we have not introduced the
formal thickening of this moduli space, nor shall we do so in general.

We shall take W0 to be the function on X̌Σ defined by

(5.1) W0 :=
∑

ρ∈Σ[1]

ztρ .

This makes sense as a function on Spec C[TΣ], hence as a function on X̌Σ. We think
of (X̌Σ,W0) as a family of Landau-Ginzburg models which are mirror to XΣ.

Example 5.1. Taking Σ to be the fan for Pn, this gives precisely the description

of the mirror family X̌ → M̃ for Pn defined in §2.2.3, with the formal coordinates
t0 = t2 = · · · = tn = 0.

5.1.2. Tropical disks and mirrors to toric varieties. We shall now restrict
to the surface case, taking M = Z2.

We have already defined the notion of a tropical curve in Chapter 1. Here, we
define the notion of a tropical disk (which was called a tropical curve with stops in
[85]).

Definition 5.2. Let Γ be a weighted, connected finite graph without bivalent
vertices as in §1.3, with the additional data of a choice of univalent vertex Vout,
adjacent to a unique edge Eout. Let

Γ′ := (Γ \ Γ
[0]

∞) ∪ {Vout} ⊆ Γ.

Suppose furthermore that Γ′ has first Betti number zero (i.e., Γ′ is a tree with
one compact external edge and a number of non-compact external edges). Then a
parameterized d-pointed tropical disk in MR with domain Γ′ is a choice of inclusion

{p1, . . . , pd} →֒ Γ
[1]
∞ \ {Eout} written as pi 7→ Epi , with w(E) = 0 if and only if
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E = Epi for some i, and a continuous map h : Γ′ → MR satisfying the same
conditions as Definition 1.11, except that there is no balancing condition at Vout.

An isomorphism of tropical disks

h1 : (Γ′1, p1, . . . , pd)→MR and h2 : (Γ′2, p1, . . . , pd)→MR

is a homeomorphism Φ : Γ′1 → Γ′2 respecting the marked edges and the weights
with h1 = h2 ◦Φ. A tropical disk is an isomorphism class of parameterized tropical
disks.

The combinatorial type of a tropical disk h : (Γ′, p1, . . . , pd) → MR is defined
to be the homeomorphism class of Γ with the marked points, weights, and Vout,
together with, for every vertex V and edge E containing V , the primitive tangent
vector to h(E) in M pointing away from V .

While the above definitions make sense in any dimension, the point of restricting
to dimension two is that we can make use of Mikhalkin’s definition of multiplicity
(Definition 1.21), using the same definition for disks, but not counting Vout:

Definition 5.3. Suppose rankM = 2. Let h : Γ′ →MR be a marked tropical
disk such that Γ only has vertices of valency one and three. The multiplicity of the
disk h is then

Mult(h) :=
∏

V ∈Γ[0]

MultV (h),

where MultV (h) is as defined in Definition 1.21. In particular, there is no contri-
bution from Vout.

We now fix M ∼= Z2 and a complete rational polyhedral fan Σ in MR, yielding
TΣ and r : TΣ →M as in §5.1.1.

Definition 5.4. A disk h is a tropical disk in XΣ if every E ∈ Γ
[1]
∞ \ {Eout}

has h(E) either a point or a translate of some ρ ∈ Σ[1].
Analogously to Definition 1.12, if the disk has dρ unbounded edges which are

translates of ρ ∈ Σ[1] (counted with weight), then the degree of h is

∆(h) :=
∑

ρ∈Σ[1]

dρtρ ∈ TΣ.

Fix general points P1, . . . , Pk ∈ MR, and fix a general base-point Q ∈ MR.
When we talk about general points in the sequel, we mean that there is an open
dense subset (typically the complement of a finite union of polyhedra of codimension

at least one) of Mk+1
R such that (P1, . . . , Pk, Q) ∈ Mk+1

R lies in this open subset.
This choice of open subset will depend on particular needs.

Associate to the points P1, . . . , Pk the variables u1, . . . , uk in the ring

Rk :=
C[u1, . . . , uk]

(u2
1, . . . , u

2
k)
.

Definition 5.5. Let h : (Γ′, p1, . . . , pd) → MR be a tropical disk in XΣ with
h(Vout) = Q, h(pj) = Pij , 1 ≤ i1 < · · · < id ≤ k. (This ordering removes a d!
ambiguity about the labelling of the marked points.) We say h is a tropical disk in
(XΣ, P1, . . . , Pk) with boundary Q.
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The Maslov index of the disk h is

MI(h) := 2(|∆(h)| − d).

The phrase “Maslov index” has a precise definition in the context of pseudo-
holomorphic disks with boundaries contained in Lagrangian submanifolds of sym-
plectic manifolds. In particular, the Maslov index enters into a formula for the
virtual dimension of a family of such disks. We have given the definition above so
that a precisely analogous formula holds, given by the following lemma.

Lemma 5.6. If P1, . . . , Pk, Q are chosen in general position, then the set of
Maslov index 2n tropical disks in (XΣ, P1, . . . , Pk) with boundary Q is an (n− 1)-
dimensional polyhedral complex. The set of Maslov index 2n tropical disks with
arbitrary boundary is an (n+ 1)-dimensional polyhedral complex.

Proof. This is exactly the kind of standard tropical dimension counting ar-
gument carried out in Lemma 1.20. We sketch the argument here.

Fix a combinatorial type of tropical disk with d marked points, with degree
∆. If the combinatorial type is general, then the domain Γ′ only has trivalent
vertices apart from Vout. Such a tree has |∆| + d unbounded edges and hence
|∆| + d − 1 bounded edges (including Eout). A tropical disk h : Γ′ → MR of
this given combinatorial type is then completely determined by the position of
h(Vout) ∈ MR and the affine lengths of the bounded edges. This produces a cell
in the moduli space Mdisk

∆,d (XΣ) of all d-pointed tropical disks of degree ∆. The

closure of this cell is (R≥0)
|∆|+d−1 × MR. Also, there are only a finite number

of combinatorial types of disks of a given degree. Thus Mdisk
∆,d (XΣ) is a finite

(|∆| + d + 1)-dimensional polyhedral complex. Furthermore, we have a piecewise
linear map ev :Mdisk

∆,d (XΣ)→ Md
R, taking a disk h to the tuple (h(p1), . . . , h(pd)).

Let E ⊆Mdisk
∆,d (XΣ) be the union of cells mapping under ev to cells of codimension

≥ 1 inMd
R; then h(E) is a closed subset ofMd

R. Thus, if (Pi1 , . . . , Pid) ∈Md
R is not in

this closed subset, for 1 ≤ i1 < · · · < id ≤ k distinct indices, then ev−1(Pi1 , . . . , Pid)
is a codimension 2d subset ofMdisk

∆,d (XΣ). Thus the dimension of the moduli space

of tropical disks of a given degree ∆ with arbitrary boundary in (XΣ, P1, . . . , Pk)
is |∆|+ 1− d = MI(h)/2 + 1. Similarly, if we fix a general boundary point Q, the
dimension is MI(h)/2− 1, as claimed. �

Definition 5.7. Given the data P1, . . . , Pk, Q ∈MR general, let

h : (Γ′, p1, . . . , pd)→MR

be a Maslov index two marked tropical disk with boundary Q in (XΣ, P1, . . . , Pk).
Then we can associate to h a monomial in C[TΣ]⊗C Rk[y0℄,

Mono(h) := Mult(h)z∆(h)uI(h),

where z∆(h) ∈ C[TΣ] is the monomial corresponding to ∆(h) ∈ TΣ, the subset
I(h) ⊆ {1, . . . , k} is defined by

I(h) := {i |h(pj) = Pi for some j},
and

uI(h) =
∏

i∈I(h)

ui.
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Define the k-pointed Landau-Ginzburg potential as

Wk(Q) := y0 +
∑

h

Mono(h) ∈ C[TΣ]⊗C Rk[y0℄
where the sum is over all Maslov index two disks h in (XΣ, P1, . . . , Pk) with bound-
ary Q. By Lemma 5.6, this is a finite sum for P1, . . . , Pk, Q general.

We define the k-th order thickening of the Kähler moduli space M̃Σ defined in
§5.1.1 to be the ringed space

M̃Σ,k := (M̃Σ,OfMΣ,k
),

with elements of OfMΣ,k
(U) for U ⊆ M̃Σ being expressions of the form

∞∑

n=0
I⊆{1,...,k}

fn,Iy
n
0uI

where fn,I is a holomorphic function on U for each n and I.
Similarly, we define the thickened mirror family

X̌Σ,k := (X̌Σ,OX̌Σ,k
)

in exactly the same way. Thus we have a family

κ : X̌Σ,k → M̃Σ,k.

By construction, Wk(Q) is a regular function on X̌Σ,k, so we can think of this as
providing a family of Landau-Ginzburg potentials.

The sheaf of relative differentials Ω1
X̌Σ,k/ fMΣ,k

is canonically isomorphic to the

trivial locally free sheaf M ⊗Z OX̌Σ,k
, with m⊗ 1 corresponding to the differential

(5.2) dlogm :=
d(zm)

zm
;

here m ∈ TΣ is any lift of m ∈M , and dlogm is well-defined as a relative differen-

tial independently of the lift. Thus a choice of generator of
∧2

M ∼= Z determines a
nowhere-vanishing relative holomorphic two-form Ω, canonical up to sign. Explic-
itly, if e1, e2 ∈M is a positively oriented basis, then

(5.3) Ω = dlog e1 ∧ dlog e2.

�

Remark 5.8. Given a fan Σ in MR
∼= R2, if we take k = 0, the Maslov index

two disks with boundary Q are precisely the disks of the form Q+ ρ for ρ ∈ Σ[1].
All these disks have multiplicity one, having no vertices. Thus

W0(Q) = y0 +
∑

ρ∈Σ[1]

ztρ.

Other than the term y0, whose role in the following discussion will only be neces-
sary to reproduce the correct behaviour of the J-function, this is precisely (5.1).
For those familiar with the work of Cho and Oh [16], we point out that these
tropical disks coincide precisely with the holomorphic disks classified there, and so
we reproduce, tropically, the description of the Landau-Ginzburg potential given in
[16].
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Q

P1

Figure 1. The one additional Maslov index two tropical disk with
k = 1.

The function Wk(Q) is then intended to be the “correct” perturbation of
W0(Q), in the sense that the parameters appearing in Wk(Q) are closely related
to flat coordinates. However, for a general choice of Σ this is not true, the chief
problem being that there will be copies of P1 in the toric boundary of XΣ which
do not deform to curves intersecting the big torus orbit of XΣ. This is a standard
problem in tropical geometry: tropical geometry cannot “see” these curves. This is
not a problem as long as XΣ is a product of projective spaces, so in particular, we
will now restrict to the case of XΣ = P2. This returns us to the example studied
in detail in Chapter 2.

Example 5.9. Let Σ be the fan for P2, depicted in Figure 14 of Chapter 1, so
that XΣ = P2. Here TΣ = Z3 with basis t0, t1, t2 corresponding to ρ0, ρ1, ρ2, and we

write xi for the monomial zti ∈ C[TΣ]. In this case M̃Σ = C, say with coordinate

y1, so that the space M̃Σ,k has underlying topological space C. The mirror family

X̌Σ,k is then defined by the equation x0x1x2 = ey1 in C3 × M̃Σ,k, and the map

κ : X̌Σ,k → M̃Σ,k

is then given by projection, i.e.,

κ∗(y0) = y0

κ∗(y1) = y1

κ∗(ui) = ui

As discussed in Remark 5.8,

W0(Q) = y0 + x0 + x1 + x2.

If we take k = 1, marking one point in P2, we obtain one additional disk, as
depicted in Figure 1, and if we take k = 2 with P1 and P2 chosen as in Figure 2,
we have three additional disks. Note that the potential depends on the particular
choices of the points P1, . . . , Pk as well as Q. In the given examples, we have
respectively

W1(Q) = y0 + x0 + x1 + x2 + u1x1x2

W2(Q) = y0 + x0 + x1 + x2 + u1x0x1 + u2x0x1 + u1u2x0x
2
1.

�



5.2. TROPICAL DESCENDENT INVARIANTS 179

P2

P1

Q

Q

P2

P2

P1

Q

P1

Figure 2. The additional Maslov index two tropical disks with
k = 2.

5.2. Tropical descendent invariants

As we know from Chapter 2, mirror symmetry for P2 gives an expression for the
J-function of P2 in terms of oscillatory integrals. The J-function in turn involves
gravitational descendent Gromov-Witten invariants. On the other hand, the main
point of this chapter is to show that the oscillatory integrals can be naturally
evaluated in terms of certain tropically described objects. In particular, we will
need to define tropical versions of the gravitational descendent invariants, which
we shall do in the case of P2.

The tropical count of rational curves of degree d through 3d − 1 points was
ultimately motivated by the actual proof that tropical curves correspond to holo-
morphic curves: the count arising from Mikhalkin’s original proof in [80] is very
similar to the way the count arises in Chapter 4. In the case of gravitational de-
scendents, however, it is somewhat more difficult to motivate these formulae. There
is no direct proof analogous to the arguments of Chapter 4 that the descendent in-
variants we define in fact coincide with the holomorphic versions. We will only
be able to motivate these definitions by saying that these definitions are what are
given by computing oscillatory integrals. The main result of this chapter says that
the definition given for tropical descendent invariants is correct if and only if mirror
symmetry for P2 (Theorem 2.44) holds.

One can also attempt to approach this problem in a purely tropical setting, by
considering the moduli spaces of tropical curves, defining the ψ-classes as tropical
cycles on these moduli spaces, and applying tropical intersection theory. This
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approach was applied by Markwig and Rau in [77], but as yet does not recover all
the formulae we give here.

We continue with M = Z2 and Σ a fan in MR defining a projective toric variety
XΣ.

Definition 5.10. Let P1, . . . , Pk ∈ MR be general. Let S ⊆ MR be a subset.
Define

Mtrop
∆,n (XΣ, P1, . . . , Pk, ψ

νS)

to be the moduli space of rational (n+ 1)-pointed tropical curves in XΣ

h : (Γ, p1, . . . , pn, x)→MR

of degree ∆ such that

(1) h(pj) = Pij , 1 ≤ i1 < · · · < in ≤ k.
(2) The edge Ex is attached to a vertex Vx of Γ; the valency of this vertex is

denoted Val(x). Then

Val(x) = ν + 3.

(3) h(x) ∈ S.
(4) The weight of each unbounded edge of Γ is either 0 or 1.

Lemma 5.11. For P1, . . . , Pk ∈MR general,

(1) Mtrop
∆,n (XΣ, P1, . . . , Pk, ψ

νMR) is a polyhedral complex of dimension |∆| −
n− ν.

(2) Mtrop
∆,n (XΣ, P1, . . . , Pk, ψ

νC) is a polyhedral complex of dimension |∆| −
n− ν − 1 for C a general translate of a tropical curve in MR.

(3) Mtrop
∆,n (XΣ, P1, . . . , Pk, ψ

νQ) is a polyhedral complex of dimension |∆| −
n− ν − 2 for Q ∈MR a general point.

Proof. This is straightforward, as in Lemma 5.6. The dimension count is as
follows. Fix the combinatorial type of the curve to be generic, so that all vertices of
Γ are trivalent except for the vertex adjacent to Ex, which is (ν + 3)-valent. Such
a tree has |∆|+n+1 unbounded edges, and thus has |∆|+n+1− (ν+3) bounded
edges. The curves of this combinatorial type are then determined by the location
of h(x) ∈ MR and the lengths of the bounded edges, giving a cell of the form
(R≥0)

|∆|+n−ν−2 ×MR. Fixing h(p1), . . . , h(pn) then yields the desired dimension
of the moduli space in (1) to be

|∆|+ n− ν − 2n.

This gives (1). For (2) and (3), we consider the map

evx :Mtrop
∆,n (XΣ, P1, . . . , Pk, ψ

νMR)→MR

given by evx(h) := h(x). Let E1 ⊆ Mtrop
∆,n(XΣ, P1, . . . , Pk, ψ

νMR) be the union
of cells which map to codimension ≥ 1 sets in MR, and let E2 be the union of
cells which map to points in MR. Then we need to choose the translate C so that
C ∩ h(E1) is zero-dimensional and C ∩ h(E2) = ∅. Similarly, we need to choose
Q 6∈ h(E1). Then ev−1

x (C) or ev−1
x (Q) are the desired moduli spaces in cases (2)

and (3) and are of the desired dimension. �

We can describe a tropical curve h : Γ → MR of genus zero in terms of a
collection of disks, by splitting the curve up at a chosen vertex. The following
lemma is crucial for describing these curves in terms of disks in what follows.
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Lemma 5.12. Let P1, . . . , Pk ∈MR be general and S ⊆MR a subset. Let

h ∈Mtrop
∆,n (XΣ, P1, . . . , Pk, ψ

νS).

Let Γ′1, . . . ,Γ
′
ν+2 denote the closures of the connected components of Γ \ Ex, with

hi : Γ′i → MR the restrictions of h. Each disk hi is viewed as being marked by
those points p ∈ {p1, . . . , pn} with Ep ⊆ Γ′i. There is one special case to consider
here: if Ex and Epi share a common vertex V , then we discard the edge Epi from
consideration as well, so we have disks h1, . . . , hν+1. (Note that since h(pi) 6= h(pj)
for i 6= j, we never have Epi and Epj sharing a common vertex.)

(1) If S = MR and n = |∆| − ν, then either
(a) Ex does not share a vertex with any of the edges Epi , and then

MI(hi) = 2 for all but two choices of i, and for these i, MI(hi) = 0.
(b) Ex does share a vertex with one of the edges Epi , and then MI(hi) =

2 for all i.
(2) If S = C is a general translate of a tropical curve in MR and n = |∆| −

ν − 1, then MI(hi) = 2 for all but one i, and for this i, MI(hi) = 0.
(3) If S = {Q} for a general point Q and n = |∆| − ν − 2, then MI(hi) = 2

for all i.

Proof. First note that the condition on n and the generality of P1, . . . , Pk, C,
and Q guarantee by the previous lemma that the moduli space under consideration
is zero dimensional. If any of the disks hi can be deformed while keeping its
boundary hi(x) fixed, then this yields a non-trivial deformation of h, which does
not exist. Thus by Lemma 5.6 we must have MI(hi) ≤ 2 in all cases. Let ni be
the number of marked points on hi. We note that

∑

i

MI(hi)

2
=

∑

i

(|∆(hi)| − ni)

=

{
|∆(h)| − (n− 1) Case (1) (b)

|∆(h)| − n otherwise

=





ν Case (1) (a)

ν + 1 Case (1) (b)

ν + 1 Case (2)

ν + 2 Case (3)

Since there are ν + 2 disks except in Case (1) (b), when there are ν + 1 disks, the
result follows. �

We can now define tropical analogues of the descendent Gromov-Witten in-
variants which appear in the Givental J-function. From now on in this chapter,
we only consider the case of XΣ = P2, with Σ the fan with rays generated by
m0 = (−1,−1), m1 = (1, 0) and m2 = (0, 1), and t0, t1, t2 the generators of TΣ,
with r(ti) = mi. Let

∆d := d(t0 + t1 + t2) ∈ TΣ;

curves of degree ∆d should be viewed as usual as degree d tropical curves in P2.

Definition 5.13. Fix general points Q,P1, P2, · · · ∈MR. Let L be the tropical
line (a translate of the union of the one-dimensional cones in the fan of P2) with
vertex Q.
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For a tropical curve h in P2 with a marked point x, let n0(x), n1(x) and n2(x) be
the number of unbounded rays sharing a common vertex with Ex mapping under h
to rays in the directions m0,m1 and m2 respectively. As in Lemma 5.12, we denote
by h1, . . . the tropical disks obtained by removing Ex from Γ, with the outgoing
edge of hi being Ei,out. Let m(hi) = w(Ei,out)m

prim(hi), where mprim(hi) ∈ M is
a primitive vector tangent to hi(Ei,out) pointing away from h(x).

Define

Mult0x(h) =
1

n0(x)!n1(x)!n2(x)!

Mult1x(h) = −
∑n0(x)
k=1

1
k +

∑n1(x)
k=1

1
k +

∑n2(x)
k=1

1
k

n0(x)!n1(x)!n2(x)!

Mult2x(h) =

(∑2
l=0

∑nl(x)
k=1

1
k

)2

+
∑2

l=0

∑nl(x)
k=1

1
k2

2n0(x)!n1(x)!n2(x)!

(1) We define

〈P1, . . . , P3d−2−ν , ψ
νQ〉trop0,d

to be ∑

h

Mult(h)

where the sum is over all marked tropical rational curves

h ∈Mtrop
∆d,3d−2−ν(P1, . . . , P3d−2−ν , ψ

νQ).

We define

Mult(h) := Mult0x(h)
∏

V ∈Γ[0]

V 6∈Ex

MultV (h).

(2) We define

〈P1, . . . , P3d−1−ν , ψ
νL〉trop0,d

as a sum ∑

h

Mult(h)

where the sum is again over all marked tropical rational curves

h : (Γ, p1, . . . , p3d−1−ν, x)→MR

with h(pi) = Pi and satisfying one of the following two conditions.
(a)

h ∈ Mtrop
∆d,3d−1−ν(P1, . . . , P3d−1−ν , ψ

νL).

Furthermore, no unbounded edge of Γ having a common vertex with
Ex other than Ex maps into the connected component of L \ {Q}
containing h(x). By Lemma 5.12, there is precisely one j, 1 ≤ j ≤
ν+2, with MI(hj) = 0. Suppose also that the connected component
of L \ {Q} containing h(x) is Q+ R>0mi. Then we define

Mult(h) = |m(hj) ∧mi|Mult0x(h)
∏

V ∈Γ[0]

V 6∈Ex

MultV (h).

Here m(hj) ∧mi ∈
∧2

M ∼= Z, so the absolute value makes sense.
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(b) ν ≥ 1 and

h ∈Mtrop
∆d,3d−1−ν(P1, . . . , P3d−1−ν , ψ

ν−1Q).

Then

Mult(h) = Mult1x(h)
∏

V ∈Γ[0]

V 6∈Ex

MultV (h).

(3) We define

〈P1, . . . , P3d−ν , ψ
νMR〉trop0,d

as a sum ∑

h

Mult(h)

where the sum is over all marked tropical rational curves

h : (Γ, p1, . . . , p3d−ν , x)→MR

such that h(pi) = Pi and either
(a)

h ∈Mtrop
∆d,3d−ν

(P1, . . . , P3d−ν , ψ
νMR)

and Ex does not share a vertex with any of the Epi ’s. Furthermore,
no unbounded edge of Γ having a common vertex with Ex other
than Ex maps into the connected component of MR \ L containing
h(x). By Lemma 5.12, there are precisely two distinct j1, j2 with
1 ≤ j1, j2 ≤ ν + 2 such that MI(hji) = 0. Then we define

Mult(h) = |m(hj1) ∧m(hj2)|Mult0x(h)
∏

V ∈Γ[0]

V 6∈Ex

MultV (h).

(b)

h ∈Mtrop
∆d,3d−ν

(P1, . . . , P3d−ν , ψ
νMR)

and Ex shares a vertex with Epi . Furthermore, no unbounded edge
of Γ having a common vertex with Ex other than Ex and Epi maps
into the connected component of MR \ L containing h(x). Then we
define

Mult(h) = Mult0x(h)
∏

V ∈Γ[0]

V 6∈Ex

MultV (h).

(c) ν ≥ 1 and

h ∈Mtrop
∆d,3d−ν

(P1, . . . , P3d−ν , ψ
ν−1L).

Furthermore, no unbounded edge of Γ having a common vertex with
Ex other than Ex maps into the connected component of L \ {Q}
containing h(x). By Lemma 5.12, there is precisely one j, 1 ≤ j ≤
ν+1, with MI(hj) = 0. Suppose the connected component of L\{Q}
containing h(x) is Q+ R>0mi. Then we define

Mult(h) = |m(hj) ∧mi|Mult1x(h)
∏

V ∈Γ[0]

V 6∈Ex

MultV (h).
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(d) ν ≥ 2 and

h ∈Mtrop
∆d,3d−ν

(P1, . . . , P3d−ν , ψ
ν−2Q).

Then

Mult(h) = Mult2x(h)
∏

V ∈Γ[0]

V 6∈Ex

MultV (h).

In all cases S = {Q}, L or MR, we define for σ ∈ Σ,

(5.4) 〈P1, . . . , P3d−ν−(2−dimS), ψ
νS〉tropd,σ

to be the contribution to 〈P1, . . . , P3d−ν−(2−dimS), ψ
νS〉trop0,d coming from curves h

with h(x) in the interior of σ+Q. In (1), the only contribution comes from σ = {0},
in (2), the contributions come from the zero- and one-dimensional cones of Σ, and
in (3), the contributions come from all cones of Σ. �

Remarks 5.14. (1) Note that all moduli spaces involved are zero-dimensional
for general choices of Q,P1, . . ., so the sums make sense.

(2) The formula in Definition 5.13, (1), for ν = 0, gives the tropical curve
counting formula for the number of rational curves of degree d passing through
3d − 1 points, by Mikhalkin’s formula (Theorem 4.4). For ν > 0, this coincides
with the formula given by Markwig and Rau in [77]. In particular, by the results
of that paper,

〈P1, . . . , P3d−2−ν , ψ
νQ〉trop0,d = 〈T 3d−2−ν

2 , ψνT2〉0,d.
The remaining formulas we give are more mysterious, and have no known justifica-
tion outside of the mirror symmetry arguments given in this chapter.

(3) It is easy to see that 〈P1, . . . , P3d−1, ψ
0L〉trop0,d is d times the number of ratio-

nal curves through 3d−1 points. Indeed, the only contribution to this number comes
from Definition 5.13, (2) (a). For each tropical rational curve h : Γ → MR with
3d−1 marked points passing through P1, . . . , P3d−1 we obtain a contribution for ev-
ery point of h−1(L) by marking that point with x. The factor |m(hj)∧mi|Mult0x(h)
for the multiplicity in this case gives the intersection multiplicity of h(Γ) with L at
each point of h−1(L), as defined in Example 1.6. By the tropical Bézout theorem,
the total contribution from h is then (h(Γ) · L)Mult(h) = dMult(h).

Thus

〈P1, . . . , P3d−1, ψ
0L〉trop0,d = d〈P1, . . . , P3d−1〉trop0,d = d〈T 3d−1

2 〉0,d = 〈T 3d−1
2 , T1〉0,d,

by Mikhalkin’s formula and the Divisor Axiom.
(4) 〈P1, . . . , P3d, ψ

0MR〉trop0,d = 0. Indeed, the only possible contributions come

from Definition 5.13 (3) (a), but there are no rational curves of degree d through
3d general points. Thus

〈P1, . . . , P3d, ψ
0MR〉trop0,d = 〈T 3d

2 , T0〉0,d,
as both are zero, the latter by the Fundamental Class Axiom.

We will prove the following in §5.5:

Theorem 5.15. The invariants defined in Definition 5.13 are independent of
the choice of the Pi’s and Q.

This allows us to make the following definition.
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Definition 5.16. We define

〈T 3d−2−ν
2 , ψνT2〉trop0,d := 〈P1, . . . , P3d−2−ν , ψ

νQ〉trop0,d

〈T 3d−1−ν
2 , ψνT1〉trop0,d := 〈P1, . . . , P3d−1−ν , ψ

νL〉trop0,d

〈T 3d−ν
2 , ψνT0〉trop0,d := 〈P1, . . . , P3d−ν , ψ

νMR〉trop0,d

where the Pi’s and Q have been chosen generally.
We define

〈Tm2 , ψνTi〉trop0,d := 0

if m+ i+ ν 6= 3d.
We define the tropical J-function for P2 by analogy with Example 2.30,

J trop
P2 := e(y0T0+y1T1)/ℏ ∪

(
T0 +

2∑

i=0

(
ℏ−1y2δ2,i

+
∑

d≥1

∑

ν≥0

〈T 3d+i−2−ν
2 , ψνT2−i〉trop0,d ℏ−(ν+2)edy1

y3d+i−2−ν
2

(3d+ i− 2− ν)!

)
Ti

)

=:
2∑

i=0

J trop
i Ti.

Example 5.17. The tropical descendent invariants are (relatively) easy to com-

pute. For example, consider 〈ψ3d−2T2〉trop0,d . There is only one tropical curve of

degree d with a vertex of valency 3d+ 1 at Q (including the marked edge), namely
the curve which has d legs of weight one in each of the three directions (−1,−1),
(1, 0), and (0, 1), and hence contributes a multiplicity of 1/(d!)3, so

〈ψ3d−2T2〉trop0,d =
1

(d!)3
.

Next, consider 〈T2, ψ
3d−3T2〉trop0,d . Fixing some point P1 ∈ MR, we note that

any curve contributing to this invariant will have a 3d-valent vertex at Q (including
the marked edge), and will decompose into 3d − 1 Maslov index two disks with
boundary Q, with precisely one of them passing through the point P1. Taking, say,
P1 as depicted in Figure 1, the only curve contributing to this invariant is then as
depicted in Figure 3. Thus

〈T2, ψ
3d−3T2〉trop0,d =

1

d!(d− 1)!(d− 1)!
.

Both these give the correct non-tropical descendent invariants. This will follow
from Theorem 5.18, Corollary 5.19 and Theorem 2.44.

We give several additional examples of contributions to tropical descendent
Gromov-Witten invariants. In Figure 4, we see a curve which is obtained by gluing
together four Maslov index two disks with boundary Q: the vertical line with the
attached number 2 means we take that vertical unbounded edge twice, while the 2
attached to the horizontal line segment tells us that that edge has weight two. The
contribution to the multiplicity from all vertices except Q is 2 × 2. The vertex at
Q is 5-valent (remembering that this vertex is also the endpoint of the edge Ex),
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Q

P1

d− 1

d

d− 1

Figure 3. The one curve contributing to 〈P1, ψ
3d−3Q〉trop0,d . The

numbers d and d − 1 indicate not the weight of the edge but the
number of copies of the edge.

with n0(x) = 1, n1(x) = 0 and n2(x) = 2. Thus

Mult0x(h) = 1/(1!0!2!) = 1/2,

Mult1x(h) = − (1 + 1 + 1/2)/(1!0!2!) = −5/4,

Mult2x(h) = ((1 + 1 + 1/2)2 + 1 + 1 + 1/4)/(2 · 1!0!2!) = 17/8.

Thus this curve contributes 4/2 = 2 to 〈P1, . . . , P5, ψ
2Q〉trop0,3 , 4 × (−5/4) = −5 to

〈P1, . . . , P5, ψ
3L〉trop0,3 and 4× (17/8) = 17/2 to 〈P1, . . . , P5, ψ

4MR〉trop0,3 .
In Figure 5, we consider another example, with the dotted line being L. In this

case, decomposing the curve into a collection of disks by removing Ex, one finds the
only one of these disks with Maslov index zero is the diagonal line passing through
P6. The factor |m(hj) ∧m1| is then 1. We have n0(x) = n1(x) = 0 and n2(x) = 2.
(Note that the diagonal ray passing through P6 is not the image of an unbounded
edge with a common vertex with Ex because of the marked edge mapping to P6!)

Thus Mult0x(h) = 1/2 and Mult1x(h) = −3/4. Thus the contribution from this curve

to 〈P1, . . . , P6, ψ
2L〉trop0,3 is 2 and the contribution to 〈P1, . . . , P6, ψ

3MR〉trop0,3 is −3.

Figure 6 shows a curve of degree 4, with the vertex mapping to h(x) having
valency 7, and n0(x) = n1(x) = 0 (necessarily, otherwise this curve would not

contribute) and n2(x) = 4. Then Mult0x(h) = 1/24, and the two Maslov index zero
disks obtained by decomposing this curve have tangent vectors to their outgoing
edges given by (−1,−2) and (1,−2). Thus the factor |m(hj1) ∧m(hj2)| is 4. All
other vertices have multiplicity 1 except for two vertices of multiplicity 2, so the
total contribution of this curve to 〈P1, . . . , P8, ψ

4MR〉trop0,4 is 2/3.
We leave it to the reader to give an example of a curve contributing to this de-

scendent invariant of type (3) (b) in the definition of tropical descendent invariants.
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Q

P1

P2

P3

P5
2

2

P4

Figure 4

P1

P2

P3

P5
2

2

P4
h(x)Q

P6

Figure 5

5.3. The main B-model statement

In this section we continue with M = Z2 and Σ the fan in MR defining P2. We
then have for k ≥ 0,

κ : X̌Σ,k → M̃Σ,k

as given by Definition 5.7. Given a general choice of points P1, . . . , Pk, Q ∈ MR,
one obtains the Landau-Ginzburg potential Wk(Q). Note that modulo u1, . . . , uk,
Wk(Q) = W0(Q). The space X̌Σ,k carries a relative holomorphic two-form defined
by (5.3).

Let R be the local system on M̃Σ,k × C× whose fibre over (u, ℏ) is

H2(κ
−1(u),Re(W0(Q)/ℏ)≪ 0).

This local system is not concerned about the thickening of the structure sheaf:
it carries purely topological information on the underlying topological space of
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Q

4

h(x)

P4

P8

P1

P3

P5

P7

P2

P6

2

Figure 6

M̃Σ,k × C×, which is M̃Σ × C×. In fact, this local system coincides with the one
given in §2.2.3 in the case of P2.

From §2.2.4, we know that the local system R is rank 3 and has a multi-valued
basis of sections Ξ0,Ξ1,Ξ2 whose integrals over eW0(Q)/ℏΩ are given by (2.38). As
a consequence, the integrals

∫

Ξi

eWk(Q)/ℏΩ

make sense formally, by writing

exp(Wk(Q)/ℏ) = exp(W0(Q)/ℏ) exp((Wk(Q)−W0(Q))/ℏ)

and expanding exp((Wk(Q)−W0(Q))/ℏ) as a finite power series, precisely as was
done in §2.2.3.

The main theorem of this chapter, to be proved in §5.5, is now:
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Theorem 5.18. We can write

(5.5)

2∑

i=0

αi
∫

Ξi

eWk(Q)/ℏΩ = ℏ−3α
2∑

i=0

ϕi · (αℏ)i

where

ϕi(y0, y1, u1, . . . , uk, ℏ
−1) = δ0,i +

∞∑

j=1

ϕi,j(y0, y1, u1, . . . , uk)ℏ
−j ,

for 0 ≤ i ≤ 2, with

ϕ0,1 = y0

ϕ1,1 = y1

ϕ2,1 = y2 :=

k∑

i=1

ui.

Furthermore,

ϕi = J trop
i (y0, y1, y2).

In fact, this theorem proves the equivalence of tropical curve counting with
descendents and mirror symmetry. To make this precise, consider the statement:

Statement 5.19 (Tropical curve counting with descendents).

JP2 = J trop
P2 .

Corollary 5.20. Theorem 2.44 and Statement 5.19 are equivalent. In partic-
ular, since Theorem 2.44 is known to be true, Statement 5.19 is true.

Proof. We adopt the notation of Chapter 2, with M̃ = M̃B the B-model

moduli space, π : X̌ → M̃ as given in §2.2.3, with

W = t0 +W0 + t2W
2
0 ,

the potential on X̌ , universal in a neighbourhood of each point of M̃. On the other

hand, for a fixed k, we have κ : X̌Σ,k → M̃Σ,k constructed in §5.1.2. We replace M̃
and M̃Σ,k with germs of these spaces at 0, and replace X̌ and X̌Σ,k with the inverse

images of these germs. Then (X̌ ,W ) is a universal unfolding for (π−1(0),W0),
which coincides with (κ−1(0),Wk(Q)|κ−1(0)). Thus there is a diagram

X̌Σ,k

η
//

κ

��

X̌
π

��

M̃Σ,k ξ
// M̃

such that η|κ−1(0) : κ−1(0)→ π−1(0) is the identity and W ◦ η = Wk(Q).

Now both M̃ × C× and M̃Σ,k × C× come with local systems R with stalk at
(u, ℏ) given by

H2(π
−1(u),Re(W0/ℏ)≪ 0; C)

or

H2(κ
−1(u),Re(Wk(Q)/ℏ)≪ 0; C)



190 5. PERIOD INTEGRALS

respectively. Writing the local system on M̃ × C× as R′ to distinguish the two
cases, we clearly have ξ−1R′ ∼= R.

On M̃ we have the B-model variation of semi-infinite Hodge structures, given

by E ′,∇′, (·, ·)E′ and Gr′ determined by the Euler vector field E′. Similarly, on M̃Σ,k

we can construct a semi-infinite variation of Hodge structures, using exactly the
same procedures: we use unprimed notation. So E is defined so that Γ(U, E) consists
of sections of R∨ = (R⊗COfMΣ,k×C×

)∨ over open sets of the form U ×{ℏ | |ℏ| < ǫ}
given by forms fΩ on κ−1(U) × {ℏ | |ℏ| < ǫ} with f holomorphic, and algebraic
when restricted to κ−1(u)×{ℏ}. The connection ∇ is induced by the Gauss-Manin
connection, and the pairing given by the pairing on H2. The only thing which is
defined slightly differently is the grading operator, with

Gr(s) = ∇GMℏ∂ℏ+E(s)− s,
but where

E = y0∂y0 + 3∂y1 −
k∑

i=1

ui∂ui .

It is clear that by construction, E = ξ∗E ′, and ∇′, (·, ·)E′ pull back to ∇ and
(·, ·)E . I claim also that Gr′ pulls back to Gr. To verify this, note that

E = κ∗

(
y0∂y0 +

2∑

i=0

xi∂xi −
k∑

i=1

ui∂ui

)
,

and thus thinking of E as a vector field on X̌Σ,k, E(Wk(Q)) = Wk(Q). Indeed,
E(y0) = y0, and

E(Mono(h)) = E(Mult(h)z∆(h)uI(h))

= (|∆(h)| −#I(h))Mult(h)z∆(h)uI(h)

= Mono(h),

since each h appearing in Wk(Q) is Maslov index two. Thus thinking of E as living
on X̌Σ,k, η∗E preserves W , since (η∗E)(W ) = E(W ◦ η), and hence η∗E = E′, as

E′ is the unique vector field on X̌ preserving W . Thus Gr is the pull-back of Gr′.

Now the Frobenius manifold structure on M̃ is induced by the splitting ofH′ as

H′−⊕E ′0, again putting primes on all the notation associated to M̃. As flat sections
of E ′⊗O fM{ℏ}

OfM{ℏ, ℏ−1} pull back to flat sections of E ⊗O fMΣ,k
{ℏ}OfMΣ,k

{ℏ, ℏ−1},
we see that H and H′ are canonically isomorphic. Of course E0 and E ′0 are also, so
we can use the splitting H = H− ⊕ E0 with H− = H′−.

Let Ω′0 ∈ H′ be the flat section whose value at 0 ∈ M̃ is [Ω]; this agrees

with the flat section Ω0 ∈ H whose value at 0 ∈ M̃Σ,k is [Ω]. We have maps
τ ′ : (ℏH′−/H′−) ⊗C OfM{ℏ} → E ′ and τ : (ℏH−/H−) ⊗C OfMΣ,k

{ℏ} → E by (2.16);

these maps commute with pull-back by ξ. We know from the proof of Proposition
2.43, (3), that τ ′([Ω′0] ⊗ 1) is represented by some f ′Ω with f ′ holomorphic on
X̌ × {ℏ | |ℏ| < ǫ}, regular on fibres of π, f ′|π−1(0) ≡ 1, and

2∑

i=0

αi
∫

Ξi

eW/ℏf ′Ω = ℏ−3α
2∑

i=0

ϕ′i(t, ℏ
−1)(αℏ)i
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such that

ϕ′i(t, ℏ
−1) = δ0,i +

∞∑

j=1

ϕ′i,j(t)ℏ
−j .

Furthermore, these two conditions uniquely determine the section of E ′ represented
by f ′Ω. The same is true of τ([Ω0] ⊗ 1): it is represented by some fΩ with f
holomorphic on X̌Σ,k × {ℏ | |ℏ| < ǫ}, regular on fibres of κ, f |κ−1(0) ≡ 1 and

2∑

i=0

αi
∫

Ξi

eWk(Q)/ℏfΩ = ℏ−3α
2∑

i=0

ϕi(y0, y1, u1, . . . , uk, ℏ
−1)(αℏ)i

such that

ϕ = δ0,i +

∞∑

j=1

ϕi,j(y0, y1, u1, . . . , uk)ℏ
−j .

Now the main point is that Theorem 5.18 shows that we may take f ≡ 1 on
XΣ,k ×C×. Furthermore, since [Ω0] = ξ∗[Ω′0], τ([Ω0]⊗ 1) = ξ∗τ ′([Ω′0]⊗ 1). Thus if
f ′Ω represents τ ′([Ω′0]⊗ 1) as above, we see that

ϕi = ϕ′i ◦ ξ.
In particular, if y′0, y

′
1, y
′
2 are flat coordinates on M̃, i.e., y′i = ϕ′i,1, then

yi = y′i ◦ ξ.
Now suppose Theorem 2.44 is true. Then in particular, the conclusions of

Proposition 2.45 hold, and ϕ′i = Ji, so ϕi = Ji◦ξ. But by Theorem 5.18, ϕi = J trop
i .

Hence, identifying the coordinates yi and y′i, we see Ji = J trop
i , i.e., Statement 5.19

holds.
Conversely, suppose Statement 5.19 holds. We just need to show that the

conclusions of Proposition 2.45 hold. Note that we already know (1): this is part of

the construction of the Frobenius manifold structure on M̃. Then Statement 5.19
shows (2). Since

EA = y0∂y0 + 3∂y1 − y2∂y2 ,
then, with y2 = u1 + · · ·+ uk,

E = y0∂y0 + 3∂y1 −
k∑

i=1

ui∂ui = y0∂y0 + 3∂y1 − y2∂y2

coincides with EA. This gives (3). Finally, for (4), we argued in the proof of
Proposition 2.43, (2), that ((−)∗(ℏ−3ααj), ℏ−3ααk) was single-valued, and since the
dependence on ℏ was a function of log ℏ, must be independent of ℏ. In particular,
by using ℏ−3ααj = (1 − 3α log ℏ + (9/2)(α log ℏ)2)αj , we see

((−)∗ℏ−3αα0, ℏ−3αα2) = ((−)∗α0, α2).

Recall that 1, α, α2 is the dual basis to Ξ0,Ξ1,Ξ2. By the explicit forms for the Ξi
in Remark 2.42 and the intersection numbers in Example 2.34 we have

((−)∗Ξ0,Ξ2) = − 1

(2πi)2
,

so
((−)∗α0, α2) = −(2πi)2,

and hence
(ℏ−3αα0, ℏ−3αα2)E = ℏ−2.
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Applying (2.39) twice and (2.40), we see that

(ℏ−3ααi, ℏ−3ααj)E =





0 i+ j > 2

(−1)iℏ−2 i+ j = 2

(Constant)ℏ−2 i+ j < 2.

Thus

(ℏ−3α(ℏα)i, ℏ−3α(ℏα)j)ℏH−/H− =
(
(−ℏ)iℏj(ℏ−3ααi, ℏ−3ααj)E

)
|ℏ=∞

= δi,2−j

=

∫

P2

Ti ∪ Tj.

This gives (4) of Proposition 2.45, hence Theorem 2.44. �

The proofs of Theorems 5.15 and 5.18 will be given in §5.5. These proofs
require explicit evaluation of the integrals

∫
Ξi
eWk(Q)/ℏΩ. While it is not, in general,

difficult to get explicit answers for these integrals, it is actually quite difficult to
extract a useful combinatorial result from these answers. The calculation for Ξ0

is, however, quite easy, and to see it carried out explicitly, the reader may look at
Proposition 3.13 of [42]. However, the argument even for Ξ0 will be subsumed in
the more general calculation, so we shall not repeat this here.

5.4. Deforming Q and P1, . . . , Pk

Our ultimate goal in this chapter is to compute the integrals
∫
Ξi
eWk(Q)/ℏΩ.

These integrals involve the explicit choice of Q, as well as the implicit choices of
P1, . . . , Pk. We expect the integrals, however, to be independent of these choices.
We need to prove this, and in order to prove this, we need explicit formulas for
how Wk(Q) changes as Q or P1, . . . , Pk varies. In fact, as we shall see, there is
a “wall-crossing formula” saying that Wk(Q) changes by an automorphism of the
ring in which Wk(Q) lives. These wall-crossings occur when certain moduli spaces
of disks are not the correct dimension. These wall-crossings seem to be vital to the
theory, and will reoccur under a different disguise in the next chapter.

To motivate the discussion, we will begin with an informal exploration of the
role that Maslov index zero disks play.

5.4.1. Crossing Maslov index zero disks. For this discussion, we shall fix
P1, . . . , Pk general and let Q vary. By Lemma 5.6, there are no Maslov index zero
disks with boundary Q a general point, as the moduli space of such disks is of
dimension −1. On the other hand, the moduli space of Maslov index zero disks
without specified boundary is one-dimensional, so we expect these to exist.

Note that the one-dimensionality of this moduli space arises as follows. If we
have a Maslov index zero disk g : Γ′ → MR with boundary some point Q, with
outgoing edge Eout, we can simply move Q in the direction parallel to g(Eout) so
that g(Eout) gets shorter or longer. As a consequence, it makes sense to keep track
of the entire one-parameter family of Maslov index zero disks obtained in this way
by extending g(Eout) so it is unbounded; see Figure 7. The left-hand figure shows
a Maslov index zero tropical disk, and Q can be varied in a one-parameter family,
along the ray labelled as g(Eout) in the right-hand picture. Here g : Γ → MR is a
tropical curve obtained from the tropical disk on the left by extending the outgoing
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Q

P1

P2

P3

P1

P2

P3

g(Eout)

Figure 7

edge of the disk indefinitely. We still call this unbounded edge Eout. Note while
this is a tropical curve, it is not a curve in P2, because g(Eout) is not necessarily
parallel to a ray in the fan Σ for P2. However, any Q ∈ g(Eout) is the boundary
of a Maslov index zero disk. We shall call such extensions of tropical disks tropical
trees : we make this precise in §5.4.3.

Now suppose that we have such a tropical tree g, yielding a one-parameter
family of Maslov index zero disks. Consider two points Q1, Q2 on either side of
g(Eout). Suppose we have a Maslov index two disk with boundary Q1. What
might happen to this disk as we move from Q1 to Q2?

We will describe the possibilities here at an intuitive level; precise results will
be given in §5.4.5.

Start with a Maslov index two disk h with boundary Q1 and outgoing edge
Eout,h. Let m ∈ M be a primitive tangent vector to h(Eout,h) pointing away from
Q1. There are three possibilities:

Case 1. The tangent vector m may point away from g(Eout). We can then try
to deform the Maslov index two disk so that its boundary moves continuously from
Q1 to Q2. In general, as we shall see, it is possible to do this. This gives a Maslov
index two disk with boundary Q2. But there is another thing we can do: after
deforming the disk to one with boundary Q′ on h(Eout), we obtain a new kind of
Maslov index two disk by taking the Maslov index zero disk with boundary at Q′

and gluing it to the Maslov index two disk with boundary Q′. One then adds a new
outgoing edge, with weight and direction determined by the balancing condition;
see Figure 8. Thus the single Maslov index two disk with boundary Q1 gives rise
to two Maslov index two disks with boundary Q2: this is the fundamental feature
of the wall-crossing phenomenon which we shall study here.

Let h1, h2 be the two Maslov index two disks with boundary Q2 constructed in
this fashion, with h2 obtained via the gluing procedure. Then clearly Mono(h1) =
Mono(h), but h2 has one additional vertex V over and above the vertices coming
from h and g, whose multiplicity is

w(Eout)w(Eout,h)|m ∧m′|,
where m′ is a primitive tangent vector to g(Eout). Note that in terms of the degree
∆(h) of the disk h, we in fact have w(Eout,h)m = r(∆(h)), as can be seen simply
by summing the balancing conditions at each vertex. Similarly, if we write ∆(g)
for the degree of the Maslov index zero disks which yield g, then we can write
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P3
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P1

P1

P1

Figure 8

w(Eout)m
′ = r(∆(g)). Thus

Mono(h1) + Mono(h2) = Mono(h)(1 + |r(∆(g)) ∧ r(∆(h))|Mono(g))

= Mono(h)(1 + Mono(g))|r(∆(g))∧r(∆(h))|.
(5.6)

The second equality follows from the fact that u2
I(g) = 0.

Case 2. The second case is that m points towards g(Eout). In this case, we
can reverse the role of Q1 and Q2, so that by using the same argument, Wk(Q1)
contains two monomials Mono(h1) + Mono(h2) coming from a term Mono(h) in
Wk(Q2). We can rewrite (5.6), in this case, as

(5.7) Mono(h) = (Mono(h1) + Mono(h2))(1 + Mono(g))−|r(∆(g))∧r(∆(h))|.

Case 3. If m is parallel to g(Eout), then the expectation is that it is impossible
to glue on a copy of the Maslov index zero disk as we cross g(Eout), so that there
is no change of contribution to Wk(Q) as Q crosses g(Eout) from such an h.

We shall prove rigorously in §5.4.5 that the above discussion is accurate; a
priori, it is not clear that Maslov index two disks can be deformed at will. But let
us consider the implications of the formulas (5.6) and (5.7). Define an element ng
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of N = HomZ(M,Z) by

m 7→





|r(∆(g)) ∧m| if m points away from g(Eout),

−|r(∆(g)) ∧m| if m points towards g(Eout),

0 if m is parallel to g(Eout).

It is easy to see that this is linear: in fact, this can be written as a composition

M →
∧2

M
∼=−→Z

where the first map is

m 7→ r(∆(g)) ∧m
and the second is a choice of one of two isomorphisms so that r(∆(g))∧m is mapped
to a positive integer if m points away from g(Eout).

We then define an automorphism θg of the ring C[TΣ]⊗C Rk[y0℄ by

θg(z
m) = zm(1 + Mono(g))〈ng,r(m)〉

for m ∈ TΣ, and

θg(a) = a

for a ∈ Rk[y0℄. Note that θg has inverse given by

θ−1
g (zm) = zm(1 + Mono(g))−〈ng,r(m)〉,

hence is an automorphism. Then putting (5.6) and (5.7) together, along with the
discussion of the third case, we get

(5.8) Wk(Q2) = θg(Wk(Q1)).

We have not derived a rigorous proof of this yet, nor indeed a rigorous state-
ment. We shall do this completely in Theorem 5.35. The main point to absorb
now is that Maslov index zero disks are responsible for changes in Wk(Q) as Q
varies, and Wk(Q) changes in a very controlled way which can be expressed using
automorphisms of C[TΣ]⊗C Rk[y0℄ determined by the Maslov index zero disks.

We shall find a similar, but more complex, behaviour as the points P1, . . . , Pk
move.

We shall now explore these ideas more rigorously, beginning by describing the
group of automorphisms that arise in wall crossings.

5.4.2. Automorphisms. Our goal now is to specify a subgroup of the group
of automorphisms of C[TΣ] ⊗C Rk[y0℄. These automorphisms will, in particular,
be symplectomorphisms, in the sense that they preserve the relative holomorphic
two-form Ω defined in (5.3). However, we will not consider all symplectomorphisms,
but rather a subgroup with special properties, a variant of a group first defined by
Kontsevich and Soibelman in [70]. These properties will not be explored thoroughly
until the next chapter: the discussion here can be viewed as a warm-up.

In this subsection, we have M ∼= Z2, and Σ an arbitrary complete fan in MR

defining a non-singular toric surface. We have the standard exact sequence

0→ KΣ → TΣ
r−→M → 0.

To begin, we define the module of log derivations of C[TΣ]⊗C Rk[y0℄ to be the
module

Θ(C[TΣ]⊗C Rk[y0℄) := HomZ(M,C[TΣ]⊗C Rk[y0℄) = (C[TΣ]⊗C Rk[y0℄)⊗Z N.
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An element f ⊗ n is written as f∂n, and acts as a derivation on C[TΣ] ⊗C Rk[y0℄
over C[KΣ]⊗C Rk[y0℄ via

f∂n(z
m) = f〈n, r(m)〉zm.

Given ξ ∈ mRk
Θ(C[TΣ]⊗C Rk[y0℄), where mRk

= (u1, . . . , uk) is the maximal ideal
of Rk, we define

exp(ξ) ∈ Aut(C[TΣ]⊗C Rk[y0℄)
by

exp(ξ)(a) = a+

∞∑

i=1

ξi(a)

i!
.

This is a finite sum given the assumption on ξ, as mk+1
Rk

= 0. It is easy to check
that exp(ξ) is indeed a ring automorphism.

For a general log derivation, it can be hard to describe this automorphism.
Here, however, is a simple example: Take m ∈ TΣ with r(m) 6= 0, n ∈ N with
〈n, r(m)〉 = 0, I ⊆ {1, . . . , k} non-empty, and c ∈ C. Then

(5.9) exp(cuIz
m∂n)(z

m′) = zm
′

+ cuIz
m∂nz

m′ = zm
′

(1 + cuI〈n, r(m′)〉zm).

This is precisely the form of the automorphism θg appearing in §5.4.1.
There is a natural Lie bracket defined on the module of log derivations:

[zm∂n, z
m′∂n′ ] := zm∂n(zm

′

)∂n′ − zm
′

∂n′(z
m)∂n

= zm+m′
(
〈n, r(m′)〉∂n′ − 〈n′, r(m)〉∂n

)
.

This is just the ordinary Lie bracket
Now let

vΣ,k :=
⊕

m∈TΣ

r(m) 6=0

zm(mRk
⊗ r(m)⊥) ⊆ Θ(C[TΣ]⊗C Rk[y0℄).

In other words, vΣ,k consists of log derivations which are mRk
-linear combinations

of log derivations of the form zm∂n where r(m) 6= 0 and 〈n, r(m)〉 = 0.
Here is the punch-line of this discussion: vΣ,k is closed under the Lie bracket.

Indeed, given m,n and m′, n′ satisfying the above two requirements, we note that

[zm∂n, z
m′∂n′ ] = zm+m′∂〈n,r(m′)〉n′−〈n′,r(m)〉n.

Now
〈
〈n, r(m′)〉n′ − 〈n′, r(m)〉n, r(m +m′)

〉

= 〈n, r(m′)〉〈n′, r(m)〉 − 〈n′, r(m)〉〈n, r(m′)〉
= 0

because 〈n, r(m)〉 = 〈n′, r(m′)〉 = 0 by assumption. On the other hand, in the
case that r(m + m′) = 0, then r(m) = −r(m′) and 〈n, r(m′)〉 = 〈n′, r(m)〉 = 0.

Thus in this case [zm∂n, z
m′∂n′ ] = 0 anyway. This demonstrates that vΣ,k is a Lie

subalgebra of the module of log derivations.
Now set

VΣ,k = {exp(ξ) | ξ ∈ vΣ,k}.
As a consequence of the observation that vΣ,k is closed under Lie bracket, so that
vΣ,k is a Lie algebra, VΣ,k is a group, with multiplication given by the Baker-
Campbell-Hausdorff formula. Note that as vΣ,k is generated by derivations cuIz

m∂n
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with r(m) 6= 0, 〈n, r(m)〉 = 0, VΣ,k is generated by automorphisms of the form
exp(cuIz

m∂n), as described in (5.9).
It is not difficult to check that exp(cuIz

m∂n) preserves Ω; while this can be
done directly, it will follow shortly anyway. In fact, the original version of this group
introduced in [70] was defined as a group of Hamiltonian symplectomorphisms.

This description is as follows. We fix the relative holomorphic two-form Ω, as

in (5.3). This is determined by a choice of generator of
∧2

M , i.e., an identification∧2
M ∼= Z. Given an element f ∈ C[TΣ] ⊗C Rk[y0℄, we denote by Xf the corre-

sponding Hamiltonian vector field with respect to the symplectic form Ω. In other
words, this is the vector field Xf such that ι(Xf )Ω = df . Here, we are considering
the relative differential with respect to the map κ. So df is an element of the dual
to the module of log derivations, i.e., an element of (C[TΣ] ⊗C Rk[y0℄) ⊗Z M . We
write f ⊗m as f dlogm, and d(zm) = zm dlog r(m).

To describe Xzm , we introduce an identification of N with M induced by the

chosen identification
∧2

M ∼= Z given by Ω. An element m ∈M induces an element
Xm ∈ N given by the composition

Xm : M →
∧2

M
∼=−→Z

m′ 7→m ∧m′

So if f = zm, then Xf is the vector field −zmXr(m). Indeed, writing Ω =
dlog e1 ∧ dlog e2 for e1, e2 an oriented basis of M , and r(m) = a1e1 + a2e2, we see

−zmι(Xr(m))Ω = − zm
(
〈Xr(m), e1〉dlog e2 − 〈Xr(m), e2〉dlog e1

)

= − zm(−a2 dlog e2 − a1 dlog e1)

= zm dlog r(m)

= d(zm).

Note that 〈Xm,m〉 = 0 trivially. Thus one sees that in fact vΣ,k can be de-
scribed as the set of Hamiltonian vector fields associated to functions f of the
form

∑
i ciuIiz

mi , where ci ∈ C, Ii ⊆ {1, . . . , k} is a non-empty index set, and
mi ∈ TΣ with r(mi) 6= 0. Of course, the exponential of a Hamiltonian vector field
preserves Ω, and hence VΣ,k is a group of symplectomorphisms.

For future use, we have the following standard lemma:

Lemma 5.21. If f ∈ mRk
(C[TΣ]⊗C Rk[y0℄) and θ ∈ VΣ,k, then

θ ◦Xf ◦ θ−1 = Xθ(f).

Proof. We can assume θ is a generator of VΣ,k, i.e.,

θ(zm
′′

) = zm
′′

(1 + r(m) ∧ r(m′′)cuIzm)
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for some m ∈ TΣ, r(m) 6= 0. By linearity, we can assume that f = zm
′

for some
m′. Then computing, we see

(θ ◦Xf ◦ θ−1)(zm
′′

)

= − (θ ◦ (zm
′

Xr(m′)))
(
zm
′′ − cuIr(m) ∧ r(m′′)zm+m′′

)

= − θ
(
r(m′) ∧ r(m′′)zm′+m′′

− cuI [r(m′) ∧ (r(m) + r(m′′))][r(m) ∧ r(m′′)]zm+m′+m′′
)

= − r(m′) ∧ r(m′′)zm′+m′′

− cuI [r(m′) ∧ r(m′′)][r(m) ∧ (r(m′) + r(m′′))]zm+m′+m′′

+ cuI [r(m
′) ∧ (r(m) + r(m′′))][r(m) ∧ r(m′′)]zm+m′+m′′

= − r(m′) ∧ r(m′′)zm′+m′′

− cuI [r(m) ∧ r(m′)][r(m +m′) ∧ r(m′′)]zm+m′+m′′ .

On the other hand,

Xθ(f)(z
m′′) = Xzm′+r(m)∧r(m′)cuIzm+m′ (zm

′′

)

= − r(m′) ∧ r(m′′)zm′+m′′

− cuI [r(m) ∧ r(m′)][r(m +m′) ∧ r(m′′)]zm+m′+m′′ .

�

5.4.3. Scattering diagrams. We shall now introduce a pictorial method,
which we call the method of scattering diagrams, of keeping track of calculations
in the group VΣ,k. As usual, we fix M ∼= Z2, Σ a complete fan in MR defining a
non-singular toric surface.

Definition 5.22. Fix k ≥ 0.

(1) A ray or line is a pair (d, fd) such that
• d ⊆MR is given by

d = m′0 − R≥0r(m0)

if d is a ray and

d = m′0 − Rr(m0)

if d is a line, for some m′0 ∈ MR and m0 ∈ TΣ with r(m0) 6= 0. The
set d is called the support of the line or ray. If d is a ray, m′0 is called
the initial point of the ray, written as Init(d).
• fd ∈ C[zm0 ]⊗C Rk ⊆ C[TΣ]⊗C Rk[y0℄.
• fd ≡ 1 mod (u1, . . . , uk)z

m0 .
(2) A scattering diagram D is a finite collection of lines and rays.

If D is a scattering diagram, we write

Supp(D) :=
⋃

d∈D

d ⊆MR

and
Sing(D) :=

⋃

d∈D

∂d ∪
⋃

d1,d2

dim d1∩d2=0

d1 ∩ d2.
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Figure 9. The path on the left is homotopic to the path on the
right in MR \Sing(D). The automorphism θγ,D is the same on the
left and right because the double crossing of the same line cancels.

Here ∂d = {Init(d)} if d is a ray, and is empty if d is a line.

Construction 5.23. Given a smooth immersion γ : [0, 1]→MR\Sing(D) with
endpoints not in Supp(D), such that γ intersects elements of D transversally, we
can define a ring automorphism θγ,D ∈ VΣ,k, the γ-ordered product of D. Explicitly,
we can find numbers

0 < t1 ≤ t2 ≤ · · · ≤ ts < 1

and elements di ∈ D such that γ(ti) ∈ di and di 6= dj if ti = tj , i 6= j, and s taken
as large as possible. Then for each i, define θγ,di ∈ VΣ,k to be

θγ,di(z
m) = zmf

〈n0,r(m)〉
di

θγ,di(a) = a

for m ∈ TΣ, a ∈ Rk[y0℄, where n0 ∈ N is chosen to be primitive, annihilates the
tangent space to di, and is finally completely determined by the sign convention
that

〈n0, γ
′(ti)〉 < 0.

We then define

θγ,D = θγ,ds ◦ · · · ◦ θγ,d1.

Note there is still some ambiguity to the ordering if γ crosses several overlapping
rays. However, an easy check shows that automorphisms associated to parallel rays
commute, so the order is irrelevant. Automorphisms associated with non-parallel
rays do not necessarily commute, hence the need for γ to avoid points of Sing(D).

We will also allow the possibility that γ is piecewise linear so that γ′ may not
be defined at ti. In this case, we insist that if the path γ intersects d, then γ passes
from one side of d to the other. We then take n0 so that γ passes from the side of
d where n0 is larger to the side where it is smaller.

It is easy to check that θγ,D only depends on the homotopy class of the path
γ inside MR \ Sing(D). The key point is the simple observation that if γ is a path
which crosses a ray in D twice consecutively and in opposite directions, then the
automorphisms induced by the two crossings are inverse to each other, and hence
cancel, see Figure 9.
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Example 5.24. Let D = {(d1, fd1), (d2, fd2), (d3, fd3)} with

d1 = Rr(m1), fd1 = 1 + c1w1z
m1,

d2 = Rr(m2), fd2 = 1 + c2w2z
m2,

d3 = −R≥0(r(m1 +m2)), fd3 = 1 + c1c2wout|r(m1) ∧ r(m2)|zm1+m2 ,

where m1,m2 ∈ TΣ \ KΣ, and w1, w2 and wout are the indices of r(m1), r(m2)
and r(m1 + m2) respectively. Suppose c1, c2 ∈ Rk satisfy c21 = c22 = 0. Then
we can calculate θγ,D if γ is a loop around the origin, as in Figure 10, where

θγ,D = θ−1
2 θ3θ

−1
1 θ2θ1, with θi the automorphism coming from the first crossing

of di. Note that if we use the standard orientation on R2, then to define θi, for
i = 1, 2, we can take ni = −1

wi
Xr(mi): this is a cotangent vector which annihilates

the tangent space to di and is negative on γ′ when γ crosses d1 and d2 for the first
time. On the other hand, when γ crosses d3, θ3 is defined using

n3 =
1

wout
Xr(m1)+r(m2).

Thus applying successively θ1, θ2, θ
−1
1 , θ3 and θ−1

2 , we get, keeping in mind that
c21 = c22 = 0,

zm 7→zm − c1〈Xr(m1), r(m)〉zm+m1

7→zm − c2〈Xr(m2), r(m)〉zm+m2 − c1〈Xr(m1), r(m)〉zm+m1

+ c1c2〈Xr(m1), r(m)〉〈Xr(m2), r(m) + r(m1)〉zm+m1+m2

7→zm − c2〈Xr(m2), r(m)〉zm+m2

+ c1c2
(
− 〈Xr(m2), r(m)〉〈Xr(m1), r(m) + r(m2)〉

+ 〈Xr(m1), r(m)〉〈Xr(m2), r(m) + r(m1)〉
)
zm+m1+m2

7→zm − c2〈Xr(m2), r(m)〉zm+m2

+ c1c2
(
〈Xr(m1), r(m)〉〈Xr(m2), r(m1)〉

− 〈Xr(m1), r(m2)〉〈Xr(m2), r(m)〉
+ 〈Xr(m1)+r(m2), r(m)〉|r(m1) ∧ r(m2)|

)
zm+m1+m2

7→zm + c1c2
(
〈Xr(m1), r(m)〉〈Xr(m2), r(m1)〉

− 〈Xr(m1), r(m2)〉〈Xr(m2), r(m)〉
+ 〈Xr(m1)+r(m2), r(m)〉|r(m1) ∧ r(m2)|

)
zm+m1+m2 .

Note that from our choice of orientation, |r(m1) ∧ r(m2)| = 〈Xr(m1), r(m2)〉 =

−〈Xr(m2), r(m1)〉, from which it follows that the coefficient of zm+m1+m2 above is

zero, so that θ−1
2 θ3θ

−1
1 θ2θ1 is the identity. �

We shall now construct a scattering diagram from tropical trees, essentially
encoding all Maslov index zero disks.

Definition 5.25. A tropical tree in (XΣ, P1, . . . , Pk) is a d-pointed tropical
curve h : (Γ, p1, . . . , pd) → MR with h(pj) = Pij 1 ≤ i1 < · · · < id ≤ k, along with

the additional data of a choice of an unmarked unbounded edge Eout ∈ Γ
[1]
∞ such

that for any E ∈ Γ
[1]
∞ \ {Eout}, h(E) is a point or is a translate of some ρ ∈ Σ[1].

The degree of h, ∆(h), is defined without counting the edge h(Eout), which need
not be a translate of any ρ ∈ Σ[1].
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γ

1 + c1w1z
m1

1 + c1c2wout|r(m1) ∧ r(m2)|z
m1+m2

1 + c2w2z
m2

Figure 10

The Maslov index of h is

MI(h) := 2(|∆(h)| − d).
Given h and a point Vout in the interior of Eout, we can remove the unbounded

component of Eout \ {Vout} from Γ to obtain Γ′. Note Vout is a univalent vertex of
Γ′. Take h′ : Γ′ → MR with h′ = h|Γ′ . Then h′ is a tropical disk with boundary
h(Vout) and Maslov index MI(h′) = MI(h), since |∆(h′)| = |∆(h)|.

Conversely, given a tropical disk h′ : Γ′ → MR, one can extend Eout to an
unbounded edge and obtain a tropical tree h : Γ→MR.

As in Lemma 5.6, standard tropical dimension counting arguments show that,
for general choice of P1, . . . , Pk, a tropical tree h moves in a family of dimension
MI(h)/2. In particular, the set of Maslov index zero trees is a finite set, which we
denote by Trees(Σ, P1, . . . , Pk). As usual, with general choice of P1, . . . , Pk, we can
assume all these trees are trivalent.

Definition 5.26. We define D(Σ, P1, . . . , Pk) to be the scattering diagram
which contains one ray for each element h of Trees(Σ, P1, . . . , Pk). The ray corre-
sponding to h is of the form (d, fd), where

• d = h(Eout).
• fd = 1+wΓ(Eout)Mult(h)z∆(h)uI(h), where uI(h) =

∏
i∈I(h) ui and I(h) ⊆

{1, . . . , k} is defined by

I(h) := {i |h(pj) = Pi for some j}.
Example 5.27. D(Σ, P1, P2) is illustrated in Figure 11, where Σ is the fan for

P2.

Proposition 5.28. Let P1, . . . , Pk be generally chosen. If

P ∈ Sing(D(Σ, P1, . . . , Pk))

is a singular point with P 6∈ {P1, . . . , Pk}, and γP is a small loop around P , then
θγP ,D(Σ,P1,...,Pk) = Id.

Proof. Let P be such a singular point. Suppose that d ∈ D(Σ, P1, . . . , Pk)
has Init(d) = P , and let h be the corresponding tree. Then the unique vertex V of
Γ on Eout satisfies h(V ) = P . Note that no edge with vertex V is contracted by h
since P 6∈ {P1, . . . , Pk}. In addition, by the generality assumption, V is trivalent,
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1 + x1u2

1 + x1u1

1 + x0x1u1u2 1 + x0u1

P1

1 + x1x2u1u2

1 + x2u1
1 + x2u2

1 + x0u2

1 + x0x2u1u2P2

Figure 11. The scattering diagram D(Σ, P1, P2).

so if we cut Γ at V , we obtain two tropical disks h′1 : Γ′1 →MR and h′2 : Γ′2 →MR

with boundary P and Vout = V in both cases. Now MI(h) = MI(h′1)+MI(h′2), so
MI(h′1) = MI(h′2) = 0 is the only possibility. Thus h′1, h

′
2 extend to tropical trees

hi : Γi →MR, with corresponding rays d1, d2. Note that P 6= Init(d1), Init(d2) and
I(h1) ∩ I(h2) = ∅. So every ray d with P = Init(d) arises from the collision of two
rays d1, d2 with P 6= Init(di).

Conversely, if we are given two such rays d1, d2 passing through P corresponding
to trees h1 and h2 with I(h1) ∩ I(h2) = ∅, we obtain a new tree by cutting h1 and
h2 at P to get Maslov index zero disks h′i : Γ′i → MR with boundary at P . Next
glue Γ′1 and Γ′2 at the outgoing vertex V , and add an additional unbounded edge
Eout with endpoint V to get a graph Γ. If Eout,1, Eout,2 are the two outgoing edges
of Γ′1 and Γ′2 respectively, with primitive tangent vector to h′i(Eout,i) pointing away
from P being m′i, then we define h : Γ → MR to restrict to h′i on Γ′i and to take
Eout to the ray P −R≥0(wΓ(Eout,1)m

′
1 +wΓ(Eout,2)m

′
2). By taking wΓ(Eout) to be

the index of wΓ(Eout,1)m
′
1 + wΓ(Eout,2)m

′
2, we find that h is balanced at V . Thus

h is a tropical tree, whose Maslov index is zero.
After making these observations, to prove the proposition, define a new scat-

tering diagram DP , whose elements are in one-to-one correspondence with elements
of D(Σ, P1, . . . , Pk) containing P . If (d, fd) ∈ D(Σ, P1, . . . , Pk) is a ray containing
P then the corresponding element of DP will be (d′, fd), where d′ is the tangent
line (through the origin) of d if P 6= Init(d) and is the ray d− P with endpoint the
origin otherwise. If γ0 is a loop around the origin with the same orientation as γP ,
then θγ0,DP = θγP ,D(Σ,P1,...,Pk).

First consider the simplest case, when DP contains two lines and at most one
ray. If the two lines correspond to trees h1 and h2, and I(h1) ∩ I(h2) 6= ∅, then h1

and h2 cannot be glued as above since they pass through some common marked
point Pi. Thus DP contains no rays. In this case, the automorphisms associated
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to d1 and d2 commute by Example 5.24 since uI(h1)uI(h2) = 0, and so θγ0,DP is the
identity.

If, on the other hand, I(h1)∩ I(h2) = ∅, then h1 and h2 can be glued to obtain
a new tree h, and DP consists of three elements d1, d2 and d, corresponding to
h1, h2 and h respectively. Now

fdi = 1 + wΓ(Eout,i)Mult(hi)z
∆(hi)uI(hi)

for i = 1, 2 and

fd = 1 + wΓ(Eout)Mult(h)z∆(h)uI(h)

= 1 + wΓ(Eout)Mult(h1)Mult(h2)MultV (h)z∆(h1)+∆(h2)uI(h1)uI(h2)

= 1 + wΓ(Eout)Mult(h1)Mult(h2)wΓ1(Eout,1)wΓ2 (Eout,2)·
· |m′1 ∧m′2|z∆(h1)+∆(h2)uI(h1)uI(h2)

= 1 + wΓ(Eout)Mult(h1)Mult(h2)·
· |r(∆(h1)) ∧ r(∆(h2))|z∆(h1)+∆(h2)uI(h1)uI(h2).

Here we are using the fact that if we sum the balancing condition over all vertices
of Γ′i, we get

wΓ′i
(Eout,i)m

′
i = r(∆(hi)).

Thus from Example 5.24, θγ0,DP is the identity.
For the general case, we have some finite set of lines in DP , along with some

rays. Suppose that there are three lines in DP corresponding to trees h1, h2 and
h3 with I(h1), I(h2) and I(h3) mutually disjoint. Then as in the case of two lines
above, these trees can be glued at P , obtaining a Maslov index zero tree with a
quadrivalent vertex. However, since P1, . . . , Pk are in general position, no Maslov
index zero tree has a vertex with valence > 3. Thus this case does not occur. On the
other hand, given two lines corresponding to trees h1, h2 with I(h1) ∩ I(h2) = ∅,
these two trees can be glued as above at P to obtain a new Maslov index zero
tree. Thus the rays in DP are in one-to-one correspondence with pairs of lines
d1, d2 ∈ DP corresponding to trees h1 and h2 with I(h1) ∩ I(h2) = ∅. So we can
write

DP = {d1, . . . , dn} ∪
m⋃

j=1

Di

where d1, . . . , dn are lines corresponding to trees h such that I(h)∩I(h′) 6= ∅ for any
Maslov index zero tree h′ with outgoing edge passing through P , and D1, . . . ,Dm

are scattering diagrams each consisting of two lines and one ray, with the lines
corresponding to trees h1 and h2 with I(h1)∩ I(h2) = ∅ and the ray corresponding
to the tree obtained by gluing h1 and h2 at P .

Now computing θγ0,DP is an exercise in commutators. Note that if d1, d2 ∈ DP

correspond to two trees h1, h2 with I(h1) ∩ I(h2) 6= ∅, then as already observed,
θγ0,d1 and θγ0,d2 commute. Thus, after using this commutation, one can write

θγ0,DP =

( n∏

i=1

θγ0,di ◦ θ−1
γ0,di

)
◦

m∏

j=1

θγ0,Dj .

Of course θγ0,di ◦ θ−1
γ0,di

= Id and θγ0,Dj = Id by the special case already carried
out. Thus θγ0,DP = Id in this general case. �



204 5. PERIOD INTEGRALS

Remark 5.29. Note that the rays in D = D(Σ, P1, . . . , Pk) with endpoint Pi
are in one-to-one correspondence with Maslov index two disks in

(XΣ, P1, . . . , Pi−1, Pi+1, . . . , Pk)

with boundary Pi. Indeed, taking any such Maslov index two disk, extending
the outgoing edge to get a tropical tree, we can mark the point on this outgoing
edge which maps to Pi, thus getting a tropical tree with Maslov index zero in
(XΣ, P1, . . . , Pk). The corresponding ray in D has endpoint Pi. Conversely, given a
ray in D with endpoint Pi, this corresponds to a Maslov index zero tree such that
the vertex V adjacent to Eout is the vertex of a marked edge Ex mapping to Pi.
By cutting this tree at V and removing the marked edge mapping to Pi, we get a
Maslov index two disk with boundary Pi.

Furthermore, by the general position of the Pj , there are no rays in D containing
Pi but which don’t have Pi as an endpoint.

5.4.4. Broken lines. One benefit of this scattering diagram approach is that
it is easy to describe the Maslov index two disks with boundary a general point Q,
using what we call broken lines :

Definition 5.30. A broken line is a continuous proper piecewise linear map

β : (−∞, 0]→MR

with endpoint Q = β(0), along with some additional data described as follows. Let

−∞ = t0 < t1 < · · · < tn = 0

be the smallest set of real numbers such that β|(ti−1,ti) is linear. Then for each

1 ≤ i ≤ n, we are given the additional data of a monomial ciz
mβ

i ∈ C[TΣ]⊗CRk[y0℄
with mβ

i ∈ TΣ \ KΣ and 0 6= ci ∈ Rk. Furthermore, this data should satisfy the
following properties:

(1) For each i, r(mβ
i ) = −β′(t) for t ∈ (ti−1, ti).

(2) mβ
1 = tρ for some ρ ∈ Σ[1] and c1 = 1.

(3) β(ti) ∈ Supp(D(Σ, P1, . . . , Pk)) \ Sing(D(Σ, P1, . . . , Pk)) for 1 ≤ i ≤ n.
(4) If β(ti) ∈ d1 ∩ · · · ∩ ds (necessarily this intersection is one-dimensional),

then ci+1z
mβ

i+1 is a term in

(θβ,d1 ◦ · · · ◦ θβ,ds)(ciz
mβ

i ).

By this, we mean the following. Suppose fdj = 1 + cdjz
mdj , 1 ≤ j ≤ s,

with c2dj
= 0, and n ∈ N is primitive, orthogonal to all the dj ’s, chosen so

that

(θβ,d1 ◦ · · · ◦ θβ,ds)(ciz
mβ

i ) = ciz
mβ

i

s∏

j=1

(1 + cdjz
mdj )〈n,r(m

β
i )〉

= ciz
mβ

i

s∏

j=1

(1 + 〈n, r(mβ
i )〉cdjz

mdj ).

Then we must have

ci+1z
mβ

i+1 = ciz
mβ

i

∏

j∈J

〈n, r(mβ
i )〉cdjz

mdj
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Figure 12. The broken lines ending at Q.

for some index set J ⊆ {1, . . . , s}. We think of this as β being bent at
time ti by the rays {dj | j ∈ J}.

Example 5.31. Again, in the case of P2, k = 2, Figure 12 shows the broken
lines with β(0) the given point Q. The segments of each broken line are labelled
with their corresponding monomial.

Proposition 5.32. If Q 6∈ Supp(D(Σ, P1, . . . , Pk)) is general, then there is a
one-to-one correspondence between broken lines with endpoint Q and Maslov index
two disks with boundary Q. In addition, if β is a broken line corresponding to a
disk h, and czm is the monomial associated to the last segment of β (the one whose
endpoint is tn = 0), then

czm = Mono(h).

Proof. We first prove the following claim:

Claim: Let h : Γ′ → MR be a Maslov index two disk in (XΣ, P1, . . . , Pk) with
boundary Q′ ∈ MR. Suppose furthermore that all vertices of Γ′ except Vout are
trivalent and h cannot be deformed continuously in a family of Maslov index two
disks with boundary Q′. Then there is a uniquely determined subset Ξ = Ξ(h) ⊆ Γ
which is a union of edges of Γ and is homeomorphic to [−∞, 0], connecting some

point in Γ
[0]

∞ \ {Vout} to Vout, satisfying:

(1) Ξ is disjoint from ∂Epi for all i.
(2) The restriction of h to the closure of any connected component of Γ′ \ Ξ

is a Maslov index zero disk.

Proof. We proceed inductively on the number of vertices of Γ′. If Γ′ has only
one vertex, Vout, then Γ′ has only one edge and no marked edges. We simply take
Ξ(h) to consist of this edge.

For the induction step, let Γ′ have outgoing edge Eout with vertices Vout and
V , and h(Vout) = Q′.
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First, we will show that V cannot be a vertex of some marked edge Epi . If it
were, so that h(V ) = h(pi) = Pj for some j, then we can cut h at V and remove the
marked edge Epi . This gives a disk h′ with boundary Pj but with one less marked
point than h. Hence h′ is Maslov index four, and thus by Lemma 5.6, h′ can be
deformed in a one-parameter family while keeping the endpoint Pj fixed. Note
that for small deformations of h′, the edge h′(E′out) does not change its tangent
direction. Thus a deformation of h′ can be extended to a deformation of h. This
contradicts the assumption that h cannot be deformed. Thus V cannot be a vertex
of some Epi .

Now split h at V , letting Γ′1 and Γ′2 be the closures of the two connected
components of Γ′ \ {V } not containing Vout. Let hi = h|Γ′i . This gives two disks

h1, h2 with boundary h(V ). We have MI(h) = MI(h1) + MI(h2). Suppose
MI(h1) ≥ 4. Then h1 can be deformed leaving the endpoint h(V ) fixed, and by
gluing such a deformation to h2, we obtain a deformation of h, again a contradiction.
Thus MI(h1),MI(h2) ≤ 2, so we must have MI(h1) = 0 and MI(h2) = 2 or vice
versa.

Without loss of generality, assume MI(h2) = 2. Note that h2 is now a Maslov
index two disk with boundary Q′′ = h2(V ). If h2 could be deformed in a family
of disks with boundary Q′′, then by gluing these deformations to h1, we obtain a
deformation of h, a contradiction. Thus h2 satisfies the hypotheses of the Claim,
but Γ′2 has fewer vertices than Γ′. So Ξ(h2) exists by the induction hypothesis, and
we can take Ξ(h) to be

Ξ(h) = Eout ∪ Ξ(h2).

Ξ(h) satisfies the two desired properties because Ξ(h2) does, Eout is disjoint from
∂Epi for all i, and h1 is a Maslov index zero disk. �

Now fix a Maslov index two disk h : Γ′ → MR with boundary Q. By the
generality of Q,P1, . . . , Pk, h satisfies the hypotheses of the Claim. Taking β =
h|Ξ(h), we see that β is piecewise linear. Let −∞ = t0 < · · · < tn = 0 be chosen
as in the definition of broken line. Each ti corresponds to a vertex Vi of Γ′. Of
course Γ′ \ {Vi} for i 6= n has two connected components not containing Vout, and
the proof of the claim shows that restricting h to the closure of one of these two
connected components yields a Maslov index two disk with boundary h(Vi) which
we now call hi. The other component similarly yields a Maslov index zero disk.
Hence β(ti) ∈ Supp(D(Σ, P1, . . . , Pk)) for 1 ≤ i ≤ n. We take the monomial ciz

mi

to be Mono(hi), and need to check that with this data β is now a broken line.
We have just shown condition (3), and condition (2) is obvious. So for Q

sufficiently general, we only need to verify conditions (1) and (4). We need to show
that the monomial Mono(hi+1) attached to the edge joining Vi and Vi+1 arises from
the monomial Mono(hi) attached to the edge joining Vi−1 and Vi, as in Condition
(4). Suppose that the two subtrees in Γ′ rooted at Vi are g and hi, with MI(g) = 0.
Now

Mono(hi) = Mult(hi)z
∆(hi)uI(hi),

and if d is the ray corresponding to the tropical tree obtained from g, then

fd = 1 + wout(g)Mult(g)z∆(g)uI(g).

Here wout(g) denotes the weight of the outgoing edge of g. By summing the balanc-
ing condition at each vertex of either of the two disks, we can write −wout(g)m

′
1 =

r(∆(g)), and −wout(hi)m
′
2 = r(∆(hi)) with m′i ∈ M primitive, with m′1 tangent
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to the outgoing edge of g and m′2 tangent to the outgoing edge of hi, both point-
ing towards h(Vi). In particular, this shows condition (1), assuming the correct
parameterization of Ξ(h) has been chosen.

Now the automorphism θβ,d can be defined by taking n0 = ±Xm′1
, with the

choice of sign being given by the requirement that 〈n0,−m′2〉 > 0, as the convention
on n0 says that n0 should be negative on vectors pointing in the direction we cross
d; but m′2 is such a vector so n0 is positive on −m′2. Thus 〈n0,−m′2〉 = |m′1 ∧m′2|,
and

θβ,d(Mono(hi))

= Mult(hi)z
∆(hi)uI(hi)

+ Mult(hi)Mult(g)|m′1 ∧m′2|wout(g)wout(hi)z
∆(hi)+∆(g)uI(hi)uI(g).

Now it is the second term we are interested in, and this is

Mult(hi)Mult(g)MultVi(hi+1)z
∆(hi+1)uI(hi+1) = Mult(hi+1)z

∆(hi+1)uI(hi+1)

= Mono(hi+1)

as desired.
Conversely, given a broken line β, it is easy to construct the correspond-

ing Maslov index two disk, by attaching Maslov index zero disks to the domain
(−∞, 0] of β at each bending point. In particular, if β(ti) lies in rays d1, . . . , ds ∈
D(Σ, P1, . . . , Pk), and β is bent at time ti by a subset {dj | j ∈ J} of these rays,
then for each j ∈ J we attach the Maslov index zero disk with endpoint β(ti) cor-
responding to dj to ti ∈ (−∞, 0]. (Note that by general position of the Pi’s and Q,
in fact we can assume that #J = 1.) It is clear that this reverses the above process
of passing from a Maslov index two disk to a broken line. �

5.4.5. Wall-crossing for Q. We will now prove a wall-crossing formula as Q
varies inside MR. To do so, we will understand how broken lines with endpoint Q
vary as Q varies. For this purpose, we introduce the notion of a deformation of a
broken line and a degenerate broken line:

Definition 5.33. A family of broken lines consists of the data:

• A continuous map B : (−∞, 0]× I →MR with I ⊆ R an interval.
• Continuous functions t0, . . . , tn : I → [−∞, 0] such that −∞ = t0(s) <
t1(s) < · · · < tn(s) = 0 for s ∈ I.
• Monomials ciz

mB
i , 1 ≤ i ≤ n.

This data satisfies the condition that Bs := B|(−∞,0]×{s} is a broken line in the

usual sense for all s ∈ I, with the data t0(s) < · · · < tn(s) and monomials ciz
mB

i ,
1 ≤ i ≤ n.

We say Bs′ is a deformation of Bs for s, s′ ∈ I.
Definition 5.34. A degenerate broken line is a limit of broken lines which

bends at a point of Sing(D(Σ, P1, . . . , Pk)). More precisely, a degenerate broken
line is a continuous proper map β : (−∞, 0] → MR along with data −∞ = t0 <

t1 ≤ · · · ≤ tn = 0 and monomials ciz
mβ

i such that there is:

• A continuous map B : (−∞, 0]× [0, 1]→MR.
• Continuous functions t̄0, . . . , t̄n : [0, 1]→ [−∞, 0] such that

−∞ = t̄0(s) ≤ t̄1(s) ≤ · · · ≤ t̄n(s) = 0
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for s ∈ [0, 1], with strict inequality for s < 1.

This data satisfies

• Bs := B|(−∞,0]×{s} (with the data ciz
mi

β) is a broken line in the usual
sense for s < 1;
• β = B1 and t̄i(1) = ti for all i;
• β(ti) ∈ Sing(D(Σ, P1, . . . , Pk)) for some i.

Note that in taking such a limit, we might have t̄i−1 and t̄i coming together
for various i, so the limit might have fewer linear segments.

We now have the wall-crossing theorem:

Theorem 5.35. If Q,Q′ ∈MR \ Supp(D(Σ, P1, . . . , Pk)) are general, and γ is
a path connecting Q and Q′ for which θγ,D(Σ,P1,...,Pk) is defined, then

Wk(Q
′) = θγ,D(Σ,P1,...,Pk)(Wk(Q)).

Proof. Let D = D(Σ, P1, . . . , Pk). Let U be the union of Supp(D) and the
union of images of all degenerate broken lines, with arbitrary endpoint. It is clear
that dim U ≤ 1 (of course equal to 1 provided k ≥ 1).

Note that a broken line β can always be deformed continuously. This can be
done as follows. We translate the initial ray β((−∞, t1]) of β. Inductively, this
deforms all the remaining segments of β. As long as one of the bending points does
not reach a singular point of D, each bending point remains inside exactly the same
set of rays in D, and therefore the deformed broken line can bend in exactly the
same way as β. Thus we run into trouble building this deformation only when this
deformation of β converges to a degenerate broken line bending at a singular point
of Sing(D), as then the set of rays containing a bending point may jump.

From this it is clear that as long as the endpoint of β stays within one connected
component ofMR\U, β can be deformed continuously. More precisely, if we consider
a path γ : [0, 1]→ u, for u a connected component of MR \ U, and if β is a broken
line with endpoint γ(0), then there is a continuous deformation B with β = B0 and
with Bs(0) = γ(s), 0 ≤ s ≤ 1.

By Proposition 5.32, the Maslov index two disks with boundaryQ are in one-to-
one correspondence with the broken lines with endpoint Q for Q general. Thus, by
the above discussion, Wk(Q) is constant for generalQ inside a connected component
of MR \ U.

We will now analyze carefully how broken lines change if their endpoint passes in
between different connected components of MR \U. So now consider two connected
components u1 and u2 of MR \ U. Let L = u1 ∩ u2, and assume dimL = 1. Let
Q1 and Q2 be general points in u1 and u2, near L, positioned on opposite sides
of L. Let γ : [0, 1] → MR be a short general path connecting Q1 and Q2 crossing
L precisely once. Let s0 be the only time at which γ(s0) ∈ L. By choosing γ
sufficiently generally, we can assume that γ(s0) is a point in a neighbourhood of
which U is a manifold.

Let B(Qi) be the set of broken lines with endpoint Qi. Let n0 ∈ N be a prim-
itive vector annihilating the tangent space to L and taking a smaller value on Q1

than Q2. We can decompose B(Qi) into three sets B+(Qi), B−(Qi), and B0(Qi)
as follows. For β ∈ B(Qi), let mβ = β∗(−∂/∂t|t=0). Then β ∈ B+(Qi),B

−(Qi),
or B0(Qi) depending on whether 〈n0,mβ〉 > 0, 〈n0,mβ〉 < 0, or 〈n0,mβ〉 = 0. This
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gives decompositions

Wk(Q1) = W−k (Q1) +W 0
k (Q1) +W+

k (Q1)

Wk(Q2) = W−k (Q2) +W 0
k (Q2) +W+

k (Q2).

We will show

θγ,D(W−k (Q1)) =W−k (Q2),(5.10)

θ−1
γ,D(W+

k (Q2)) =W+
k (Q1),(5.11)

W 0
k (Q2) =W 0

k (Q1).(5.12)

From this follows the desired identity

θγ,D(Wk(Q1)) = Wk(Q2),

as θγ,D is necessarily the identity on W 0
k (Q1). One then uses this inductively to see

that this holds for any path γ with endpoints in MR \ U for which θγ,D is defined.

Proof of (5.10) and (5.11). If β is a broken line with endpoint Q1, then
β([tn−1, 0]) ∩ L = ∅ if 〈n0,mβ〉 ≤ 0, while β([tn−1, 0]) ∩ L 6= ∅ if 〈n0,mβ〉 > 0.
(Here we are using Q1 very close to L.) On the other hand, if β has endpoint Q2,
then β([tn−1, 0]) ∩ L = ∅ if 〈n0,mβ〉 ≥ 0 and β([tn−1, 0]) ∩ L 6= ∅ if 〈n0,mβ〉 < 0.

To see, say, (5.10), we proceed as follows. Let β ∈ B−(Q1). By the previous

paragraph, β([tn−1, 0]) ∩ L = ∅. Let cnz
mβ

n be the monomial associated to the

last segment of β, and write θγ,D(cnz
mβ

n) as a sum of monomials
∑s

i=1 diz
mi as

in Definition 5.30, (4). We can then deform β continuously along γ to time s0.
Indeed, by the definition of U, if β converged to a degenerate broken line through
Sing(D), the image of this broken line would be contained in U, and then U, already
containing L, would not be a manifold in a neighbourhood of γ(s0).

Let β′ be the deformation of β with endpoint γ(s0). For 1 ≤ i ≤ s, we then get
a broken line β′i by adding a short line segment to β′ in the direction −r(mi), with
attached monomial diz

mi . This new broken line has endpoint in u2, and hence can
be deformed to a broken line β′′i ∈ B−(Q2). We note that the line may not actually

bend at L if diz
mi is the term cnz

mβ
n appearing in θγ,D(cnz

mβ
n). See Figure 13.

Conversely, any broken line β ∈ B−(Q2) clearly arises in this way.
From this, (5.10) becomes clear. (5.11) is identical. �

Proof of (5.12). We will show that there are partitions B0(Q1) =
∐s
i=1 B1

i and
B0(Q2) =

∐s
i=1 B2

i such that for each i, the contributions to Wk(Q1) and Wk(Q2)
from B1

i and B2
i are the same.

For simplicity of exposition, we will describe this in the case that any degenerate
broken line with endpoint γ(s0) passes through at most one point of Sing(D); we
leave it to the reader to deal with the general case: this is notationally, but not
conceptually, more complicated.

Let β1 ∈ B0(Q1). If β1 deforms continuously to a broken line β2 in B0(Q2),
then β1 and β2 will each appear in one-element sets in the partition, say β1 ∈ B1

i ,
β2 ∈ B2

i , and clearly both these sets contribute the same term to Wk(Q1) and
Wk(Q2).

Now suppose β1 ∈ B0(Q1) cannot be deformed continuously to any β2 ∈
B0(Q2). This means that β1 must deform to a degenerate broken line at time
s0: i.e., there is a B : (−∞, 0] × [0, s0] → MR as in Definition 5.34 such that
B|(−∞,0]×[0,s0) is a continuous deformation and Bs0 is a degenerate broken line
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Q1
Q2

Q1
Q2

Figure 13. Broken lines with endpoints Q1 and Q2.

bending at a point P of Sing(D). So there must be some j such that B(t̄j(s0), s0) =
P ∈ Sing(D).

There are two cases we need to analyze: either P ∈ {P1, . . . , Pk} or P 6∈
{P1, . . . , Pk}.

Case 1. P = Pi for some i. Because all rays with endpoint Pi involve the
monomial ui, a broken line can only bend along at most one ray with endpoint
Pi, and, as observed above, β1 bends along at least one such ray. So call the ray
with endpoint Pi along which β1 bends d1, corresponding to a Maslov index zero
tree h̃1 : Γ̃1 → MR. This tree passes through Pi, and by cutting this tree at Pi
and removing the marked edge mapping to Pi, we obtain a Maslov index two disk
h1 : Γ′1 → MR with boundary Pi. Let β̄2 be the broken line with endpoint Pi
corresponding to this Maslov index 2 disk. See Figure 14.

Next, recalling that B(t̄j(s0), s0) = Pi, let β̄′2 : [t̄j(s0), 0]→MR be the restric-
tion of B to [t̄j(s0), 0]×{s0}: this is a piece of a broken line starting at Pi. We can
then concatenate β̄2 with β̄′2 by identifying 0 in the domain of β̄2 with t̄j(s0) in the
domain of β̄′2, obtaining what we hope will be a degenerate broken line β′2 passing
through Pi.

Note that B|(−∞,t̄j(s0)]×{s0} is a broken line with endpoint Pi, and hence corre-
sponds to a Maslov index two disk h2 : Γ′2 → MR with endpoint Pi. By extending

the edge E′out of Γ′2 to an unbounded edge, we get a tropical tree h̃2 : Γ̃2 → MR,

and once we mark the point on Γ̃2 which maps to Pi, it becomes a Maslov index
zero tree and hence corresponds to a ray d2 ∈ D with endpoint Pi.

Note that the function attached to di is 1 + wΓi(Eout,i)ui Mono(hi). On the
other hand, the monomial attached to the last segment of B|(−∞,t̄j(s0)]×{s0}, i.e.,

cjz
m

β1
j , is Mono(h2), while the monomial attached to the last segment of β̄2 is

Mono(h1). Thus, in particular, the monomial cj+1z
m

β1
j+1 is obtained from the bend

of β1 at d1, and hence is

(5.13) wΓ1(Eout,1)〈n1, r(∆(h2))〉ui Mono(h1)Mono(h2).



5.4. DEFORMING Q AND P1, . . . , Pk 211

β̄2

β2

d2

β̄ ′
2

β1

d1

B|(−∞,t̄j(s0)]×{s0}

Figure 14. The change in a broken line as it passes through a
singular point P ∈ {P1, . . . , Pk}.

Here n1 ∈ N is primitive, orthogonal to d1, and positive on r(∆(h2)).
We can now deform β′2 by moving the endpoint of β̄2 along d2 away from Pi,

moving β̄′2 along with it. However, we also need to keep track of monomials: we have
to make sure that the monomial on the first segment of β̄′2 is the one which would
arise when β′2 bends along d2. However, this latter monomial is a term obtained
by applying the automorphism associated to crossing d2 to Mono(h1), and is thus
precisely

(5.14) wΓ2(Eout,2)〈n2, r(∆(h1))〉ui Mono(h1)Mono(h2).

Again, n2 ∈ N is primitive, orthogonal to d2, and positive on r(∆(h1)). In fact, for
i = 1, 2,

wΓi(Eout,i)ni = ±Xr(∆(hi)),

with the sign chosen so that both (5.13) and (5.14) coincide with

|r(∆(h1)) ∧ r(∆(h2))|ui Mono(h1)Mono(h2).

As a result, β′2 can now be deformed away from the singular point Pi, giving a broken
line β2 with endpoint Q2. Note that in no way does this represent a continuous
deformation: the broken line really jumps as it passes through Pi.

Note that this process is reversible. If we start with β2 and try to deform it
through Pi as above, we obtain β1.

To conclude, in this case, we can take one-element sets in the partition of the
form β1 ∈ B1

i and β2 ∈ B2
i for some i. They both give the same contribution to

Wk(Q).

Case 2. P 6∈ {P1, . . . , Pk}. Let DP be the scattering diagram constructed in
the proof of Proposition 5.28, consisting of a ray with initial point the origin for
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each ray in D(Σ, P1, . . . , Pk) with initial point P , and a line through the origin
for each ray in D(Σ, P1, . . . , Pk) through P with initial point not equal to P . By
Proposition 5.28,

(5.15) θγ,DP = Id

for γ a loop around P .
Since the behaviour of DP is relatively simple, one can analyze this situation

by a careful case-by-case analysis: this was carried out in [42]. Here, we will give
a simpler and more general approach, due to Carl, Pumperla and Siebert in work
in progress [13].

Define a trajectory in MR to be a pair (t, czm) where czm ∈ C[TΣ] ⊗ Rk is a
monomial and either

(1) t = R≥0r(m), in which case we say (t, czm) is an incoming trajectory, or
(2) t = −R≥0r(m), in which case we say (t, czm) is an outgoing trajectory.

As usual, t is called the support of (t, czm).

Claim 5.36. Given an incoming trajectory t0 = (R≥0r(m0), c0z
m0), there is

a set of outgoing trajectories {ti} with ti = (−R≥0r(mi), ciz
mi) with the following

property. For each ti (including i = 0), let xi be a point in a connected component
of MR \ Supp(DP ) whose closure contains the support of ti. Let γi be a path from
xi to x0 not passing through P ; by (5.15), θi := θγi,DP is independent of this choice
of path. Then

(5.16) c0z
m0 =

∑

i

θi(ciz
mi).

Furthermore, the set of trajectories is unique in the sense that given a ray R≥0m ⊆
MR, the sum

∑
i ciz

mi over all i 6= 0 with the support of ti being R≥0m is uniquely
determined by t0.

Proof. First note that (5.16) does not depend on the precise choice of xi or
x0: if ti (including the case i = 0) is contained in a ray or line of DP , then ciz

mi is
invariant under the corresponding automorphism.

We now construct the set {ti} by induction. At the pth step, we will find a set
Tp of outgoing trajectories for which (5.16) holds modulo the ideal mp, where m is
the ideal generated by u1, . . . , uk. For p = 1, we take

T1 = {(−R≥0r(m0), c0z
m0)},

which works since θi ≡ Id mod m.
Assume now that we have constructed Tp = {ti | i ∈ I}. Then, by the induction

hypothesis,

c0z
m0 −

∑

i

θi(ciz
mi) =

∑
cjz

mj mod mp+1

with cj ∈ mp. Then take

Tp+1 = Tp ∪ {(−R≥0r(mj), cjz
mj)};

(5.16) now holds modulo mp+1.
Since mk+1 = 0, this process terminates. It is also clear that at each step there

are no choices to be made, hence the uniqueness. �

The point of this set of outgoing trajectories is that it tells us precisely what
terms broken lines coming near P can produce as they bend near P . More precisely,
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x

Figure 15. The set B of local broken lines with a given initial monomial

consider a kind of local form of broken line: these will be continuous maps β : R→
MR with image disjoint from Sing(DP ) along with data

−∞ = t0 < · · · < tn =∞
and monomials ciz

mβ
i as in Definition 5.30, satisfying conditions (1), (3) and (4)

of that definition. In other words, we do not restrict the initial monomial, and we
have no endpoint. Other than this, β is a broken line. We call this a local broken
line.

Fix a monomial c0z
m0 and a general point x ∈ MR contained in a connected

component of MR \ Sing(DP ) whose closure contains R≥0r(m0). Consider the
(necessarily finite) set B of local broken lines β such that the monomial associated
with the first segment (t0, t1) is c0z

m0 and there is a t ∈ (t0, t1) with β(t) = x.
(We consider two local broken lines to be the same if they differ just by a time
translation). See Figure 15. For βi ∈ B, let ciz

mi be the monomial attached to the
last line segment of βi, and let γi be a path from a point xi = βi(t) for t≫ 0 to x.
Let θi = θγi,DP .

Claim 5.37.
∑

i θi(ciz
mi) = c0z

m0 .

Proof. Note that if DP just consisted of one line, then the broken lines in B

would bend at at most one point, the intersection of x−R≥0r(m0) with the unique
element of DP . It then follows immediately from condition (4) of Definition 5.30
that the claim is true in this case.

Using this, the general case then follows easily if we take, for the path γi, the
segment of βi running from xi backwards to x. �

Fix an outgoing direction −R≥0m, and consider the sum
∑
i ciz

mi where i runs
over all indices such that −r(mi) ∈ −R≥0m. As a consequence of the uniqueness
statement of Claim 5.36, this sum is well-defined, irrespective of the choice of the
point x.

We can now complete the proof in this case. Return to the situation at the be-
ginning of the proof of (5.12): we have β1 ∈ B0(Q1) which deforms to a degenerate
broken line Bs0 passing through P .
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We will take a set B1
i ⊆ B0(Q1) to be the set of all broken lines in B0(Q1) which

deform to the same limiting map as Bs0 (but may involve different monomials). We
define B2

i similarly to be the set of all broken lines in B0(Q2) which deform to the
same limiting map. These two sets give contributions to Wk(Q1) and Wk(Q2)
respectively; we will be done once we show these contributions are the same.

Recalling that we are deforming the endpoints of the broken lines in B0(Q1)
and B0(Q2) along a path γ, we define for s 6= s0 the set Bs of broken lines with
endpoint γ(s) which again deform to the limiting map Bs0 , so that each broken line
in Bs for s < s0 is a deformation of a unique broken line in B1

i and each broken
line in Bs for s > s0 is a deformation of a unique broken line in B2

i .
Let x0 := Bs0(t) for t smaller but close to the t̄ such that Bs0(t̄) = P . Locally

near x0, the image of Bs0 splits MR into two connected components, and broken
lines in Bs for s < s0 are locally contained in one of these connected components,
and broken lines in Bs for s > s0 are locally contained in the other. Fix points x,
x′ on either side of the image of Bs0 near x0, chosen so that some element of Bs

for some s < s0 passes through, say, x. For each broken line β ∈ B1
i , one can find

at least one s < s0 such that β can be deformed to a βs ∈ Bs which passes through
x. Similarly, for each broken line β ∈ B2

i , one can find at least one s > s0 such
that β can be deformed to a βs ∈ Bs which passes through x′. For each β ∈ B1

i ,
we make a choice of one of these βs’s passing through x, and let Bx be the set of
these choices. We define Bx′ similarly, so that Bx is in one-to-one correspondence
with B1

i and Bx′ is in one-to-one correspondence with B2
i . In particular, if cβz

mβ

denotes the monomial attached to the last segment of a broken line β, we just need
to show that ∑

β∈Bx

cβz
mβ =

∑

β∈Bx′

cβz
mβ .

To show this, it is enough to show the same statement where one replaces cβz
mβ

with the monomial attached to β right after β finishes bending near P . The result
now follows from Claim 5.37 and the uniqueness statement of Claim 5.36. �

5.4.6. Varying P1, . . . , Pk. We now turn our attention to studying the de-
pendence of Wk(Q) on the points P1, . . . , Pk. For this discussion, we will need a
three-dimensional version of scattering diagrams.

Definition 5.38. Let L ⊆ R be a closed interval. Let π1 and π2 be the
projections of MR×L onto MR and L respectively. A scattering diagram in MR×L
is a finite set D consisting of pairs (d, fd) such that

• d ⊆ MR × L is a polyhedron of dimension two such that π2(d) is one-
dimensional. Furthermore there is a one-dimensional subset b ⊆ MR × L
and an element m0 ∈ TΣ with r(m0) 6= 0 such that

d = b− R≥0(r(m0), 0).

• fd ∈ C[zm0 ]⊗C Rk ⊆ C[TΣ]⊗C Rk[y0℄.
• fd ≡ 1 mod (u1, . . . , uk)z

m0 .

We define
Sing(D) =

⋃

d∈D

∂d ∪
⋃

d1,d2∈D
dim d1∩d2=1

d1 ∩ d2.

This is a one-dimensional subset of MR × L. Let Interstices(D) be the finite set
of points where Sing(D) is not a manifold. We will denote by Joints(D) the set of
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closures of the connected components of Sing(D) \ Interstices(D), calling elements
of Joints(D) and Interstices(D) joints and interstices respectively.1 We call a joint
horizontal if its image under π2 is a point; otherwise we call a joint vertical.

For a path γ in (MR × L) \ Sing(D), one can define an element

θγ,D ∈ VΣ,k

exactly as in the case of a scattering diagram in MR. Indeed, we just need to define
the automorphism θγ,d when γ crosses (d, fd) at time ti. Assuming γ passes from
one side of d to the other, we choose n0 ∈ N primitive with 〈n0, r(m0)〉 = 0 and
n0 smaller on the side of d that γ passes into, as usual. We can then also define as
usual

θγ,d(z
m) = zmf

〈n0,r(m)〉
d .

Again, it is easy to check that θγ,D only depends on the homotopy type of the path
γ inside (MR × L) \ Sing(D).

A broken line in MR × L is a map β : (−∞, 0] → MR × L, along with data

t0 < · · · < tn and monomials ciz
mβ

i , such that

(1) π2 ◦ β is constant, say with image P ∈ L.
(2) π1 ◦ β is a broken line in the sense of Definition 5.30 with respect to the

scattering diagram DP in MR given, after identifying MR×{P} with MR,
by

DP :=
{(

d ∩ (MR × {P}), fd

) ∣∣ (d, fd) ∈ D such that d ∩ (MR × {P}) 6= ∅
}
.

We can now describe how Wk(Q) varies as the points P1, . . . , Pk are varied.

Theorem 5.39. Let W and W ′ be Wk(Q) for two different choices of general
points P1, . . . , Pk and P ′1, . . . , P

′
k. Then

W ′ = θ(W )

for some θ ∈ VΣ,k.

Proof. We shall show this result by induction on k, noting that the base case
k = 1 is obvious, as moving P1 and keeping Q fixed is the same thing as moving Q
and keeping P1 fixed.

It is clearly enough to show this result in the case that only P1 changes, for
then we can successively use the same result for P2, . . . , Pk. So consider a choice of
general points P1, . . . , Pk and P ′1. Consider the line segment L joining P1 and P ′1.
For all but a finite number of points P ∈ L, we can assume P, P2, . . . , Pk will be suf-
ficiently general so that Trees(Σ, P, P2, . . . , Pk) is finite, and all elements of this set
are trivalent. This gives rise to a family of scattering diagrams D(Σ, P, P2, . . . , Pk)
for P ∈ L general. We can put these scattering diagrams together into a scattering
diagram D̃ = D̃(Σ, L, P2, . . . , Pk) in MR × L. D̃ is determined by the requirement
that for P ∈ L general,

D(Σ, P, P2, . . . , Pk)

=
{(

d̃ ∩ (MR × {P}), fd̃

) ∣∣ (d̃, fd̃) ∈ D̃ such that d̃ ∩ (MR × {P}) 6= ∅
}
.

1This terminology is adopted from [49].
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To keep track of the dependence of Wk(Q) on the point P ∈ L, we write
Wk(Q;P ). We wish now to show that if γ is a general path in MR × L joining
(Q,P1) to (Q,P ′1), then

(5.17) Wk(Q;P ′1) = θγ,D̃(Wk(Q;P1)).

It is enough to show

(1) Wk(Q;P ) is constant for (Q,P ) ∈ MR × L varying within a connected

component of (MR × L) \ Supp(D̃).
(2) For two such connected components separated by a wall (d̃, fd̃) and points

(Q,P ), (Q′, P ′) on either side of the wall, we have

Wk(Q
′;P ′) = θγ,D(Wk(Q;P ))

for γ a short path joining (Q,P ) with (Q′, P ′).

Once we show (1), Theorem 5.35 already shows (2): as there are no walls in D̃

projecting to points in L, we can always choose points (Q,P ), (Q′, P ′) on opposite
sides of a wall with P = P ′, and then we are in the case already shown in Theorem
5.35. So we only need to show (1).

To show (1), we use the same technique we used for the variation of Q, deform-
ing broken lines. Take (Q,P ) and (Q′, P ′) general within a connected component

of (MR×L)\Supp(D̃) and move from (Q,P ) to (Q′, P ′) via a general path γ. Con-
sider broken lines in MR × L with endpoint γ(t). As t varies, we can continuously
deform a broken line with endpoint γ(t) unless the broken line converges to one

passing through a singular point of D̃. However, since such a family of broken lines
traces out a two-dimensional subset of MR × L, by choosing γ sufficiently general
we can be sure that none of these broken lines converge to broken lines passing
through interstices of D̃, as interstices are codimension three. However, they can
pass through joints, and this requires some care.

The first observation is that we have already analyzed in the proof of Theorem
5.35 what happens if a broken line passes through a vertical joint. Indeed, we can
just as well assume that γ has been chosen so that at a time t0 when a broken line
passes through a vertical joint, π2(γ(t)) remains constant for t in a neighbourhood
of t0. Then we are in precisely the situation analyzed in Theorem 5.35.

So we only need to see what happens if a broken line passes through a hori-
zontal joint. Note that horizontal joints occur when two or more parallel rays in
a scattering diagram come together as the point P varies; this can typically lead
to values of P with families of Maslov index zero disks or the existence of Maslov
index −2 disks: see Figures 16 and 17.

In fact, it is enough to show that if j is a horizontal joint and γj is a small loop
in MR × L around the joint, then θγj,D̃

= Id. Indeed, if j projects to P ∈ L, j

is contained in some polygons d̃1, . . . , d̃n ∈ D̃, and necessarily for P ′ ∈ L near P ,
d̃i ∩ (MR × {P ′}) is either a ray parallel to j or is empty. Thus, as P ′ ∈ L moves
from one side of P to the other, some parallel rays d1, . . . , dp in D(Σ, P ′, P2, . . . , Pk)
come together to yield the joint and then turn into parallel rays d′1, . . . , d

′
p′ on

the other side of P . Let D1,D2 be the scattering diagrams in MR given by
D(Σ, P ′, P2, . . . , Pk) for P ′ very close to P , but on opposite sides of P . Let γ
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P1

P2

P2P1

P2

P1

Figure 16. As P1 moves down, we suddenly get a Maslov index
−2 tree in the second picture. In addition, a family of Maslov
index zero trees appear, as shown in Figure 17.

P2P1

Figure 17

be a path which is a short line segment crossing j, so that we can write

θγ,D1 =θγ,d1 ◦ · · · ◦ θγ,dp ,

θγ,D2 =θγ,d′1 ◦ · · · ◦ θγ,d′p′ .

(Note that the ordering is immaterial as all these automorphisms commute). But
θγj,D̃

= θ−1
γ,D1

◦ θγ,D2, so if θγj,D̃
= Id, we have θγ,D1 = θγ,D2 . This means that,

by Definition 5.30, (4), broken lines will behave in the same way on either side of
P near the joint j. Note that the actual set of broken lines on either side may be
different, because we are not claiming that the set {θγ,d1, . . . , θγ,dp} coincides with
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{θγ,d′1, . . . , θγ,d′p′}, but rather the total contribution from bends along the two sets

of broken lines remains the same.
To show that θγj,D̃

= Id for each horizontal joint, we proceed as follows. For

I ⊆ {1, . . . , k}, define

Ideal(I) := 〈ui|i 6∈ I〉 ⊆ C[TΣ]⊗C Rk[y0℄.
We use induction, showing

Claim. For k′ ≥ 0 and #I = k′, we have

θγj,D̃
≡ Id mod Ideal(I)

for every horizontal joint j.

The base case with k′ = 0 is trivial, because all automorphisms are trivial
modulo the ideal (u1, . . . , uk). So assume the claim for all k′′ < k′. Fix a set I with
#I = k′. Fix an orientation on MR×L, so that if any joint j is given an orientation,
this determines the orientation of a loop γj around j. We wish to study θγj,D̃

for j

horizontal.
Note that as θγj,D̃

for j horizontal only involves a composition of automorphisms
associated to parallel rays, we can in fact write

θγj,D̃
(zm

′

) = f
〈nj,r(m

′)〉
j zm

′

for some nj ∈ N primitive and zero on the tangent space to j. Also,

fj ∈ C[{m ∈ TΣ|r(m) is tangent to j}]⊗C Rk[y0℄.
Note that fj depends on the choice of sign of nj. Assume we have chosen these
consistently, in the sense that if any two joints j and j′ have the same tangent
space, then nj = nj′ .

We need to show fj ≡ 1 mod Ideal(I). Fix some m ∈ TΣ. For each hor-
izontal joint j, let the term in fj mod Ideal(I) involving zm be cm,jz

m. Thus
cm,j = c̄m,j

∏
i∈I ui for some c̄m,j ∈ C since, by the induction hypothesis, fj ≡ 1

mod Ideal(I ′) for any I ′ ( I.
Let us first observe that if c̄m,j 6= 0, then r(m) 6= 0. Indeed, note that fj is

a product of factors of the form (1 + cm′z
m′)±1 with r(m′) 6= 0 by construction

of θγj,D̃
. Then log fj is a sum of expressions of the form ± log(1 + cm′z

m′). After

expanding this out using the (finite) Taylor series, we see that log fj =
∑±cm′zm

′

with r(m′) 6= 0 for every m′ appearing in this sum. On the other hand, modulo
Ideal(I), log fj =

∑
m∈TΣ

cm,jz
m. Hence cm,j = 0 if r(m) = 0, so c̄m,j = 0 if

r(m) = 0.
So we will fix m ∈ TΣ with r(m) 6= 0, and focus on showing c̄m,j = 0 for all

horizontal joints j. We will also include here the case that j is a vertical joint, by
setting c̄m,j = 0 for vertical joints. Note that c̄m,j depends on the orientation of j.

A change of orientation of j changes the direction of γj, replacing fj with f−1
j . This

changes the sign of c̄m,j. As a result, we can view

j 7→ c̄m,j

as a 1-chain for the one-dimensional simplicial complex Sing(D̃). Here the choice
of orientation on j is implicit.

Subclaim. j 7→ c̄m,j is a 1-cycle.
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x1
x2x3x4

Figure 18. The loop depicted, going successively around x1, x2,
x3, and x4, is contractible in S \ {x1, . . . , x4}

Proof. We need to check the 1-cycle condition at each interstice of D̃, so let
(Q,P ) ∈ Interstices(D̃). Consider a small two-sphere S in MR × L with center
(Q,P ). Then suppose that x1, . . . , xs ∈ S are distinct points such that

{x1, . . . , xs} =
⋃

j∈Joints(D̃)

j ∩ S.

Choose a base-point y ∈ S, y 6∈ Supp(D̃). We can choose small counterclockwise
loops γ1, . . . , γs in S around x1, . . . , xs and paths βi joining y with the base-point
of γi in such a way so that

β1γ1β
−1
1 . . . βsγsβ

−1
s = 1

in π1(S\{x1, . . . , xs}, y); see Figure 18. Because θγ,D̃ only depends on the homotopy

type of γ in (MR × L) \ Sing(D̃), we obtain the equality

(5.18) θ−1
βs
◦ θγs ◦ θβs ◦ · · · ◦ θ−1

β1
◦ θγ1 ◦ θβ1 = Id .

Here, we have dropped the D̃’s in the subscripts.
We now distinguish between two cases.

Case 1. The interstice (Q,P ) does not satisfy Q ∈ {P, P2, . . . , Pk}. Then
by Proposition 5.28, θγi = Id for each γi which is a loop around a vertical joint
containing (Q,P ). On the other hand, modulo Ideal(I), for γi around a horizontal
joint ji, by the induction hypothesis, fji is of the form 1 + (· · · )∏i∈I ui. One
then checks θγi necessarily commutes, modulo Ideal(I), with any element of VΣ,k.
This can easily be seen as in Example 5.24, using the fact that uj

∏
i∈I ui ≡ 0
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mod Ideal(I) for any j. Thus, in particular, θγi commutes with θβi . So (5.18)
becomes ∏

θγi ≡ Id mod Ideal(I)

where the product is over all γi around horizontal joints. Applying this identity to
a monomial zm

′

, we obtain
∏

f
〈nji

,r(m′)〉

ji
zm
′

= zm
′

mod Ideal(I),

which, after expansion and reading off the coefficient of zm+m′ , gives the identity

(5.19)
∑
〈nji , r(m

′)〉c̄m,ji = 0

for any m′ ∈ TΣ. Now a monomial zm can only appear in fji if r(m) is in fact
tangent to ji, so the only horizontal joints containing (Q,P ) with c̄m,j 6= 0 are the
joints contained in the affine line (Q,P )+R(r(m), 0). Let s be the number of joints
contained in this line and containing (Q,P ). Then either s = 0, 1 or 2. If s = 0,
there is nothing to prove. If s = 1, with ji the only such joint, it follows from (5.19)
that c̄m,ji = 0. If s = 2, let ji1 , ji2 be the two such joints. Then (5.19) implies that
c̄m,ji1 = c̄m,ji2 , assuming ji1 and ji2 are oriented in the same direction. This shows

that the 1-cycle condition holds at (Q,P ).

Case 2. The interstice (Q,P ) satisfies Q ∈ {P, P2, . . . , Pk}, say Q = Pi. We’ll
write i = 1 if Q = P . The argument is almost the same, but now there are two
vertical joints, say j1 and j2 with endpoint (Q,P ), with j1, j2 ⊆ {Pi} × L if i > 1
and j1, j2 ⊆ {(P ′, P ′)|P ′ ∈ L} ⊆MR×L if i = 1. Without loss of generality we can
take the base-point y near x1 and assume β1 is a constant path so that θβ1 = Id.
The argument will be the same as in Case 1 once we show that

(5.20) θ−1
β2
◦ θγ2 ◦ θβ2 ◦ θγ1 = Id .

To do so, consider the scattering diagram D(Σ, P ′, P2, . . . , Pk) for P ′ ∈ L,
P ′ near P but P ′ 6= P . By Remark 5.29, the rays emanating from Pi (P ′ if
i = 1) in D(Σ, P ′, P2, . . . , Pk) are in one-to-one correspondence with the terms
in Wk−1(Pi;P

′) − y0, where Wk−1(Pi;P
′) denotes Wk−1(Pi) computed using the

marked points P ′, . . . , Pi−1, Pi+1, . . . Pk (or P2, . . . , Pk if i = 1). In particular, given
a term czm in Wk−1(Pi;P

′) − y0, the corresponding ray carries the function 1 +
uicw(m)zm, where w(m) is the index of r(m). Note that if γ is a simple loop around
Pi, then the contribution to θγ,D(Σ,P ′,P2,...,Pk) from such a ray is exp(±Xuiczm).
Here the sign only depends on the orientation of γ and the chosen identification of∧2M with Z. All automorphisms attached to the rays emanating from Pi commute
by Example 5.24 because u2

i = 0, so

θγ,D(Σ,P ′,P2,...,Pk) =
∏

exp(±Xuiczm) = exp(±Xui(Wk−1(Pi;P ′)−y0)).

Here the product is over all terms czm appearing inWk−1(Pi;P
′)−y0. Furthermore,

if P ′ ∈ π2(j1) \ {P} and P ′′ ∈ π2(j2) \ {P}, then by (5.17) applied inductively to
k − 1 points if i 6= 1, and by Theorem 5.35, if i = 1,

uiWk−1(Pi;P
′′) = uiθβ2(Wk−1(Pi;P

′)).

It then follows from Lemma 5.21 that

θγ2 =
(
θβ2 ◦ θγ1 ◦ θ−1

β2

)−1
,
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the last inverse on the right since γ1 and γ2 are homotopic to loops in MR × {P ′}
and MR×{P ′′} respectively with opposite orientations. This shows (5.20). We can
then finish as in Case 1.

This completes the proof of the subclaim. �

To complete the proof of the claim, hence the theorem, we now note that the
cycle σ given by j 7→ c̄m,j is in fact zero. Indeed, picking a given joint with c̄m,j 6= 0,
the fact that σ is a cycle implies that the line containing j can be written as a union
of joints j′ with orientation compatible with that on j, with c̄m,j′ = c̄m,j. However,
there must be one joint j′ contained in this line which is unbounded in the direction
r(m). But none of the polyhedra of D̃ containing j′ can involve a monomial of the
form zm, since a ray carrying a monomial zm is unbounded only in the direction
−r(m). Thus 0 = c̄m,j′ = c̄m,j as desired. �

5.4.7. Independence of the integrals.

Lemma 5.40. Let θ ∈ VΣ,k, (u, ℏ) ∈ M̃Σ,k × C× and suppose f is in the ideal
generated by u1, . . . , uk in C[TΣ]⊗C Rk[y0℄. Then for any cycle

Ξ ∈ H2(κ
−1(u),Re(W0(Q)/ℏ)≪ 0; C),

we have ∫

Ξ

e(W0(Q)+f)/ℏΩ =

∫

Ξ

eθ(W0(Q)+f)/ℏΩ.

Proof. It is enough to show the lemma for θ = exp(czm0Xr(m0)) with m0 ∈
TΣ, r(m0) 6= 0 and c2 = 0, as such elements generate VΣ,k. Note that ifW0(Q)+f =∑
m cmz

m, then

θ(W0(Q) + f) =
∑

m

cm(zm + 〈Xr(m0), r(m)〉czm0+m)

and

eθ(W0(Q)+f)/ℏ = e(W0(Q)+f)/ℏ
(
1 +

∑

m

ℏ−1ccm〈Xr(m0), r(m)〉zm0+m
)
.

Furthermore, d(zm dlog(zm0)) = −〈Xr(m0), r(m)〉zmΩ. Thus

(eθ(W0(Q)+f)/ℏ − e(W0(Q)+f)/ℏ)Ω

= e(W0(Q)+f)/ℏ

(
ℏ−1

∑

m

ccm〈Xr(m0), r(m)〉zm0+m

)
Ω

= − d(czm0e(W0(Q)+f)/ℏ dlog(zm0)).

The result then follows from Stokes’ theorem and the fact that e(W0(Q)+f)/ℏ goes
to zero rapidly on the unbounded part of Ξ. �

Lemma 5.41. For Ξ ∈ H2((X̌Σ,k)κ,Re(W0(Q)/ℏ)≪ 0), the integral
∫

Ξ

eWk(Q)/ℏΩ

is independent of the choice of Q and P1, . . . , Pk.

Proof. This follows immediately from Theorems 5.35, 5.39, and Lemma 5.40.
�
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5.5. Evaluation of the period integrals

Our main goal in this section is the computation of the integrals

(5.21)

∫

Ξi

eWk(Q)/ℏΩ

in the case of P2. In doing so, we will prove Theorems 5.15 and 5.18. We continue
with the notation Σ, TΣ, ti, ρi of Example 5.9 as well as mi = r(ti).

5.5.1. The raw integrals. As we shall see in this subsection, it is not at
all difficult to produce an actual expression for (5.21), provided one knows what
Wk(Q) is. This is only the first step, as it will take some effort to convert this explicit
expression into something which is useful for us. That will take the remainder of
the section to do.

Lemma 5.42. Restricting to x0x1x2 = 1, we have

2∑

i=0

αi
∫

Ξi

e(x0+x1+x2)/ℏΩ

= ℏ−3α

(
∞∑

d=0

ℏ−3d

(d!)3
− 3α

∞∑

d=1

ℏ−3d

(d!)3

d∑

k=1

1

k

+
9

2
α2
∞∑

d=1

ℏ−3d

(d!)3

((
d∑

k=1

1

k

)2

+
1

3

d∑

k=1

1

k2

))

=: ℏ−3α
∞∑

d=0

ℏ−3d
(
B0(d) + αB1(d) + α2B2(d)

)
,

where the last equality defines the numbers B0(d), B1(d), B2(d).

Proof. This is the expansion of the explicit expression given in Proposition
2.40. �

We can use this to compute (5.21) by writing
∫

Ξi

eWk(Q)/ℏΩ = ey0/ℏ

∫

Ξi

e(x0+x1+x2)/ℏe(Wk(Q)−W0(Q))/ℏΩ.

The factor e(Wk(Q)−W0(Q))/ℏ can then be expanded in a Taylor series, noting that
in any term, each monomial in Wk(Q)−W0(Q) can appear at most once, because
it has a coefficient of square zero; thus this expansion is quite easy and is finite.
Thus we only need to calculate, with x0x1x2 = ey1 ,

2∑

i=0

αi
∫

Ξi

e(x0+x1+x2)/ℏxn0
0 xn1

1 xn2
2 Ω.

Lemma 5.43. With x0x1x2 = ey1 ,

2∑

i=0

αi
∫

Ξi

e(x0+x1+x2)/ℏxn0
0 xn1

1 xn2
2 Ω = ℏ−3αeαy1

2∑

i=0

ψi(n0, n1, n2)α
i,

where

ψi(n0, n1, n2) =

∞∑

d=0

Di(d, n0, n1, n2)ℏ
−(3d−n0−n1−n2)edy1
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with Di given as follows. First,

D0(d, n0, n1, n2) =

{
1

(d−n0)!(d−n1)!(d−n2)!
if d ≥ n0, n1, n2

0 otherwise.

Second, if d ≥ n0, n1, n2, then

D1(d, n0, n1, n2) = −
∑d−n0

k=1
1
k +

∑d−n1

k=1
1
k +

∑d−n2

k=1
1
k

(d− n0)!(d − n1)!(d− n2)!

while if n0, n1 ≤ d < n2, then

D1(d, n0, n1, n2) =
(−1)n2−d−1(n2 − d− 1)!

(d− n0)!(d − n1)!
,

with similar expressions if instead d < n0 or d < n1. If d is smaller than two of
n0, n1, n2, then

D1(d, n0, n1, n2) = 0.

Third, if d ≥ n0, n1, n2, then

D2(d, n0, n1, n2) =

(∑2
l=0

∑d−nl

k=1
1
k

)2

+
∑2

l=0

∑d−nl

k=1
1
k2

2(d− n0)!(d− n1)!(d − n2)!

while if n0, n1 ≤ d < n2,

D2(d, n0, n1, n2) =
(−1)d−n2(n2 − d− 1)!

(d− n0)!(d− n1)!

( d−n0∑

k=1

1

k
+

d−n1∑

k=1

1

k
+

n2−d−1∑

k=1

1

k

)
,

with similar expressions if instead d < n0 or d < n1. If n0 ≤ d < n1, n2, then

D2(d, n0, n1, n2) =
(−1)n1+n2(n1 − d− 1)!(n2 − d− 1)!

(d− n0)!
,

with similar expressions if instead n1 ≤ d < n0, n2 or n2 ≤ d < n0, n1. Finally, if
d < n0, n1, n2, then

D2(d, n0, n1, n2) = 0.

Proof. Consider the integral

Ii(a0, a1, a2) =

∫

Ξi

ea0x0+a1x1+a2x2Ω,

with a0, a1, a2 ∈ C× and x0x1x2 = 1. Then

∂n0+n1+n2

∂an0
0 ∂an1

1 ∂an2
2

Ii =

∫

Ξi

ea0x0+a1x1+a2x2xn0

0 xn1

1 xn2

2 Ω.

Evaluate this at a0 = a1 = a2 = ey1/3/ℏ and make the change of variables xi 7→
xie
−y1/3 in the integral. Note that as Ω = dx1∧dx2

x1x2
, such a change of variables does

not affect Ω. Then with x0x1x2 = ey1 we obtain

∂n0+n1+n2

∂an0
0 ∂an1

1 ∂an2
2

Ii

∣∣∣∣
ai=ey1/3/ℏ

=

∫

Ξi

e(x0+x1+x2)/ℏe−(n0+n1+n2)y1/3xn0
0 xn1

1 xn2
2 Ω.
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On the other hand, Ii can be calculated by making the substitution

x0 7→ (a1a2/a
2
0)

1/3x0

x1 7→ (a0a2/a
2
1)

1/3x1

x2 7→ (a0a1/a
2
2)

1/3x2

in Ii which gives

Ii(a0, a1, a2) =

∫

Ξi

e(a0a1a2)
1/3(x0+x1+x2)Ω.

Thus we can compute
∑2
i=0 α

iIi(a0, a1, a2) by substituting in ℏ = (a0a1a2)
−1/3 in

the formula of Lemma 5.42. To differentiate the resulting expression, note that
under this substitution, ℏ−(3α+3d) becomes (a0a1a2)

α+d and

∂n0+n1+n2

∂an0
0 ∂an1

1 ∂an2
2

(a0a1a2)
α+d

∣∣∣∣
ai=ey1/3/ℏ

= ℏ−(3α+3d−n0−n1−n2)e(α+d−(n0+n1+n2)/3)y1

·
n0∏

k=1

(α+ d− k + 1)

n1∏

k=1

(α+ d− k + 1)

n2∏

k=1

(α+ d− k + 1)

= ℏ−(3α+3d−n0−n1−n2)e(α+d−(n0+n1+n2)/3)y1

·
(
C0(d, n0, n1, n2) + αC1(d, n0, n1, n2) + α2C2(d, n0, n1, n2)

)
,

where the last equality defines C0, C1 and C2. One then sees that

ψi(n0, n1, n2) =

∞∑

d=0

i∑

k=0

Bk(d)Ci−k(d, n0, n1, n2)ℏ
−(3d−n0−n1−n2)edy1

with the Bi’s defined in Lemma 5.42. Furthermore, computing the Ci’s, we see

C0(d, n0, n1, n2) =

{
(d!)3

(d−n0)!(d−n1)!(d−n2)!
if d ≥ n0, n1, n2

0 otherwise.

If d ≥ n0, n1, n2, then

C1(d,n0, n1, n2) =

(d!)3

(d− n0)!(d− n1)!(d− n2)!

( d∑

k=d−n0+1

1

k
+

d∑

k=d−n1+1

1

k
+

d∑

k=d−n2+1

1

k

)
,

while if one of n0, n1, n2 is larger than d, we have

C1(d, n0, n1, n2) =

d∏

k=d−n0+1
k 6=0

k

d∏

k=d−n1+1
k 6=0

k

d∏

k=d−n2+1
k 6=0

k.

Otherwise

C1(d, n0, n1, n2) = 0.
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If d ≥ n0, n1, n2 then

C2(d, n0, n1, n2) =

(d!)3

2(d− n0)!(d − n1)!(d− n2)!

(( d∑

k=d−n0+1

1

k
+

d∑

k=d−n1+1

1

k
+

d∑

k=d−n2+1

1

k

)2

−
( d∑

k=d−n0+1

1

k2
+

d∑

k=d−n1+1

1

k2
+

d∑

k=d−n2+1

1

k2

))
.

If n1, n2 ≤ d < n0, then

C2(d, n0, n1, n2) =
( d∏

k=d−n0+1
k 6=0

k

)
(d!)2

(d− n1)!(d− n2)!

( d∑

k=d−n0+1
k 6=0

1

k
+

d∑

k=d−n1+1

1

k
+

d∑

k=d−n2+1

1

k

)
.

We have similar expressions if d < n1 or d < n2. If two of n0, n1 and n2 are larger
than d, then

C2(d, n0, n1, n2) =

d∏

k=d−n0+1
k 6=0

k

d∏

k=d−n1+1
k 6=0

k

d∏

k=d−n2+1
k 6=0

k.

Finally, if n0, n1, n2 > d, then

C2(d, n0, n1, n2) = 0.

A laborious calculation now gives the forms given in the Lemma for the coefficients
Di. �

Definition 5.44. For m ∈ TΣ, m =
∑2

i=0 niti with ni ≥ 0 for all i, define

ψi(m) := ψi(n0, n1, n2)

Di(d,m) := Di(d, n0, n1, n2)

and
|m| := n0 + n1 + n2.

5.5.2. What we need to show. If we have an explicit expression for Wk(Q),
the results of the previous subsection allow us to write down (5.21). In general,
the result (except for the integral over Ξ0, as we shall see), bears no immediate
resemblance to the desired form predicted by Theorem 5.18. Some massaging is
necessary before the integral begins to look correct.

First, though, we will start on our proof of Theorems 5.15 and 5.18 by making
precise which equality needs to be shown in terms of the integrals computed in the
previous subsection.

We make the following definition for keeping track of the terms which will
appear in (5.21).

Definition 5.45. Fix P1, . . . , Pk general. For Q general, let Sk (or Sk(Q) if
the dependence on Q needs to be emphasized) be a finite set of triples (c, ν,m) with
c ∈ Rk a monomial, ν ≥ 0 an integer, and m ∈ TΣ such that

(5.22) e(Wk(Q)−W0(Q))/ℏ =
∑

(c,ν,m)∈Sk

cℏ−νzm,
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with each term cℏ−νzm of the form ℏ−ν
∏ν
i=1 Mono(hi) for h1, . . . , hν distinct

Maslov index two tropical disks with boundary Q.
Let

Ldi = Ldi (Q) :=
∑

(c,ν,m)∈Sk

cℏ−(3d+ν−|m|)Di(d,m).

We can now clarify what needs to be proved. The following lemma reduces
Theorems 5.15 and 5.18 to three equalities.

Lemma 5.46. Let Q be chosen generally, and let L be the tropical line with
vertex Q. The three equalities

Ld0 = δ0,d +
∑

ν≥0

∑

I⊆{1,...,k}
I={i1,...,i3d−ν−2}
i1<···<i3d−ν−2

〈Pi1 , . . . , Pi3d−ν−2
, ψνQ〉trop0,d uIℏ

−(ν+2)(5.23)

Ld1 =
∑

ν≥0

∑

I⊆{1,...,k}
I={i1,...,i3d−ν−1}
i1<···<i3d−ν−1

〈Pi1 , . . . , Pi3d−ν−1
, ψνL〉trop0,d uIℏ

−(ν+1)(5.24)

Ld2 = y2ℏδ0,d +
∑

ν≥0

∑

I⊆{1,...,k}
I={i1,...,i3d−ν}
i1<···<i3d−ν

〈Pi1 , . . . , Pi3d−ν
, ψνMR〉trop0,d uIℏ

−ν(5.25)

imply Theorems 5.15 and 5.18.

Proof. Let us be precise about what needs to be shown to prove Theorems

5.15 and 5.18. If we write, for 0 ≤ i ≤ 2 and y2 =
∑k

i=1 ui,

Ktrop
i =

∑

d≥1

∑

ν≥0

〈T 3d+i−2−ν
2 , ψνT2−i〉trop0,d ℏ−(ν+2)edy1

y3d+i−2−ν
2

(3d+ i− 2− ν)! ,

then

J trop
0 = ey0/ℏ(1 +Ktrop

0 ),

J trop
1 = ey0/ℏ(ℏ−1y1(1 +Ktrop

0 ) +Ktrop
1 ),

J trop
2 = ey0/ℏ

(ℏ−2y2
1

2
(1 +Ktrop

0 ) + ℏ−1y1K
trop
1 + ℏ−1y2 +Ktrop

2

)
.

We wish to compare these expressions with the expressions obtained via period
integrals over Ξ0, Ξ1 and Ξ2. Consider the ϕi’s defined in (5.5). Expanding the
integral in (5.5) by using Lemma 5.43 and eαy1 = 1 + y1α+ y2

1α
2/2, the left-hand

side of (5.5) is

∑

(c,ν,m)∈Sk

cey0/ℏℏ−(3α+ν)eαy1
2∑

i=0

ψi(m)αi

= ℏ−3αey0/ℏ
∑

(c,ν,m)∈Sk

cℏ−ν
2∑

i=0

i∑

k=0

yk1
k!
ψi−k(m)αi.
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Comparing this with the right-hand side of (5.5), we get

ϕ0 = ey0/ℏ
∑

(c,ν,m)∈Sk

cℏ−νψ0(m),

ϕ1 = ey0/ℏ
∑

(c,ν,m)∈Sk

cℏ−(ν+1)(y1ψ0(m) + ψ1(m)),

ϕ2 = ey0/ℏ
∑

(c,ν,m)∈Sk

cℏ−(ν+2)
(y2

1

2
ψ0(m) + y1ψ1(m) + ψ2(m)

)
.

Thus to show ϕi = J trop
i , we need to show the following three equalities:

∑

(c,ν,m)∈Sk

cℏ−νψ0(m) = 1 +Ktrop
0 ,(5.26)

∑

(c,ν,m)∈Sk

cℏ−νψ1(m) = ℏKtrop
1 ,(5.27)

∑

(c,ν,m)∈Sk

cℏ−νψ2(m) = ℏ2(ℏ−1y2 +Ktrop
2 ).(5.28)

Then, using the expansion for ψi in Lemma 5.43, (5.26), (5.27) and (5.28) are
equivalent, if we compare the coefficients of edy1 on both sides, to:

Ld0 = δ0,d +
∑

ν≥0

〈T 3d−ν−2
2 , ψνT2〉trop0,d

y3d−ν−2
2

(3d− ν − 2)!
ℏ−(ν+2),(5.29)

Ld1 =
∑

ν≥0

〈T 3d−ν−1
2 , ψνT1〉trop0,d

y3d−ν−1
2

(3d− ν − 1)!
ℏ−(ν+1),(5.30)

Ld2 = y2ℏδ0,d +
∑

ν≥0

〈T 3d−ν
2 , ψνT0〉trop0,d

y3d−ν
2

(3d− ν)!ℏ
−ν .(5.31)

Now suppose we have shown (5.23), (5.24) and (5.25). The left-hand sides of these
equations come from the period integrals, and hence are independent of the loca-
tions ofQ and P1, . . . , Pk by Lemma 5.41. So the right-hand side is also independent
of the locations of Q and P1, . . . , Pk. So in particular, once we show (5.23), (5.24)

and (5.25), we find that the invariants 〈T 3d+i−2−ν
2 , ψνT2−i〉trop0,d are well-defined,

showing Theorem 5.15, and also showing (5.29), (5.30) and (5.31), as

yn2
n!

=
∑

I⊆{1,...,k}
#I=n

uI .

Also, this shows ϕi = J trop
i . In particular, ϕi,1 = yi for 0 ≤ i ≤ 2. This gives

Theorem 5.18. �

We will now refine the expressions Ldi which we need to compute, splitting it
up into a number of terms which will yield contributions of different flavours.

Definition 5.47. For each cone σ ∈ Σ, σ is the image under r of a proper face
σ̃ of the cone K ⊆ TΣ ⊗ R generated by t0, t1, t2 (i.e., the first octant). For d ≥ 0,
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denote by Kd ⊆ K the cube

Kd =
{ 2∑

i=0

niti
∣∣ 0 ≤ ni ≤ d

}

and for σ ∈ Σ, define

σ̃d := (σ̃ +Kd) \
⋃

τ(σ
τ∈Σ

(τ̃ +Kd).

Here + denotes Minkowski sum.

Example 5.48. We have the following examples of σ̃d. Let m =
∑
i niti ∈ K.

• If σ = {0}, then m ∈ σ̃d if and only if d ≥ max{n0, n1, n2}.
• If σ = ρ0, then m ∈ σ̃d if and only if n1, n2 ≤ d < n0.
• If σ = ρ1 + ρ2, then m ∈ σ̃d if and only if n0 ≤ d < n1, n2.

Definition 5.49. For σ ∈ Σ, define

Ldi,σ = Ldi,σ(Q) :=
∑

(c,ν,m)∈Sk

m∈σ̃d

cℏ−(3d+ν−|m|)Di(d,m).

We then have the obvious

Lemma 5.50. Ldi =
∑

σ∈Σ L
d
i,σ.

5.5.3. The asymptotic behaviour of Ldi,ω(Q). The main trick for under-

standing the terms Ldi,ω(Q) for ω 6= {0} (the case of {0} will be elementary) will be

to understand the asymptotic behaviour of Ldi,ω(Q) as Q heads off to infinity along
a ray inside ω. In fact, the following lemma will show that this term is eventually
zero. We will then be able to compute Ldi,ω(Q) for arbitrary Q by understanding
how it changes as Q heads out along various rays.

Lemma 5.51. Let ω ∈ Σ, and let v ∈ ω be non-zero (hence ruling out ω = {0}).
Then

(5.32) lim
s→∞

Ldi,ω(Q+ sv) = 0.

Proof. We first note that with ω 6= {0},
(5.33) if m ∈ ω̃d, then r(m) ∈ ⋃σ⊇ω

σ∈Σ
Int(σ).

Next, for sufficiently large s, Q+sv lies in an unbounded connected component
C of MR \ Supp(D), where D = D(Σ, P1, . . . , Pk). By taking s sufficiently large, we
can assume C is the last component entered as s → ∞. To show (5.32), it will be
enough to show that if Q+ sv ∈ C, there exists a convex cone K ′ ⊆MR with

K ′ ∩
⋃

σ⊇ω
σ∈Σ

Int(σ) = ∅

such that Wk(Q+ sv)−W0(Q+ sv) only contains monomials zm with r(m) ∈ K ′.
It then follows that all monomials zm in

exp((Wk(Q+ sv)−W0(Q+ sv))/ℏ)

satisfy r(m) ∈ K ′, and hence by (5.33), m 6∈ ω̃d. This implies (5.32).



5.5. EVALUATION OF THE PERIOD INTEGRALS 229

So we study monomials zm appearing in Wk(Q+sv)−W0(Q+sv) and construct
a cone K ′ with the desired properties. We will make use of the asymptotic cone to
the closure C of C, Asym(C), which is defined to be the Hausdorff limit limǫ→0 ǫC.
Note that the connected components of MR \ D(Σ, P1) are P1 − Int(σ) where σ
runs over the maximal cones of Σ. Since Supp(D(Σ, P1)) ⊆ SuppD, one sees that
Asym(C) is contained in some cone −σ with σ ∈ Σ maximal and (−σ) ∩ ω 6= {0}.
Note also that Asym(C) is a ray if the unbounded edges of C are parallel. Let d1,
d2 denote the two unbounded edges of C.

Now for general s, a term czm inWk(Q+sv) corresponds to a broken line β with

given data −∞ = t0 < · · · < tp = 0, mβ
i ∈ TΣ as in Definition 5.30, and m = mβ

p .
If −r(m) 6∈ R>0v, then for s sufficiently large, with + denoting Minkowski sum,

Q+ sv 6∈ R≥0(−r(m)) + (∂C \ (d1 ∪ d2)).

Indeed, ∂C \ (d1 ∪ d2) is bounded, so the asymptotic cone of the right-hand side is
R≥0(−r(m)), which does not contain v by assumption. Thus, taking a sufficiently

large s, we note that β cannot last enter C via ∂C \ (d1 ∪ d2) since the last line
segment of β is in the direction −r(m). So for sufficiently large s, β must enter C
by crossing one of d1 or d2. In what follows, we will not need to study the case
−r(m) ∈ R>0v as the cone K ′ we construct will always contain −v.

We can now assume that for large s, β enters C = Cn from another unbounded

connected component Cn−1 of MR \ Supp(D). Necessarily, the mβ
i attached to β

while β passes through Cn−1 satisfies −r(mβ
i ) 6∈ Asym(Cn−1). Indeed, otherwise

β could not hit an unbounded edge of Cn−1. Again, for large enough s, one sees
similarly that β must enter Cn−1 through the other unbounded edge of Cn−1, and we
can then continue this process inductively, with β passing only through unbounded
edges via a sequence of unbounded components C0, . . . , Cn. When β bends, it then
always bends outward, as depicted in Figure 19. From this we make the following
two observations:

(C1) If the edges corresponding to d1 and d2 of Asym(C) are generated by v1, v2
respectively (possibly v1 = v2) and β enters C by crossing di, then −r(m)
lies in a half-plane with boundary Rvi containing Asym(C); otherwise, β
cannot reach the interior of C.

(C2) For any j, 1 ≤ j ≤ p, −r(m) lies in the half-plane with boundary Rr(mβ
j )

containing vi corresponding to the edge di that β crosses to enter C. This
follows from the behaviour described above about how β bends.

Without loss of generality, let us assume for the ease of drawing pictures that
ω = ρ2 or ρ1 +ρ2 and Asym(C) ⊆ −(ρ0 +ρ1). See Figure 20. Note that, as depicted
there, we must have v2 ∈ ρ1 + ρ2.

We analyze the possibilities for β: we have three cases, based on whether the
initial direction of β is −m1, −m2, or −m0.

Case 1. r(mβ
0 ) = m1. Then β must enter C via d2. By (C1), −r(m) lies in the

half-plane with boundary Rv2 containing Asym(C), and by (C2), −r(m) lies in the
half-plane with boundary Rm1 containing Asym(C). Thus

−r(m) ∈ (−R≥0m1 + R≥0v2).

Case 2. r(mβ
0 ) = m2. Then either R≥0m2 ⊆ Asym(C) or Asym(C) ⊆ ρ1 +

ρ2 since v ∈ Asym(C). In the first case, β has no opportunity to bend, and so
corresponds to the monomial x2, which doesn’t appear in Wk(Q+sv)−W0(Q+sv).
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C2
Q+ sv

d1

d2

β

Q

C3

C1

C0

Figure 19

ρ0 + ρ2 ρ1 + ρ2

K ′

Asym(C)

−m1

m2 −m0

m1

−m2m0

v1 v2

Figure 20

In the second case, β bends at time t1 as it crosses a ray d ∈ D with fd = 1+ cdz
md

with −r(md) ∈ Int(ρ1+ρ2). Now r(mβ
1 ) = m2+r(md), so it follows that −r(mβ

1 ) ∈
ρ1 + ρ2. (Here we use integrality of md and m2 = (0, 1).) Thus by (C1) and (C2),

−r(m) ∈ (R≥0m1 + R≥0v1).
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Case 3. r(mβ
0 ) = m0. In this case β must enter C through the edge d1 since

Asym(C) ⊆ −(ρ0 + ρ1). Then one sees from (C1) and (C2) that

−r(m) ∈ (R≥0(−m0) + R≥0v1).

We now see that if R≥0m2 ⊆ Asym(C), (which always happens if v is propor-
tional to m2, in particular when ω = ρ2), then of these three cases, only cases 1
and 3 can occur, and in fact r(m),−v ∈ ρ0 + ρ1. Thus K ′ = ρ0 + ρ1 is the desired
cone, proving the claim in this case.

If R≥0m2 6⊆ Asym(C), then v is not proportional to m2 and ω = ρ1 + ρ2. In
this case, the above three cases show that −r(m) is always contained in the upper
half-plane. Thus K ′ the lower half-plane is the desired cone, proving the claim in
this case. �

5.5.4. Wall crossing for Ldi,ω(Q). The next step is to explain how Ldi,ω(Q)
depends on Q via a wall-crossing formula. Combining this formula with Lemma 5.51
allows us to describe Ldi,ω(Q) as a sum of contributions from various wall-crossings.

Definition 5.52. Let D = D(Σ, P1, . . . , Pk). Let C1, C2 be two connected
components of MR \ Supp(D) with dim C1 ∩ C2 = 1. Let Qi ∈ Ci be general points,
and let γ be a path from Q1 to Q2, passing through Supp(D) only at one time
t0, with γ(t0) 6∈ Sing(D). Let d ∈ D be a ray with γ(t0) ∈ d, and let nd ∈ N be
a primitive vector which is orthogonal to d and satisfies 〈nd, γ

′(t0)〉 < 0. Writing
fd = 1 + cdz

md , note that

θγ,d(z
m) = zm + cd〈nd, r(m)〉zm+md .

Now take a pair ω ( τ with ω, τ ∈ Σ and dim τ = dimω + 1. Note that there is
a unique index j ∈ {0, 1, 2} such that mj 6∈ ω but mj ∈ τ ; call this index j(ω, τ).
Then define

Ldi,d,γ,ω→τ :=
∑

(c,ν,m)

〈nd,mj(ω,τ)〉cdcDi(d,m+md + tj(ω,τ))ℏ
−(ν+3d−|m+md|),

where the sum is over all (c, ν,m) ∈ Sk(Q1) such that m+md ∈ ω̃d but m+md +
tj(ω,τ) ∈ τ̃d. If (c, ν,m) ∈ Sk(Q1) satisfies this condition, then we say the term

cℏ−νzm contributes to Ldi,d,γ,ω→τ .
Define

Ldi,γ,ω→τ :=
∑

d

Ldi,d,γ,ω→τ ,

where the sum is over all d ∈ D with γ(t0) ∈ d.
For an arbitrary path γ in MR \ Sing(D) with γ(0) = Q, γ(1) = Q′, choose

a partition of [0, 1], 0 = t0 < t1 < · · · < tn = 1, such that γ|[tj−1,tj ] is a path of
the sort considered above, connecting endpoints in adjacent connected components.
Then define

Ldi,γ,ω→τ :=

n∑

j=1

Ldi,γ|[tj−1,tj ],ω→τ
.

�

Here then are the relevant wall-crossing formulas.



232 5. PERIOD INTEGRALS

Lemma 5.53. Let P1, . . . , Pk be general. Let γ be a path in MR \ Sing(D) with
γ(0) = Q, γ(1) = Q′. Then for dim ρ = 1, ρ ∈ Σ,

(5.34) Ldi,ρ(Q
′)− Ldi,ρ(Q) = Ldi,γ,{0}→ρ −

∑

σ∈Σ
ρ(σ

Ldi,γ,ρ→σ

while for dim σ = 2, σ ∈ Σ,

(5.35) Ldi,σ(Q
′)− Ldi,σ(Q) =

∑

ρ∈Σ
dim ρ=1
ρ(σ

Ldi,γ,ρ→σ.

Proof. It is enough to show this for γ a short path connecting Q and Q′ in two
adjacent components C1 and C2 of MR\Supp(D) as in Definition 5.52. Suppose that
at time t0, γ(t0) ∈ d1 ∩ · · · ∩ ds for rays d1, . . . , ds ∈ D. Of course, dim di ∩ dj = 1.
We can then write, for nd = ndi for any i,

θγ,D(zm) = zm
s∏

i=1

f
〈nd,r(m)〉
di

= zm
s∏

i=1

(1 + cdi〈nd, r(m)〉zmdi )

= zm +

s∑

i=1

cdi〈nd, r(m)〉zm+mdi .

Here the last equality follows from cdicdj = 0 for i 6= j. This is the case by the
assumption that P1, . . . , Pk are general. Indeed, if cdicdj 6= 0, then the Maslov
index zero trees hi and hj corresponding to di and dj would have I(hi)∩ I(hj) = ∅.
However, a generic perturbation of the marked points with indices in I(hi) would
deform di without deforming dj , so that di ∩ dj = ∅.

Now

Wk(Q
′) = θγ,D(Wk(Q))

by Theorem 5.35. Using the expansion (5.22) and W0(Q) = y0 +
∑2

j=0 z
tj ,

exp
(
(Wk(Q

′)−W0(Q
′))/ℏ

)

= exp
(
(θγ,D(Wk(Q))−W0(Q))/ℏ

)

= θγ,D
(
exp((Wk(Q)−W0(Q))/ℏ)

)
· exp

(
(θγ,D(W0(Q))−W0(Q))/ℏ

)

= θγ,D

( ∑

(c,m,ν)∈Sk(Q)

cℏ−νzm
)(

1 + ℏ−1
s∑

ℓ=1

2∑

j=0

cdℓ
〈nd,mj〉zmdℓ

+tj
)

= exp
(
(Wk(Q)−W0(Q))/ℏ

)

+
∑

(c,ν,m)∈Sk(Q)

s∑

ℓ=1

(
cdℓ
cℏ−ν

(
〈nd, r(m)〉zm+mdℓ

+ ℏ−1
2∑

j=0

〈nd,mj〉zm+mdℓ
+tj
))
.
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We interpret this as follows. For each (c, ν,m) ∈ Sk(Q) and each ℓ, look at the
four terms

cdℓ
cℏ−ν

(
〈nd, r(m)〉zm+mdℓ + ℏ−1

2∑

j=0

〈nd,mj〉zm+mdℓ
+tj
)
.

These four terms contribute the expression

cdℓ
cℏ−(3d+ν−|m+mdℓ

|)
(
〈nd, r(m)〉Di(d,m+mdℓ

) +

2∑

j=0

〈nd,mj〉Di(d,m+mdℓ
+ tj)

)

to Ldi (Q
′). One can check that in fact this total contribution is zero, either by

direct but tedious checking from the formulas for Di, or by applying Lemma 5.40
with f = cℏ−(ν−1)zm and θ = θγ,D.

Now if m+mdℓ
and m+mdℓ

+ tj , 0 ≤ j ≤ 2, all lie in the same ω̃d, then these
terms produce no total contribution to Ldi,τ (Q

′) for any τ ∈ Σ, including τ = ω. On

the other hand, these four terms can contribute to different Ldi,ω(Q′)’s if m+mdℓ

and m + mdℓ
+ tj , j = 0, 1, 2, don’t all lie in ω̃d for the same ω ∈ Σ. This can

happen only if m + md ∈ ω̃d but m + md + tj ∈ τ̃d for some j with ω ( τ ∈ Σ
with dim τ = dimω + 1 and mj ∈ τ , mj 6∈ ω. In this case, Ldi,τ (Q

′) − Ldi,τ (Q) has

a contribution of the form ccdℓ
〈nd,mj〉ℏ−(3d+ν−|m+mdℓ

|)Di(d,m+mdℓ
+ tj). Thus

Ldi,ω(Q′)−Ldi,ω(Q) must have a contribution coming from the same term, but with
opposite sign. This gives the lemma. �

We can now use the asymptotic behaviour of the expressions Ldi,ω(Q) and the
above wall-crossing formula to rewrite the needed expressions:

Lemma 5.54. Let γj be the straight line path joining Q with Q+smj for s≫ 0.
Let γj,j+1 be the loop based at Q which passes linearly from Q to Q + smj, then
takes a large circular arc to Q+ smj+1, and then proceeds linearly from Q+ smj+1

to Q. Here we take j modulo 3, and γj,j+1 is always a counterclockwise loop. Let
σj,j+1 = ρj + ρj+1, a two-dimensional cone in Σ. Then

(5.36) Ldi (Q) = Ldi,{0}(Q)−
2∑

j=0

Ldi,γj ,{0}→ρj
−

2∑

j=0

Ldi,γj,j+1,ρj+1→σj,j+1
.

Proof. By Lemma 5.51, Ldi,σ(Q+ smj) = 0 for any σ ∈ Σ with ρj ⊆ σ. Thus
by (5.34) and (5.35), we have

Ldi,ρj
(Q) = −Ldi,γj,{0}→ρj

+
∑

σ∈Σ
ρj(σ

Ldi,γj,ρj→σ,

Ldi,σj,j+1
(Q) = −

∑

ρ∈Σ
dim ρ=1
ρ(σj,j+1

Ldi,γj,ρ→σj,j+1
.

Note we have broken symmetry for the second equation.
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Adding together contributions from the ρj ’s and σj1,j2 ’s, we see from Lemma
5.50 that

Ldi (Q)− Ldi,{0}(Q) = −
2∑

j=0

Ldi,γj,{0}→ρj

−(Ldi,γ0,ρ1→σ0,1
− Ldi,γ1,ρ1→σ0,1

)

−(Ldi,γ1,ρ2→σ1,2
− Ldi,γ2,ρ2→σ1,2

)

−(Ldi,γ2,ρ0→σ2,0
− Ldi,γ0,ρ0→σ2,0

).

Again by Lemma 5.51, it follows that the contribution to Ldi,γj,j+1,ρj+1→σj,j+1
from

the large circular arc is zero. Hence

Ldi (Q)− Ldi,{0}(Q) = −
2∑

j=0

Ldi,γj,{0}→ρj
−

2∑

j=0

Ldi,γj,j+1,ρj+1→σj,j+1
,

the desired result. �

5.5.5. The final steps. We have now finished massaging Ldi (Q) into a us-
able form. We will find that each term in (5.36) has a geometric interpretation in
the equations (5.23)-(5.25): Ldi,{0}(Q) yields the contributions to the right-hand

sides of these equations coming from expressions of the form 〈· · · 〉tropd,{0} in the

sense of (5.4), −Ldi,γj ,{0}→ρj
will yield contributions coming from 〈· · · 〉tropd,ρj

, and

−Ldi,γj,j+1,ρj+1→σj,j+1
will yield contributions coming from 〈· · · 〉tropd,σj,j+1

.

We first deal with the simplest term, Ldi,{0}. The idea in this case is very simple:

the period integrals simply tell us all the ways of gluing together tropical disks with
boundary Q to obtain a tropical curve with a vertex of high valency mapping to Q.

Lemma 5.55.

Ldi,{0}(Q)

= δ0,dδ0,i +
∑

ν≥i

∑

I⊆{1,...,k}
I={i1,...,i3d−2+i−ν}
i1<···<i3d−2+i−ν

〈Pi1 , . . . , Pi3d−2+i−ν
, ψνS〉tropd,{0}uIℏ

−(ν+2−i)

where S = Q,L the tropical line with vertex Q, or MR in the cases i = 0, 1 and 2.

Proof. If d = 0, the only element (c, ν,m) ∈ Sk which contributes to Ldi,{0} is

(1, 0, 0), corresponding to the constant term in e(Wk(Q)−W0(Q))/ℏ. This contributes
1 if i = 0 and 0 otherwise, hence the term δ0,dδ0,i.

Now assume d 6= 0. Let (c, ν,m) ∈ Sk with m =
∑2

i=0 niti. Then (c, ν,m)

contributes to Ldi,{0} only if n0, n1, n2 ≤ d. Write

cℏ−νzm = ℏ−ν
ν∏

i=1

Mono(hi) = ℏ−ν
ν∏

i=1

Mult(hi)z
∆(hi)uI(hi)

for hi : Γ′i → MR Maslov index two disks with boundary Q for 1 ≤ i ≤ ν. Let
Γ be the graph obtained by identifying the outgoing vertices Vout,i of Γ′1, . . . ,Γ

′
ν

to get a single vertex Vout and then adding (d − n0) + (d − n1) + (d − n2) + 1
additional unbounded edges with vertex Vout. We define h : Γ → MR to be hi on
each subgraph Γ′i ⊆ Γ. Furthermore, for 0 ≤ i ≤ 2, h maps d − ni of the new
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unbounded edges to the ray Q+R≥0mi. Finally, the last unbounded ray is labelled
with an x and is contracted by h.

I claim that h is now a balanced tropical curve. Indeed, the balancing condition
clearly holds at all vertices of Γ except possibly at Vout. Consider the tangent vectors
to the various edges with endpoint Vout. If mprim(hi) is a primitive tangent vector
to the outgoing edge h(Eout,i) of Γ′i pointing away from Q, then by summing the
balancing condition over all vertices of Γ′i not including Vout,i, one obtains

r(∆(hi)) = w(Eout,i)m
prim(hi).

There are then in addition d − ni edges with weight one attached to Vout in the
direction mi. Now by assumption,

ν∑

i=1

∆(hi) +

2∑

j=0

(d− nj)tj = d(t0 + t1 + t2),

so applying r we get

ν∑

i=1

r(∆(hi)) +
2∑

j=0

(d− nj)mj = 0.

But this is precisely the balancing condition at Vout.
The contribution of this term cℏ−νzm to Ldi,{0} is then

ℏ−(3d+ν−n0−n1−n2)Di(d, n0, n1, n2)

ν∏

i=1

Mult(hi)uI(hi)

= ℏ−(3d+ν−n0−n1−n2)uI(h) Multix(h)
∏

V∈Γ[0]

V 6∈Ex

MultV (h),

comparing the definitions of Multix(h) and Di(d, n0, n1, n2). Note that the valency
Val(Vout) of the vertex Vout in h is ν+3d− (n0 +n1 +n2)+1. Suppose that I(h) =
{i1, . . . , i3d−2+i−ν′} for some ν′. Noting that h is obtained by gluing Val(Vout)− 1
Maslov index two disks, we see that

Val(Vout)− 1 =

ν∑

i=1

(
|∆(hi)| −#I(hi)

)
+ (d− n1) + (d− n2) + (d− n3)

= 3d− (3d− 2 + i− ν′) = ν′ + 2− i.
Then the curve h contributes precisely the correct contribution, as given by Defi-
nition 5.13, (1) (a), (2) (b), or (3) (d), to

(5.37) 〈Pi1 , . . . , Pi3d−2+i−ν′
, ψν

′

S〉tropd,{0}uI(h)ℏ
−(ν′+2−i).

Conversely, given any curve h contributing to (5.37), it follows from Lemma
5.12, (3), that h is obtained by gluing together some collection of Maslov index two
disks with endpoint Q in the manner described above. Now some of these Maslov
index two disks may not have any marked points: these are rays in the directions
m0,m1 and m2. There are at most d of these, so define the non-negative numbers
n0, n1 and n2 so that d−ni is the number of rays appearing in the directionmi. The
remaining Maslov index two disks, h1, . . . , hν , all have marked points, and hence
there is a term ℏ−ν

∏ν
i=1 Mono(hi) appearing in exp((Wk(Q) −W0(Q))/ℏ). This
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term will make the same contribution to Ldi,{0} that the curve h makes to (5.37),

by the above argument. �

Next, the interpretation of −Ldi,γj,{0}→ρj
:

Lemma 5.56.

−Ldi,γj,{0}→ρj
=
∑

ν≥i−1

∑

I⊆{1,...,k}
I={i1,...,i3d−2+i−ν}
i1<···<i3d−2+i−ν

〈Pi1 , . . . , Pi3d−2+i−ν
, ψνS〉tropd,ρj

uIℏ
−(ν+2−i)

with S = Q,L or MR for i = 0, 1 and i = 2 respectively. Here, as usual, L is a
tropical line with vertex Q.

Proof. This is vacuous for i = 0, as both sides are zero, so we assume i ≥
1. Without loss of generality, consider Ldi,γ0,{0}→ρ0 . This quantity is a sum of

contributions from each point P ∈ Q+(ρ0 \{0}) which is the intersection of Q+ρ0

with a ray d ∈ D = D(Σ, P1, . . . , Pk). Write

fd = 1 + cdz
md .

Let us consider the contribution to Ldi,γ0,{0}→ρ0 from a small segment γ of γ0 which

only crosses d. Let γ run from Q1 to Q2. Now d corresponds to a Maslov index
zero tree passing through P , and by cutting it at P , we obtain a Maslov index zero
disk h1 : Γ′1 →MR with boundary P . Then

fd = 1 + wΓ′1
(Eout,1)Mult(h1)z

∆(h1)uI(h1).

Furthermore a term czmℏ−ν in exp((Wk(Q1) −W0(Q1))/ℏ) arises from ν distinct
Maslov index two disks with boundary Q1, say h2, . . . , hν+1 (each with at least one
marked point), and

czmℏ−ν = ℏ−ν
ν+1∏

i=2

Mult(hi)z
∆(hi)uI(hi).

In order for this term to contribute to Ldi,γ,{0}→ρ0 , m+md =
∑ν+1

i=1 ∆(hi) must be

of the form dt0 + n1t1 + n2t2 with n1, n2 ≤ d. Assume this is the case. The disks
h2, . . . , hν+1 deform to disks with boundary at P , which we also call h2, . . . , hν+1.
Write these disks as hi : Γ′i →MR. Each Γ′i, 1 ≤ i ≤ ν + 1, has a vertex Vout,i.

Using this data, we can construct an actual tropical curve as follows. Let Γ be
the graph obtained by identifying all the outgoing vertices Vout,i in Γ′1, . . . ,Γ

′
ν+1,

to obtain a graph with a distinguished vertex Vout, and then attaching

(d− n1) + (d− n2) + 1

additional unbounded edges with vertex Vout. We then define h : Γ→MR to agree
with hi on Γ′i ⊆ Γ. In addition, h takes the first d − n1 new unbounded edges to
P + R≥0m1; the second d− n2 new unbounded edges to P + R≥0m2; and the last
unbounded edge is contracted and marked with the label x. Note Γ has valency
at Vout given by Val(Vout) = ν + 1 + (d − n1) + (d − n2) + 1. Thus we obtain a
parameterized curve h : Γ→MR with h(x) = P . The balancing condition needs to
be checked at Vout, but as in the proof of Lemma 5.55, the fact that

ν+1∑

i=1

∆(hi) + (d− n1)t1 + (d− n2)t2 = d(t0 + t1 + t2)
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shows that the balancing condition indeed holds at Vout.
The contribution of this term to −Ldi,γ,{0}→ρ0 is

(5.38)

−〈nd,m0〉uI(h)wΓ′1
(Eout,1)

( ν+1∏

i=1

Mult(hi)

)
Di(d, d+ 1, n1, n2)ℏ

−(ν+3d−(d+n1+n2)).

Note that nd is primitive, annihilates r(md), and must be positive on −m0. Fur-

thermore, the chosen isomorphism
∧2

M ∼= Z identifies w(E1,out)nd, up to sign,
with Xr(md). Thus setting m(h1) = r(md) as in Definition 5.13, we see that

−〈nd,m0〉wΓ′1
(Eout,1) = |m(h1) ∧m0|.

Thus (5.38) coincides with

|m(h1) ∧m0|uI(h)Di(d, d+ 1, n1, n2)

( ∏

V∈Γ[0]

V 6∈Ex

MultV (h)

)
ℏ−(Val(Vout)−2).

Now Di(d, d+ 1, n1, n2) = Multi−1
x (h) as defined in Definition 5.13 via direct com-

parison with the definitions of the Di’s. Furthermore, if I(h) = {i1, . . . , i3d−2+i−ν′}
for some ν′, we see that, as h is obtained by gluing one Maslov index zero disk to
Val(Vout)− 2 Maslov index two disks, we have

Val(Vout)− 2 =

ν+1∑

i=1

(
|∆(hi)| −#I(hi)

)
+ (d− n1) + (d− n2)

= 3d− (3d− 2 + i− ν′) = ν′ + 2− i.
Thus, by Definition 5.13, the term under consideration contributes to −Ldi,γ0,{0}→ρ0
by exactly the same amount that the curve h contributes to

(5.39) 〈Pi1 , . . . , Pi3d−2+i−ν′
, ψν

′

S〉tropd,ρ0
uI(h)ℏ

−(ν′+2−i),

as desired.
Conversely, given any curve h contributing to 〈Pi1 , . . . , Pi3d−2+i−ν′

, ψν
′

S〉tropd,ρ0

with h(Ex) = P ∈ Q + (ρ0 \ {0}), the procedure of Lemma 5.12, (2), shows that
h must arise in precisely the way described above. Indeed, that lemma shows that
h can be obtained by gluing together a number of Maslov index two disks and
one Maslov index zero disk with boundary P . By the condition of Definition 5.13,
(2), (a) or (3), (c), none of the unmarked Maslov index two disks can be parallel
to m0. Thus we can assume that h is obtained by gluing together Maslov index
two disks h2, . . . , hν+1, a Maslov index zero disk h1, d − n1 rays in the direction

m1 and d − n2 rays in the direction m2. Then ℏ−ν
∏ν+1
i=2 Mono(hi) appears in

exp((Wk(Q1) −W0(Q1))/ℏ) for Q1 a point near P on Q + ρ0, and so we see this
term makes the same contribution to −Ldi,γj ,{0}→ρj

that the curve hmakes to (5.39),

as desired. �

We now come to the most difficult case, interpreting −Ldi,γj,j+1,ρj+1→σj,j+1
. The

first step is to localize the calculation to singular points of D = D(Σ, P1, . . . , Pk).

Lemma 5.57. For each point P ∈ Sing(D), let γP be a small counterclockwise
loop around P , small enough so it doesn’t go around any other point of Sing(D).
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Then
Ldi,γj,j+1,ρj+1→σj,j+1

=
∑

P∈Sing(D)∩(Q+σj,j+1)

Ldi,γP ,ρj+1→σj,j+1
.

Proof. If C1 and C2 are closures of two connected components of MR \SuppD

with dim C1 ∩ C2 = 1, and γ is a short path from Int(C1) into Int(C2) just cross-
ing Int(C1 ∩ C2) once, then Ldi,γ,ρj+1→σj,j+1

is independent of γ and its endpoints.

Furthermore, reversing the direction of γ changes the sign of Ldi,γ,ρj+1→σj,j+1
. Let

P be the polyhedral decomposition of MR induced by Supp(D), and let P̌ be the
dual cell decomposition. This is obtained by taking a point vσ to be the barycentre
of a maximal cell σ of P. Then P̌ consists of the zero-cells {vσ}, the one-cells with
endpoints vσ and vσ′ if dimσ∩σ′ = 1, and two-cells having vertices {vσ |P ∈ σ} for
P ∈ Sing(D). We can take γP to be the counterclockwise boundary of the two-cell

in P̌ corresponding to P . It then becomes clear that if we sum Ldi,γP ,ρj+1→σj,j+1

over all singular points P in Q + σj,j+1, the contribution from traversing an edge

with endpoints vσ, vσ′ of P̌ appears twice with opposite signs provided σ ∩ σ′ is
contained in σj,j+1. The only surviving contributions come from edges of a path
homotopic in MR \ Sing(D) to γj,j+1, hence the result. �

Lemma 5.58. Let P ∈ Sing(D) ∩ (Q+ σj,j+1), and suppose that

P 6∈ {P1, . . . , Pk}.
Then

−Ldi,γP ,ρj+1→σj,j+1
=
∑

ν≥0

∑

h

Mult(h)uI(h)ℏ
−(ν+2−i),

where the sum is over all curves h contributing to 〈Pi1 , . . . , Pi3d−2+i−ν
, ψνS〉tropd,σj,j+1

for various i1 < · · · < i3d−2+i−ν such that h(Ex) = P .

Proof. Note that this is vacuous for i = 0 or 1 as both sides are zero, so we
can assume i = 2. To save on typing, we set

LP,j := Ld2,γP ,ρj+1→σj,j+1
.

Fix a base-point Q′ near P . Consider a term cℏ−νzm in

exp((Wk(Q
′)−W0(Q

′))/ℏ)

of the form

(5.40) cℏ−νzm = ℏ−ν
ν+2∏

i=3

(
Mult(hi)z

∆(hi)uI(hi)

)

where the hi’s are Maslov index two disks with boundary Q′, but none of the hi’s
come from broken lines which bend near P . As a result, this term appears in
exp((Wk(Q

′′) −W0(Q
′′))/ℏ) for all Q′′ general in a small open neighbourhood of

P .
Suppose that such a term cℏ−νzm contributes to LP,j when γP crosses a ray

d ∈ D with P ∈ d, P 6= Init(d). But γP crosses this ray d twice, in opposite
directions, so cℏ−νzm will contribute to LP,j twice, but with opposite signs. Thus
these contributions cancel, and don’t contribute to the total in LP,j.

Thus we only need analyze contributions arising when γP crosses a ray d with
Init(d) = P or contributions from monomials as in (5.40) where some of the hi’s
come from broken lines which do bend near P .
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Recall from the argument of Proposition 5.28 that we can assume we can de-
compose the set of rays of D passing through P as

{d1, . . . , dn} ∪
m⋃

j=1

Di

where d1, . . . , dn do not have P as an initial point and correspond to trees h such
that I(h) ∩ I(h′) 6= ∅ for any Maslov index zero tree h′ with outgoing edge passing
through P . On the other hand, Di has three elements consisting of two rays which
do not have P as an initial point and one ray which does, which corresponds to the
tree obtained by gluing the two trees corresponding to the other two rays. Finally,
if h corresponds to a ray in Di and h′ corresponds to a ray in Dj for i 6= j, then
I(h) ∩ I(h′) 6= ∅.

As a consequence, to analyze the contributions to Li,γP ,ρj+1→σj,j+1 , the above
discussion shows we can assume that there are precisely three rays, d1, d2, d3 passing
through P , with Init(d1), Init(d2) 6= P and Init(d3) = P . Now d1, d2 correspond to
Maslov index zero trees passing through P , and by cutting them, we obtain Maslov
index zero disks hi : Γ′i →MR, i = 1, 2 with boundary P , and for i = 1, 2,

fdi = 1 + wΓ′i
(Eout,i)Mult(hi)z

∆(hi)uI(hi).

We now analyze how additional terms cℏ−νzm which can contribute to LP,j
may arise. In what follows, assume that cℏ−νzm is as in (5.40) in which none of
the broken lines corresponding to h3, . . . , hν+2 bend at d1, d2 or d3.

Write

m+ ∆(h1) + ∆(h2) =
2∑

j=0

njtj .

We have the following possibilities of additional contributions:

(I) cℏ−νzm may contribute to LP,j when γP crosses d3. This contribution
can only occur if nj+2 ≤ nj = d < nj+1.

(II) After crossing d1, new terms of the form (leaving off the coefficients)
zm+∆(h1) and zm+∆(h1)+tℓ , ℓ = 0, 1, 2, may appear in exp((Wk −W0)/ℏ).
Thus, when we cross d2, these new terms may contribute to LP,j. Note

that zm+∆(h1) only contributes when crossing d2 if nj+2 ≤ nj = d < nj+1.

The term zm+∆(h1)+tj only contributes if nj+2 ≤ d, nj = d − 1 and d <

nj+1. The term zm+∆(h1)+tj+1 only contributes if nj+2 ≤ nj = d ≤ nj+1.

The term zm+∆(h1)+tj+2 only contributes if nj+2 < nj = d < nj+1.
(III) After crossing d2, new terms of the form (leaving off the coefficients)

zm+∆(h2) and zm+∆(h2)+tℓ , ℓ = 0, 1, 2 may appear in exp((Wk −W0)/ℏ).
Thus, when we cross d1, these new terms may contribute to LP,j. Note

that zm+∆(h2) only contributes when crossing d1 if nj+2 ≤ nj = d < nj+1.

The term zm+∆(h2)+tj only contributes if nj+2 ≤ d, nj = d − 1 and d <

nj+1. The term zm+∆(h2)+tj+1 only contributes if nj+2 ≤ nj = d ≤ nj+1.

The term zm+∆(h2)+tj+2 only contributes if nj+2 < nj = d < nj+1.

There are now three cases when these additional contributions to LP,j occur.
Case (a). nj+2 ≤ nj = d < nj+1. In this case, (leaving off the coefficients),

zm gives a contribution to LP,j of type (I) when γP crosses d3, and zm+∆(hi),

zm+∆(hi)+tj+1 , or zm+∆(hi)+tj+2 (if nj+2 < d) may give contributions of type (II)
or (III) when γP crosses d1 and d2. Now note that the total change to Ldi,σj,j+1

due to
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these monomials as we traverse the loop γP is the sum of the contributions of these
monomials to Ldi,γP ,ρj→σj,j+1

and Ldi,γP ,ρj+1→σj,j+1
. However, the total contribution

to the change of Ldi,σj,j+1
is necessarily zero, as γP is a loop, and because d < nj+1,

none of these monomials contribute to any change of Ldi,γP ,ρj→σj,j+1
. Hence the

total contribution of these monomials to Ldi,γP ,ρj+1→σj,j+1
= LP,j is also zero.

Case (b). nj+2 ≤ d, nj = d − 1, d < nj+1. In this case only the terms

zm+∆(hi)+tj , i = 1, 2, may contribute. However, the same argument as in Case (a)
shows that the total contribution from these terms is zero.

Case (c). nj+2 ≤ nj = nj+1 = d. In this case, contributions to LP,j only arise

from terms of the form zm+∆(hi)+tj+1 . Choose ndi so that at the first time τi when
γP passes through di, 〈ndi , γ

′
P (τi)〉 < 0. By interchanging the labelling of d1 and d2

and choosing the base-point Q′ appropriately, we can assume firstly that γP passes
initially through d1 and then d2, and secondly that 〈ndi ,mj+1〉 ≥ 0 for i = 1, 2.
Write fdi = 1 + cdiz

mdi for i = 1, 2.
Then the term

〈nd1 ,mj+1〉ccd1ℏ−(ν+1)zm+∆(h1)+tj+1

appears in exp
(
(Wk(γP (t))−W0(γP (t)))/ℏ

)
right after γP crosses d1 the first time

(and disappears when we cross d1 for the second time), and hence, when γP crosses
d2 for the first time, we obtain a contribution to LP,j of

〈nd2 ,mj〉〈nd1 ,mj+1〉ccd1cd2 ·
·D2(d,m+ ∆(h1) + ∆(h2) + tj + tj+1)ℏ

−(ν+3d−|m+∆(h1)+∆(h2)|).

On the other hand, the term 〈nd2 ,mj+1〉ccd2ℏ−(ν+1)zm+∆(h2)+tj+1 appears after
γP crosses d2 for the first time (and disappears when we cross d2 for the second
time), and hence, when γP crosses d1 for the second time, we obtain a contribution
to LP,j of

〈−nd1 ,mj〉〈nd2 ,mj+1〉ccd1cd2 ·
·D2(d,m+ ∆(h1) + ∆(h2) + tj + tj+1)ℏ

−(ν+3d−|m+∆(h1)+∆(h2)|).

Note that

〈nd2 ,mj〉〈nd1 ,mj+1〉 − 〈nd1 ,mj〉〈nd2 ,mj+1〉 = −|nd1 ∧ nd2 |
= −|mprim(h1) ∧mprim(h2)|

as nd1 , nd2 form a positively oriented basis of NR, and mj ,mj+1 form a positively
oriented basis of MR.

Now the Maslov index two disks h3, . . . , hν+2 deform to disks with boundary P ,
which we also call h3, . . . , hν+2. We can then glue together the disks h1, . . . , hν+2

along with d− nj+2 copies of the Maslov index two disk with no marked points in
the direction mj+2. These are glued at their respective outgoing vertices, yielding
a vertex Vout, and we add one additional unbounded edge Ex with the label x,
also attached to the vertex Vout. This yields a graph Γ, whose valency at Vout is
Val(Vout) = ν + 3 + d − nj+2. Thus we obtain a parameterized curve h : Γ → MR

with h(x) = P . Again one easily checks the balancing condition at Vout.
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Thus the total contribution arising in the ways analyzed from cℏ−νzm to −LP,j
is

|mprim(h1) ∧mprim(h2)|wΓ′1
(Eout,1)wΓ′2

(Eout,2)·

·Mult0x(h)

( ∏

V ∈Γ[0]

V 6∈Ex

MultV (h)

)
ℏ−(ν+3d−(2d+nj+2))uI(h)

= |m(h1) ∧m(h2)|Mult0x(h)

( ∏

V ∈Γ[0]

V 6∈Ex

MultV (h)

)
ℏ−(Val(Vout)−3)uI(h).

One sees that if I(h) = {i1, . . . , i3d−ν′} for some ν′, then since h is obtained by
gluing two Maslov index zero disks with Val(Vout)− 3 Maslov index two disks, we
have

Val(Vout)− 3 =

ν+2∑

i=1

(|∆(hi)| −#I(hi)) + d− nj+2

= 3d− (3d− ν′) = ν′.

Thus we see that the coefficient of the contributions analyzed above from cℏ−νzm

to −LP,j is precisely the contribution of h to

(5.41) 〈Pi1 , . . . , Pi3d−ν′
, ψν

′

MR〉tropd,σj,j+1
uI(h)ℏ

−ν′

as desired.
Conversely, given an h contributing to (5.41) with h(x) = P , one can cut it at

P , using Lemma 5.12, (1), decomposing it into tropical disks. Then we see that h
arises precisely as above, exactly as in the proofs of Lemmas 5.55 and 5.56. Thus
we see that −LP,j is the contribution to (5.41) from maps with h(Ex) = P . �

Lemma 5.59. Let P ∈ σj,j+1 ∩ Sing(D), and suppose that P = Pℓ for some ℓ.
Then

−Ldi,γP ,ρj+1→σj,j+1
= uℓℏδd,0δ2,i +

∑

ν≥0

∑

h

Mult(h)uI(h)ℏ
−(ν+2−i),

where the sum is over all curves h contributing to 〈Pi1 , . . . , Pi3d−2+i−ν
, ψνS〉tropd,σj,j+1

for various i1 < · · · < i3d−2+i−ν such that h(Ex) = P .

Proof. Again, we may assume i = 2, and write

LP,j = Ld2,γP ,ρj+1→σj,j+1
.

Choose a basepoint Q′ near Pℓ. By Remark 5.29, there is a one-to-one correspon-
dence between rays in D containing Pℓ and Maslov index two disks with boundary
Pℓ not having Pℓ as a marked point. With Q′ sufficiently near Pℓ, these Maslov
index two disks deform to ones with boundary at Q′, so the Maslov index two disks
with boundary Pℓ not having Pℓ as a marked point are in one-to-one correspon-
dence with the Maslov index two disks with boundary Q′ not having Pℓ as a marked
point.

If we are interested in terms in exp((Wk(Q
′)−W0(Q

′))/ℏ) which may contribute
to LPℓ,j , we only need to look at those terms in exp((Wk(Q

′)−W0(Q
′))/ℏ) which
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do not have uℓ as a factor, as any term that does will not produce any new terms
as we cross a ray through Pℓ. So consider a term cℏ−νzm of the form

(5.42) cℏ−νzm = ℏ−ν
ν∏

p=1

Mult(hp)z
∆(hp)uI(hp),

where each of these disks hp with boundary Q′ does not pass through Pℓ, and hence
corresponds to a disk with boundary Pℓ, which we also write as hp : Γ′p → MR.
By extending these disks to trees and marking Pℓ, we obtain Maslov index zero
trees, corresponding to rays dp in D with initial point Pℓ. In addition, we have
rays cp ∈ D, p = 0, 1, 2, with initial point Pℓ, corresponding to the three Maslov
index two disks with boundary Q′ with no marked points. These do not appear in
Wk(Q

′)−W0(Q
′), so are distinct from the dp’s.

In what follows, we write m =
∑ν
p=1 ∆(hp) =

∑2
j=0 njtj , and take ndp and

ncp to have their sign chosen so that they are negative on γ′P when γP crosses
the corresponding ray. Note that as γP is counterclockwise, if we use the iden-

tification
∧2

M ∼= Z given by the standard orientation, i.e., m1 ∧ m2 7→ 1, then
wΓ′p(Eout,p)ndp = Xr(∆(hp)). So

(5.43)

ν∑

p=1

wΓ′p(Eout,p)ndp = Xr(m).

On the other hand, 〈ncj+1 ,mj〉 = −1 and 〈ncj+2 ,mj〉 = 1.
We can now view this term cℏ−νzm as giving rise to contributions to LP,j in

the following four ways:

(I) γP crosses dl for some 1 ≤ l ≤ ν. Then the term

ℏ−(ν−1)
ν∏

p=1
p6=l

Mult(hp)z
∆(hp)uI(hp)

in exp((Wk(Q
′)−W0(Q

′))/ℏ) contributes to LP,j if nj+2 ≤ nj = d < nj+1,
in which case the contribution is

〈ndl
,mj〉

( ν∏

p=1

Mult(hp)uI(hp)

)
uℓwΓ′

l
(Eout,l)D2(d,m+ tj)ℏ

−(ν+3d−|m|−1).

Note that such a contribution requires ν > 0.
(II) γP crosses cj . If cℏ−νzm contributes to LP,j when γP crosses cj , its

contribution would involve a factor of 〈ncj ,mj〉 = 0, hence there is no
contribution.

(III) γP crosses cj+1. We get a contribution from cℏ−νzm if nj+2 ≤ nj = d ≤
nj+1, in which case the contribution is

〈ncj+1 ,mj〉
( ν∏

p=1

Mult(hp)uI(hp)

)
uℓD2(d,m+ tj + tj+1)ℏ

−(ν+3d−|m|−1).

(IV) γP crosses cj+2. We get a contribution from cℏ−νzm if nj+2 < nj = d <
nj+1, in which case we get

〈ncj+2 ,mj〉
( ν∏

p=1

Mult(hp)uI(hp)

)
uℓD2(d,m+ tj + tj+2)ℏ

−(ν+3d−|m|−1).
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We now consider three cases.
Case (a). nj+2 ≤ nj = d < nj+1, ν > 0. In this case, ignoring the common

factors

ℏ−(ν+3d−|m|−1)uℓ

ν∏

p=1

Mult(hp)uI(hp),

the total contribution is, using (5.43) and the formula for D2 in Lemma 5.43,

〈
ν∑

l=1

wΓ′l
(Eout,l)ndl

,mj〉D2(d,m+ tj)−D2(d,m+ tj + tj+1)

+

{
D2(d,m+ tj + tj+2) nj+2 < d

0 nj+2 = d

= r(m) ∧mj(−1)nj+nj+1+1 (nj − d)!(nj+1 − d− 1)!

(d− nj+2)!

−(−1)nj+nj+1+2 (nj − d)!(nj+1 − d)!
(d− nj+2)!

+(−1)nj+nj+1+1 (nj − d)!(nj+1 − d− 1)!

(d− nj+2)!
(d− nj+2)

=
(
(nj+2 − nj+1) + (nj+1 − d) + (d− nj+2)

)
·

·(−1)nj+nj+1+1 (nj − d)!(nj+1 − d− 1)!

(d− nj+2)!

= 0.

So there is no contribution to LP,j from this case.
Case (b). nj+2 ≤ nj = d = nj+1, ν > 0. In this case we only get a contribution

from (III). In this case, we can glue together the disks h1, . . . , hν along with d−nj+2

copies of the Maslov index two disk with no marked points in the direction mj+2.
These are glued at their respective outgoing vertices, yielding a vertex Vout, and
we add two additional marked unbounded edges Ex and Epl

for some l attached to
Vout. This yields a graph Γ, whose valency at Vout is Val(Vout) = ν + (d− nj+2) +
2 = ν + 3d − |m| + 2. Thus we obtain a parameterized curve h : Γ → MR with
h(Vout) = h(x) = h(pl) = Pℓ. The contribution to −LP,j from (III) in this case is
then easily seen by inspection to be

(5.44) Mult0x(h)




∏

V ∈Γ[0]

V 6∈Ex

MultV (h)


 uI(h)ℏ

−(Val(Vout)−3).

Suppose that I(h) = {i1, . . . , i3d−ν′} for some ν′, recalling that ℓ ∈ I(h) since
we added the marked edge Epl

mapping to Pℓ. Since h is obtained by gluing
Val(Vout)− 2 Maslov index two disks, we have

Val(Vout)− 2 =

ν∑

i=1

(|∆(hi)| −#I(hi)) + d− nj+2

= 3d− (3d− ν′ − 1) = ν′ + 1.
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Thus we see that (5.44) is precisely the contribution of h to

〈Pi1 , . . . , Pi3d−ν′
, ψν

′

MR〉tropd,σj,j+1
uI(h)ℏ

−ν′

from Definition 5.13 (3) (b). As in the other cases we have considered, conversely
any such curve h will give rise to the correct monomial cℏ−νzm by cutting the curve
at P .

Case (c). ν = 0. There is only one element (c, ν,m) ∈ Sk with ν = 0, namely
(1, 0, 0) corresponding to the constant monomial 1. So n0 = n1 = n2 = 0 and we
have no contribution unless d = 0. Again, this contribution to LP,j only arises from
(III), and is

〈ncj+1 ,mj〉uℓD2(0, tj + tj+1)ℏ = −uℓℏ.
This gives the remaining claimed terms in −LP,j. �

Lemma 5.60.

−Ldi,γj,j+1,ρj+1→σj,j+1
=

∑

ℓ s.t.
Pℓ∈Q+σj,j+1

uℓℏδ0,dδ2,i+

+
∑

ν≥0

∑

I⊆{1,...,k}
I={i1,...,i3d−2+i−ν}
i1<···<i3d−2+i−ν

〈Pi1 , . . . , Pi3d−2+i−ν
, ψνS〉tropd,σj,j+1

uIℏ
−(ν+2−i)

for S = Q, L or MR for i = 0, 1 and i = 2 respectively.

Proof. This is just putting together the results of Lemmas 5.57, 5.58, and
5.59. �

We finally have:

Proof of Theorems 5.15 and 5.18. By Lemma 5.46, it is enough to prove (5.23),
(5.24) and (5.25). However, these now follow from Lemmas 5.54, 5.55, 5.56, and
5.60. �

5.6. References and further reading

The material of this section is drawn entirely from the paper [42]. The original
suggestion of using Maslov index two holomorphic disks to define the Landau-
Ginzburg potential was due to Cho and Oh in [16]; however, they only defined the
non-perturbed potential in this way. The work of Fukaya, Oh, Ohta and Ono [26]
and [23] pursued ideas analogous to the ideas presented here, using holomorphic
disks rather than tropical disks. The advantage of using holomorphic disks is that
one can apply this to all toric varieties, whereas tropical geometry has difficulty
seeing holomorphic curves on the boundary of a toric variety. On the other hand,
the cost is that one must make use of the immense work [24], [25] and it is very
difficult to make any computations. Chan and Leung in [14] introduced the idea of
using tropical geometry to study the Landau-Ginzburg potential; again, they only
worked with the unperturbed version. Finally, for a purely tropical, non-mirror-
symmetric, approach to gravitational descendent invariants for P2, see [77].
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CHAPTER 6

The program and two-dimensional results

We have now seen how, at least for P2, tropical geometry gives a very satisfac-
tory explanation for the A- and B-models of mirror symmetry. In this chapter, we
will explore how similar ideas may be used to explain mirror symmetry for more
complicated varieties, especially for Calabi-Yau manifolds.

The ideas described here represent joint work with Bernd Siebert, in a program
we began in 2001 (see [47], [48], [40], [51], [49]). There are a number of expository
articles explaining aspects of this program already: see especially [41], which ex-
plores how this program grew out of a study of the Strominger-Yau-Zaslow (SYZ)
conjecture, and [3], Chapters 6 and 7, for a more thorough description of aspects
of the SYZ conjecture.

Here, we shall take the more ahistorical point of view, and describe the pro-
gram by way of analogy with the ideas already covered in this book. We begin by
explaining roughly the correspondence between the tropical manifolds introduced
in Chapter 1 and nice degenerating families of varieties with effective anti-canonical
class — this includes the Calabi-Yau case, the best known example of mirror sym-
metry. This brings us to the fundamental problem of reconstructing such a family
of varieties from a tropical manifold.

The next two sections of this chapter explain the solution to this problem given
by myself and Siebert in [49] for the simplest, two-dimensional case. A complete
argument is given, modulo results of [45]. The proof I give here is more of a hybrid
of the approach of Kontsevich and Soibelman [70], which only deals with the two-
dimensional case, and the approach of [49], which deals with all dimensions, but is
significantly harder.

6.1. The program

The main content of Chapter 4 was a correspondence theorem between tropical
curves with vertices in MQ and algebraic curves defined over the field k((t)). We saw
there that a type of strong integrality for the tropical curves allowed us to conclude
that the algebraic curves were defined over k((t)), and not just over k((t)).

In general, one may not wish to work with tropical curves whose vertices lie in
MQ, in which case one should work over the field

K =

{∑

i

ait
ri

∣∣∣∣ ai ∈ k, ri ∈ R a sequence with ri →∞
}
.

This field carries a valuation ν : K× → R given by

ν

(∑

i

ait
ri

)
= min{ri}.

247
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Given a variety X ⊆ (K×)n, we can then define the tropicalization of X , Trop(X),
as

Trop(X) = {(ν(x1), . . . , ν(xn)) | (x1, . . . , xn) ∈ X} ⊆ Rn.

It turns out that Trop(X) is a type of tropical variety. We will not, however, define
precisely what we mean by this, but there is much discussion of the definition of
tropical varieties in the literature; see, for example, [96], [81]. Certainly tropical
varieties include the tropical curves already studied in this book.

One then asks the following natural question: when can a tropical variety in
Rn be realised as the tropicalization of a variety in (K×)n? In Chapter 4, we
essentially answered this question for tropical curves of genus zero in R2; in fact,
the same results are true for curves of any genus in R2, as shown by Mikhalkin
in [80]. However, in general, in Rn for n ≥ 3, only tropical curves of genus zero
come from actual curves; in higher genus this need not be the case: see [106] for
some results in this direction. Very little is known for tropical varieties of higher
dimension.

Let us change our point of view a bit. In the previous paragraph, Rn was the
ambient space, the “tropicalization” of (K×)n, and we were interested in which
tropical subvarieties of Rn are tropicalizations of varieties in (K×)n. Instead, let
us try to change the ambient space. Perhaps there are more interesting choices
which correspond to more interesting varieties. In particular, if we replace Rn with
a tropical affine manifold B in the sense of Definition 1.22, we obtain a larger set of
ambient varieties. As we saw in Chapter 1, tropical affine manifolds are precisely
the manifolds where one can still talk about tropical curves. The trouble is that
there are few interesting examples of compact tropical affine manifolds (Rn/Γ for
a lattice Γ being one such example, corresponding to a complex torus), so we need
to allow tropical affine manifolds with singularities, or more precisely, what we call
a tropical manifold in Definition 1.27.

So let B be a tropical manifold. It now becomes natural to try to associate
to such a manifold a variety defined over the field K. It is not immediately clear
what the connection between this variety and the tropical object should be, and
we will in fact avoid this question, for to give a proper answer requires working in
the category of rigid analytic spaces (see [70]). However, we will be able to give
a sensibly motivated suggestion if we assume furthermore that B is integral. The
advantage of working with integral tropical manifolds is that we can hope that the
corresponding variety is then defined over the subfield k((t)), as was the case in
Chapter 4.

Using the hints from Chapter 4, what we should in fact try to associate to
B is a scheme X defined over Spec k[t℄. The generic fibre Xη will be the desired
variety over k((t)), while the fibre X0 over the closed point will be a degenerate
variety. This should be of a similar flavour to the situation in Chapter 4, when we
considered degenerations of P2 or other toric surfaces. These degenerations arose
from polyhedral decompositions of R2. So, we should expect some choice involved
in X0. By analogy, it is reasonable that we need to make use of the polyhedral
decomposition P of B, as in Definition 1.27. This is the basic context of the
Gross-Siebert program.

In the remainder of this section, we will sketch some basic ideas of the Gross-
Siebert program without giving any technical details.
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6.1.1. The fan picture, or the A-model. So, given (B,P), let’s first try
to guess the form of the central fibre X0 of a degeneration X → Spec k[t℄ we may
wish to associate to (B,P). Again, taking guidance from Chapter 4, recall that
we considered pairs (MR,P). Each vertex v of P defined a fan Σv, defining a
toric variety Dv, and X0 was a union of irreducible components X0 =

⋃
v Dv with

v running over all vertices of P. The irreducible components of X0 are glued
together in a way dictated by the combinatorics of P.

The point is that we have exactly the same structure from an integral tropical
manifold (B,P). For each cell τ ∈ P, we obtain a fan Στ coming from the fan
structure on B. Corresponding to Στ is a toric variety Xτ (we shall use Xτ now
instead of the Dτ we used in Chapter 4). In particular, for each vertex v ∈P, we
have a toric variety Xv. Furthermore, if v, w are vertices of τ ∈P, then Στ can be
described as a quotient fan of both Σv and Σw, so Xτ is naturally a toric stratum
of both Xv and Xw. If τ is the smallest cell of P containing v and w, then we glue
Xv and Xw along the two copies of Xτ ⊆ Xv, Xτ ⊆ Xw.

In this way, we build a variety X0 = X0(B,P) which is a union of toric
varieties. For example, applying this to Example 1.28, (3), with (B,P) given by
∂Ξ3, one obtains a union of eight P2’s, glued together to form an octahedron.

In general, the situation is actually a bit more complex, as one has a choice
of identifications of Xτ ⊆ Xv and Xτ ⊆ Xw preserving the toric strata. This
gives some moduli of possible gluings, but there is always a canonical choice which
identifies the identity element of the big tori in the two copies of Xτ . We shall
always assume in this chapter that we have made this canonical choice of gluings
to avoid having to keep track of a lot of extra data.

Note that, so far, we have only made use of the fan structure on B, and made no
use of the fact that the cells of P themselves have the structure of lattice polytope.
On the other hand, in the situation in Chapter 4, it was very important to consider

X0 along with a log structure X†0 and a log morphism X†0 → Spec k†, preferably
log smooth. In fact, the lattice polytope structure gives us a hint as to what the
log structure should be, by determining the ghost sheafMX0 .

It is not difficult to see from the example of Chapter 4 what this ghost sheaf
should be. It is essentially entirely defined by its stalks at generic points of strata
of X0. If ητ is the generic point of Xτ ⊆ X0, then in the case of the degeneration
in Chapter 4, built from (MR,P), one has

(6.1) MX0,η̄τ = C(τ)∨ ∩ (N ⊕ Z).

In fact, in the general case of (B,P), we can do the same thing. Given τ ∈ P, τ
is a lattice polytope, so we can identify it with a lattice polytope τ ⊆ MR. Then
C(τ)∨ ∩ (N ⊕Z) still makes sense, and we require that (6.1) holds. We also require
thatMX0 is constant on the big torus orbit of Xτ .

It turns out this information is enough to determineMX0 , but it is much harder
to get an actual log structure. One does this by attempting to classify extensions

1→ O×X0
→MX0 →MX0 → 0

which yield log structures, along with sections ρ of MX0 defining a morphism to
Spec k†. This classification was the main result of [48]. The chief difficulty is that in
fact such an extension does not exist globally, but only away from a codimension two
closed subset Z ⊆ X0. As a consequence, [48] gives a description of log morphisms
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X†0 → Spec k† which are only log smooth off of a closed codimension two subset
Z ⊆ X0.

Example 6.1. The existence of the bad set Z is fundamental to the theory.
Consider, for example, a variety X given by tf4 +x0 · · ·x3 = 0 in P3×A1, where P3

has coordinates x0, . . . , x3, A1 has coordinate t, and f4 is a general homogeneous
polynomial of degree 4 in the variables x0, . . . , x3. Then the projection f : X → A1

is a degeneration of a quartic K3 surface to the union of coordinate planes in P3.
Set X0 = f−1(0).

Now note that X has singularities precisely at the 24 points

{t = f4 = 0} ∩ Sing(X0).

For a general choice of f4 these points are ordinary double points. Étale locally
near these double points, X0 ⊆ X looks like

V (t) ⊆ Spec k[x, y, w, t]/(xy − wt).
This inclusion was studied in Example 3.20. So if we take the log structure on X0

induced by the divisorial log structure X0 ⊆ X , the log structure fails even to be
fine at the 24 points. These 24 points yield the bad set Z; clearly the induced map

X†0 → Spec k† is not log smooth here.

One can see that the integral tropical manifold giving rise to such an X†0 is
given by the construction of Example 1.28, (3), applied to the reflexive polytope

Ξ = Conv{(−1,−1,−1), (1, 0, 0), (0, 1, 0), (0, 0, 1)}.
�

The final step is to realise X†0 as the central fibre of a family X → Spec k[t℄.
The log structure on X†0 should be the pull-back of a divisorial log structure on X
induced by D ∪X0, where D ⊆ X is some divisor whose restriction to each fibre is
an anti-canonical divisor (so in the Calabi-Yau case, D is empty).

This is essentially the problem solved in [49], and whose solution will be ex-
plained, in the two-dimensional case, in §6.2.

However, without having solved this problem, we can still ask about a cor-
respondence between tropical curves in B and curves in X , or more specifically,
curves in Xη̄, where η is the generic point of Spec k[t℄. As suggested in Chapter 4,
to explore this correspondence, one should first consider a correspondence between

tropical curves in B and log curves in X†0 . A properly defined notion of Gromov-

Witten invariants for X†0 should then give the same Gromov-Witten invariants for
Xη̄. In this way, one hopes to compute Gromov-Witten invariants of Xη̄ via tropical
geometry.

This is currently the most undeveloped aspect of the program, though work in
progress with Siebert [46], as well as work of Parker [91], [92], [93], is developing
the theory of log Gromov-Witten invariants. We will only exhibit a very simple ex-
ample, demonstrating the role that the singularities of the affine and log structures
play.

Example 6.2. Let us consider the surface (B̌, P̌) discussed in Example 1.31,
(5) and Example 1.33. I claim first that this surface corresponds to a degeneration
of a cubic surface of the form X = V (tf3 + x1x2x3) ⊆ P3 × A1, where f3 is a
general homogeneous polynomial of degree 3. We have π : X → A1, the projection,
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and the fibre X0 = π−1(0). The log structure on X is the divisorial one given by

V (x0) ∪X0 ⊆ X , and this induces a log structure X†0 .

To see that B̌ does indeed correspond to X†0 , let X ′0 = X0(B̌, P̌) be the variety

obtained from B̌ by the construction described in this section. We first note that
P̌ has three vertices, and for each v ∈ P̌, Σv is the fan for P2. So B̌ gives
rise to three copies of P2 glued together in precisely the way the three coordinate
planes in X0 are glued together. So X0 = X ′0. To make sure that B̌ also gives
the correct information aboutMX0 , we look at generic points of strata of X0. For
example, at the stratum x = (1 : 0 : 0 : 0) of X0, MX0,x = N3, as V (x0) ∪X0 is

a divisor with normal crossings at x. But the corresponding maximal cell of P̌ is
the two-dimensional standard simplex σ, and

C(σ)∨ ∩ Z3 ∼= N3.

Similarly, the point x = (0 : 1 : 0 : 0) is another stratum, which corresponds
to an infinite rectangle σ in P̌. Again, MX0,x = N3 as V (x0) ∪ X0 is a normal
crossings divisor at x with the irreducible components V (x0), V (x2) and V (x3) of
V (x0) ∪X0 passing through x. On the other hand, writing, say,

σ = Conv{(0, 0), (1, 0)}+ R≥0(0, 1),

then C(σ) is the cone generated by (0, 0, 1), (1, 0, 1) and (0, 1, 0). Thus

C(σ)∨ ∩ Z3 ∼= N3.

Similarly, one checks that the stalks ofMX0 along one- and two-dimensional strata
agree with the monoids defined using one- or zero-dimensional cells of P̌, respec-
tively. This shows that the structure of the stalks of MX0 are indeed the stalks
specified by the data (B̌, P̌). Note also that the total space of X has, for general
choice of f3, nine singularities at V (f3)∩Sing(X0). These nine singular points form
the bad set Z.

Next consider one of the tropical curves illustrated in Example 1.33. Based on
our experience in Chapter 4, we should look for a log curve mapping to a line in
one of the P2 components of X0, giving f : P1 → X0. However, we also know from
Proposition 4.9 that there will be problems when a point of this P1 is mapped into
Sing(X0): Proposition 4.9 rules this out. However, there is one crucial difference
between the current situation and the situation in Chapter 4: namely, there is

the locus Z ⊆ X0 where the log structure X†0 is not fine. The nine points of Z

correspond to the nine singular points in B̌. It turns out that the argument of
Proposition 4.9 breaks down precisely if every point p ∈ P1 with f(p) ∈ Sing(X0)
satisfies f(p) ∈ Z.

It is easy to count such curves. In each plane, there are precisely 3×3 = 9 lines
satisfying this property. Since there are three planes, this gives 27 possible choices.
Each of these choices deforms to give an actual line in π−1(t) for t 6= 0, and this
accounts for the 27 lines on the cubic surface. Morally, these correspond to the
27 tropical curves described in Example 1.33. These tropical curves are allowed to
terminate at singular points of B̌, and this represents the fact that we can have log

curves f : C† → X†0 with irreducible components passing through points of Z with
no matching irreducible component on another irreducible component of X0. �

While this description is very vague, it demonstrates the basic strategy for

A-model calculations: (B,P) gives rise to X†0 , and tropical curve counting on
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(B,P) should be equivalent to computing log Gromov-Witten invariants on X†0 ,
which in turn should be equivalent to Gromov-Witten invariants on a smoothing

of X†0 . Note, however, that one feature of this approach is that if the theory of
log Gromov-Witten invariants is properly set up, the comparison of log Gromov-

Witten invariants on X†0 with Gromov-Witten invariants on a smoothing should be
automatic, and we never need to know anything about the smoothing.

It is also natural to consider ample line bundles L on X0. In particular, when
we compute Gromov-Witten invariants, we might focus on curves of a given degree
on X0. A choice of such a line bundle gives rise to extra data on B. Indeed, if
we restrict L to any toric stratum Xτ of X0, we obtain an ample line bundle on
the toric variety Xτ , which is specified by a strictly convex integral PL function
ϕτ : |Στ | → R, well-defined up to a linear function. It is then easy to check
that if τ1 ⊆ τ2, so that Xτ2 ⊆ Xτ1 naturally, then ϕτ2 differs by a linear function
from ϕτ1(τ2) as defined in Definition 1.10. (See the discussion in §3.1.2 concerning
restriction of line bundles to toric strata.)

If Sτ : Uτ → Rk defines the fan structure along τ , then the collection ϕ =
{ϕτ ◦ Sτ} defines a strictly convex multi-valued integral PL function on (B,P).
This gives a triple (B,P, ϕ).

To summarize, the data (B,P, ϕ) corresponds, in the fan picture, to a pair

(X†0 ,L), where X†0 determines P and L determines ϕ. As mentioned previously,
there will in general be a whole moduli space of such pairs arising from choices of
gluing, but we shall ignore this here.

6.1.2. The cone picture, or the B-model. There is in fact another way to
interpret the pair (B,P), inspired by Example 3.6, the Mumford degeneration. The
Mumford degeneration coming from a lattice polytope ∆ ⊆ NR, with a polyhedral
decomposition P and strictly convex PL function ϕ, is a degeneration of P∆ whose
central fibre is

⋃
σ∈Pmax

Pσ.

Let us generalise this, starting with the pair (B,P). Each σ ∈ P defines a
projective toric variety Pσ. In particular, if σ1, σ2 ∈ Pmax with τ = σ1 ∩ σ2, we
can glue together Pσ1 and Pσ2 along the common toric stratum Pτ . In this way one
builds a scheme X̌0 = X̌0(B,P). Again, as in the fan picture, there is a choice
to this gluing, but we shall choose the canonical one, which identifies the identity
elements in the big tori of Pτ .

Each Pσ also carries an ample line bundle OPσ (1). Again, one can glue together
these line bundles (though not necessarily for every choice of gluing of the com-
ponents of X̌0), to obtain an ample line bundle L on X̌0. So essentially the data
(B,P) determines a pair (X̌0,L). It does not, however, determine a log structure,
which requires the additional choice of a multi-valued strictly convex PL function
ϕ on B, in analogy with the Mumford dgeneration.

Given such a function, it determines the monoids MX̌0,η̄τ
for ητ the generic

point of a stratum Pτ for τ ∈ P as follows. Up to affine linear functions, ϕ is
determined in a neighbourhood of τ by a PL function ϕτ : |Στ | → R, where Στ is
the fan in Rk determined by the fan structure along τ , with k the codimension of
τ . Then

(6.2) MX̌0,η̄τ
= {(m, r) |m ∈ |Στ |, r ≥ ϕτ (m)} ∩ (Zk ⊕ Z).



6.1. THE PROGRAM 253

As in the fan picture, these stalks determine MX̌0
, and then one follows the same

procedure for classifying extensions MX̌0
of MX̌0

by O×
X̌0

yielding log structures.

So one sees the symmetry between the fan and cone pictures. In the fan picture,
P determines M and ϕ determines L, and in the cone picture, P determines L
and ϕ determinesM.

Now in the Calabi-Yau case, the B-model involves period integrals measuring
variation of complex structure. To even talk about this, we need a family X̌ →
Spec k[t℄ which has X̌†0 as the central fibre. Thus it is not enough to obtain X̌†0 ,
but we need the entire family. This is the context in which we need to work:

Question 6.3. Given (B,P, ϕ) yielding X̌†0, is there a family X̌ → Spec k[t℄
with central fibre X̌0, along with a family D ⊆ X̌ of anti-canonical divisors inducing

a divisorial log structure D∪ X̌0 ⊆ X̌ which restricts to the log structure X̌†0 on the
central fibre?

The main result of [49] gives sufficient conditions on X̌†0 for a positive solution
to this problem. Furthermore, this solution, as we shall see, has a very tropical
nature.

In §6.2, we will give most of the details of the argument for the construction of
the family X̌ → Spec k[t℄ in the case dimB = 2, the higher-dimensional case being
much harder.

6.1.3. Mirror symmetry and the discrete Legendre transform. To first
approximation, the previous two sections argue that to the data (B,P, ϕ) one can
associate the log spacesX0(B,P)†, coming from the construction in the fan picture,
and X̌0(B,P)†, coming from the construction in the cone picture. As we saw, there
are choices of gluing and log structure, so there are really moduli spaces of such
structures, but for simplicity, we ignore this here.

The above discussion now suggests the following procedure for mirror symme-
try:

(1) Start with a degeneration π : X → Spec k[t℄ which is “nice,” i.e., the
central fibre is a union of toric varieties and π is log smooth away from
some set Z. This set should be codimension two and not contain any
toric strata. There are a number of more technical conditions. We won’t
give the precise set of conditions here, but see [48], Definition 4.1 or [41],
Definition 7.1 for the full definition. In short, we want π to be what we
call a toric degeneration. Also, choose a relatively ample line bundle L on
X .

(2) The log structure onX0 = π−1(0) determines an integral tropical manifold
(B,P) with singularities with X0 = X0(B,P) (in the fan picture), and
L determines a multi-valued integral PL strictly convex function ϕ, giving
a triple (B,P, ϕ).

(3) Now view (B,P, ϕ) in the cone picture, determining X̌0(B,P) with a log
structure. Construct a family X̌ → Spec k[t℄ with central fibre X̌0(B,P).
The families X , X̌ → Spec k[t℄ should be mirror.

Sometimes, we may wish to consider the A- and B-models on one side, say
for X → Spec k[t℄. As well as the triple (B,P, ϕ) with X0 = X0(B,P) and L
determining ϕ, there is another triple (B̌, P̌, ϕ̌), for which X†0 = X̌0(B̌, P̌)†.
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What is the relationship between (B,P, ϕ) and (B̌, P̌, ϕ̌)? The notation
should give this away: they are related by the discrete Legendre transform of §1.5.

Indeed, there is an inclusion reversing correspondence between P and P̌, writ-
ten as τ 7→ τ̌ , since both P and P̌ are in a one-to-one correspondence with strata
of X0, i.e., Xτ = Pτ̌ . The fan Στ is the normal fan to τ̌ precisely because Xτ = Pτ̌ .
Furthermore, τ̌ is the Newton polyhedron of ϕτ . Also, Στ̌ supports the function ϕ̌τ̌
which determines the log structure on X̌0(B̌, P̌) via (6.2). Comparing (6.2) with
(6.1), we see that we need the two cones C(τ)∨ and {(m, r) |m ∈ |Στ̌ |, r ≥ ϕ̌τ̌ (m)}
to be isomorphic. It is an easy exercise to check that this is the case if and only
if τ is a translate of the Newton polyhedron of ϕ̌τ̌ . Comparing with the construc-
tion of §1.5, one sees that (B̌, P̌, ϕ̌) is indeed the discrete Legendre transform of
(B,P, ϕ).

So, at one level, the discrete Legendre transform realises mirror symmetry.

Example 6.4. Let us consider the mirror to P2 from this point of view. P2 ×
A1

k → A1
k is a (trivial!) degeneration of P2 to a single toric variety. (B,P) is

just (R2,ΣP2), with ΣP2 the fan for P2. Choosing an ample line bundle OP2(n) on
P2 determines (up to linear functions) an integral PL function ϕ : B → R whose
Newton polyhedron is, up to translation, Conv{(0, 0), (n, 0), (0, n)}. This Newton
polyhedron is B̌ with P̌ being the faces of B̌ and ϕ̌ being linear. Let us take n = 1.

Viewing (B,P, ϕ) in the cone picture, we can simply construct the Mumford
degeneration. Here, we have

∆̃ = {(m, r) |m ∈ R2, r ≥ ϕ(m)},
and

C(∆̃) = {(sm, sr, s) | s ≥ 0, (m, r) ∈ ∆̃}
= {(m, r, s) | s ≥ 0, (m, r) ∈ ∆̃},

since ∆̃ is invariant under rescaling. Thus

C(∆̃) ∩ (Z2 ⊕ Z⊕ Z) = (∆̃ ∩ (Z2 ⊕ Z))⊕ N

and

Projk[(∆̃ ∩ (Z2 ⊕ Z))⊕ N] ∼= Spec k[∆̃ ∩ (Z2 ⊕ Z)].

Thus setting

P = {(m, r) |m ∈ Z2, r ≥ ϕ(m)} ⊆ Z2 ⊕ Z,

we get a natural map

Spec k[P ]→ Spec k[N] = A1
k

induced by the natural inclusion N →֒ P given by n 7→ (0, 0, n). Note that P ∼= N3:
with the correct choice of ϕ, we can take the generators of P to be (1, 0, 0), (0, 1, 0)
and (−1,−1, 1), and the map can be written as

Spec k[x0, x1, x2]→ Spec k[κ],

κ 7→ x1x1x2.

This gives the mirror family to P2 given in §2.2. This works for other toric varieties
too, but a variant of this construction to get multi-dimensional families is necessary
to get the mirror construction given in §5.1.1.
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6.2. From integral tropical manifolds to degenerations in dimension two

We will now fix for this section a triple (B,P, ϕ) where

• (B,P) is an integral tropical manifold of dimension two, possibly with
boundary, and possibly non-compact.
• ϕ is a piecewise linear multi-valued strictly convex function with integral

slopes.

We need to make two further assumptions about the singularities of B, which
concern the monodromy of the local system Λ around each singular point. Recall
that Λ is the local system on B0 ⊆ B of integral vector fields determined by the
integral affine structure on B0.

By construction, these singularities only occur on compact edges of P not
contained in the boundary of B. Let ω ∈ P be such an edge, contained in two
two-dimensional cells σ± ∈P. Label the vertices of ω as v+ and v−. Let dω ∈ Λv+
be a primitive tangent vector to ω at v+, pointing towards v−. Let ďω ∈ Λ̌v+ be
the unique integral cotangent vector which is primitive, annihilates dω, and takes
positive values on tangent vectors pointing into σ+. We can also view dω as selecting
which of the two vertices of ω is v+ and which is v−, and similarly can view ďω as
specifying which cell is σ+ and which cell is σ−.

Now consider a loop γ which is based at v+ and successively passes through
σ+, v−, σ−, and back to v+, as in Figure 1. Then it is not difficult to see that the
monodromy of the local system Λ around γ, which is a linear transformation

Tγ : Λv+ → Λv+ ,

takes the form

Tγ(m) = m+ κω〈ďω ,m〉dω
for some integer κω. (See Example 1.28, (4) where this is worked out in an explicit
case.) Note that κω is independent of choices: interchanging v+ and v− or σ+ and
σ− changes the sign of dω or ďω , but also reverses the direction of γ.

Definition 6.5. B is positive if κω ≥ 0 for all edges ω ∈P which are compact
and not contained in ∂B. We say B is simple if κω ∈ {0, 1} for all such edges ω.
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Positivity is a necessity even for the existence of a log structure on X̌0(B,P); if
positivity fails, the log structure will be bad along an entire stratum of X̌0(B,P),
and then there is no hope of a smoothing. Simplicity is not necessary, but will make
our arguments, well, simpler.

We shall henceforth assume (B,P) is positive and simple. Our goal now is to
construct an explicit smoothing of X̌0(B,P). In particular, we shall give a proof
of the following formal statement:

Theorem 6.6. Given (B,P) positive and simple with dimB = 2, and given a
multi-valued strictly convex integral PL function ϕ on (B,P) with integral slopes,
one can construct a formal flat smoothing X̌(B,P, ϕ)→ Spf k[t℄.

By formal, we mean that X̌(B,P, ϕ) is a formal scheme, with underlying topo-
logical space X̌0(B,P). The formal scheme Spf k[t℄ is the completion of the affine
line at the origin.

To get an actual flat deformation X̌ (B,P, ϕ) over Spec k[t℄, we need one more
ingredient. Provided that X̌ (B,P, ϕ) → Spf k[t℄ is proper (which is the case if B
is compact) and there is a relatively ample line bundle L on X̌(B,P, ϕ), then the
Grothendieck existence theorem ([52], 5.4.5) tells us that X̌(B,P, ϕ) is obtained by
the formal completion of some scheme X̌ (B,P, ϕ) over Spec k[t℄ along the central
fibre, isomorphic to X̌0(B,P). The flat family X̌ (B,P, ϕ) → Spec k[t℄ is the
desired one.

As we mentioned earlier, X̌0(B,P) carries a natural ample line bundle, ob-
tained by gluing together the line bundles OPσ(1) on the irreducible components
Pσ of X̌0(B,P), for σ ∈ Pmax. One can in fact check that this extends to an
ample line bundle on X̌(B,P, ϕ); this is really just a technical point, but we shall
not do this here. Instead, we shall focus on the proof of Theorem 6.6, which is a
special case of the main result of [49].

6.2.1. Warmup: the Mumford degeneration. To explain the basic strat-
egy, we will first study the case of the Mumford degeneration in greater detail. We
start with B ⊆ NR a lattice polyhedron, P a polyhedral decomposition of B into
lattice polytopes, and ϕ : B → R a convex piecewise linear function with integral
slopes. As we know from Example 3.6, this determines a polyhedron

∆̃ = {(n, r) ∈ NR ⊕ R |n ∈ B, r ≥ ϕ(n)}
which in turn defines a toric variety Pe∆ with a map

π : Pe∆ → A1
k.

Now the basic reason that this approach can’t work immediately for more interesting
B is that this construction is too global, and in particular requires an embedding
of B into NR. In general, we only have local embeddings of B into NR, away from
the singular points of B. Thus, before we can generalize this idea, we first need to
make this construction more local.

The first step is to consider infinitesimal versions of this. Letting

Ok := Spec k[t]/(tk+1),

consider

πk : Xk := Pe∆ ×A1 Ok → Ok.
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One reason this might be a reasonable thing to do is that we are only asking, in
general, for a degeneration over Spec k[t℄, not over A1

k, and in general we don’t
expect any better (see Example 6.15). Thus we can try to build this deformation
order by order, and take a limit. This is precisely what we will do in the general
case.

The next step is to describe in detail an affine cover of Xk. Let Σ̌ be the normal

fan to ∆̃, so that Pe∆ = XΣ̌. Of course, XΣ̌ has an affine cover indexed by cones of

Σ̌. In particular, if τ ∈P and

τ̃ := {(n, r) |n ∈ τ, r = ϕ(n)} ⊆ ∆̃

is the corresponding horizontal face of ∆̃ projecting to τ , denote by τ̌ the normal
cone Ne∆(τ̃ ). Note that τ̌ determines an affine open subset of XΣ̌, which we shall
write as Uτ . Then {Uτ | τ ∈ P} form an open cover of Pe∆. Indeed, while τ̌ does

not run over all cones in Σ̌ as τ runs over cells of P, all maximal cones of Σ̌ will

appear, being dual to zero-dimensional faces of ∆̃. Since the affine subsets of XΣ

corresponding to maximal cones of a fan Σ cover XΣ, we see {Uτ | τ ∈ P} covers
Pe∆.

The open set Uτ can be described as follows, using the fact (1.3) that

(τ̌ )∨ = (Ne∆(τ̃ ))∨ = Tτ̃∆̃.

(See also Remark 3.5.) We can describe Tτ̃ ∆̃ as follows. For σ ∈Pmax, let mσ ∈M
be the slope of ϕ|σ , i.e.,

mσ = d(ϕ|σ) ∈M.

Let ϕτ : NR → R be defined by

ϕτ (n) := max{〈mσ, n〉 | τ ⊆ σ ∈Pmax}.
Then one easily checks that

Tτ̃∆̃ = {(n, r) ∈ NR ⊕ R | r ≥ ϕτ (n)}.
Let

Pτ := Tτ̃∆̃ ∩ (N ⊕ Z)

= {(n, r) ∈ N ⊕ Z | r ≥ ϕτ (n)}.
Then by definition,

Uτ = Spec k[Pτ ].

Of course, π restricts to a map π : Uτ → A1
k given by the regular function

t = z(0,1), and we then make a base-change,

πk : Ukτ = Uτ ×A1 Ok → Ok.

Describing the sets Ukτ is now a more local problem on B. However, it is still
insufficiently local, as we shall see. To further refine this description, we note that
Ukτ and U0

τ = π−1(0) ∩ Uτ have the same underlying topological spaces, and hence
the same irreducible components. We would like to describe Ukτ by gluing together
the irreducible components of Ukτ .

Explicitly, this is done as follows. We first make the definition
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Definition 6.7. Let p = (n, r) ∈ Pτ , and τ ⊆ σ ∈Pmax. Then the order of p
along σ is

ordσ(p) = r − 〈mσ, n〉.
This is precisely the order of vanishing of the monomial zp ∈ k[Pτ ] along the toric
divisor of Uτ specified by σ̃.

Denote by P∂
max the set of cells of P contained in ∂B of dimension dimB− 1.

For τ ⊆ σ ∈ P∂
max, let mσ ∈ M be a primitive generator of the ray N∆(σ); note

that this is a ray both in the normal fan for ∆ and in the normal fan for ∆̃. Then
define

ordσ(p) = 〈mσ, n〉.
This is precisely the order of vanishing of the monomial zp ∈ k[Pτ ] along the toric

divisor specified by the maximal face {(n, r) ∈ ∆̃ |n ∈ σ} of ∆̃.
Given a pair ω ⊆ τ with ω, τ ∈P, set

Rω := k[Pω ].

Consider the monomial ideal Ikω,τ ⊆ Pω defined by

Ikω,τ := {p ∈ Pω | ∃σ ∈Pmax ∪P∂
max with τ ⊆ σ s.t. ordσ(p) > k}.

Ikω,τ then generates an ideal in Rω, which we also write as Ikω,τ , and define

Rkω,τ := Rω/I
k
ω,τ .

�

Note that by convexity of ϕω ,

I0
ω,τ = Pω \ {(n, r) |n ∈ Tωτ, r = ϕω(n)}.

So

R0
ω,τ
∼= k[(Tωτ) ∩N ].

As Tωτ = (Nτ (ω))∨ by (1.3) and Nτ (ω) is a cone in the normal fan Σ̌τ of τ , in
fact SpecR0

ω,τ can be viewed as the affine subset of Pτ (a toric stratum of π−1(0))

determined by the face ω ⊆ τ . Thus SpecRkω,τ can be viewed as a kind of thickening

of the closed subset SpecR0
ω,τ inside Uω.

Given ω ⊆ τ1 ⊆ τ2 with ω, τ1, τ2 ∈ P, we have an inclusion Ikω,τ2 ⊆ Ikω,τ1 , and
hence a surjection

ψτ1,τ2 : Rkω,τ2 ։ Rkω,τ1.

Example 6.8. In Figure 2, we depict a one-dimensional example. Here, B =

[0, 4] ⊆ NR = R, and the graph of ϕ is the lower part of ∆̃ as depicted. We depict

Σ̌, the normal fan to ∆̃, on the right. Figure 3 shows ϕω and Pω for various choices
of ω. Figure 4 shows the ideals Ikω,τ for various choices. �

Fixing ω, the set of rings

{Rkω,τ |ω ⊆ τ},
along with the maps ψτ1,τ2 , now form an inverse system. We have

Lemma 6.9.

lim
←−

Rkω,τ
∼= Rω/(t

k+1)

where t = zρ for ρ = (0, 1) ∈ Pω.
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Figure 2

Proof. An element of the inverse limit is a collection of elements (fτ )ω⊆τ with
fτ ∈ Rkω,τ such that, whenever τ1 ⊆ τ2,

ψτ1,τ2(fτ2) = fτ1 .

Since tk+1 ∈ Ikω,τ for all τ ⊇ ω, we have natural surjections

ψτ : Rω/(t
k+1)→ Rkω,τ .

Then clearly the map

f 7→ (ψτ (f))ω⊆τ

defines a homomorphism

ψ : Rω/(t
k+1)→ lim

←−
Rkω,τ ,

and we just need to show it is an isomorphism.
For injectivity, suppose ψ(

∑
p cpz

p) = 0, where p runs over elements of

Pω \ ((k + 1)ρ+ Pω).

This can only happen if ψ(zp) = 0 whenever cp 6= 0. But if ψ(zp) = 0, we have
p ∈ Ikω,τ for all τ ⊇ ω. In particular, if we take τ = σ ∈ Pmax, we must have
r > 〈mσ, n〉 + k if we write p = (n, r). Thus for all σ ∈ Pmax containing ω,
r − (k + 1) ≥ 〈mσ, n〉, so r − (k + 1) ≥ ϕω(n). Hence p − (k + 1)ρ ∈ Pω, i.e.,
zp ∈ (tk+1). This shows injectivity.

For surjectivity, consider (fτ )ω⊆τ in the inverse limit. Then we can write

fτ =
∑

p∈Pω\Ik
ω,τ

cp,τz
p.

Suppose that p ∈ Pω \ Ikω,τ and p ∈ Pω \ Ikω,τ ′ for two distinct τ, τ ′ ⊇ ω. If we show
that cp,τ = cp,τ ′ , so that we can define cp = cp,τ independently of τ , we can then
define f ∈ Rω/(tk+1) by

f =
∑

p∈Pω\
T

τ I
k
ω,τ

cpz
p,

so that ψ(f) = (fτ )ω⊆τ , showing surjectivity.
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Figure 3



6.2. INTEGRAL TROPICAL MANIFOLDS TO DEGENERATIONS 261

I2
{1},[0,1]

I2
{2},{2}

I2
[2,4],[2,4]

I2
{0},{0}

Figure 4. The shaded areas indicate the points of the monoids in
the ideal.
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To show this independence, first note that if τ ⊆ σ ∈ Pmax, τ
′ ⊆ σ′ ∈ Pmax,

then Ikω,σ ⊆ Ikω,τ , I
k
ω,σ′ ⊆ Ikω,τ ′ , so cp,σ = cp,τ and cp,σ′ = cp,τ ′ . Thus it is enough

to show cp,σ = cp,σ′ provided p 6∈ Ikω,σ, Ikω,σ′ .
First consider the case that there is a codimension one cell ρ ∈P with σ∩σ′ =

ρ. Then Ikω,ρ = Ikω,σ ∪ Ikω,σ′ , so p 6∈ Ikω,ρ. Thus cp,σ = cp,ρ = cp,σ′ .

For the general case, consider the Newton polyhedron ∆ϕω ⊆ MR (see Defi-
nition 1.8) of the function ϕω. Then ∆ϕω has vertices σ̌, σ̌′ with σ̌ = −mσ and
σ̌′ = −mσ′ . Suppose p = (n, r). So the fact that p 6∈ Ikω,σ ∪ Ikω,σ′ says that

r + 〈−mσ, n〉 < k + 1, r + 〈−mσ′ , n〉 < k + 1,

i.e., both σ̌ and σ̌′ lie on the same side of the hyperplane in MR defined by

〈·, n〉 = k + 1− r.
Since ∆ϕω is convex, one can find a sequence of vertices σ̌ = σ̌1, σ̌2, . . . , σ̌n = σ̌′ all
on the same side of this hyperplane, such that σ̌i−1 and σ̌i are connected by an edge
ρ̌i of ∆ϕω , corresponding to a codimension one cell ρi containing ω. Then p 6∈ Ikω,σi

for 1 ≤ i ≤ n, while σi−1 ∩ σi = ρi. Thus we are in the first case considered, with
cp,σ = cp,σ2 = · · · = cp,σ′ , as desired. �

Since

Ukω = SpecRω/(t
k+1),

we see that the open sets Ukω can be reconstructed from the rings Rkω,τ , which are

coordinate rings of thickenings of affine subsets of strata of π−1(0), for π : Pe∆ → A1
k

the usual projection. Of course, Xk can then be reconstructed from the open sets
Ukω , since if ω1 ⊆ ω2, we have a natural inclusion Ukω2

⊆ Ukω1
. These are induced by

the natural inclusions of rings

Rω1/(t
k+1) →֒ Rω2/(t

k+1)

induced by the inclusions Pω1 ⊆ Pω2 . In terms of the inverse systems, this can be
viewed as being induced by the natural inclusion Rkω1,τ ⊆ Rkω2,τ whenever ω1 ⊆
ω2 ⊆ τ . At any rate, gluing together the open sets Ukω via these natural inclusions,
one obtains the scheme Xk.

The main point is that while this construction of Xk seems rather more com-
plicated, we have now given a much more local description of Xk which can be used
in more general settings, as we explore next.

6.2.2. The global case: no singularities. The first step in generalizing the
above approach is to replace B with a general integral tropical manifold without
singularities (we still allow B to have boundary or be non-compact). So consider
such a B, or rather, a triple (B,P, ϕ). Note that we now allow ϕ to be multi-
valued. This is important, since, first, we only really need local descriptions of ϕ
defined up to a linear function, and second, there are in general no global strictly
convex single-valued piecewise linear functions.

Example 6.10. Let Γ ⊆ N be a sublattice, and let B = NR/Γ. We choose
a polyhedral decomposition P and a multi-valued strictly convex piecewise linear
function with integral slopes. This data can, in this case, be viewed on the universal
cover NR of B, in which case P should be viewed as a Γ-periodic polyhedral
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decomposition of NR and ϕ : NR → R should be strictly convex, and satisfy for any
γ ∈ Γ

ϕ(x + γ) = ϕ(x) + αγ(x)

for some affine linear function αγ : NR → R.

In fact, what we are about to say will apply even if B has singularities, so for
the moment, we consider the most general case of (B,P, ϕ) with B an integral
tropical manifold with singularities.

Definition 6.11. Given (B,P, ϕ) as above, let {(Ui, ϕi)} be a choice of rep-
resentatives for ϕ on an open cover {Ui} of B. Define the sheaf Pϕ on B0 as an
extension

0→ Z→ Pϕ → Λ→ 0

as follows. First,

Pϕ|Ui
∼= Z⊕ Λ|Ui .

At x ∈ Ui ∩ Uj ∩B0, we identify

(r,m) ∈ (Z⊕ Λ|Ui)x with (r + d(ϕj − ϕi)(m),m) ∈ (Z⊕ Λ|Uj )x,

giving the gluing of Z ⊕ Λ|Ui and Z ⊕ Λ|Uj over Ui ∩ Uj ∩ B0. Note that this
makes sense: ϕj − ϕi is an affine linear function with integral slope, so d(ϕj − ϕi)
is naturally a section of Λ̌ over Ui ∩ Uj ∩ B0, which can then be evaluated on m a
tangent vector.

For a section m of Pϕ, we denote its image in Λ under the projection Pϕ → Λ
by m̄.

Remark 6.12. In fact, the sheaf Pϕ can be described as Aff (B̌,Z), the sheaf of

affine linear functions on B̌, the discrete Legendre transform of B, after making a
canonical identification of B and B̌. This description was used in [49]; here we will
use the above description to avoid too much use of the discrete Legendre transform.

We next generalize the notion of the monoids Pτ to this situation. Previously,
these lived in N⊕Z. Viewing N as the space of integral tangent vectors to NR, it is
then natural to imagine that the correct global version of N ⊕ Z is some extension
of Λ by Z. In fact, Pϕ is the correct extension.

Definition 6.13. An exponent at a point x ∈ B0 is an element of the stalk of
Pϕ at x. We define, for any point x ∈ B0, a monoid

Pϕ,x ⊆ Pϕ,x
with P gp

ϕ,x = Pϕ,x, as follows. Suppose x ∈ Ui. For each σ ∈ Pmax such that

x ∈ σ, let ϕi,σ ∈ Λ̌x be the differential of ϕi|σ. Let Σx be the fan (of not necessarily
strictly convex cones) in Λx ⊗Z R given by the tangent wedges

Σx := {Txτ |x ∈ τ ∈P}.
Let ϕi,x : |Σx| → R be the function which is given by ϕi,σ on the cone Txσ for
σ ∈Pmax. Define

Pϕ,x := {(r,m) |m ∈ |Σx|, r ≥ ϕi,x(m)} ⊆ Pϕ,x,
using the splitting Pϕ,x = Z⊕ Λ|Ui .
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The point of the sheaf Pϕ is that the monoid Pϕ,x is independent of the choice
of open set Ui used to define it. Indeed, note that

ϕj,x = ϕi,x + d(ϕj − ϕi).
So if m ∈ |Σx|, we have

(r,m) ∈ Pϕ,x as defined in Ui

⇔ r ≥ ϕi,x(m)

⇔ r ≥ ϕj,x(m)− d(ϕj − ϕi)(m)

⇔ r + d(ϕj − ϕi)(m) ≥ ϕj,x(m)

⇔ (r + d(ϕj − ϕi)(m),m) ∈ Pϕ,x as defined in Uj.

This shows that Pϕ,x is well-defined. Furthermore, the same argument shows that
the notion of order as defined in Definition 6.7 makes sense. If we use the splitting
defined using ϕi as above, and write p ∈ Pϕ,x as (r,m) under this splitting, then
for σ ∈Pmax with x ∈ σ, we define

ordσ(p) = r − ϕi,σ(m),

and one checks easily as above that this is well-defined independently of the choice
of splitting.

Similarly, for σ ∈ P∂
max, the set of cells of P contained in ∂B of dimension

dimB − 1, we define, if x ∈ σ,

ordσ(p) = 〈nσ,m〉,
where nσ ∈ Λ̌x is primitive, vanishes on Txσ, and is non-negative on |Σx|. This is
clearly independent of the splitting, depending only on m = p̄.

Remark 6.14. Although in this subsection we will focus on the case where B
has no singularities, let’s describe the monodromy of P locally near a singular point
if dimB = 2 and B has positive singularities. Let p ∈ B be such a singular point,
with p ∈ ω a one-dimensional face. Then using a representative ϕUω on Uω, the
open star of ω, we get a splitting

Pϕ|Uω = Z⊕ Λ|Uω .

So of course the monodromy of Pϕ around the loop depicted in Figure 1 then splits
as

(r, m̄) 7→
(
r, m̄+ κω〈ďω , m̄〉dω

)

= (r, m̄) + κω〈ďω, m̄〉(0, dω).

Now recall that the representative ϕUω for a multi-valued piecewise linear function
is given by ϕUω = λ + ϕω ◦ Sω (Definition 1.30) where λ is affine linear on Uω.
However, the differential dλ is a section of Λ̌. One sees easily from the description
of monodromy of Λ that the action of the transpose monodromy on Λ̌ is

n 7→ n+ κω〈n, dω〉ďω.
Thus, in particular, if λ is well-defined on Uω, dλ must be monodromy invariant. So
if κω 6= 0, then we must have 〈dλ, dω〉 = 0. Thus in particular ϕUω is constant on ω
and for x ∈ Int(ω) \ {p}, ϕUω ,x is zero along the tangent space to ω, generated by
dω. Thus (0, dω) ∈ Z⊕Λv+ = Pϕ,v+ can in fact be interpreted as the unique element
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σ

x

y

ω

Figure 5

m− of Pϕ,v+ such that m̄− = dω and ordσ±(m−) = 0. Then the monodromy on
Pϕ,v+ is

m 7→ m+ κω〈ďω , m̄〉m−,
and this description is now independent of the choice of splitting. �

Now for ω ⊆ τ ⊆ σ with ω, τ ∈ P, σ ∈ Pmax, we will define a ring Rkω,τ,σ as
follows. Choose any point x ∈ Int(ω) ∩ B0; this gives us the monoid Pϕ,x ⊆ Pϕ,x.
We choose a short path from x that passes immediately into the interior of σ with
endpoint y, see Figure 5. Via parallel transport in the local system Pϕ, we identify
Pϕ,x with Pϕ,y. The monoid Pϕ,x ⊆ Pϕ,x then yields, via this identification, a
monoid we call Pϕ,ω,σ contained in Pϕ,y. It is easy to see that this is defined
independently of the choice of x, since the sheaf Pϕ has no monodromy on the
contractible set σ ∩B0.

The basic idea here is that we use σ as a reference rather than x; this will turn
out to be better for bookkeeping later on.

Now we define an ideal

Ikω,τ,σ ⊆ Pϕ,x = Pϕ,ω,σ,

by

Ikω,τ,σ = {p ∈ Pϕ,x | ∃σ′ ∈Pmax ∪P
∂
max with τ ⊆ σ′ s.t. ordσ′(p) > k}.

One checks easily that this is well-defined in Pϕ,ω,σ independently of the choice of
x. We then define

Rkω,τ,σ := k[Pϕ,ω,σ]/I
k
ω,τ,σ.

This is completely analogous to the Mumford degeneration of the previous subsec-
tion.

So far, as we said, this works even when B has singularities. For the remainder
of this subsection, however, we need to assume B has no singularities.

In this case, given ω ⊆ τ ⊆ σ, σ′ ∈Pmax, there is a canonical isomorphism

Rkω,τ,σ
∼= Rkω,τ,σ′ .

This is obtained by parallel transport in Pϕ along a path joining y ∈ σ to y′ ∈ σ′
as in Figure 6. Thus these rings are defined independently of the reference cells, so
we just write them as Rkω,τ , as in the Mumford case.
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σ

σ′

ω

y

y′

Figure 6. Comparing rings with different reference cells.

We then build open sets

Ukω := Spec lim
←−

Rkω,τ

using, for ω ⊆ τ1 ⊆ τ2, the canonical surjections

ψτ1,τ2 : Rkω,τ2 → Rkω,τ1.

Furthermore, for ω1 ⊆ ω2, we have inclusions

Ukω2
⊆ Ukω1

induced by the inclusions Rkω1,τ ⊆ Rkω2,τ , and so we can glue the various open sets

Ukω together using these identifications.
This gives a scheme Xk over Ok. If we take k = 0, it is not difficult to check

that X0 = X̌0(B,P), i.e., X0 is obtained by gluing together the Pσ for σ ∈Pmax.
Indeed, consider σ ∈ Pmax. For ω ⊆ σ a face, let x ∈ Int(ω) be a point, and
suppose x ∈ Ui, where ϕ is represented by ϕi, so

Pϕ,x = {(r,m) |m ∈ |Σx|, r ≥ ϕi,x(m)}.
Then, identifying this with Pϕ,ω,σ, we see that

Pϕ,ω,σ \ I0
ω,σ,σ = {(r,m) |m ∈ |Σx|, r ≥ ϕi,x(m), r = ϕi,σ(m)}.

Thus (r,m) ∈ Pϕ,ω,σ \ I0
ω,σ,σ if and only if m points into σ and r = ϕi,σ(m), by

strict convexity of ϕi,x. So we can identify k[Pϕ,ω,σ]/I
0
ω,σ,σ with k[(Tωσ) ∩ Λx].

Identifying Λx with Λy for y ∈ Int(σ) a fixed point, we see that Spec k[(Tωσ) ∩Λy]

is the affine open subset of Pσ specified by the cone Nσω ∈ Σ̌σ, the normal fan to
σ. Furthermore, the inclusions R0

ω1,σ ⊆ R0
ω2,σ whenever ω1 ⊆ ω2 ⊆ σ, correspond

to the natural inclusions

k[(Tω1σ) ∩ Λy] ⊆ k[(Tω2σ) ∩ Λy],

which tells us that when we glue together the sets SpecR0
ω,σ via these inclusions,

we obtain Pσ. Since the sets SpecR0
ω,σ are the irreducible components of U0

ω, we
see that X0 is indeed the gluing of the toric varieties Pσ.

So this shows that the construction so far is local enough to deal with arbitrary
integral tropical manifolds without singularities.
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Figure 7. The polyhedron ∆̃.

Example 6.15. Let B = R/dZ for d a positive integer,

P = {[i, i+ 1] | 1 ≤ i ≤ d} ∪ {{i} | 1 ≤ i ≤ d}.
We can define ϕ globally on the universal cover R of B by

ϕ(x) = ix− i(i+1)
2 for x ∈ [i, i+ 1]

and then ϕ satisfies a periodicity condition

ϕ(x+ d) = ϕ(x) + d · x+
d(d− 1)

2
.

In this case, Xk is a k-th order smoothing of a cycle of d rational curves. In fact,
we did not need to use this local description. There is a global construction of Xk

given by working on the universal cover of B, as follows.
Let

∆̃ := {(n, r) ∈ R⊕ R | r ≥ ϕ(n)},
as depicted in Figure 7. Let Σ̌e∆ be the normal fan to ∆̃. This is an infinite
fan, with rays generated by (i, 1), i ∈ Z, and two-dimensional cones generated by
{(i, 1), (i+ 1, 1)} for i ∈ Z, see Figure 8.

· · · · · ·

Figure 8. The normal fan of ∆̃.

This defines a toric variety X := XΣ̌ e∆
which is not of finite type, along with

a regular function π : X → A1
k given by projection onto the second coordinate as

usual. This is just an infinite version of the Mumford construction, with π−1(0) an
infinite chain of P1’s and the general fibre of π being a copy of Gm. Note that the
group Z acts linearly on the fan Σ̌e∆ by

Z ∋ 1 7→
(

1 d
0 1

)
∈ GL2(Z).
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Thus Z acts on X , and this action, restricted to π−1(0), is given by shifting the
chain of P1’s d places.

Now ideally, one would like to divide out by this action, defining X/Z. However,
this quotient is not well-behaved. Indeed, one can see this by noting that if we take
t to be the coordinate on A1, then with coordinates z1, z2 on the big torus orbit of
X corresponding to the standard basis of R⊕R, π−1(t) is identified with a Gm with
coordinate z1 and z2 = t. The action of 1 ∈ Z in these coordinates is z1 7→ z1z

d
2 ,

z2 7→ z2, and hence the action on Gm = π−1(t) is z1 7→ z1t
d. This action has fixed

points when t = 1. As a consequence, this quotient is not well-behaved and does
not exist even in the category of complex manifolds.

There are two ways to fix this. The easier way is to work complex analytically,
and note that π−1(D)/Z does make sense, where D = {t | |t| < 1} is the unit
disk. This gives us a fibration π−1(D)/Z whose general fibre is an elliptic curve
isomorphic to C/〈1, 1

2πi log t〉, and whose fibre over 0 is a cycle of d rational curves.

Note that this fibration does not extend to one over A1.
Alternatively, we can set

X̃k := X ×A1 Ok,

and then Xk := X̃k/Z does make sense. In fact, Xk is precisely the k-th order
thickening of X̌0(B,P) that we have constructed above. By taking the limit as
k →∞, one obtains a formal scheme defined over the formal spectrum of k[t℄. With
suitable care, one can then apply the Grothendieck existence theorem ([52], 5.4.5)
to show that this arises via the completion along the central fibre of a scheme
defined over Spec k[t℄. This is the best that we can, in general, achieve in the
algebro-geometric setting.

More generally, if B = Rg/Γ for a lattice Γ ⊆ Zg ⊆ Rg, the same procedure
works. This is Mumford’s construction of degenerations of abelian varieties, see [84]
and [2]; the one-dimensional case just discussed is usually called the Tate curve. So
in fact we don’t really get anything new with this construction until we introduce
singularities. �

6.2.3. Introducing singularities: The strategy. We now consider the case
when B is allowed to have singularities. At this point, we shall restrict to the case
dimB = 2, as this is the case we will cover here. Much of the complexity of [49]
is due to difficulties in higher dimensions. In dimension two, the method of [49]
can be described in much the same fashion as the argument of Kontsevich and
Soibelman in [70].

So let us consider a local situation where we have an edge ω ∈ P containing
a singularity, which we shall assume is positive and simple. With the labelling in
Figure 9, the monodromy of a loop γ based at the point x passing clockwise around
the singularity takes the form

Tγ(m) = m+ 〈ďω,m〉dω ,
where dω is a primitive tangent vector pointing from v+ to v− and ďω is primitive,
orthogonal to dω , and is positive on σ+. Thus, if we take a basis for Λx given by
e1 = dω and e2 a primitive tangent vector pointing into σ+, we find that

Tγ(e1) = e1

Tγ(e2) = e1 + e2.
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Figure 9

Furthermore, we can take a PL function ϕ to be 0 on σ− and to have slope e∗2 on
σ+, with e∗1, e

∗
2 the dual basis of Λ̌x.

We now have rings Rkω,σ±,σ± and Rkω,ω,σ± . Identifying Λy± with Λx via the

paths from y± to x indicated in Figure 9, we can write, with Z3 = Z⊕ Λx = Pϕ,x,
the generators of Pϕ,x to be (1, 0, 1), (0, 0,−1), and (0,±1, 0). Set

u = z(1,0,1), v = z(0,0,−1), w = z(0,1,0),

so that

Rkω,σ+,σ+
∼= k[u, v, w±1]/(vk+1),

Rkω,σ−,σ−
∼= k[u, v, w±1]/(uk+1),

Rkω,ω,σ±
∼= k[u, v, w±1]/(uk+1, vk+1).

Now we have canonical surjections

Rkω,σ+,σ+
։ Rkω,ω,σ+

,

Rkω,σ−,σ− ։ Rkω,ω,σ− ,

and to obtain an inverse system, we need to identify Rkω,ω,σ− and Rkω,ω,σ+
. However,

because of the singularity, we don’t have a canonical identification. There are in
fact two perfectly natural identifications: one, Ψ, using parallel transport in Pϕ
along the path from y+ to y− via x, as depicted in Figure 9, and the other, Ψ′,
coming from a similar path from y+ to y− via x′.

Because we identified Λy+ and Λy− by passing through x already,

Ψ : Rkω,ω,σ+
→ Rkω,ω,σ−

is given by

u 7→ u, v 7→ v, w 7→ w.

On the other hand, the map from Λy+ to Λy− given by parallel transport through
x′ is just the inverse to Tγ , i.e., e1 7→ e1, e2 7→ e2 − e1, so

Ψ′ : Rkω,ω,σ+
→ Rkω,ω,σ−

is given by

u 7→ uw−1, v 7→ vw, w 7→ w.
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Now in these two cases, we can form the inverse limit. In this case, the inverse limit
is just the fibre product of rings,

Rkω := Rkω,σ+,σ+
×Rk

ω,ω,σ−
Rkω,σ−,σ−

where the map Rkω,σ+,σ+
→ Rkω,ω,σ− is the composition of the natural surjection

Rkω,σ+,σ+
։ Rkω,ω,σ+

with either Ψ or Ψ′, and the map Rkω,σ−,σ− → Rkω,ω,σ− is just
the natural surjection. For the fibre product using Ψ, we get

Rkω = k[U, V,W±1, t]/(UV − t, tk+1)

with
U = (u, u), V = (v, v), W = (w,w), t = (uv, uv),

while using Ψ′, we get

Rkω = k[U, V,W±1, t]/(UV − tW, tk+1)

with
U = (uw, u), V = (v, vw), W = (w,w), t = (uv, uv).

There is no natural way of identifying these two rings, and this is a fundamental
problem which needs to be overcome.

The solution is to modify the rings Rkω,ω,σ± by localizing them at 1 + w−1 (or

equivalently, 1+w), and modifying the maps Ψ and Ψ′ by composing each of these
with an automorphism of (Rkω,ω,σ−)1+w−1 . We take the new Ψ to be the old Ψ
composed with the automorphism

u 7→u(1 + w−1),

v 7→v(1 + w−1)−1

w 7→w.
and the new Ψ′ to be the old Ψ′ composed with the automorphism

u 7→u(1 + w),

v 7→v(1 + w)−1

w 7→w.
These new maps Ψ, Ψ′ are given by

Ψ : u 7→ u(1 + w−1), v 7→ v(1 + w−1)−1, w 7→ w

Ψ′ : u 7→ uw−1(1 + w), v 7→ vw(1 + w)−1, w 7→ w

Note that these two maps now actually coincide. So the fibre product is now well-
defined, and one can see (as will be shown in §6.2.6), using the above choice of Ψ
or Ψ′, that

Rkω,σ+,σ+
×(Rk

ω,ω,σ−
)1+w−1

Rkω,σ−,σ−

is now the ring

Rkω := k[U, V,W±1, t]/(UV + (1 +W−1)t, tk+1)

with

U = (u, u(1 + w−1)), V = (v(1 + w−1), v), W = (w,w), t = (uv, uv).

Note that Spec k[U, V,W±1, t]/(UV + (1 + W−1)t) now defines a smoothing of
Spec k[U, V,W±1]/(UV ), but the total space of the smoothing is singular at U =
V = t = 0, W = −1. This singularity reflects the singularity of the affine structure.
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This fix may seem rather ad hoc initially, but in fact it is fundamental. The
way to view this is as follows. Imagine two rays emanating from the singular point,
in opposite directions, along the edge ω. Label the ray going to the right in Figure
9 with 1 +w−1 and the ray moving to the left with 1 +w. This instructs us that if
we need to cross one of these rays to compare two rings, we twist the map between
these two rings using an automorphism defined using the attached function.

In order to continue to glue consistently even away from ω, we need to imagine
these rays extending indefinitely in B. However, these various rays intersect at
points, destroying compatibility of the gluing because the associated twistings of
the gluings don’t commute. The question of how to fix this was the crucial problem
solved by Kontsevich and Soibelman in [70]. The solution is to add new rays with
new attached functions emanating from the intersection points of the old rays in
such a way so that compatibility is restored. These in turn generate new collisions,
so more rays are added. In the end one obtains for each k a finite set of rays
describing the k-th order deformation. As k →∞, we normally expect the number
of rays to grow without bound.

In the next few sections, we shall make this whole procedure precise.

6.2.4. Structures. In this section we will formalize the data needed to specify
the modifications of the gluing sketched in the previous subsection. The data which
specifies a way of modifying the gluing is called a structure, and consists of a set
of rays. A ray is a geometric object, essentially a ray in B, which we call a naked
ray, along with a function, which will specify the gluing when we cross this ray. We
first define naked rays.

We fix in this section (B,P, ϕ) with B an integral tropical manifold with
singularities. Furthermore, we assume that B is two-dimensional, positive, and
simple. We allow B to have a boundary or be non-compact. Let

i : B0 →֒ B

be the inclusion, and let
∆ := B \B0.

Definition 6.16. A naked ray d on B is a map

d : Id → B,

where the interval Id is either [0,+∞) or [0, Ld] for some Ld > 0, satisfying the
following properties:

(1) d is a continuous immersion, i.e., locally on Id, it is injective. Furthermore,
it is differentiable on d−1(B0).

(2) If d(0) ∈ B0, then d(0) has rational coordinates with respect to an integral
affine coordinate chart.

(3) There exists a non-zero global section

m̄d ∈ Γ(Id, d
−1i∗Λ).

In particular, if x ∈ d−1(B0), then the stalk of d−1i∗Λ at x is canonically
identified with the stalk of Λ at d(x), so this specifies a tangent vector
m̄d,x at d(x). We then require that if t is the coordinate on Id, then for
any point x ∈ d−1(B0), we have

d∗(∂/∂t) = −m̄d,x

at x. So we can think of −m̄d,x as specifying the velocity.
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(4) If Id = [0, Ld], then d(Ld) ∈ ∂B and d([0, Ld)) ⊆ B \ ∂B. If Id = [0,+∞),
then d(Id) ⊆ B \ ∂B. So in particular, if B has no boundary, then Id =
[0,+∞).

Let us explore what this means. First, the condition that d∗(∂/∂t) = −m̄d,x

tells us that for any connected open set U ⊆ Id with d(U) ⊆ B0, the image of
U is locally a line segment with rational slope, since it has a locally constant and
integral tangent vector.

Second, the behaviour at points x ∈ Id with d(x) ∈ ∆ is restricted. Recall
that in a loop based at a point y around a point p of ∆, the local system Λ has
monodromy T given in some basis e1, e2 of the stalk Λy by T (e1) = e1, T (e2) =
e1 + e2. This means that if V is a small open neighbourhood of p, then Γ(V \∆,Λ)
can be identified with the monodromy invariant elements of Λy, so

Γ(V \∆,Λ) ∼= Ze1.

Thus Γ(V, i∗Λ) = Ze1 by definition of the push-forward, and in particular

Γ(U, d−1i∗Λ) = Ze1

for U a small open neighbourhood of x ∈ Id. In particular, m̄d,x′ must, for any
x′ ∈ U \ {x}, lie in the subgroup of Λd(x′) invariant under the monodromy given by
parallel transport around a loop about p.

Thus, when the image of d passes through a singular point of B, it must pass
through in the unique invariant tangent direction. But we know exactly what these
invariant tangent directions are: they are given by the edges of P containing the
singular points. Indeed, we saw this explicitly in Example 1.28, (4). Summarizing,
the image of d is locally a line of rational slope, and when it passes through a
singular point, it coincides with the edge of P containing this singular point.

Note that it is also easy to construct naked rays. Choose a point y ∈ B0 \ ∂B
with rational coordinates in any (or equivalently all) integral affine coordinate charts
around y. Choose m̄ ∈ Λy, and define d : Id → B as a solution to the differential
equation

d′(x) = −m̄x,

where m̄x denotes the parallel transport of m̄ along the path determined by d.
In other words, we just extend d locally as a line of rational slope, completely
determined once the initial slope −m̄ is given. We stop if we reach the boundary
of B.

There is one problem: what happens if we hit a singular point p of B? We
are fine if near p, d coincides with the edge of P passing through p; then we just
extend d through the singular point. However, we are not allowed to pass through
p in any other way. To prevent this, we make the following assumption:

Assumption 6.17. For p ∈ ∆, let ω ∈ P be the edge containing p. Note that
ω is identified with a lattice line segment in R, so it makes sense to demand that p
be an irrational point in ω. We assume that all such p are indeed irrational. Since
the choice of p inside ω was arbitrary in Construction 1.25, we can always assume
this.

As a consequence of this assumption, we never have to worry about d passing
through singular points in an illegal way: since d(0) is rational and d has rational
slope, the image of d always intersects an edge ω in a rational point, provided d is
transversal to ω.
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If we want to define a naked ray d with d(0) ∈ ∆, then we only have two
choices for the initial direction of d: it must be tangent to the edge containing d(0).
We can then build this ray as before. Even though d(0) is not a rational point, it
will still only pass through singular points in the invariant directions, again by the
assumption.

We can now define a ray:

Definition 6.18. A ray (d, fd) in B consists of two pieces of data:

• d : Id → B a naked ray,
• fd = 1 + cmz

m where cm ∈ k and m is a section of Γ(Id, d
−1i∗Pϕ) such

that m̄ ∈ Γ(Id, d
−1i∗Λ) (see Definition 6.11) is proportional to m̄d with

a positive constant of proportionality. Furthermore, for each x ∈ Id such
that d(x) ∈ B0, the germ mx of m in Pϕ,d(x) lies in the monoid Pϕ,d(x).

Again, let’s examine this definition. We are attaching to a naked ray a polyno-
mial 1 + cmz

m, with m a section of Γ(Id, d
−1i∗Pϕ). Now if x ∈ Id with d(x) ∈ ∆,

let V be a small neighbourhood of d(x). Then, by the definition of multi-valued
piecewise linear function, ϕ can be represented by a single-valued function on V .
Thus Pϕ, locally on V ∩B0, splits as Z⊕Λ, so a section of i∗Pϕ on V can be written
as (r, m̄), where m̄ ∈ Γ(V ∩B0,Λ) is tangent to the edge of P passing through the
singular point d(x). Thus, similarly we can write m = (r, m̄) in a neighbourhood
U ⊆ Id of x. In particular, there are always liftings of m̄, at least locally, to a
section of d−1i∗Pϕ.

As a consequence, the section m can be specified simply by giving m ∈ Pϕ,d(x)

for some point x ∈ Id with d(x) ∈ B0. We require that m̄ should be positively
proportional to m̄d at d(x). Then by parallel transport, this choice of germ extends
to a section of d−1i∗Pϕ.

We do have the additional requirement, however, that m ∈ Pϕ,d(x) for all

x ∈ d−1(B0). Since d maps Id to a ray or line segment which may wind itself around
B in some very complicated way, this condition may seem extremely strong. But
here is a very important point: As x ∈ Id increases, the order of m with respect to
the various maximal cells d(x) is contained in increases. This is a consequence of
the fact that d(x) moves in the direction −m̄, and is made precise by the following
lemma:

Lemma 6.19. (1) Let x ∈ B0, m ∈ Pϕ,x such that m̄ points into a cell
σ ∈Pmax. If ordσm ≥ 0 then m ∈ Pϕ,x.

(2) Let x ∈ B0 \ ∂B0, m ∈ Pϕ,x. Let σ± ∈ Pmax be two cells containing x
with the property that the tangent vector −m̄ ∈ Λx points into σ− and m̄
points into σ+. Then for any σ ∈Pmax with x ∈ σ, we have

ordσ(m)− ordσ+(m) ≥ 0,

ordσ−(m)− ordσ(m) ≥ 0.

Furthermore, if m̄ is not tangent to σ ∩ σ+, then

ordσ(m)− ordσ+(m) > 0.

Proof. Choose a neighbourhood U of x and a representative ϕU of ϕ on U , and
for σ ∈Pmax with x ∈ σ, let ϕU,σ ∈ Λ̌x be the slope of ϕU |σ. Let ϕU,x : |Σx| → R

be defined as usual by ϕU,x(m̄) = ϕU,σ(m̄) if m̄ ∈ Txσ. For (1), note that m̄ pointing
into σ implies m̄ ∈ |Σx|, and also ϕU,x(m̄) = ϕU,σ(m̄). Thus ordσ(m) ≥ 0 implies,
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if m = (r, m̄) using the splitting of Pϕ given by ϕU , that r ≥ ϕU,σ(m̄) = ϕU,x(m̄).
So m ∈ Pϕ,x.

For (2), note that since x 6∈ ∂B, Σx is a complete fan. Furthermore,

ordσ(r, m̄) = r − ϕU,σ(m̄).

Then since m̄ points into σ+, by strict convexity of ϕU,x, we have ϕU,σ(m̄) ≤
ϕU,σ+(m̄) for all σ ∈Pmax containing x. Thus

ordσ(m) ≥ ordσ+(m).

Applying the same argument to −m̄ gives ϕU,σ(−m̄) ≤ ϕU,σ−(−m̄), or

ordσ(m) ≤ ordσ−(m).

Finally, if m̄ is not tangent to σ ∩ σ+, then by strict convexity of ϕU,x, ϕU,σ(m̄) 6=
ϕU,σ+(m̄), hence the last statement. �

Definition 6.20. Let d : Id → B be a naked ray, and letm ∈ Γ(Id, d
−1i∗Pϕ) be

a section such that m̄ is a positive multiple of m̄d. Then define ordm : d−1(B0)→ Z

by

ordm(x) = sup{ordσ(mx) | d(x) ∈ σ ∈Pmax}.
Lemma 6.19 implies that this is a step function which increases every time d enters
a new maximal cell.

We now see it is in fact easy to specify rays:

Proposition 6.21. Let d : Id → B be a naked ray. If d(0) ∈ B0, let m ∈ Pϕ,d(0)

be such that m̄ is a negative multiple of d′(0) ∈ Λd(0). If d(0) ∈ ∆, let ǫ > 0 be
sufficiently small so that d([0, ǫ]) is contained in the interior of one edge of P, and
let m ∈ Pϕ,d(ǫ) be such that m̄ is a negative multiple of d′(ǫ) ∈ Λd(ǫ). Then:

(1) m extends to a section m of Γ(Id, d
−1i∗Pϕ) such that for all x ∈ d−1(B0),

m defines a germ mx ∈ Pϕ,d(x) ⊆ Pϕ,d(x).
(2) For every non-negative integer k, there exists an N ≥ 0 such that if x ∈

[N,+∞) ∩ d−1(B0), τ ∈P the unique cell with d(x) ∈ Int(τ), σ ∈Pmax

a cell containing τ , then mx ∈ Ikτ,τ,σ.

Proof. The germ m extends to a section of Γ(Id, d
−1i∗Pϕ) via parallel trans-

port, the discussion after Definition 6.18 showing that this section extends across
points of d−1(∆) precisely because d itself is already a naked ray.

The statement that m0 ∈ Pϕ,d(0) (or mǫ ∈ Pϕ,d(ǫ) if d(0) ∈ ∆) implies
ordσm0 ≥ 0 for all σ ∈ Pmax containing d(0) (or ordσmǫ ≥ 0 for all σ ∈ Pmax

containing d(ǫ)). But Lemma 6.19, (2) then tells us that this continues to hold, i.e.,
for all x ∈ d−1(B0), ordσ(mx) ≥ 0 with d(x) ∈ σ ∈Pmax. Thus, by part (1) of the
same lemma, mx ∈ Pϕ,d(x) for all x ∈ d−1(B0).

For (2), we just choose an N such that ordm(x) > k for all x ≥ N . �

We are at last ready to define the notion of a structure.

Definition 6.22. A structure S is a collection of rays satisfying the following
properties:

(1) For every integer k ≥ 0, let S [k] be the set of rays (d, 1 + cmz
m) in S

such that there exists an x ∈ d−1(B0) with ordm(x) ≤ k. Then we require
that S [k] be finite for each k.
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Figure 10

(2) If ω ∈ P is an edge containing a singular point p, then S contains two
rays dp,± such that dp,±(0) = p, d′p,±(ǫ) = ±m̄ for ǫ close to zero and m̄
a primitive tangent vector to ω. Finally,

fdp,± = 1 + zm∓ ,

where m∓ ∈ Pϕ,x for any x ∈ Int(ω) \ {p} is uniquely determined by
the requirement that m̄± = ±m̄ and ordσm± = 0 for σ any maximal cell
containing ω. Such a ray is called an initial ray. We write the set of initial
rays of S as Initial(S ). For d ∈ Initial(S ) with d(0) ∈ ω an edge, we
define I init

d to be the largest subinterval [0, L] ⊆ Id such that d([0, L]) ⊆ ω.
(3) If (d, fd) ∈ S is not an initial ray, with fd = 1 + cdz

md , then for each
x ∈ d−1(B0), ordmd

(x) > 0.

Example 6.23. Consider the integral tropical manifold depicted in Figure 10.
There, the figure on the top depicts the embedding of B minus the depicted cuts into
R2, describing the affine structure away from the cuts. In addition, fan structures at
the vertices (−1, 0) and (0,−1) are as depicted, specifying the affine structure across
these cuts. One can check easily that B is positive and simple. Take the function
ϕ to have slopes (2, 1) on σ1, (1, 2) on σ2, (0, 2) on σ3, (0, 0) on σ4, and (2, 0) on
σ5, and take value zero at the origin; one checks easily that this is strictly convex,
well-defined and continuous across the cuts. Figure 11 now depicts a structure S ,
consisting of five rays of finite length. Writing elements of Λ as elements of Z2,
using the main chart depicted in Figure 10, and using the splitting of Pϕ = Z⊕ Λ
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1 + z(0,1,0)

1 + z(0,0,−1)

1 + z(0,−1,−1)

1 + z(0,−1,0)

1 + z(0,0,1)

Figure 11

given by the above choice of ϕ, we have two rays emanating from each singular
point, i.e., the initial rays, and one additional ray, starting from the origin and
heading diagonally northeast.

6.2.5. Compatible structures and gluing. We view a structure as giving
a set of data for gluing copies of the various rings Rkτ1,τ2,σ. We will now explain how
this is done. We will then define the necessary condition to guarantee this gluing
makes sense.

For this construction, we fix a structure S and an integer k ≥ 0. While S may
contain an infinite number of rays, S [k] is finite. Furthermore, for each d ∈ S [k],
let Nk

d > 0 be the number promised by Proposition 6.21, (2).

Definition 6.24. Let Pk be a refinement of the polyhedral decomposition P

which satisfies the following properties:

(1) The elements of Pk are convex polyhedra with rational vertices.
(2) For d ∈ S [k], d([0, Nk

d ]) is contained in a union of edges of Pk and d(Nk
d )

is a vertex of Pk.
(3) For d ∈ S [k] \ Initial(S ), d(0) is a vertex of Pk.

Example 6.25. In Example 6.23, we can take Pk = P for all k.

Having chosen Pk (our construction will not depend on the particular choice),
define Chambers(S , k) to be the set of maximal cells of Pk. For each u ∈
Chambers(S , k), there is a unique σ ∈ Pmax containing u, which we write as
σu.

We now define a category Glue(S , k) as follows:

• The objects of Glue(S , k) are triples (ω, τ, u) with

ω, τ ∈P, u ∈ Chambers(S , k), and ω ⊆ τ , ω ∩ u 6= ∅, τ ⊆ σu.
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• There is at most one morphism between any two objects, and there is
precisely one morphism

(ω, τ, u)→ (ω′, τ ′, u′)

if and only if ω ⊆ ω′ and τ ⊇ τ ′.
Note that any morphism in this category decomposes into a composition of

morphisms of the following two basic types:

(I) ω ⊆ ω′, τ ⊇ τ ′, u = u′ (change of strata).
(II) ω = ω′, τ = τ ′, dim u ∩ u′ = 1, ω ∩ u ∩ u′ 6= ∅ (change of chamber).

We wish to define a functor

Fk : Glue(S , k)→ Rings

from Glue(S , k) to the category of rings. For an arbitrary choice of structure S ,
this functor will not be well-defined, but if S satisfies a condition that we shall
call compatibility, the functor becomes well-defined, and we can use it to define the
desired modification of the gluing.

First, for any object (ω, τ, u) of Glue(S , k), we associate a ring Rkω,τ,u, as
follows:

• If ω = τ is an edge of P containing a singular point p ∈ ∆, then we set

Rkω,τ,u := (Rkω,τ,σu
)fdp,±

.

Here the subscript on the right denotes localization at the element fdp,± =

1 + zm∓ . Note that zm± is in fact invertible in Rkω,τ,σu
, and fdp,+ =

zm−fdp,− . Hence it does not matter whether we localize at fdp,+ or fdp,− .
• If ω is a vertex and τ is an edge of P containing a singular point p ∈ ∆,

and d ∈ {dp,+, dp,−} is chosen to be the ray such that ω is the first vertex
of P encountered by that ray, then we set

Rkω,τ,u := (Rkω,τ,σu
)fd
.

• Otherwise, we set

Rkω,τ,u := Rkω,τ,σu
.

We define

Fk(ω, τ, u) := Rkω,τ,u.

Note that Rkω,τ,u is an Rk = k[t]/(tk+1)-algebra.
We now wish to associate to every morphism in Glue(S , k) a homomorphism

of the corresponding rings. We shall do this first for the two basic cases: the change
of strata and change of chambers.

I) The change of strata maps. Suppose we have

(ω, τ, u)→ (ω′, τ ′, u)

a morphism in Glue(S , k). We then have a composition

Rkω,τ,σu
։ Rkω,τ ′,σu

→֒ Rkω′,τ ′,σu

of the canonical surjection induced by Ikω,τ,σu
⊆ Ikω,τ ′,σu

and the canonical injection
induced by Pϕ,ω,σu

⊆ Pϕ,ω′,σu
. This induces a map after the appropriate localiza-

tions, as we shall now check.
Indeed, consider the relevant localizations of the first map. Here, Rkω,τ,u is a

localization at some element f = 1 + zm± of Rkω,τ,σu
if and only if τ is an edge
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containing a singularity. If τ = τ ′, then the ring Rkω,τ ′,u can be written as a

localization of Rkω,τ ′,σu
at the same element f . If τ ′ is instead a vertex, then f is

easily checked to be invertible in Rkω,τ ′,σu
. Indeed, in this case ω must be a vertex.

If ω 6⊆ ∂B, then by Lemma 6.19, (2), there is a σ ∈ Pmax containing τ ′ = ω such
that ordσ(m±) > 0. On the other hand, if ω ⊆ ∂B, there exists a σ ∈ P∂

max such
that ordσ(m±) > 0, since m̄± can’t be tangent to the boundary. Thus, in any
event, some power of zm± lies in Ikω,τ ′,σu

, so 1 + zm± is invertible. Thus the map

Rkω,τ,u → Rkω,τ ′,u is defined.

Next, consider the relevant localizations of the second map. If Rkω,τ ′,u is a local-

ization of Rkω,τ ′,σu
, then Rkω′,τ ′,u is a localization at the same element. Thus these

maps make sense after localizing, and this gives the Rk-algebra homomorphism

ψ(ω,τ),(ω′,τ ′) : Rkω,τ,u → Rkω′,τ ′,u.

This is the change of strata map. �

II) Change of chambers. Suppose that u, u′ ∈ Chambers(S , k) such that

dim u ∩ u′ = 1 and ω ∩ u ∩ u′ 6= ∅

and we have a morphism

(ω, τ, u)→ (ω, τ, u′)

in Glue(S , k). Choose a point y ∈ Int(u∩ u′) which lies in a connected component
of (u ∩ u′) \∆ intersecting ω. In particular, y is not a singular point of B. There
is a unique n ∈ Λ̌y which is primitive, annihilates the tangent space to u ∩ u′, and
is negative on tangent vectors pointing into u′.

For each pair (d, x) such that d ∈ S [k] and x ∈ [0, Nk
d ] such that d(x) = y, we

obtain a polynomial

f(d,x) = 1 + cdz
md,x

where md,x ∈ Pϕ,d(x) is the stalk of md at x. In fact, md,x ∈ Pϕ,ω,σu
. Indeed, by

the choice of y, there is an x′ ∈ Id near x such that d(x′) ∈ ω, and md,x and md,x′

agree under parallel transport. Since md,x′ ∈ Pϕ,d(x′) by definition of a ray and
Pϕ,d(x′) ⊆ Pϕ,ω,σu

via parallel transport along d, we see that md,x ∈ Pϕ,ω,σu
. Thus

f(d,x) ∈ Rkω,τ,u.
We now consider two cases, defining Rk-algebra homomorphisms θu,u′,y.

(1) σu = σu′ . We then define a homomorphism

θu,u′,y : Rkω,τ,u → Rkω,τ,u′

by

θu,u′,y(z
m) = zm

∏

(d,x)

f
〈n,m̄〉
(d,x) .

Note that this makes sense even if 〈n, m̄〉 < 0. Indeed, since σu = σu′ , we
must have u ∩ u′ ∩ Int(σu) 6= ∅. Thus no (d, x) occurring in this product
satisfies d ∈ Initial(S ) and x ∈ I init

d . Thus ordσu
(md,x) > 0 by Lemma

6.19, (2), if d is an initial ray and by Definition 6.22, (3) if d is not an
initial ray. From this it follows that each f(d,x) appearing in this product
is invertible.
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σu

u

u′

σu′

ρ
y+y−

Figure 12. The X marks the singular point p.

(2) σu 6= σu′ , so that σu ∩ σu′ = ρ an edge. In this case, necessarily τ ⊆ ρ.
We define

θu,u′,y : Rkω,τ,u → Rkω,τ,u′

as a composition of the map Rkω,τ,u → Rkω,τ,u′ obtained by the identifica-
tion of Pϕ,ω,σu

and Pϕ,ω,σu′
via parallel transport through y and the map

Rkω,τ,u′ → Rkω,τ,u′ defined by

zm 7→ zm
∏

(d,x)

f
〈n,m̄〉
(d,x) .

Again this makes sense, as f(d,x) is always invertible. Indeed, if d ∈
Initial(S ) and x ∈ I init

d , then f(d,x) is invertible, either by definition of

the ring Rkω,τ,u′ if τ = ρ and by the argument given in the discussion of

the change of strata maps if τ ( ρ. Otherwise, if d 6∈ Initial(S ), as y is
contained in precisely two maximal cells, σ±, and m̄d,x is parallel to ρ,
we have ordσ+ md,x = ordσ− md,x. It then follows as in the previous case

that ordσ± md,x > 0 so f(d,x) is invertible in Rkω,τ,u′ .

Note that a priori the map θu,u′,y depends on the choice of point y. However, in
the first case, the product

∏
(d,x) f(d,x) ∈ k[Pϕ,ω,σu

] is independent of the choice of

y, by Definition 6.24, (3). Thus the definition of θu,u′,y is independent of the choice
of y, and we can drop the subscript y.

In the second case, the same product depends on y if there is a singular point
p ∈ ρ. In particular, θu,u′,y would appear to depend on whether y ∈ dp,+(I init

dp,+
) or

y ∈ dp,−(I init
dp,−

). However, in fact θu,u′,y is independent of y, as we shall now verify,
in essentially the same calculation as carried out in §6.2.3.

Suppose that p ∈ u ∩ u′, and choose y± ∈ u ∩ u′ ∩ dp,±(Int(I init
dp,±

)); see Figure
12. We use parallel transport from σu to σu′ via y+ to identify Pϕ,τ,σu

and Pϕ,τ,σu′
.

With this identification, the identification of these two monoids via parallel trans-
port from σu to σu′ via y− is the monodromy in Pϕ given by a counterclockwise



280 6. THE PROGRAM AND TWO-DIMENSIONAL RESULTS

loop about the singular point p. This monodromy on Pϕ is given by

m 7→ m+ 〈ďω, m̄〉m−
by Remark 6.14, where ďω is primitive, annihilates the tangent space to ω, and is
positive on σu. Thus the map θu,u′,y+ is given by

zm 7→ zmf
〈ďω,m̄〉
dp,+

∏

(d,x)

f
〈ďω,m̄〉
(d,x)

= zm(1 + zm−)〈ďω ,m̄〉
∏

(d,x)

f
〈ďω,m̄〉
(d,x)

where the product is over all pairs (d, x) as usual excluding the pair (dp,+, x) with
x ∈ I init

dp,+
such that dp,+(x) = y+. On the other hand the map θu,u′,y− is given as a

composition

zm 7→ zm+〈ďω,m̄〉m−

7→ zm+〈ďω,m̄〉m−(1 + zm+)〈ďω,m̄〉
∏

(d,x)

f
〈ďω,m̄〉
(d,x)

= zm(zm− + 1)〈ďω,m̄〉
∏

(d,x)

f
〈ďω,m̄〉
(d,x)

keeping in mind m+ = −m−. Thus we see that in this case, once again θu,u′,y is
independent of the choice of y, and we drop the y. �

We have not yet constructed a functor from the category Glue(S , k) to the
category of rings. Rather, we have associated a ring to each object of Glue(S , k),
and a ring homomorphism to each morphism which is either a change of strata or
change of chamber homomorphism. More generally, given the unique morphism

e : (ω, τ, u)→ (ω′, τ ′, u′),

we would like to define

Fk(e) : Rkω,τ,u → Rkω′,τ ′,u′ .

We do this by choosing a sequence

u = u1, u2, . . . , un = u′

such that

ui ∩ ω′ 6= ∅, τ ′ ⊆ σui for 1 ≤ i ≤ n
and

dim ui−1 ∩ ui = 1 and ui−1 ∩ ui ∩ ω′ 6= ∅ for 2 ≤ i ≤ n.

We then get a sequence of change of chamber maps

θui−1,ui : Rkω′,τ ′,ui−1
→ Rkω′,τ ′,ui

for 2 ≤ i ≤ n, and a change of strata map

ψ(ω,τ),(ω′,τ ′) : Rkω,τ,u1
→ Rkω′,τ ′,u1

.

We take

Fk(e) := θun−1,un ◦ · · · ◦ θu1,u2 ◦ ψ(ω,τ),(ω′,τ ′)

There is still a problem: this composition depends on the particular choice of the
sequence {ui}. In order for the gluing construction we shall give to work, we need
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Fk(e) to be defined independently of any choices. For this, we need to impose
another condition on the structures we consider, which we call compatibility.

Definition 6.26. We denote by Joints(S , k) the set of vertices of Pk not
contained in ∂B, calling the elements of this set joints. For j a joint, σj denotes the
smallest cell of P containing j.

Definition 6.27. Let j ∈ Joints(S , k) be a joint. The structure S is consis-
tent at j to order k if for any choice of cyclic ordering u1, . . . , un of the chambers
containing j, the composition

θun,u1 ◦ θun−1,un ◦ · · · ◦ θu1,u2 : Rkσj,σj,u1
→ Rkσj,σj,u1

is the identity.
We say S is compatible to order k if it is consistent to order k at each joint

j ∈ Joints(S , k).

Compatibility is sufficient for proving the well-definedness of the morphisms
Fk(e).

Theorem 6.28. Suppose S is compatible to order k.

(1) Given e : (ω, τ, u) → (ω′, τ ′, u′), the homomorphism Fk(e) is well-defined
independently of the choice of u = u1, . . . , un = u′.

(2) Given e : (ω, τ, u)→ (ω′, τ ′, u′) and e′ : (ω′, τ ′, u′)→ (ω′′, τ ′′, u′′),

Fk(e
′ ◦ e) = Fk(e

′) ◦ Fk(e).
Thus Fk is a functor.

Proof. Let

A := {u ∈ Chambers(S , k) |ω′ ∩ u 6= ∅, τ ′ ⊆ σu}.
Define Σ to be the abstract two-dimensional cell complex with A as set of vertices,
edges connecting u, u′ ∈ A if dim u ∩ u′ = 1, and a disk glued in for any cycle
of chambers u1, . . . , un with a common joint. Note that if there is such a joint,
then ω′ = τ ′ = σj. An edge with vertices u, u′ defines a change of chamber map
θu,u′ : Rkω′,τ ′,u → Rkω′,τ ′,u′ . Consistency says that the composition of these maps
following the boundary of a two-cell is the identity. Thus we obtain the desired
independence in (1) as long as Σ is simply connected.

To see that Σ is simply connected, we proceed as follows. Let

V :=
⋃

σ∈P

τ ′⊆σ

Int(σ)

denote the open star of τ ′ with respect to P. Then for u ∈ Chambers(S , k),
the condition τ ′ ⊆ σu is equivalent to Int(u) ⊆ V , and such chambers define a
decomposition of V into polyhedra. Call this decomposition PV . Since ω′ = τ ′ is
topologically a ball the cells of PV intersecting ω′ form a polyhedral decomposition
P ′ of a two-ball. Now Σ is the dual polyhedral decomposition of P ′, which is thus
simply connected.

For (2), let u1, . . . , un be a sequence of chambers used to compute Fk(e), and
un = u′1, . . . , u

′
m a sequence of chambers used to compute Fk(e

′), so that

Fk(e
′) ◦ Fk(e) = θu′m−1,u

′
m
◦ · · · ◦ θu′1,u

′
2
◦ ψ(ω′,τ ′),(ω′′,τ ′′)

◦ θun−1,un ◦ · · · ◦ θu1,u2 ◦ ψ(ω,τ),(ω′,τ ′).
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One checks easily that ψ(ω′,τ ′),(ω′′,τ ′′) commutes with each of the θui−1,ui , 2 ≤ i ≤ n,
noting that θui−1,ui can be interpreted also as a map

Rkω′′,τ ′′,ui−1
→ Rkω′′,τ ′′,ui

since

ui−1 ∩ ui ∩ ω′ 6= ∅ ⇒ui−1 ∩ ui ∩ ω′′ 6= ∅
τ ′ ⊆ σui ⇒ τ ′′ ⊆ σui .

Thus

Fk(e
′) ◦ Fk(e) = θu′m−1,u

′
m
◦ · · · ◦ θu1,u2 ◦ ψ(ω′,τ ′),(ω′′,τ ′′) ◦ ψ(ω,τ),(ω′,τ ′)

= θu′m−1,u
′
m
◦ · · · ◦ θu1,u2 ◦ ψ(ω,τ),(ω′′,τ ′′)

= Fk(e
′ ◦ e),

as desired, using the sequence u1, . . . , un = u′1, . . . , u
′
m to define Fk(e

′ ◦ e). �

To summarize, given a structure S which is compatible to order k, we have
constructed a functor

Fk : Glue(S , k)→ Rings,

with

Fk(ω, τ, u) = Rkω,τ,u.

In fact, Fk maps to the category of Rk-algebras.

Example 6.29. Returning to Example 6.23, the structure S given there is
compatible to all orders. The only joint is at the origin, and taking ui = σi, one
computes

θu5,u1 ◦ · · · ◦ θu1,u2(z
m)

= θu5,u1 ◦ · · · ◦ θu2,u3

(
zm(1 + z(0,−1,−1))〈(1,−1),m̄〉

)

= θu5,u1 ◦ · · · ◦ θu3,u4

(
zm(1 + z(0,0,−1))〈(1,0),m̄〉·

·
(

1 +
z(0,−1,−1)

1 + z(0,0,−1)

)〈(1,−1),m̄〉)

= θu5,u1 ◦ θu4,u5

(
zm(1 + z(0,−1,0))〈(0,1),m̄〉

(
1 +

z(0,0,−1)

1 + z(0,−1,0)

)〈(1,0),m̄〉
·

·
(

1 +
z(0,−1,−1)

(1 + z(0,0,−1)/(1 + z(0,−1,0)))(1 + z(0,−1,0))

)〈(1,−1),m̄〉)
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= θu5,u1 ◦ θu4,u5

(
zm(1 + z(0,−1,0))〈(0,1),m̄〉

(
1 +

z(0,0,−1)

1 + z(0,−1,0)

)〈(1,0),m̄〉
·

·
(

1 +
z(0,−1,−1)

1 + z(0,−1,0) + z(0,0,−1)

)〈(1,−1),m̄〉)

= θu5,u1

(
zm(1 + z(0,0,−1))〈(−1,0),m̄〉(1 + z(0,−1,0)(1 + z(0,0,−1)))〈(0,1),m̄〉·

·
(

1 +
z(0,0,−1)

1 + z(0,−1,0)(1 + z(0,0,−1))

)〈(1,0),m̄〉
·

·
(

1 +
z(0,−1,−1)(1 + z(0,0,−1))

1 + z(0,−1,0)(1 + z(0,0,−1)) + z(0,0,−1)

)〈(1,−1),m̄〉)

= θu5,u1

(
zm(1 + z(0,0,−1))〈(−1,0),m̄〉(1 + z(0,−1,0) + z(0,−1,−1))〈(0,1),m̄〉·

·
(

(1 + z(0,−1,0))(1 + z(0,0,−1))

1 + z(0,−1,0) + z(0,−1,−1)

)〈(1,0),m̄〉
·

·
(

1 +
z(0,−1,−1)

1 + z(0,−1,0)

)〈(1,−1),m̄〉)

= θu5,u1

(
zm(1 + z(0,−1,0) + z(0,−1,−1))〈(0,1),m̄〉·

·
(

1 + z(0,−1,0)

1 + z(0,−1,0) + z(0,−1,−1)

)〈(1,0),m̄〉
·

·
(

1 + z(0,−1,0) + z(0,−1,−1)

1 + z(0,−1,0)

)〈(1,−1),m̄〉)

= θu5,u1

(
zm(1 + z(0,−1,0))〈(0,1),m̄〉

)

= zm.

Here, the extra diagonal ray in the scattering diagram over and above the initial
rays is crucial to guarantee consistency, as the automorphisms associated to the
two initial rays passing through this joint do not commute.

6.2.6. k-th order deformations from compatible structures. We fix a
structure S on B which is compatible to order k. This gives a functor

Fk : Glue(S , k)→ Rings.

We now want to define a k-th order deformation of X̌0(B,P). We will do this
pretty much as we did in §6.2.2, but with maps given by Fk.

First, fix ω ∈ P. We will define a scheme Ukω analogous to that defined in
§6.2.2. For each τ ∈ P containing ω, choose uτ ∈ Chambers(S , k) such that
uτ ∩ ω 6= ∅, τ ⊆ σuτ . Then given ω ⊆ τ1 ⊆ τ2, we obtain a morphism

eτ1,τ2 : (ω, τ2, uτ2)→ (ω, τ1, uτ1)

in Glue(S , k), and hence a homomorphism

Fk(eτ1,τ2) : Rkω,τ2,uτ2
→ Rkω,τ1,uτ1

.
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This gives an inverse system of rings: since Fk is a functor, Fk(eτ2,τ3) ◦Fk(eτ1,τ2) =
Fk(eτ1,τ3). We set

Rkω := lim
←−
τ⊇ω

Rkω,τ,uτ

and
Ukω := SpecRkω.

These definitions are in fact independent of the choice of the uτ ’s. Indeed, given
a different set of choices u′τ , for τ ⊇ ω, giving maps e′τ1,τ2 : (ω, τ, u′τ2)→ (ω, τ, u′τ1),
there are unique maps

eτ : (ω, τ, uτ )→ (ω, τ, u′τ )

with
Fk(e

′
τ1,τ2) ◦ Fk(eτ2) = Fk(eτ1) ◦ Fk(eτ1,τ2).

Furthermore, as Fk(eτ ) is given by a sequence of change of chamber maps, Fk(eτ )
is an isomorphism, and hence gives an isomorphism between the inverse systems
defined by the choice of the uτ and the u′τ .

Lemma 6.30. U0
ω is isomorphic to Spec k[Pϕ,x]/(t) for x ∈ Int(ω) ∩B0.

Proof. Note that we can take P0 = P, as S [0] can be taken just to consist of
the initial rays of S , and for an initial ray d, we can take N0

d so that [0, N0
d ] = I init

d .
Thus we can take Chambers(S , 0) = Pmax. Now fix ω and x ∈ Int(ω) ∩B0. Note
that for each (ω, τ, u) ∈ Glue(S , 0), R0

ω,τ,σu
can be identified, via parallel transport

from the interior of σu to x, with k[Pϕ,x]/I
0
ω,τ,x, where I0

ω,τ,x is the complement of

the face of Pϕ,x sitting over the tangent cone Tx in the fan Σx. In particular, R0
ω,τ,σu

is an integral domain, and R0
ω,τ,u is a localization of R0

ω,τ,σu
, so R0

ω,τ,σu
⊆ R0

ω,τ,u

(with equality unless dim τ = 1). A change of stratum map

e : (ω, τ2, u)→ (ω, τ1, u)

yields
F0(e) : R0

ω,τ2,u → R0
ω,τ1,u,

which is just the localization of the canonical surjection

k[Pϕ,x]/I
0
ω,τ2,x ։ k[Pϕ,x]/I

0
ω,τ1,x.

On the other hand, the only possibly non-trivial change of chamber map is of the
form e : (ω, τ, u) → (ω, τ, u′) with dim τ = 1, and u, u′ the two different maximal
cells containing τ . But if zm ∈ k[Pϕ,x]/I

0
ω,τ,x is non-zero, then necessarily m̄ is

tangent to τ and hence by the definition of θu,u′ , θu,u′(z
m) = zm. Hence this

change of chamber map is trivial.
From this, we conclude there is an inclusion of inverse systems

(k[Pϕ,x]/I
0
ω,τ,x)τ → (R0

ω,τ,uτ
)τ

with the homomorphisms in the left-hand inverse system being the canonical ones
and the homomorphisms in the right-hand one being the ones defining R0

ω. Further-
more, k[Pϕ,x]/I

0
ω,τ,x

∼= R0
ω,τ,uτ

unless dim τ = 1. Since an element (fτ ) of the inverse

limit lim←−k[Pϕ,x]/I
0
ω,τ,x is completely determined by those fτ with τ ∈ Pmax, and

the same is true for lim←−R
0
ω,τ,uτ

, we see in fact the two inverse limits are isomorphic.
So

R0
ω
∼= lim
←−

k[Pϕ,x]/I
0
ω,τ,x

∼= k[Pϕ,x]/(t),

the last isomorphism as in Lemma 6.9. �
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We will now show that Ukω is a flat deformation of U0
ω overOk = Spec k[t]/(tk+1).

Before we get started, we will need the following observation. As all the rings Rkω,τ,u
are Rk = k[t]/(tk+1)-algebras, Rkω is also a Rk-algebra. We then have a complex of
Rk-modules for each ℓ ≤ k,
(6.3) 0→ R0

ω
·tℓ−→Rℓω → Rℓ−1

ω → 0.

Here the map R0
ω → Rℓω is given by

lim←−R
0
ω,τ,uτ

∋ (fτ )τ 7→ (tℓfτ )τ .

Since tℓ annihilates any element zm ∈ Rℓω,τ,uτ
with zm ∈ I0

ω,τ,σuτ
, one sees that

(tℓfτ )τ ∈ lim←−R
ℓ
ω,τ,uτ

. The map Rℓω → Rℓ−1
ω is given by (fτ )τ 7→ (fτ mod Iℓ−1

ω,τ,σuτ
).

A priori, (6.3) is not an exact sequence, only a complex.

Lemma 6.31. Suppose that (6.3) is exact for each ℓ ≤ k. Then Ukω is a flat
deformation of U0

ω over Ok.

Proof. If (6.3) is exact, then inductively the map Rℓω → R0
ω given by (fτ )τ 7→

(fτ mod I0
ω,τ,σuτ

)τ is surjective. So in particular, the map R0
ω → Rℓω given by

multiplication by tℓ maps into tℓRℓω . However, it is clear in any event that the
image of this map contains tℓRℓω. Hence the image of R0

ω in Rℓω under the map
given by multiplication by tℓ is tℓRℓω, so exactness of (6.3) implies Rℓ−1

ω
∼= Rℓω/t

ℓRℓω.
Inductively, this shows that Rkω/tR

k
ω
∼= R0

ω. Furthermore, by [78], Theorem 22.3
(applying condition (4) of that theorem), Rkω is a flat Rk-algebra. Thus Ukω is a flat
deformation of U0

ω over Ok. �

In what follows, we will make use of the toric strata of U0
ω for ω ∈ P. Given

τ ∈ P with τ ⊇ ω, there is a toric stratum Vτ of U0
ω corresponding to τ . In fact,

Vτ ∼= SpecR0
ω,τ,σuτ

. Now define Zω ⊆ U0
ω to be a subset of the one-dimensional

strata of U0
ω as follows. If τ ⊇ ω is a one-dimensional cell, we take Zω ∩ Vτ to be

empty if τ ∩∆ = ∅. If τ ∩∆ = {p}, then one of fdp,± can be viewed as an element

of R0
ω,τ,σuτ

, and hence generates an ideal. This ideal is the ideal of Zω ∩ Vτ . Of
course, given the explicit form of fdp,± , Zω ∩Vτ consists of just one point. We then
take Zω to be the union of these sets Zω ∩Vτ over all one-dimensional τ containing
ω.

We can now state the main result of this subsection.

Theorem 6.32. Ukω is a flat deformation of U0
ω over Ok. As a consequence,

the underlying topological spaces of Ukω and U0
ω are the same. In particular, suppose

y ∈ Ukω is, as a point of U0
ω, contained in the stratum Vτ for some τ containing

ω but not in any Vτ ′ ( Vτ . Then if y 6∈ Zω, Ukω is étale locally isomorphic in a
neighbourhood of y to Spec k[Pϕ,x]/(t

k+1), where x ∈ Int(τ) ∩B0.

Proof. We have 0 ≤ dimω ≤ 2, so we have three cases for dimω, and we will
deal with each case separately, going from the easiest to the hardest case.

dimω = 2: Then ω ∈Pmax, σuω = ω, so Pϕ,ω,σuω
is isomorphic to Λx × N for

x ∈ Int(ω). Thus

Rkω,ω,uω
∼= k[Λx]⊗k Rk,

and so
Ukω
∼= U0

ω ×k Ok.

This is clearly a flat deformation of U0
ω, isomorphic to Spec k[Pϕ,x]/(t

k+1).
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dimω = 1. In this case, we have ω = σ+ ∩ σ− for two maximal cells σ±, and
the inverse limit defining Rkω is in fact the fibre product

Rkω = Rkω,σ−,uσ−
×Rk

ω,ω,uω
Rkω,σ+,uσ+

.

We shall compute this explicitly in the case that uσ+ and uσ− are chosen to be
adjacent, i.e., with dim uσ+ ∩uσ− = 1, with uσ+ and uσ− of course lying on opposite
sides of ω. We can also take uω = uσ+ . In this case, we can take a representative for

ϕ which has slope 0 on σ− and has slope eďω on σ+, where e is a positive integer.
As usual ďω ∈ Λ̌y for some y ∈ uσ+ ∩ uσ− used to define the change of chamber
map. This element is primitive, zero on the tangent space of ω, and is positive on
tangent vectors pointing into σ+. We can identify Pϕ,ω,σ+ with Pϕ,ω,σ− via parallel
transport through y. One sees easily that

Pϕ,ω,σ+
∼= Λω ⊕ Se,

where Λω ⊆ Λy is the space of integral tangent vectors to ω at y and Se is the
monoid defined in Example 3.28. We think of Se ⊆ Z2 as the monoid generated by
(−1, 0), (0, 1) and (1, e), yielding elements of k[Se] given by

u = z(−1,0), v = z(1,e), t = z(0,1).

with

ordσ− u = 0, ordσ− v = e, ordσ− t = 1

ordσ+ u = e, ordσ+ v = 0, ordσ+ t = 1

Writing

R± := Rkω,σ±,uσ±
, R∩ := Rkω,ω,uω

,

we have

R− = k[Λω][u, v, t]/〈uv − te, vβtγ |βe+ γ ≥ k + 1〉,
R+ = k[Λω][u, v, t]/〈uv − te, uαtγ |αe+ γ ≥ k + 1〉,
R∩ = (k[Λω][u, v, t]/〈uv − te, uαvβtγ |max{α, β}e+ γ ≥ k + 1〉)fdp,±

.

Because we are taking uω = uσ+ , the map R+ → R∩ is the canonical surjection
followed by the localization. On the other hand, the map R− → R∩ is the canonical
surjection Rkω,σ−,σ− → Rkω,ω,σ− followed by localization and the change of chamber
map, which is given in these coordinates as

u 7→ ufω, v 7→ vf−1
ω , t 7→ t,

where

fω =
∏

(d,x)

f(d,x),

the product being over all (d, x) with d(x) = y. We can think of fω as living in the
ring k[Λω][t].

Lemma 6.33. Let

R∪ := k[Λω][U, V, t]/(UV − fωte, tk+1).



6.2. INTEGRAL TROPICAL MANIFOLDS TO DEGENERATIONS 287

Then

R∪ →R− ×R∩ R+

U 7→(u, fωu)

V 7→(fωv, v)

t 7→(t, t)

is an isomorphism of k[Λω][t]-algebras.

Proof. Note that the rings R− and R+ are generated as k[Λω][t]/(tk+1)-
modules by 1, ui, vj for i, j > 0. Also, the submodules of R− (R+) generated
by ui, i ≥ 0 (vj , j ≥ 0) are free direct summands. So for g± ∈ R±, we can write
uniquely

g− =
∑

i≥0

aiu
i + h−(v, t)

g+ =
∑

j≥0

bjv
j + h+(u, t)

with ai, bj ∈ k[Λω][t]/(tk+1) and h±(0, t) = 0. So (g−, g+) ∈ R− ×R∩ R+ if and
only if

a0 = b0, h−(v, t) =
∑

j>0

bjf
j
ωv

j , h+(u, t) =
∑

i>0

aif
i
ωu

i

as elements of R∩. But if this is the case then (g−, g+) is the image of
∑
i≥0 aiU

i+∑
j>0 bjV

j ∈ R∪. This shows surjectivity. Injectivity follows easily after noting

that R∪ is a free k[Λω][t]/(tk+1)-module with basis U i, V j , i ≥ 0, j > 0. �

As a consequence of this lemma, we see that Rkω = R∪, and it then easily follows
that (6.3) is exact. This shows Ukω is a flat deformation of U0

ω. Furthermore, one
checks easily that away from Zω, which is the locus x = y = fω = t = 0 in SpecR∪,
Ukω takes the desired local form.

dimω = 0. This is the most difficult case, and we will deal with this in two
steps. Fix uω, hence the monoid

P := Pϕ,ω,σuω
.

Then
U0
ω = Spec k[P ]/(t)

by Lemma 6.30.
It is helpful to work locally. To this end, we first define a rather strange object.
First, note that the reduced scheme associated to SpecRkω,τ,u is SpecR0

ω,τ,u,

which is an open subscheme of SpecR0
ω,τ,σu

. This, in turn, is a closed stratum of

U0
ω. For a scheme X , denote by |X | the underlying topological space. We thus have

inclusions
iω,τ : | SpecRkω,τ,uτ

| → |U0
ω|.

Let
Okω,τ := iω,τ∗OSpecRk

ω,τ,uτ
.

This is a sheaf of rings on |U0
ω|. Note that the maps Fk(eτ1,τ2) : Rkω,τ2,uτ2

→ Rkω,τ1,uτ1

induce maps Okω,τ2 → Okω,τ1 defining an inverse system of sheaves (Okω,τ )τ . Set

Okω := lim←−O
k
ω,τ ,
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and denote by V kω the ringed space

V kω := (|U0
ω|,Okω).

Completely analogously to the complex (6.3), one has the complex of sheaves on
|U0
ω| for ℓ ≤ k,

(6.4) 0−→O0
ω
·tℓ−→Oℓω−→Oℓ−1

ω −→0.

Since the inverse limit of sheaves lim←−Fi is defined by U 7→ lim←−Fi(U), in fact taking

global sections of (6.4) yields the complex (6.3): here, we use O0
ω
∼= OU0

ω
as follows

from the argument of Lemma 6.30. Since H1(|U0
ω|,OU0

ω
) = 0 as U0

ω is an affine
scheme, we get (6.3) exact if (6.4) is exact.

Now look at the open set |U0
τ | ⊆ |U0

ω| where τ ∈ P contains ω and dim τ =
1. It is easily seen using properties of the inverse limit that the ringed space
(|U0

τ |,Okω||U0
τ |

) is isomorphic to the affine scheme Ukτ . We have already shown

Theorem 6.32 for Ukτ , so this shows that (6.4) is exact on
⋃

τ⊇ω
dim τ=1

|U0
τ |.

This set is almost all of |U0
ω|: it is just missing one point, z ∈ |U0

ω|, correspond-
ing to the maximal ideal m0 in k[P ]/(t) given by the monoid ideal P \ {0} ⊆ P .
Let mk denote the maximal ideal in k[P ]/(tk+1) given by the same monoid ideal
P \ {0}.

Lemma 6.34. There is an isomorphism

ψ : (k[P ]/(tk+1))mk
→ Okω,z.

Proof. Taking a finite inverse limit and taking stalks commutes, so

Okω,z = lim←−(Okω,τ )z.
Since Okω,τ is supported on a closed subset in a neighbourhood of z, one sees that

(Okω,τ )z = (Rkω,τ,uτ
)mτ = (Rkω,τ,σuτ

)mτ ,

where mτ is the maximal ideal again generated by the monoid ideal P \ {0}. Here,
the last equality holds since Rkω,τ,uτ

is a localization of Rkω,τ,σuτ
at an element not

in mτ . To prevent the notation from becoming too dense, we introduce shorthand

Rτ := (Rkω,τ,σuτ
)mτ .

We now need to show there is an isomorphism

lim←−Rτ
∼=−→(k[P ]/(tk+1))mk

.

The inverse system on the left is given by maps

ϕτ1,τ2 : Rτ2 → Rτ1

which are the localizations of Fk(eτ1,τ2). This is the composition of a change of
stratum map and a number of change of chamber maps. We can identify the
monoids Pϕ,ω,σ for various σ with Pϕ,v, where ω = {v}, by parallel transport in σ
to v. This then yields canonical change of stratum maps

ψτ1,τ2 : Rτ2 → Rτ1 ,

so that ϕτ1,τ2 is a composition of ψτ1,τ2 with a sequence of change of chamber maps

θun−1,n ◦ · · · ◦ θu1,u2 : Rτ1 → Rτ1

defined using points y near ω (so that the singularities of B play no role here). Note
that the collection of rings {Rτ} with the maps ϕτ1,τ2 is an inverse system as usual,
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and the same collection of rings with the maps ψτ1,τ2 is also an inverse system. The
latter inverse system has inverse limit given by Lemma 6.9, namely (k[P ]/(tk+1))mk

.
Thus we just need to give an isomorphism between these two inverse systems, i.e.,
automorphisms ψτ : Rτ → Rτ such that whenever ω ⊆ τ1 ⊆ τ2,

(6.5) Rτ2

ϕτ1,τ2

��

ψτ2
// Rτ2

ψτ1,τ2

��

Rτ1 ψτ1

// Rτ1

is commutative.
To do so, first note that if u, u′ are adjacent chambers, we can write

θu,u′(z
m) = zmf

〈n,m̄〉
u,u′

for some n, and fu,u′ can be viewed as the image of an element of k[P ] completely
specified by the structure S . Furthermore, fu,u′ 6∈ mτ , so fu,u′ can be viewed as
an element of R×τ for each τ . Hence we can define

θτu,u′ : Rτ → Rτ

by

θτu,u′(z
m) = zmf

〈n,m̄〉
u,u′ .

Note that ψτ1,τ2 ◦ θτ2u,u′ = θτ1u,u′ ◦ ψτ1,τ2 .
Now for any τ ⊇ ω, let uτ = u1, u2, . . . , un = uω be the sequence of chambers

obtained by passing from uτ to uω. If ω 6⊆ ∂B, we insist that we do this in a
clockwise manner, so that this chain is well-defined. Then define

ψτ = θτun−1,un
◦ · · · ◦ θτu1,u2

.

One then checks easily that with this choice, (6.5) is commutative �

This lemma now shows that (6.4) is exact at z, and hence, as described above,
(6.3) is exact. Hence Ukω is a flat deformation of U0

ω.
We only need to show it is étale isomorphic to k[P ]/(tk+1) at the point z. This

follows from the above lemma. The isomorphism given there induces a map

ψ : k[P ]/(tk+1)→ (Rkω)mz ,

where mz is the maximal ideal of the point z in Rkω, and since P is finitely generated,
one can find an f ∈ Rkω \ mz such that ψ(zm) ∈ (Rkω)f for each m ∈ P . But then
we get a map

ψ : k[P ]/(tk+1)→ (Rkω)f

inducing an isomorphism after localizing at mk and mz, hence a map of schemes
V → Spec k[P ]/(tk+1) which is étale at z. By openness of the étale condition (see,
e.g., [83], Proposition 3.8), this gives the desired result. �

To construct Xk the deformation of X0 = X̌0(B,P), we now glue along open
subsets. Indeed, if ω1 ⊆ ω2, then we obtain Ukω2

⊆ Ukω1
canonically. This canon-

ical inclusion is obtained as follows. In defining Ukω2
, we need to choose reference

chambers u2
τ for each τ ⊇ ω2. Similarly, we choose reference chambers u1

τ for each
τ ⊇ ω1. Thus if τ ⊇ ω2, we obtain a well-defined map

Rkω2,τ,u2
τ
→ Rkω1,τ,u1

τ
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which is a composition of change of chamber homomorphisms and a change of strata
homomorphism. This induces a map on inverse limits, and hence a map Ukω2

→ Ukω1

which is seen to be an inclusion of open sets. We leave the details of this to the
reader.

Having constructed these canonical inclusions, we can glue together the schemes
Ukω along these common open sets, constructing Xk. Again we leave these straight-
forward details to the reader. We have thus proved

Theorem 6.35. If S is a structure which is compatible to order k, then there
is a scheme X̌k(B,P) flat over Ok which is a deformation of X̌0(B,P).

Example 6.36. Continuing with Example 6.23, we wish to describe the scheme
Ukω for ω the vertex at the origin. The reader may verify the following description
of Rkω, using variables x1, . . . , x5 which should be viewed as lifts under the map
Rkω → R0

ω of z(2,1,0), z(3,1,1), z(2,0,1), z(0,−1,0) and z(0,0,−1) respectively. Here the
last two coordinates live in the stalk of Λ at ω, and the first coordinate gives the
value of ϕω. Then

Rkω
∼= k[x1, . . . , x5, t]/(t

k+1, f1, . . . , f5),

where

f1 = x5x2 − t(x1 + t2)

f2 = x1x3 − t(x2 + t3)

f3 = x2x4 − t(x3 + t2)

f4 = x3x5 − t2(x4 + 1)

f5 = x4x1 − t2(x5 + 1).

To compactify this, rather than finding charts in neighbourhoods corresponding
to the five other vertices of P, one can just projectize the above chart, adding a
variable and obtaining, in A1×P5, a degenerating family of del Pezzo surfaces given
by the equations

x5x2 − t(x1x0 + t2x2
0) = 0

x1x3 − t(x2x0 + t3x2
0) = 0

x2x4 − t(x3x0 + t2x2
0) = 0

x3x5 − t2(x4x0 + x2
0) = 0

x4x1 − t2(x5x0 + x2
0) = 0.

�

6.3. Achieving compatibility: The tropical vertex group

All that remains to be done is to construct a compatible structure S to order
k, and then let k → ∞. To do this, we need to understand what happens when
rays collide.

6.3.1. The argument of Kontsevich and Soibelman. We will first de-
scribe a fairly general setup and general result. This will provide the basic idea of
how to produce compatible structures. The definition here is only a slight general-
ization of the definitions seen in §§5.4.2 and 5.4.3, so should look familiar.
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Fix a lattice M ∼= Z2, N = HomZ(M,Z) as usual, and suppose we are given a
toric monoid P equipped with a map

r : P →M.

For this chapter, the typical example is P = Pϕ,x for x ∈ B0, and r : Pϕ,x →M is
the projection Pϕ,x → Λx given by m 7→ m̄. We then define the module of (relative)
log derivations of k[P ] to be the module

Θ(k[P ]) := HomZ(M, k[P ]) = k[P ]⊗Z N.

An element f ⊗ n is written as f∂n, and acts as a derivation on k[P ] by

f∂n(z
m) = f〈n, r(m)〉zm.

Now denote by m both the ideal P \ P× (where P× denotes the group of units in
P ) and the monomial ideal generated by this monoid ideal in k[P ]. For example, if
P = M ⊕N, with r the projection onto M , then P× = M ⊕0. Let I be a monomial
ideal in k[P ] whose radical is m; we shall call such an ideal an m-primary ideal.
Then given ξ ∈ mΘ(k[P ]), we obtain an element

exp(ξ) ∈ Aut(k[P ]/I)

via exponentiation of the derivation ξ, i.e.,

exp(ξ)(a) = a+

∞∑

i=1

ξi(a)

i!
.

This is a finite sum, since there is some integer n such that mn ⊆ I.
One can check, for example, that if f ∈ m can be written as f =

∑
m∈S cmz

m

with {r(m) |m ∈ S} lying in a rank one sublattice of M , and n ∈ N annihilates
this sublattice, then

exp(f∂n)(z
m) = exp(f)〈n,r(m)〉zm.

In general, however, it is difficult to compute the exponential of a vector field.
There is a natural Lie bracket defined on the module of log derivations:

[zm∂n, z
m′∂n′ ] := zm+m′

(
〈n, r(m′)〉∂n′ − 〈n′, r(m)〉∂n

)

= zm+m′∂〈n,r(m′)〉n′−〈n′,r(m)〉n.

Now let

v :=
⊕

m∈m
r(m) 6=0

zmk⊗ r(m)⊥ ⊆ Θ(k[P ]).

This is the k-vector space of linear combinations of vector fields zm∂n with m ∈ m,
r(m) 6= 0, and 〈n, r(m)〉 = 0. Via exactly the same argument as in §5.4.2, v is
closed under Lie bracket. For each m-primary ideal I, we then get a subgroup of
Aut(k[P ]/I) defined by

VI := {exp(ξ) | ξ ∈ v}.
Just as in §5.4.2, we can express elements of this group as Hamiltonian symplecto-
morphisms. However, this will not be important for us in this chapter.

We will sometimes want to work with power series in a complete situation. Let

k̂[P ] := lim←−k[P ]/mk
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be the completion of k[P ] at the ideal m. We can then also define

V̂ := lim←−Vmk ,

a pro-nilpotent subgroup of Aut(k̂[P ]).
Just as in §5.4.3, we can define the notion of a scattering diagram, with essen-

tially the identical definition.

Definition 6.37. Let r : P →M be given, and I be an m-primary ideal.

(1) A ray or line is a pair (d, fd) such that
• d ⊆MR is given by

d = m′0 − R≥0m0

if d is a ray and

d = m′0 − Rm0

if d is a line, for some m′0 ∈ MR and m0 ∈ M \ {0}. The set d is
called the support of the line or ray. If d is a ray, m′0 is called the
initial point of the ray, written as Init(d).
• For m0 ∈M \ {0}, let

Pm0 := {m ∈ P | r(m) = Cm0 for some rational C > 0}.
Then fd ∈ k̂[P ] satisfies

fd = 1 +
∑

m∈Pm0

cmz
m.

• fd ≡ 1 mod m.
(2) A scattering diagram D over k[P ]/I is a finite collection of lines and rays

such that for each (d, fd) ∈ D, fd ∈ k[P ]. A scattering diagram D over

k̂[P ] is a countable collection of lines and rays such that for each k ≥ 1,
there are only a finite number of lines or rays (d, fd) ∈ D with fd 6≡ 1
mod mk.

We then have the same notions of the sets Supp(D), Sing(D) as defined in
§5.4.3, and given a smooth immersion γ : [0, 1] → MR \ Sing(D), if one fixes an
m-primary ideal I, one obtains exactly as in §5.4.3 an automorphism

θγ,D ∈ VI .

Indeed, one needs to check that each automorphism θγ,di arising when crossing a ray

di makes sense; this is defined by θγ,di(z
m) = zmf

〈n,r(m)〉
di

as usual for some n ∈ N .
This makes sense, as fdi ≡ 1 mod m, so that fdi is invertible in k[P ]/I. Thus
we obtain, as before, the automorphism θγ,D which only depends on the homotopy
type of the path γ in MR \ Sing(D).

Furthermore, if D is a scattering diagram over k̂[P ], then θγ,D similarly makes
sense: computing θγ,D modulo mk makes sense for any k > 0, since this involves
only a finite number of compositions. One then takes the limit to get

θγ,D ∈ V̂.

In §5.4.3, we constructed an explicit scattering diagram D derived from the
set of all Maslov index zero disks. We found that the automorphisms θγ,D for
loops around certain singular points of D were the identity. In this section, we
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will proceed in quite the opposite fashion, first showing how, using an argument
of Kontsevich and Soibelman [70], we can always achieve this condition by adding
rays.

Theorem 6.38. Fix an m-primary ideal I. Let D be a scattering diagram
over k[P ]/I. Then there exists a scattering diagram SI(D) containing D such that
SI(D) \ D consists only of rays, and such that θγ,SI(D) = Id ∈ VI for any closed
loop γ for which θγ,SI (D) is defined.

Similarly, if D is a scattering diagram over k̂[P ], then there is a scattering
diagram S(D) containing D such that S(D) \D consists only of rays, and such that

θγ,S(D) = Id ∈ V̂ for any closed loop γ for which θγ,S(D) is defined.

Proof. We proceed inductively on k, showing that there exists a Dk such that

θγ,Dk
≡ Id mod mk+1

for all closed loops γ for which θγ,Dk
is defined. In the case where we are working

over k[P ]/I, since I is m-primary, there is some k such that mk+1 ⊆ I, and then
we are done, taking SI(D) = Dk. Otherwise we continue indefinitely, taking S(D)
to be the (non-disjoint) union of the Dk.

We take D0 = D. To obtain Dk from Dk−1, we proceed as follows. Let
D′k−1 consist of those rays and lines d in Dk−1 with fd 6≡ 1 mod mk+1. Note that
Sing(D′k−1) is a finite set. Let p ∈ Sing(D′k−1). Let γp be a closed simple loop
around p, small enough so it contains no other points of Sing(D′k−1). Certainly,

θγp,Dk−1
≡ θγp,D′k−1

mod mk+1.

By the inductive assumption we can write uniquely

θγp,D′k−1
≡ exp

(
s∑

i=1

ciz
mi∂ni

)
mod mk+1

with mi ∈ mk, r(mi) 6= 0, ni ∈ r(mi)
⊥ primitive and ci ∈ k. Let

D[p] = {(p− R≥0r(mi), 1± cizmi) | i = 1, . . . , s}.
The sign is chosen in each ray so that its contribution to θγp,D[p] is exp(−cizmi∂ni)

modulo mk+1. Since [ciz
mi∂ni , ξ] ≡ 0 mod mk+1 for any log derivation ξ ∈ v,

an automorphism associated to any ray in D[p] commutes modulo mk+1 with any
automorphism associated to a ray in Dk−1. Thus we have

θγp,Dk−1∪D[p] = Id mod mk+1.

Furthermore
Dk = Dk−1 ∪

⋃

p

D[p]

now has the desired properties. Indeed, let p ∈ Sing(Dk). The only rays which
contribute to θγp,Dk

mod mk+1 which were not in Dk−1 ∪D[p] are in
⋃
p′ 6=pD[p′],

and these rays contribute twice, but with inverse automorphisms which cancel. �

Remark 6.39. The process described in the proof of the above lemma is very
simple, and can be implemented easily on a computer. It is also easy to see that
the result is essentially unique. The only non-uniqueness arises because there may
be a number of distinct rays or lines with the same support. Given rays or lines
(d1, fd1), . . . , (dn, fdn) with Supp(d1) = · · · = Supp(dn), we can replace these rays or
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lines with (d,
∏n
i=1 fdi), with support d = Supp(di). If one applies this procedure

to every set of such rays or lines in a scattering diagram D, one obtains a new
diagram D′ such that no two elements have the same support, yet nevertheless the
automorphisms θγ,D coincide with θγ,D′ for any path for which θγ,D is defined.
This then leads to the following definition:

Definition 6.40. Two scattering diagrams D and D′ are equivalent over k[P ]/I

(or k̂[P ]) if θγ,D = θγ,D′ in VI (or V̂)) for every path γ for which both θγ,D and
θγ,D′ are defined.

The correct uniqueness result then says that SI(D) (or S(D)) is unique up to
equivalence.

Example 6.41. The structure of S(D) can be very complicated, even for very
simple choices of D. We will discuss three examples here, and the reader can consult
[44] for more details.

We will take in these examples P = M⊕N, writing x = z(1,0,0), y = z(0,1,0) and

t = z(0,0,1), so that k[P ] = k[x±1, y±1, t] and m = (t). Then k̂[P ] = k[x±1, y±1][t℄.
Consider the scattering diagram

D = {(R(1, 0), (1 + tx−1)ℓ1), (R(0, 1), (1 + ty−1)ℓ2)}
for various ℓ1, ℓ2 > 0. If ℓ1 = ℓ2 = 1, then it can be easily checked by hand that

S(D) \D = {(R(1, 1), 1 + t2x−1y−1)}.
Indeed, this is the same calculation carried out in Example 6.29. One only needs
one extra ray. But if ℓ1 = ℓ2 = 2, one already needs an infinite number of rays:

S(D) \D = {(R(n+ 1, n), (1 + t2n+1x−(n+1)y−n)2)|n ∈ Z, n ≥ 1}
∪ {(R(n, n+ 1), (1 + t2n+1x−ny−(n+1))2)|n ∈ Z, n ≥ 1}
∪ {(R(1, 1), (1− t2x−1y−1)−4)}.

For ℓ1 = ℓ2 = 3, the situation is much more complicated. One finds a certain
symmetry, first noticed by Kontsevich:

(R≥0(m1,m2), f(tm1+m2x−m1y−m2)) ∈ S(D)

if and only if

(R≥0(3m1 −m2,m1), f(t4m1−m2xm2−3m1y−m1)) ∈ S(D),

provided that m1,m2 and 3m1 − m2 are all positive. In addition, S(D) contains
rays

(R≥0(3, 1), (1 + t4x−3y−1)3) and (R≥0(1, 3), (1 + t4x−1y−3)3)

and hence by the above symmetry, there are also rays with support

R≥0(8, 3), R≥0(21, 8), . . . and R≥0(3, 8), R≥0(8, 21), . . .

which converge to the rays of slope (3 ±
√

5)/2, corresponding to the two distinct

eigenspaces of the linear transformation

(
3 −1
1 0

)
. Note that by the symmetry, we

know what the functions attached to these rays are. On the other hand, inside the
cone generated by the rays of slope (3±

√
5)/2, every rational slope occurs, and the

functions attached to these rays appear to be very complicated. The only known
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case is the function attached to the line of slope 1 (and the slopes obtained from
this one by symmetry), which was proved by Reineke in [95] to be

(
∞∑

n=0

1

3n+ 1

(
4n
n

)
t2nx−ny−n

)9

.

While these scattering diagrams are very complicated, note that modulo tk for
any fixed k, there are only a finite number of fd occuring with fd 6≡ 1.

6.3.2. The enumerative interpretation. In Chapter 5, we saw a relation-
ship between the condition that θγ,D = Id for a loop γ around a singular point
and gluing of Maslov index zero disks to create new Maslov index zero disks. The
scattering diagrams we consider here are far more complicated, but in fact there is
still a similar interpretation, due to myself, Pandharipande and Siebert, given in
[45]. While I will give the precise statement here, as we shall need one aspect of
the result, I will not give any details of the proof. Thus this section is essentially
the only part of the argument of this chapter which is not entirely self-contained.

We consider the following situation. Let ℓ1, . . . , ℓp > 0 be p positive integers,
and let ℓ =

∑p
i=1 ℓi. Set P = M ⊕ Nℓ. We denote the monomials in k[P ] corre-

sponding to the generators of Nℓ as tij , 1 ≤ i ≤ p, 1 ≤ j ≤ ℓi. Let m1, . . . ,mp ∈M
be distinct primitive elements. Let D be the scattering diagram

(6.6) D = {
(
Rmi,

ℓi∏

j=1

(1 + tijz
−mi)

)
| 1 ≤ i ≤ p}.

The ideal m is generated by the variables tij . We can study the infinite scattering

diagram S(D) over k̂[P ], i.e., we can work over the ring k[M ][{tij}℄. This will,
in particular, after reducing modulo any m-primary ideal I, yield SI(D). Indeed,
given S(D), we can obtain a finite scattering diagram over k[P ]/I by throwing out
those rays (d, fd) ∈ S(D) such that fd ≡ 1 mod I, and for each (d, fd) ∈ S(D) with
fd 6≡ 1 mod I, we truncate fd by removing any monomials in I, to ensure that fd

is a polynomial rather than a power series.
We would like to interpret elements of S(D) \D. Let us assume that S(D) is

chosen so that no two rays have the same support, and let (d, fd) ∈ S(D)\D. More
specifically, we will interpret fd. So assume that d is now fixed in the discussion.

Let Σd be a complete fan in MR defining a non-singular toric surface Xd, with
the property that Σd contains, amongst its set of one-dimensional rays,

R≥0m1, . . . ,R≥0mp and d.

(Note that d may coincide with one of the other rays). The precise choice of the
fan Σd will turn out to be irrelevant.

Let D1, . . . , Dp be the toric divisors of Xd corresponding to the rays

R≥0m1, . . . ,R≥0mp,

and let Dout correspond to the ray d (possibly Di = Dout for some i). Choose
general points {xi1, . . . , xiℓi} ⊆ Di. Let

ν : X̃d → Xd

be the blow-up of Xd at the set of points {xij}. Let D̃1, . . . , D̃p, D̃out be the proper
transforms of the corresponding toric divisors, and let Eij be the exceptional divisor
over the point xij .
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Now introduce the additional data of P = (P1, . . . ,Pp), where Pi denotes
a sequence (pi1, . . . , piℓi) of ℓi non-negative numbers. We will use the notation
Pi = pi1 + · · ·+piℓi , and call Pi an ordered partition. We call pi1, . . . , piℓi the parts
of Pi. Define

|Pi| =
ℓi∑

j=1

pij ,

and restrict to those P such that

(6.7) −
p∑

i=1

|Pi|mi = kPmd,

where md ∈M is a primitive generator of d and kP is a positive integer.
Given this data, consider the class β ∈ H2(Xd,Z) specified by the requirement

that, if D is a toric divisor of Xd with D 6∈ {D1, . . . , Dp, Dout}, then D · β = 0; if
Dout 6∈ {D1, . . . , Dp},

Di · β = |Pi|, Dout · β = kP

while if Dout = Dj for some j, then

Di · β =

{
|Pi| i 6= j

|Pi|+ kP i = j

That such a class exists follows from (6.7) and Proposition 4.2. We can then define

βP = ν∗(β)−
p∑

i=1

ℓi∑

j=1

pij [Eij ] ∈ H2(X̃d,Z).

This is, roughly speaking, the class of the proper transform of a curve in X̃d which
passes through the point xij transversally to Di pij times and intersects Dout at kP
points, counted with multiplicity. Finally, let Xo

d be obtained from Xd by removing

all zero-dimensional torus orbits, and let X̃o
d = ν−1(Xo

d). Let D̃o
out = D̃out ∩ X̃o

d .
We now consider, somewhat informally, the moduli space of relative stable maps

of genus zero representing the class βP,

M(X̃o
d/D̃

o
out) ⊆M(X̃d/D̃out),

in which we impose maximal tangency with D̃out. Roughly, M(X̃d/D̃out) is the

moduli space of stable maps f : C → X̃d with the following properties:

(1) C is genus zero.
(2) f represents the class βP.

(3) There is a unique point p ∈ C such that f(p) ∈ D̃out, and if x is a local

equation for D̃out near f(p), then f∗(x) has a zero of order kP.

In general, this isn’t quite accurate, because the space of such maps is not compact.
To define this moduli space correctly, one must allow bubbling-off phenomena to

occur not just to the curve C but also to the space X̃d. This was done in the
algebro-geometric context by Jun Li in [72] and [73]. See [35] for a summary
of this construction. The reader unfamiliar with this concept, however, need not
worry too much about it, as we shall not need the details of the construction here.

We then defineM(X̃o
d/D̃

o
out) to be the open subspace consisting of those rela-

tive stable maps with image contained in X̃o
d rather than X̃d. While M(X̃d/D̃out)
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is compact because the target space X̃d is compact, it turns out that the open sub-

set M(X̃o
d/D̃

o
out) is also compact: such curves cannot converge to curves passing

through one of the deleted points. This is proved in [45], Proposition 5.1. Further-

more, the space M(X̃o
d/D̃

o
out) (generally a Deligne-Mumford stack) has expected

dimension zero, and a virtual fundamental class. We then define the number

NP :=

∫

[M( eXo
d)/Do

out)]
vir

1.

Informally, this is the number of rational curves in the class βP which are maximally

tangent to D̃out. Of course, these numbers can be more subtle, involving the usual
sorts of virtual counts which appear in Gromov-Witten theory: multiple covers and
stacky phenomena can produce fractional numbers.

With these definitions, we can now state the main theorem of [45]:

Theorem 6.42.
log fd =

∑

P

kPNPt
Pz−kPmd ,

where the sum is over all P satisfying (6.7) and tP denotes the monomial
∏
ij t

pij

ij .

Examples 6.43. (1) Let’s consider the case p = 2,m1 = (1, 0), m2 = (0, 1); this
is essentially the case considered in Example 6.41, but with the variable t replaced
with variables t11, . . . , t1ℓ1 , t21, . . . , t2ℓ2 . First, with ℓ1 = ℓ2 = 1, we have one
output ray, (R≥0(1, 1), 1 + t11t21x

−1y−1). (To get the original 1 + t2x−1y−1 given
in Example 6.41, just substitute t = t11 = t12.) The rays R≥0(−1, 0), R≥0(0,−1)
and R≥0(1, 1) are the one-dimensional cones in a fan defining P2, and the three
toric divisors, D1, D2 and Dout, are the three coordinate axes. Fixing one point on
D1 and one point on D2, there is precisely one line going through these two points,
and taking P = (1, 1), we thus see NP = 1. Note, on the other hand, that

log(1 + t11t21x
−1y−1) =

∞∑

k=1

(−1)k+1

k2
ktk11t

k
21x
−ky−k.

Thus we see that N(k,k) = (−1)k+1/k2. For k = 1, this is just the single line
counted above; all other contributions come from multiple covers of this line totally
ramified at the point of intersection between the line and Dout.

(2) Next consider the case that ℓ1 = ℓ2 = 2, and consider the output ray
(R≥0(1, 1), (1− t2x−1y−1)−4) in S(D) as described in Example 6.41. Note

log(1 − t2x−1y−1)−4 = 4

∞∑

k=1

k · 1

k2
t2kx−ky−k.

Since we have substituted t for the four variables tij , 1 ≤ i, j ≤ 2, each coeffi-
cient represents a sum over various P. In particular, N(1+0,1+0) + N(0+1,1+0) +

N(1+0,0+1) + N(0+1,0+1) = 4 is the coefficient of t2x−1y−1. This is the count of
lines passing through two points, one of which is chosen to be in {x11, x12}, and
the other chosen to be in {x21, x22}. The coefficient of t4x−2y−2 is 1, which is
N(1+1,1+1) +N(2+0,2+0) + · · ·+N(0+2,0+2). Here invariants of the form N(2+0,1+1)

are easily seen to be zero, and the ones of the form N(2+0,2+0) just yield the mul-
tiple cover contribution from lines, which is −1/4 for each of the four lines. Thus
N(1+1,1+1) = 2, which accounts for the number of conics passing through the four
points {xij} and tangent to Dout.
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(3) Finally, let’s look at the case ℓ1 = ℓ2 = 3, again looking at the ray of slope
1, with attached function fd. Then from the explicit formula given in Example
6.41, one calculates

log fd = 9t2x−1y−1 + 2 · 63

4
t4x−2y−2 + 3 · 55t6x−3y−3 + · · · .

The accounting is as follows. The first coefficient, 9, counts the number of lines
passing through one point of {x11, x12, x13} and one point of {x21, x22, x32}. The
second coefficient, 63/4, accounts for the double covers of these lines, for a total of
−9/4, and the number of conics passing through two points of each of these two
sets, and tangent to Dout, for a total of 3 × 3 × 2 = 18. Note 18 − 9/4 = 63/4.
The accounting for cubics, as can be checked by computing the scattering diagram
not using the single variable t but using the variables tij , is as follows. One has
N(1+1+1,1+1+1) = 18. This is the count of nodal cubics passing through all six
points {xij}, and triply tangent to Dout. The number N(2+1+0,1+1+1) = 3: this
is the number of nodal cubics triply tangent to Dout whose node coincides with
x11 and which pass through all of the six points except for x13. Note there are
2×3×2 = 12 choices of P of this type, so that the total count from genuine cubics
is 18 + 36 = 54. On the other hand, we also have triple covers of the 9 lines, each
contributing 1/9, hence a total of 54 + 1 = 55. �

In fact [45] gives formulas for more general scattering diagrams. Suppose we
are given for each 1 ≤ i ≤ p a positive integer pi and non-negative integers ℓij for
each 1 ≤ j ≤ pi. Consider

(6.8) D =
{(

Rmi,

pi∏

j=1

ℓij∏

k=1

(1 + tijkz
−jmi)

) ∣∣ 1 ≤ i ≤ p
}
.

As before, m1, . . . ,mp ∈ M are distinct primitive elements. Again, we consider
S(D) over k[M ][{tijk}℄, and interpret rays (d, fd) ∈ S(D).

We define a graded partition to be a finite sequence G = (P1, . . . ,Pd) of ordered

partitions with each part of Pi being divisible by i. We write |G| =∑d
i=1 |Pd|. Let

G = (G1, . . . ,Gp) be a p-tuple of graded partitions, with each Pij , the j-th piece
of Gi, being of the form pij1 + · · ·+ pijℓij . Restrict to those G such that

(6.9) −
p∑

i=1

|Gi|mi = kGmd

for some positive integer kG. Given this data, consider the class β ∈ H2(Xd,Z)
specified by the requirement that, if D 6∈ {D1, . . . , Dp, Dout}, then D · β = 0; if
Dout 6∈ {D1, . . . , Dp},

Di · β = |Gi|, Dout · β = kG;

while if Dout = Dj for some j, then

Di · β =

{
|Gi| i 6= j

|Gi|+ kG i = j

Pick general points xijk ∈ Di, for 1 ≤ i ≤ p, 1 ≤ j ≤ pi, 1 ≤ k ≤ ℓij . We
will now be slightly less precise than we were before. Define NG to be the virtual
number of rational curves which have tangency to order kG with Dout at precisely
one point, and have pijk/j branches of the curve tangent to order j with Di at
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each point xijk . This latter incidence condition is obtained as before by blowing up
each point xijk , but performing an orbifold blow-up instead of an ordinary blow-up
of the point xijk whenever j > 1, see [45], §5.5 for details. Then we have the
analogous theorem from [45], §5.7:

Theorem 6.44.

log fd =
∑

G

kGNGt
Gz−kGmd

where the sum is over all G satisfying (6.9) and tG denotes the monomial
∏
t
pijk/j
ijk .

Remark 6.45. Relative stable maps in M(X̃o
d/D̃

o
out) can be fairly complicated

objects, involving maps f : C → X̂o
d where X̂o

d is a reducible scheme. However, this

reducible scheme comes with a map X̂o
d → X̃o

d , and composing f with this map,

we get a map f̃ : C → X̃d. It follows from the arguments of Lemmas 4.1 and 4.2 of
[44] that the image of f̃ only intersects the proper transform of the toric boundary

under the blow-up map ν : X̃d → Xd at D̃o
out. Here ν is the ordinary blow-up of

Xd at the points xij in the case considered in Theorem 6.42, and is the weighted
blow-up of points xijk in the case considered in Theorem 6.44.

We can also compose f̃ with the blow-down ν, in which case we obtain a map
f̄ : C → Xd. Note that neither f̃ nor f̄ needs to be stable. The domain C may
have many different components, on some of which f̄ may be constant. However,
from the above observation that the image of f̃ is disjoint from D̃i, and the fact
that f̃(C) is a divisor in the class βP (or a similarly defined class βG in the more
general case), it follows that the intersection multiplicity of the divisor f̄∗(C) on
Xd with Di at the point xij is precisely pij (or at the point xijk is precisely pijk).
Furthermore, while f̄∗(C) may have a number of irreducible components, there is
a point q ∈ Dout such that

f̄∗(C) ∩ ∂Xd = {q} ∪ {xij | 1 ≤ i ≤ p, 1 ≤ j ≤ ℓi}.
(or

f̄∗(C) ∩ ∂Xd = {q} ∪ {xijk | 1 ≤ i ≤ p, 1 ≤ j ≤ pi, 1 ≤ k ≤ ℓij}).
There is also a constraint on this point q, which we describe in the more general

case. Indeed, f̄∗(C) is a divisor representing β ∈ H2(Xd,Z) ∼= H2(Xd,Z) ∼= PicXd,
as Xd is two-dimensional and rational, and restricting this element to ∂Xd gives a
well-defined element of Pic(∂Xd). Since f̄∗(C) is in the linear system defined by β,
f̄∗(C)|∂Xd

is in the linear equivalence class given by β|∂Xd
. Note that

f̄∗(C)|∂Xd
=
∑

i,j,k

pijkxijk + kGq.

As ∂Xd is a (singular) elliptic curve, for fixed choices of xijk there are only a finite
number of choices of q for which this divisor is in the linear equivalence class given
by β|∂Xd

.

Remark 6.46. While the scattering diagram (6.8) may still look rather special,
it in fact can be used to give the results of Theorem 6.38 for essentially any scattering
diagram. Let us explain this process here in the case that we have some given P ,
r : P →M as usual, and a scattering diagram

D = {(Rr(mi), fi)}
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with fi = 1 + ciz
−mi , ci ∈ k and mi ∈ P with r(mi) 6= 0. We wish to describe

SI(D) for an m-primary ideal I.
First, D may have a number of overlapping lines, so replace D with an equiv-

alent scattering diagram which we describe as follows, after renaming the mi.
There are m̄1, . . . , m̄p ∈ M distinct primitive vectors, positive integers pi for each
1 ≤ i ≤ p, and positive integers ℓij for each 1 ≤ i ≤ p, 1 ≤ j ≤ pi, such that

D =
{(

Rm̄i,

pi∏

j=1

ℓij∏

k=1

(1 + cijkz
−mijk)

) ∣∣ 1 ≤ i ≤ p
}

where r(mijk) is positively proportional to m̄i and the index of r(mijk) is j. Let
ℓ =

∑
ij ℓij , and set

D′ =
{(

Rm̄i,

pi∏

j=1

ℓij∏

k=1

(1 + tijkz
−r(mijk))

) ∣∣ 1 ≤ i ≤ p
}

to be the scattering diagram over the ring k[M ][{tijk}℄; this is the scattering dia-
gram considered in (6.8). Thus the rays of S(D′) are given by Theorem 6.44.

Let Q ⊆M ⊕ Nℓ be the submonoid freely generated by

{(−r(mijk), eijk)}
where eijk ∈ Nℓ corresponds to tijk. Then D′ is in fact defined over the subring
k[Q] of k[M ⊕ Nℓ]. Define a ring homomorphism

ϕ : k[Q] → k[P ]

tijkz
−r(mijk) 7→ cijkz

−mijk

Let I ′ = ϕ−1(I). We obtain a scattering diagram SI′(D
′), over k[Q]/I ′, which by

uniqueness can be taken to be obtained from S(D′) by reduction modulo I ′.
Applying ϕ to the function attached to each element of SI′(D

′), we get a
scattering diagram ϕ(SI′(D

′)) defined over k[P ]. Furthermore, θγ,ϕ(SI′ (D
′)) ≡ Id

mod I for γ a loop around the origin, as θγ,SI′ (D
′) is the identity in k[Q]/I ′. Thus,

by uniqueness, in fact ϕ(SI′(D
′)) must be equivalent to SI(D). In this sense, S(D′)

is a universal scattering diagram.
Note that the particular process described in the proof of Theorem 6.38 pro-

duces new rays whose attached functions are binomials 1 + cdz
md . We can achieve

this here: given a ray (d, fd) ∈ ϕ(SI′(D
′)), we can factor fd in k[P ]/I uniquely

into a product of such terms using the following mechanism. Suppose that we have
factored

fd ≡
d∏

i=1

(1 + ciz
pi) mod mk.

Then modulo mk+1,

fd −
d∏

i=1

(1 + ciz
pi) ≡

∑

j

djz
qj ,

with zqj ∈ mk \mk+1. Then modulo mk+1, we can write

fd ≡
(

d∏

i=1

(1 + ciz
pi)

)
∏

j

(1 + djz
qj )


 .
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We continue like this until we reach a k such that mk ⊆ I. Thus we can replace the
single ray (d, fd) with the collection of rays {(d, 1 + ciz

pi)}. This new scattering
diagram satisfies the conclusions of Theorem 6.38, and in fact is the scattering
diagram produced by the algorithm given there.

We need one technical observation that comes easily from Theorem 6.42.

Proposition 6.47. Let D be the scattering diagram given in (6.8). Let J be a
monomial ideal in R = k[{tijk | (i, j, k) 6= (1, 1, 1)}] such that R/J is Artinian. Also
denoting by J the ideal generated by J in k[M ] ⊗k k[{tijk}], let Ie = (te111) + J be
the monomial ideal in this latter ring, so that Ie is an m-primary ideal. Let De be
the scattering diagram SIe(D), obtained via the algorithm of the proof of Theorem
6.38, such that SIe(D) contains no elements of the form (d, fd) with d ≡ 1 mod Ie.
Note that by construction, we then have De ⊆ De+1. Then the sequence D1,D2, . . .
stabilizes.

Proof. Consider the set Γ consisting of collections of graded partitions G =
(G1, . . . ,Gp) with

∏

i,j,k
(i,j,k) 6=1

t
pijk/j
ijk 6∈ J

and pijk > 0 for some (i, j, k) 6= (1, 1, 1). Since R/J is Artinian, for any given choice
of p111, there are a finite number of G ∈ Γ with this p111, but Γ itself is infinite
as there is no bound on p111. In particular, if G ∈ Γ, then all pijk are bounded
by some number N except for p111. We will first show that there are only a finite
number of G ∈ Γ such that NG 6= 0.

Suppose G ∈ Γ with NG 6= 0. There is a primitive md ∈ M such that (6.9)
holds, and hence a ray (d, fd) in the scattering diagram De for some e with support
d = R≥0md. Let Σd be as usual. We can always refine Σd, and can thus assume that
Σd contains both the ray R≥0(−m1) and the ray R≥0(m1), so that the projection
MR → MR/Rm1 gives a toric morphism π : Xd → P1. The morphism π has a
section given by the divisor D1 corresponding to R≥0m1.

By Remark 6.45, the fact that NG 6= 0 means that there is a map f̄ : C → Xd

such that the divisor f̄∗(C) has intersection multiplicity p111 with D1 at x111.
Also, we can assume that the fibre π−1(π(x111)) is not contained in the image
of f̄ . Indeed, this fibre intersects ∂Xd at another point other than x111, and by
assuming the points xijk are generally chosen, we can assume this point does not
coincide with any of the xijk ’s. Hence, in the notation of Remark 6.45, we can
call this point q. Now by that remark, the divisor class of the divisor on ∂Xd

given by
∑
pijkxijk + kGq is determined completely by G. However, there is some

(i, j, k) 6= (1, 1, 1) with pijk 6= 0, so by varying that xijk and keeping all other points
fixed, we obtain a contradiction. Thus for general choice of this xijk, f̄∗(C) cannot
contain π−1(π(x111)).

Now f̄∗(C) represents the class β, and f̃∗(C) represents a class βG = ν∗(β) −
p111E111 − · · · . Since the total transform of the fibre π−1(π(x111)) consists of two
irreducible components, one being E111, and E111 · βG = p111, we must have the
intersection multiplicity of π−1(π(x111)) with f̄∗(C) being at least p111. From this,
we conclude that the intersection number β · F , where F is the class of a fibre of
π, is at least p111.
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Next observe that at least one of π−1(0) and π−1(∞) does not contain the

divisor Dout; assume it is π−1(0). Then the proper transform of π−1(0) in X̃d

is disjoint from f̃(C). Thus β · π−1(0) is completely determined by G2, . . . ,Gp,
and hence is bounded. Since π−1(0) is linearly equivalent to F , we see that p111

is bounded. This argument did not depend on d, so we see that p111 is bounded
independently of d. Hence the set {G ∈ Γ |NG 6= 0} is finite.

In particular, by Theorem 6.44 and (6.9), one sees that at most a finite number
of distinct directions for rays d can occur in

⋃
eDe.

Suppose now we have taken De not to have more than one ray with any given
support, so that for a ray (d, fd) ∈ De, log fd is given by Theorem 6.44. Consider a
ray (d, fd) which appears in De for some e. Since this is a ray, any coefficient must
involve some tijk for (i, j, k) 6= 1; otherwise, it would have to arise when computing
S({(Rm1, 1+t111z

−m1)}), but there are no rays in this diagram. Thus in particular,
the above argument shows that there are only a finite number of terms in log fd

modulo J which can appear, and since every coefficient in log fd involves some
tijk with tNijk ∈ J , fd = exp(log fd) only has a finite number of terms modulo J .
Thus there is some bound on the number of terms in fd independent of e. Finally,
applying the factorization process given in Remark 6.46, we can replace each ray
(d, fd) with a finite number of rays (d, fd) with fd having the form 1 + czm. This
shows the desired result. �

Remark 6.48. The above proposition can be interpreted as follows. The scat-
tering diagram

S(D) =

∞⋃

e=1

SIe(D)

can be viewed as a scattering diagram for the ring

Â := k[M ]⊗k (k[{tijk | (i, j, k) 6= (1, 1, 1)}]/J)[t111℄,
and in this ring θγ,S(D) = Id. However, Â contains as a subring the ring

A := (k[M ]⊗k k[{tijk}]/J)1+t111z−m1 ,

and θγ,D makes sense as an automorphism of A. The fact that S(D) is finite means
that θγ,S(D) also makes sense as an automorphism of A, and is of course still the
identity. This tells us that the Kontsevich-Soibelman lemma (Theorem 6.38) makes
sense over the localized ring A in this particular case.

6.3.3. Making structures compatible. We can now construct a compatible
structure. Start with (B,P, ϕ) as usual: B is an integral tropical manifold of
dimension two with positive and simple singularities. We will construct a sequence
of structures S0,S1, . . . with Sk compatible to order k.

We start with S0: we have no choice here but to set

S0 = {dp,± | p ∈ ∆},
where dp,± denotes the two rays associated to the singular point p required by the
definition of structure. It is easy to see that S0 is compatible to order 0. Let us
check this. First, for dp,±, we can take N0

dp,±
, the number promised by Proposition

6.21, (2), to coincide with the non-zero endpoint of the interval Idp,± defined in
Definition 6.22, (2). As a consequence, we can take P0 = P. Thus the only joints
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are the vertices of P. If v is a vertex, then fd ≡ 1 mod I0
v,v,σ for any d ∈ S0, so

compatibility is trivial.
We now wish to construct Sk inductively, so assume that we have constructed

Sk−1 compatible to order k− 1. We will add new rays to obtain Sk compatible to
order k. For this purpose, we use the results of the previous two subsections. In
particular, the argument is purely local, in that at each joint we add a collection of
rays dictated by the argument of Kontsevich and Soibelman.

For a given joint j, take M = Λj, the stalk of Λ at the point j, and take
P = Pϕ,σj,σ for some σ ∈ Pmax containing j. Let I = Ikσj,σj,σ

. Note that I is

always m-primary, where m = P \ P×.
Construct a scattering diagram Dj as follows. The elements of Dj are in one-

to-one correspondence with pairs (d, x) with d ∈ Sk−1 such that x ∈ [0, Nk
d ] and

d(x) = j. Given such a pair (d, x), we associate to it an element of Dj of the form
{(

R≥0d
′(x), 1 + cdz

md,x
)

x = 0(
Rd′(x), 1 + cdz

md,x
)

x 6= 0

Here d′(x) ∈ Λd(x) = Λj denotes the tangent vector to d at x. We now need to
consider two cases.

dimσj = 2 and dimσj = 0: In this case, Dj is actually a scattering diagram
over k[P ]/I. All the conditions are obvious from the definition of a ray in a struc-
ture except for the requirement that fd ≡ 1 mod m for d ∈ Dj. However, if d

corresponds to a pair (d̄, x) and dim σj = 2, then d̄ cannot be an initial ray, and
hence ordσj

md̄,x > 0 by Definition 6.22, (3). Thus 1+cd̄z
md̄,x ≡ 1 mod m. On the

other hand, if dimσj = 0, and d corresponds to (d̄, x), then there is some σ ∈Pmax

containing j with ordσmd̄,x > 0, either by Definition 6.22, (3) if d̄ is not an initial
ray, and by Lemma 6.19, (2), if d̄ is an initial ray (noting that a joint never lies in
∂B). So again 1 + cd̄z

md̄,x ≡ 1 mod m.
Thus we get a finite scattering diagram SI(Dj). Note that the particular con-

struction of SI(Dj) given in Theorem 6.38 always added rays (d, fd) with fd of the
form 1 + cdz

md , and we can assume that md ∈ Ik−1
σj,σj,σ for each added ray. Indeed,

the fact that Sk−1 is compatible implies

θγ,Dj
≡ Id mod Ik−1

σj,σj,σ

for a loop γ around the origin.
Now for each (d, 1 + cdz

md) ∈ SI(Dj) \Dj, let (d̄, fd̄) be the ray on B obtained
by taking d̄(0) = j, d̄′(0) = −m̄d, and fd̄ = 1 + cdz

md̄ , where md̄ is obtained by
parallel transport of md. It follows from Proposition 6.21 that this is a ray. Set

(6.10) Sj = {(d̄, fd̄) | d ∈ SI(Dj) \Dj}.

dimσj = 1: If the edge σj contains a singular point, then, without loss of gen-

erality, we can assume j ∈ dp,+(I init
dp,+

) (as opposed to dp,−(I init
dp,−

)). Then for any σ
containing σj, ordσm− = 0, so fdp,+ 6≡ 1 mod m. However, this is the only ray
which causes any problem. In particular, given a path γ in MR, θγ,Dj

does not
make sense in the ring k[P ]/I because fdp,+ is not invertible. It only makes sense in
the ring (k[P ]/I)fdp,+

, but we haven’t proved a version of Theorem 6.38 over this

ring. Nevertheless, we can interpret Dj in a different way to make sense of this,
using Remark 6.46 and Proposition 6.47.
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In particular, apply the construction of Remark 6.46 to the scattering diagram

Dj = {d ∈ Dj | d is a line}.
We replace it as in the remark with an equivalent scattering diagram

Dj = {(Rm̄i,

pi∏

j=1

ℓij∏

k=1

(1 + cijkz
−mijk))},

where we can assume that 1 + c111z
−m111 = 1 + zm− is the term causing trouble

for us. We then follow the procedure of Remark 6.46, obtaining S(D′). The only
subtlety is that t111z

−r(m111) now maps under ϕ to zm− , which does not lie in m.
Nevertheless, it then follows from Proposition 6.47 that if I ⊆ P is an m-primary
ideal, then ϕ(S(D′)), modulo I, only contains a finite number of rays. However, it is
still true that θγ,ϕ(S(D′)) ≡ Id mod I, but now in the localized ring (k[P ]/I)1+zm− ,
where this automorphism makes sense, as in Remark 6.48.

Now define SI(Dj) to be obtained by factorizing all the rays in ϕ(S(D′)) as in
Remark 6.46. This is a unique procedure, and all rays in this scattering diagram
which are not trivial modulo Ik−1

σj,σj,σ will inductively already appear in Dj. So as
before use (6.10) to define Sj. �

Let

Sk = Sk−1 ∪
⋃

j∈Joints(Sk−1,k)

Sj.

Theorem 6.49. Sk is compatible to order k.

Proof. Let j ∈ Joints(Sk, k), and let

θj = θun,u1 ◦ · · · ◦ θu1,u2 : Rkσj,σj,u1
→ Rkσj,σj,u1

be the automorphism which must be the identity modulo I = Ikσj,σj,σu1
in order

to achieve compatibility. By assumption, θj ≡ Id mod Ik−1
σj,σj,σu1

, since all rays

d ∈ SI(Dj) \ Dj satisfy fd ≡ 1 mod Ik−1
σj,σj,σu1

. (If j 6∈ Joints(Sk, k − 1), then we

take SI(Dj) \Dj to be empty.) Furthermore, by construction of SI(Dj), θj can only
fail to be the identity modulo I if there is some ray d ∈ Sk such that d(x) = j for
some x 6= 0 and the pair (d, x) did not appear in the construction of Dj.

There are two reasons why the pair (d, x) would fail to appear in the con-
struction. First, it could be that x 6∈ [0, Nk

d ], in which case zmd,x ∈ Ikσj,σj,σu1
and

thus (d, x) does not contribute to θj. Second, it could be that d ∈ Sk \Sk−1, in
which case zmd,x ∈ Ik−1

σj,σj,σu1
. We now analyze the situation based on the possible

dimensions of σj.
dimσj = 2: In this case, I0

σj,σj,σu1
· Ik−1
σj,σj,σu1

⊆ Ikσj,σj,σu1
. Thus the automor-

phism induced by any such ray commutes with the automorphisms associated with
all the other rays passing through j, modulo Ikσj,σj,σu1

. Since d contributes twice to

θj, but with inverse automorphisms, in fact d does not affect θj ≡ Id mod Ikσj,σj,σu1
.

dimσj = 1: In this case, either d is parallel to the edge σj, or it is transversal
to this edge. In the first case the automorphism associated to d commutes with the
automorphism associated to dp,±, where p ∈ σj is the singular point, if there is one.
This is because d is parallel to dp,±. On the other hand, let σ± be the maximal cells
containing σj. Writing f(d,x) = 1 + czm, one sees that we must have ordσ± m = k.
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Thus the automorphism associated to d commutes with any other automorphism
contributing to θj modulo Ikσj ,σj,σu1

.

In the second case, suppose without loss of generality that d passes say, from
the maximal cell σ+ into the maximal cell σ−. By construction, we must have
ordσ+(md,x) ≥ k and thus ordσ−(md,x) > k, by Lemma 6.19. So the automorphism

associated to this ray is trivial modulo Ikσj ,σj,σu1
and has no impact on θj.

dimσj = 0: In this case, d passes from a maximal cell σ+ containing j to a cell
σ− containing j. By the same argument, ordσ+(md,x) ≥ k and ordσ−(md,x) > k,
and again d has no impact on θj. �

Proof of Theorem 6.6. The above construction produces, by Theorem 6.49,
a structure Sk compatible to order k. By Theorem 6.35, this gives a scheme
X̌k(B,P) flat over Ok. Furthermore, by construction, X̌k(B,P) ×Rk

Rk−1
∼=

X̌k−1(B,P). Hence we can take the limit of schemes X̌k(B,P) over all k, getting
a formal scheme X̌(B,P) flat over Spf k[t℄, as desired. �

6.4. Remarks and generalizations

The argument given in the previous two sections has a lot in common with the
original argument given by Kontsevich and Soibelman. They did not work with
a polyhedral decomposition, however, and instead of constructing a degenerating
family of varieties, they constructed a rigid analytic space via a similar gluing
construction. The data controlling the two gluing constructions are very similar. A
key difference, though, is that Kontsevich and Soibelman work in what we would
call the fan picture. As a result, rays are not straight, but have to be taken to
be gradient flow lines of certain functions with respect to a special metric. Thus
their construction looks less tropical than the one given here, where the union of all
rays looks like a union of tropical trees. Ignoring the discrete data of a polyhedral
decomposition also makes it easier to describe the construction, since there are
no case-by-case analyses to conduct. Despite this, there is one unpleasant aspect
of their argument: they need to construct a choice of metric so that none of the
gradient flow lines returns to a small neighbourhood of the singular points. This is
needed to guarantee convergence of the construction.

This issue causes pain here too, but is all subsumed in Proposition 6.47. While
the argument here is simple, it is of course using the full strength of [45]. In [49], we
give a different, longer but more elementary argument to deal with this case. In any
event, it seems to be impossible to avoid some technical issues about convergence
caused by singularities.

The paper [49] gives results in all dimensions. The approach taken in this
chapter can be viewed as a hybrid of Kontsevich and Soibelman’s version and the
approach of [49]. There, in general, instead of considering rays, one considers
codimension one walls emanating from the singular locus, with attached functions
determining gluings. Such objects can be topologically very complicated, so it
proved much easier to build walls out of building blocks, order by order, replacing
objects of possibly infinite extent with walls sitting inside cells of P. This already
makes [49] somewhat more difficult to read. Now, joints are codimension two
polyhedra, and one adds new walls at each joint.

Far more subtle are the issues of convergence that arise from order 0 terms on
walls coming directly out of the singular locus. In particular, the arguments that
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guarantee suitable versions of Theorem 6.38 for joints contained in codimension one
and codimension two cells of P are very difficult, and run to about 40 pages. It is
hopeful that, with a better enumerative understanding of the higher dimensional
case, these arguments might become more conceptual, if not easier. On the other
hand, I know of no way of generalizing Kontsevich and Soibelman’s approach to
higher dimensions; the convergence issues seem even harder. Another issue which
arises is that codimension three polyhedra where different joints intersect play a
role. Such polyhedra are called interstices. Fortunately, the algorithm takes care of
the interplay between various joints meeting at an interstice relatively easily; the
argument of the proof of Theorem 5.39 uses a very similar idea.

That being said, what can we hope to accomplish with this construction? The
main point is that we have a description of degenerations of varieties determined
by (B,P, ϕ) in terms of what are essentially Maslov index zero tropical disks.
Rational tropical curves can then be obtained by gluing together such tropical
disks, very much as was carried out in Chapter 5. One needs to perform a more
general version of the period calculations done in Chapter 5 to see how these period
calculations extract all ways of gluing together these disks. Once this is done, one
should have a precise tropical interpretation for the B-model period calculations in
general. Coupling this with a calculation of Gromov-Witten invariants using the
theory of log Gromov-Witten invariants currently under development, in the spirit
of Chapter 4, one can then hope to prove mirror symmetry. At the time of writing,
there remains much to be done in this direction.

6.5. References and further reading

The material in this section is drawn from joint work of myself and Siebert,
except for the material of §6.3.2, which recounts work carried out in [45]; see also
[44] for a survey. To learn more about the details of the Gross-Siebert program,
the papers [47], [41], and [50] are intended as expository papers.

The technical details of the program itself have been developed in [48], [51],
and [49]. The latter paper, giving the smoothing result, should be accessible after
reading this chapter without reading [48].

As mentioned earlier, the argument given in this chapter can be viewed as a
variation of the original argument given in the rigid analytic situation by Kontsevich
and Soibelman in [70]. Since the latter paper was written, the authors have found
applications of the group of symplectomorphisms which arose originally in [70] (here
called the tropical vertex group) to wall-crossing formulas: see [71]. Furthermore,
scattering diagrams as discussed here also have an interpretation in terms of Euler
characteristics of moduli spaces of quiver representations: see the work of Reineke
in [94] and [95]. See also related work of Gaiotto, Moore and Neitzke, [29], [30].
The ideas described in this chapter have also been used recently in joint forthcoming
work of myself with Paul Hacking and Sean Keel to prove a conjecture of Looijenga
on the smoothability of cusp singularities and to construct canonical theta functions
for K3 surfaces.
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1995, pp. 472–480. MR MR1403947 (97j:58013)

34. , Equivariant Gromov-Witten invariants, Internat. Math. Res. Notices (1996), no. 13,
613–663. MR MR1408320 (97e:14015)

35. Tom Graber and Ravi Vakil, Relative virtual localization and vanishing of tautological classes
on moduli spaces of curves, Duke Math. J. 130 (2005), no. 1, 1–37. MR MR2176546
(2006j:14035)

36. Brian Greene and Ronen Plesser, Duality in Calabi-Yau moduli space, Nuclear Phys. B 338

(1990), no. 1, 15–37. MR MR1059831 (91h:32018)
37. Mark Gross, Special Lagrangian fibrations. I. Topology, Winter School on Mirror Symmetry,

Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999), AMS/IP Stud. Adv.
Math., vol. 23, Amer. Math. Soc., Providence, RI, 2001, pp. 65–93. MR MR1876066

38. , Special Lagrangian fibrations. II. Geometry. A survey of techniques in the study
of special Lagrangian fibrations, Winter School on Mirror Symmetry, Vector Bundles and
Lagrangian Submanifolds (Cambridge, MA, 1999), AMS/IP Stud. Adv. Math., vol. 23, Amer.
Math. Soc., Providence, RI, 2001, pp. 95–150. MR MR1876067

39. , Topological mirror symmetry, Invent. Math. 144 (2001), no. 1, 75–137.
MR MR1821145 (2002c:14062)

40. , Toric degenerations and Batyrev-Borisov duality, Math. Ann. 333 (2005), no. 3,
645–688. MR MR2198802



BIBLIOGRAPHY 309

41. , The Strominger-Yau-Zaslow conjecture: from torus fibrations to degenerations, Al-
gebraic geometry—Seattle 2005. Part 1, Proc. Sympos. Pure Math., vol. 80, Amer. Math.
Soc., Providence, RI, 2009, pp. 149–192. MR MR2483935

42. Mark Gross, Mirror symmetry for P2 and tropical geometry, Adv. Math. 224 (2010), 169–
245.

43. Mark Gross, Daniel Huybrechts, and Dominic Joyce, Calabi-Yau manifolds and related ge-
ometries, Universitext, Springer-Verlag, Berlin, 2003, Lectures from the Summer School held
in Nordfjordeid, June 2001. MR MR1963559 (2004c:14075)

44. Mark Gross and Rahul Pandharipande, Quivers, curves, and the tropical vertex, Port. Math.
67 (2010), 211–259.

45. Mark Gross, Rahul Pandharipande, and Bernd Siebert, The tropical vertex, Duke Math. J.
153 (2010), 297–362.

46. Mark Gross and Bernd Siebert, Logarithmic Gromov-Witten inariants, To appear.
47. , Affine manifolds, log structures, and mirror symmetry, Turkish J. Math. 27 (2003),

no. 1, 33–60. MR MR1975331 (2004g:14041)
48. , Mirror symmetry via logarithmic degeneration data. I, J. Differential Geom. 72

(2006), no. 2, 169–338. MR MR2213573
49. , From real affine geometry to complex geometry, arXiv:math/0703822, 2007.
50. , An invitation to toric degenerations, 2008, arXiv:0808.2749.

51. , Mirror symmetry via logarithmic degeneration data II, J. Algebraic Geom. 19

(2010), 679–780.
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(1998), no. 252, Exp. No. 848, 5, 307–340, Séminaire Bourbaki. Vol. 1997/98.
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change of strata map, 277
chart, 106
combinatorial type, 16

compatibility, 277
compatible

fan structure, 24
structure, 281

complete, 11

cone picture, 252
consistent, 281
convex

multi-valued PL function, 28
cubic surface, 32

degree

of a tropical disk, 175
Dilaton Axiom, 39

discrete Legendre transform, 7, 28, 253, 254
discriminant locus, 20
Divisor Axiom, 39

double point, 109
Dubrovin connection, 46

equivalent charts, 106

equivalent scattering diagrams, 294

étale topology, 99

Euler vector field, 45
expected dimension, 36

face, 4

fan, 11
fan picture, 248

fan structure, 22
first structure connection, 46

flag, 13
flat coordinates, 64, 87

Frobenius manifold, 43
identity on, 44

Fundamental Class Axiom, 39

geometric point, 99

ghost sheaf, 101
Givental J-function, 66

good decomposition, 134
graded partition, 298

grading, 55
graph, 13

marked, 13
gravitational descendent invariants, 38

Gromov-Witten invariants, xii, xiv, 37
descendent, 38

Gromov-Witten potential, 40

homogeneous, 45

Homological Mirror Symmetry, xii
homomorphism

integral, 109

index, 4

indistinguishable, 141
initial point, 198, 292

initial ray, 275
integral, 12

homomorphism of monoids, 109
monoid, 92

morphism of log schemes, 109
integral affine linear, 28

integral tropical manifold, 24
interior, 4

interstice, 215

Jacobian ideal, 69
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joint, 215, 281

Landau-Ginzburg

model, 67
potential, 67

potential, k-pointed, 177
Lefschetz thimble, 72
line, 144, 198, 292

bivalent, 144
trivalent, 144

log deformation theory, 117

log derivation, 112, 291
log differentials, 114
log geometry, xiv

log Gromov-Witten invariants, 250
log marked point, 109

log scheme, 98
morphism of, 99

log smooth curve, 109

log smooth morphism, 107
log structure, 98

associated to a pre-log structure, 100

chart for, 106
divisorial, 100
fine, 106

fine saturated, 106
pull-back, 100
trivial, 100

logarithmic differentials, 91
logarithmic normal sheaf, 121

map of fans, 94
Maslov index

of a tropical disk, 176

of a tropical tree, 201
Milnor ring, 69
miniversal, 62

mirror map, 87
mirror of a toric Fano variety, 174
mirror symmetry, xi

for Pn, 87
monoid, 92

fibre co-product of, 93
finitely generated, 92
integral, 92

saturated, 106
multiplicity, 19

of a tropical disk, 175

Mumford degeneration, 97

naked ray, 271
Newton polyhedron, 12

normal cone, 12
normal crossings, 91
normal fan, 12

open star, 22
opposite subspace, 59

order, 258

ordered partition, 296

oscillatory integral, 70

overvalence, 16

penguins

complete lack of, 185

PL function, 28

multi-valued, 28

Point Mapping Axiom, 39

polyhedral decomposition, 6, 21

polyhedron, 4

polytope, 4

positive tropical manifold, 255

pre-Frobenius structure, 43

pre-log structure, 98

Pressley-Segal Grassmannian, 57

primitive, 4

quantum cohomology, xii, 40

of P2, 42

quantum differential equation, 47

quintic threefold, xi

quotient fan, 12

ray, 198, 271, 292

reflexive polytope, 24

regular decomposition, 7

regular singular point, 54

relative stable maps, 296

scattering diagram, 198, 292

scheme-theoretically trivial, 151

semi-infinite variation of Hodge structure,
55

sheaf of log derivations, 112

simple curve, 17

simple tropical manifold, 255

singular locus, 20

smooth point, 109

stable curve

n-pointed, 33

stable manifold, 73

stable map
n-pointed, 35

stable reduction, 36

stack

Deligne-Mumford, 33

standard cone, 93

standard log point, 100

stationary phase approximation, 73

strict, 107

strictly convex, 11

strictly convex rational polyhedral cone, 11

string theory, xi

structure, 271, 274

superabundant, 17

support, 11, 198, 292

SYZ conjecture, xii, 247
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tangent wedge, 12
Tate curve, 268
Topological Recursion Relation, 47
toric boundary, 106
toric stratum, 95
toric variety, 93

affine, 93
torically transverse, 133
torically transverse log curve, 138
torically transverse pre-log curve, 147
tropical
J-function, 185
affine manifold, 20
Bézout theorem, 10
curve in a tropical manifold, 31
descendent invariants, 182
disk, 174
disk in XΣ, 175
hypersurface, 3

Jacobians, 20
manifold, 24
marked parametrized curve, 13
regular curve, 17
semi-ring, 3
simple curve, 17
tree, 200

tropical vertex group, 290
tropicalization, 248
twisted de Rham complex, 68

universal unfolding, 74
unstable manifold, 73

Vafa-Intriligator formula, 43
virtual dimension, 37
virtual fundamental class, 37

wall-crossing, 192, 208, 231
WDVV equation, 41
weight, 4




