Theorem 5.6 (Schwarz reflection principle) Suppose that \(f \) is a holomorphic function in \(\Omega^+ \) that extends continuously to \(I \) and such that \(f \) is real-valued on \(I \). Then there exists a function \(F \) holomorphic in all of \(\Omega \) such that \(F = f \) on \(\Omega^+ \).

Proof. The idea is simply to define \(F(z) \) for \(z \in \Omega^- \) by
\[
F(z) = \overline{f(\overline{z})}.
\]
To prove that \(F \) is holomorphic in \(\Omega^- \) we note that if \(z, z_0 \in \Omega^- \), then \(\overline{z}, \overline{z_0} \in \Omega^+ \) and hence, the power series expansion of \(f \) near \(\overline{z_0} \) gives
\[
f(\overline{z}) = \sum a_n (\overline{z} - \overline{z_0})^n.
\]
As a consequence we see that
\[
F(z) = \sum \overline{a_n} (z - z_0)^n
\]
and \(F \) is holomorphic in \(\Omega^- \). Since \(f \) is real valued on \(I \) we have \(\overline{f(x)} = f(x) \) whenever \(x \in I \) and hence \(F \) extends continuously up to \(I \). The proof is complete once we invoke the symmetry principle.

5.5 Runge’s approximation theorem

We know by Weierstrass’s theorem that any continuous function on a compact interval can be approximated uniformly by polynomials.\(^4\) With this result in mind, one may inquire about similar approximations in complex analysis. More precisely, we ask the following question: what conditions on a compact set \(K \subset \mathbb{C} \) guarantee that any function holomorphic in a neighborhood of this set can be approximated uniformly by polynomials on \(K \)?

An example of this is provided by power series expansions. We recall that if \(f \) is a holomorphic function in a disc \(D \), then it has a power series expansion \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) that converges uniformly on every compact set \(K \subset D \). By taking partial sums of this series, we conclude that \(f \) can be approximated uniformly by polynomials on any compact subset of \(D \).

In general, however, some condition on \(K \) must be imposed, as we see by considering the function \(f(z) = 1/z \) on the unit circle \(K = C \). Indeed, recall that \(\int_C f(z) \, dz = 2\pi i \), and if \(p \) is any polynomial, then Cauchy’s theorem implies \(\int_C p(z) \, dz = 0 \), and this quickly leads to a contradiction.

\(^4\)A proof may be found in Section 1.8, Chapter 5, of Book 1.
A restriction on K that guarantees the approximation pertains to the topology of its complement: K^c must be connected. In fact, a slight modification of the above example when $f(z) = 1/z$ proves that this condition on K is also necessary; see Problem 4.

Conversely, uniform approximations exist when K^c is connected, and this result follows from a theorem of Runge which states that for any K a uniform approximation exists by rational functions with “singularities” in the complement of K.\(^5\) This result is remarkable since rational functions are globally defined, while f is given only in a neighborhood of K. In particular, f could be defined independently on different components of K, making the conclusion of the theorem even more striking.

Theorem 5.7 Any function holomorphic in a neighborhood of a compact set K can be approximated uniformly on K by rational functions whose singularities are in K^c.

If K^c is connected, any function holomorphic in a neighborhood of K can be approximated uniformly on K by polynomials.

We shall see how the second part of the theorem follows from the first: when K^c is connected, one can “push” the singularities to infinity thereby transforming the rational functions into polynomials.

The key to the theorem lies in an integral representation formula that is a simple consequence of the Cauchy integral formula applied to a square.

Lemma 5.8 Suppose f is holomorphic in an open set Ω, and $K \subset \Omega$ is compact. Then, there exists finitely many segments $\gamma_1, \ldots, \gamma_N$ in $\Omega - K$ such that

\[
(15) \quad f(z) = \sum_{n=1}^{N} \frac{1}{2\pi i} \int_{\gamma_n} \frac{f(\zeta)}{\zeta - z} \, d\zeta \quad \text{for all } z \in K.
\]

Proof. Let $d = c \cdot d(K, \Omega^c)$, where c is any constant $< 1/\sqrt{2}$, and consider a grid formed by (solid) squares with sides parallel to the axis and of length d.

We let $Q = \{Q_1, \ldots, Q_M\}$ denote the finite collection of squares in this grid that intersect K, with the boundary of each square given the positive orientation. (We denote by ∂Q_m the boundary of the square Q_m.) Finally, we let $\gamma_1, \ldots, \gamma_N$ denote the sides of squares in Q that do not belong to two adjacent squares in Q. (See Figure 13.) The choice of d guarantees that for each n, $\gamma_n \subset \Omega$, and γ_n does not intersect K; for if it did, then it would belong to two adjacent squares in Q, contradicting our choice of γ_n.

\(^5\)These singularities are points where the function is not holomorphic, and are “poles”, as defined in the next chapter.
Since for any \(z \in K \) that is not on the boundary of a square in \(Q \) there exists \(j \) so that \(z \in Q_j \), Cauchy’s theorem implies
\[
\frac{1}{2\pi i} \int_{\partial Q_m} \frac{f(\zeta)}{\zeta - z} d\zeta = \begin{cases}
 f(z) & \text{if } m = j, \\
 0 & \text{if } m \neq j.
\end{cases}
\]
Thus, for all such \(z \) we have
\[
f(z) = \sum_{m=1}^{M} \frac{1}{2\pi i} \int_{\partial Q_m} \frac{f(\zeta)}{\zeta - z} d\zeta.
\]
However, if \(Q_m \) and \(Q_{m'} \) are adjacent, the integral over their common side is taken once in each direction, and these cancel. This establishes (15) when \(z \) is in \(K \) and not on the boundary of a square in \(Q \). Since \(\gamma_n \subset K^c \), continuity guarantees that this relation continues to hold for all \(z \in K \), as was to be shown.

The first part of Theorem 5.7 is therefore a consequence of the next lemma.

Lemma 5.9 For any line segment \(\gamma \) entirely contained in \(\Omega - K \), there exists a sequence of rational functions with singularities on \(\gamma \) that approximate the integral \(\int_{\gamma} f(\zeta)/(\zeta - z) \, d\zeta \) uniformly on \(K \).

Proof. If \(\gamma(t) : [0, 1] \to \mathbb{C} \) is a parametrization for \(\gamma \), then
\[
\int_{\gamma} \frac{f(\zeta)}{\zeta - z} \, d\zeta = \int_{0}^{1} \frac{f(\gamma(t))}{\gamma(t) - z} \gamma'(t) \, dt.
\]
Since γ does not intersect K, the integrand $F(z, t)$ in this last integral is jointly continuous on $K \times [0, 1]$, and since K is compact, given $\epsilon > 0$, there exists $\delta > 0$ such that

$$\sup_{z \in K} |F(z, t_1) - F(z, t_2)| < \epsilon \quad \text{whenever } |t_1 - t_2| < \delta.$$

Arguing as in the proof of Theorem 5.4, we see that the Riemann sums of the integral $\int_0^1 F(z, t) \, dt$ approximate it uniformly on K. Since each of these Riemann sums is a rational function with singularities on γ, the lemma is proved.

Finally, the process of pushing the poles to infinity is accomplished by using the fact that K^c is connected. Since any rational function whose only singularity is at the point z_0 is a polynomial in $1/(z - z_0)$, it suffices to establish the next lemma to complete the proof of Theorem 5.7.

Lemma 5.10 If K^c is connected and $z_0 \notin K$, then the function $1/(z - z_0)$ can be approximated uniformly on K by polynomials.

Proof. First, we choose a point z_1 that is outside a large open disc D centered at the origin and which contains K. Then

$$\frac{1}{z - z_1} = -\frac{1}{z_1} \frac{1}{1 - z/z_1} = \sum_{n=1}^{\infty} -\frac{z^n}{z_1^{n+1}},$$

where the series converges uniformly for $z \in K$. The partial sums of this series are polynomials that provide a uniform approximation to $1/(z - z_1)$ on K. In particular, this implies that any power $1/(z - z_1)^k$ can also be approximated uniformly on K by polynomials.

It now suffices to prove that $1/(z - z_0)$ can be approximated uniformly on K by polynomials in $1/(z - z_1)$. To do so, we use the fact that K^c is connected to travel from z_0 to the point z_1. Let γ be a curve in K^c that is parametrized by $\gamma(t)$ on $[0, 1]$, and such that $\gamma(0) = z_0$ and $\gamma(1) = z_1$. If we let $\rho = \frac{1}{2}d(K, \gamma)$, then $\rho > 0$ since γ and K are compact. We then choose a sequence of points $\{w_1, \ldots, w_\ell\}$ on γ such that $w_0 = z_0$, $w_\ell = z_1$, and $|w_j - w_{j+1}| < \rho$ for all $0 \leq j < \ell$.

We claim that if w is a point on γ, and w' any other point with $|w - w'| < \rho$, then $1/(z - w)$ can be approximated uniformly on K by polynomials in $1/(z - w')$. To see this, note that

$$\frac{1}{z - w} = \frac{1}{z - w'} \frac{1}{1 - \frac{w - w'}{z - w'}} = \sum_{n=0}^{\infty} \frac{(w - w')^n}{(z - w')^{n+1}}.$$
and since the sum converges uniformly for \(z \in K \), the approximation by partial sums proves our claim.

This result allows us to travel from \(z_0 \) to \(z_1 \) through the finite sequence \(\{w_j\} \) to find that \(1/(z - z_0) \) can be approximated uniformly on \(K \) by polynomials in \(1/(z - z_1) \). This concludes the proof of the lemma, and also that of the theorem.

6 Exercises

1. Prove that

\[
\int_0^\infty \sin(x^2) \, dx = \int_0^\infty \cos(x^2) \, dx = \frac{\sqrt{2\pi}}{4}.
\]

These are the **Fresnel integrals**. Here, \(\int_0^\infty \) is interpreted as \(\lim_{R \to \infty} \int_0^R \).

[Hint: Integrate the function \(e^{-z^2} \) over the path in Figure 14. Recall that \(\int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi} \).

2. Show that

\[
\int_0^\infty \frac{\sin x}{x} \, dx = \frac{\pi}{2}.
\]

[Hint: The integral equals \(\frac{1}{2} \int_{-\infty}^{\infty} \frac{e^{ix} - 1}{x} \, dx \). Use the indented semicircle.]

3. Evaluate the integrals

\[
\int_0^\infty e^{-ax} \cos bx \, dx \quad \text{and} \quad \int_0^\infty e^{-ax} \sin bx \, dx, \quad a > 0
\]

by integrating \(e^{-Ax} \), \(A = \sqrt{a^2 + b^2} \), over an appropriate sector with angle \(\omega \), with \(\cos \omega = a/A \).
Corollary 2.3 The only automorphisms of the unit disc that fix the origin are the rotations.

Note that by the use of the mappings ψ_α, we can see that the group of automorphisms of the disc acts transitively, in the sense that given any pair of points α and β in the disc, there is an automorphism ψ mapping α to β. One such ψ is given by $\psi = \psi_\beta \circ \psi_\alpha$.

The explicit formulas for the automorphisms of D give a good description of the group $\text{Aut}(D)$. In fact, this group of automorphisms is “almost” isomorphic to a group of 2×2 matrices with complex entries often denoted by $\text{SU}(1, 1)$. This group consists of all 2×2 matrices that preserve the hermitian form on $\mathbb{C}^2 \times \mathbb{C}^2$ defined by

$$\langle Z, W \rangle = z_1\overline{w}_1 - z_2\overline{w}_2,$$

where $Z = (z_1, z_2)$ and $W = (w_1, w_2)$. For more information about this subject, we refer the reader to Problem 4.

2.2 Automorphisms of the upper half-plane

Our knowledge of the automorphisms of D together with the conformal map $F : \mathbb{H} \to D$ found in Section 1.1 allow us to determine the group of automorphisms of \mathbb{H} which we denote by $\text{Aut}(\mathbb{H})$.

Consider the map

$$\Gamma : \text{Aut}(D) \to \text{Aut}(\mathbb{H})$$

given by “conjugation by F”:

$$\Gamma(\varphi) = F^{-1} \circ \varphi \circ F.$$

It is clear that $\Gamma(\varphi)$ is an automorphism of \mathbb{H} whenever φ is an automorphism of D, and Γ is a bijection whose inverse is given by $\Gamma^{-1}(\psi) = F \circ \psi \circ F^{-1}$. In fact, we prove more, namely that Γ preserves the operations on the corresponding groups of automorphisms. Indeed, suppose that $\varphi_1, \varphi_2 \in \text{Aut}(D)$. Since $F \circ F^{-1}$ is the identity on D we find that

$$\Gamma(\varphi_1 \circ \varphi_2) = F^{-1} \circ \varphi_1 \circ \varphi_2 \circ F$$
$$= F^{-1} \circ \varphi_1 \circ F \circ F^{-1} \circ \varphi_2 \circ F$$
$$= \Gamma(\varphi_1) \circ \Gamma(\varphi_2).$$

The conclusion is that the two groups $\text{Aut}(D)$ and $\text{Aut}(\mathbb{H})$ are the same, since Γ defines an isomorphism between them. We are still left with the
Chapter 8. CONFORMAL MAPPINGS

task of giving a description of elements of Aut(\mathbb{H}). A series of calculations, which consist of pulling back the automorphisms of the disc to the upper half-plane via F, can be used to verify that Aut(\mathbb{H}) consists of all maps

$$z \mapsto \frac{az + b}{cz + d},$$

where $a, b, c,$ and d are real numbers with $ad - bc = 1$. Again, a matrix group is lurking in the background. Let SL$_2(\mathbb{R})$ denote the group of all 2×2 matrices with real entries and determinant 1, namely

$$\text{SL}_2(\mathbb{R}) = \left\{ M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{R} \text{ and } \det(M) = ad - bc = 1 \right\}.$$

This group is called the special linear group.

Given a matrix $M \in \text{SL}_2(\mathbb{R})$ we define the mapping f_M by

$$f_M(z) = \frac{az + b}{cz + d}.$$

Theorem 2.4 Every automorphism of \mathbb{H} takes the form f_M for some $M \in \text{SL}_2(\mathbb{R})$. Conversely, every map of this form is an automorphism of \mathbb{H}.

The proof consists of a sequence of steps. For brevity, we denote the group $\text{SL}_2(\mathbb{R})$ by G.

Step 1. If $M \in G$, then f_M maps \mathbb{H} to itself. This is clear from the observation that

$$\text{Im}(f_M(z)) = \frac{(ad - bc)\text{Im}(z)}{|cz + d|^2} = \frac{\text{Im}(z)}{|cz + d|^2} > 0 \quad \text{whenever } z \in \mathbb{H}.$$

Step 2. If M and M' are two matrices in G, then $f_M \circ f_{M'} = f_{MM'}$. This follows from a straightforward calculation, which we omit. As a consequence, we can prove the first half of the theorem. Each f_M is an automorphism because it has a holomorphic inverse $(f_M)^{-1}$, which is simply $f_{M^{-1}}$. Indeed, if I is the identity matrix, then

$$(f_M \circ f_{M^{-1}})(z) = f_{MM^{-1}}(z) = f_I(z) = z.$$

Step 3. Given any two points z and w in \mathbb{H}, there exists $M \in G$ such that $f_M(z) = w$, and therefore G acts transitively on \mathbb{H}. To prove this,
it suffices to show that we can map any $z \in \mathbb{H}$ to i. Setting $d = 0$ in equation (4) above gives

$$\text{Im}(f_M(z)) = \frac{\text{Im}(z)}{|c_2|^2}$$

and we may choose a real number c so that $\text{Im}(f_M(z)) = 1$. Next we choose the matrix

$$M_1 = \begin{pmatrix} 0 & -c^{-1} \\ c & 0 \end{pmatrix}$$

so that $f_{M_1}(z)$ has imaginary part equal to 1. Then we translate by a matrix of the form

$$M_2 = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \quad \text{with } b \in \mathbb{R},$$

to bring $f_{M_1}(z)$ to i. Finally, the map f_M with $M = M_2M_1$ takes z to i.

Step 4. If θ is real, then the matrix

$$M_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

belongs to G, and if $F : \mathbb{H} \rightarrow \mathbb{D}$ denotes the standard conformal map, then $F \circ f_{M_{\theta}} \circ F^{-1}$ corresponds to the rotation of angle -2θ in the disc. This follows from the fact that $F \circ f_{M_{\theta}} = e^{-2i\theta}F(z)$, which is easily verified.

Step 5. We can now complete the proof of the theorem. We suppose f is an automorphism of \mathbb{H} with $f(\beta) = i$, and consider a matrix $N \in G$ such that $f_N(i) = \beta$. Then $g = f \circ f_N$ satisfies $g(i) = i$, and therefore $F \circ g \circ F^{-1}$ is an automorphism of the disc that fixes the origin. So $F \circ g \circ F^{-1}$ is a rotation, and by Step 4 there exists $\theta \in \mathbb{R}$ such that

$$F \circ g \circ F^{-1} = F \circ f_{M_{\theta}} \circ F^{-1}.$$

Hence $g = f_{M_{\theta}}$, and we conclude that $f = f_{M_{\theta}N^{-1}}$ which is of the desired form.

A final observation is that the group $\text{Aut}(\mathbb{H})$ is not quite isomorphic with $\text{SL}_2(\mathbb{R})$. The reason for this is because the two matrices M and $-M$ give rise to the same function $f_M = f_{-M}$. Therefore, if we identify the two matrices M and $-M$, then we obtain a new group $\text{PSL}_2(\mathbb{R})$ called the **projective special linear group**; this group is isomorphic with $\text{Aut}(\mathbb{H})$.