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3. LOCAL PROPERTIES OF ANALYTIC FUNCTIONS 

We have already proved that an analytic function has derivatives of 
all orders. In this section we will make a closer study of the local 
properties. It will include a classification of the isolated singularities of 
analytic functions. 

3.1. Removable Singnlarities. Taylor's Theorem. In Theorem 3 
we introduced a weaker condition which could be substituted for ana­
lyticity at a finite number of points without affecting the end result. We 
showed moreover, in Theorem 5, that Cauchy's theorem in a circular disk 
remains true under these weaker conditions. This was an essential point 
in our derivation of Cauchy's integral formula, for we were required to 
apply Cauchy's theorem to a function of the form (f(z) - f(a))/(z- a). 

Finally, it was pointed out that Cauchy's integral formula remains 
valid in the presence of a finite number of exceptional points, all satis­
fying the fundamental condition of Theorem 3, provided that none of 
them coincides with a. This remark is more important than it may seem 
on the surface. Indeed, Cauchy's formula provides us with a represen­
tation of f(z) through an integral which in its dependence on z has the 
same character at the exceptional points as everywhere else. It follows 
that the exceptional points are such only by lack of information, and not 
by their intrinsic nature. Points with this character are called removable 
singularities. We shall prove the following precise theorem: 

Theorem 7. Suppose that f(z) is analytic in the region Q' obtained by 
omitting a point a from a region Q. A necessary and sufficient condition 
that there exist an analytic function in Q which coincides with f(z) in Q' is 
that lim (z - a)f(z) = 0. The extended function is uniquely determined. 

z-+a 

The necessity and the uniqueness are trivial since the extended func­
tion must be continuous at a. To prove the sufficiency we draw a circle 
C about a so that C and its inside are contained in Q. Cauchy's formula 
is valid, and we can write 

f(z) = ~ r fer) dt 
21l"2lot-z 

for all z ~ a inside of C. But the integral in the right-hand member 
represents an analytic function of z throughout the inside of C. Conse­
quently, the function which is equal to f(z) for z ~ a and which has the 
value 

(27) 
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for z = a is analytic in Q. It is natural to denote the extended function 
by f(z) and the value (27) by f(a). 

We apply this result to the function 

F(z) = f(z) - f(a) 
z-a 

used in the proof of Cauchy's formula. It is not defined for z = a, but 
it satisfies the condition lim (z - a)F(z) = 0. The limit of F(z) as z 

z->a 

tends to a is f' (a). Hence there exists an analytic function which is 
equal to F(z) for z ~ a and equal to f'(a) for z = a. Let us denote this 
function by ft(z). Repeating the process we can define an analytic func­
tion J2(z) which equals (ft(z) - ft(a))/(z - a) for z ~ a and f{(a) for 
z = a, and so on. 

The recursive scheme by which fn(z) is defined can be written in the 
form 

f(z) = f(a) + (z - a)ft(z) 
ft(z) = ft(a) + (z - a)j2(z) 

fn-t(z) = fn-l(a) + (z- a)fn(z). 

From these equations which are trivially valid also for z = a we obtain 

f(z) = f(a) + (z- a)ft(a) + (z- a) 2j2(a) + · · · + (z- a)n-lfn-I(a) 
+ (z - a)nfn(z). 

Differentiating n times and setting z = a we find 

J<nl(a) = nlfn(a). 

This determines the coefficients fn(a), and we obtain the following form 
of Taylor's theorem: 

Theorem 8. If f(z) is analytic in a region !:2, containing a, it is possible 
to write 

(28) f(z) = f(a) + f'i~) (z - a) + f'~(~) (z - a) 2 + · · · 
pn-ll(a) + (n _ l)! (z - a)n-l + fn(z)(z - a)", 

where fn(z) is analytic in Q. 
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This finite development must be well distinguished from the infinite 
Taylor series which we will study later. It is, however, the finite develop­
ment (28) which is the most useful for the study of the local properties )f 
f(z). Its usefulness is enhanced by the fact that fn(z) has a simple explicit 
expression as a line integral. 

Using the same circle Cas before we have first 

fn(z) = ~ r fn(r) dt. 
27r~ }a r - z 

For fn(r) we substitute the expression obtained from (28). There will 
be one main term containing f(r). The remaining terms are, except for 
constant factors, of the form 

r dt 
F.(a) = }a (t - a)"(t- z)' v G 1. 

But 

F1(a) = - 1
- { (-

1
-- -

1
-) dt = 0, z- a }a r- z r -a 

identicallyforallainsideofC. ByLemma3wehaveFv+l(a) = Fi•>(a)h! 
and thus F.(a) = 0 for all v G 1. Hence the expression for fn(z) reduces to 

(29) 

The representation is valid inside of C. 

3.2. Zeros and Poles. If f(a) and all derivatives J<•l (a) vanish, we can 
write by (28) 

(30) f(z) = fn(z) (z - a)n 

for any n. An estimate for fn(z) can be obtained by (29). The disk 
with the circumference C has to be contained in the region Q in which 
f(z) is defined and analytic. The absolute value \f(z) I has a maximum 
M on C; if the radius of C is denoted by R, we find 

\fn(z)\ ~ Rn-l(R ~\z- a\) 

for \t - a\ < R. By (30) we have thus 

\f(z)\ ~ (lz- a\)n. MR . 
R R- \z- a\ 

But (\z - a\/R)n ---7 0 for n ---7 oo, since \z - a\ < R. Hence f(z) = 0 
inside of C. 
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We show now that f(z) is identically zero in all of Q. Let E 1 be the 
set on which f(z) and all derivatives vanish and Ez the set on which the 
function or one of the derivatives is different from zero. E 1 is open by 
the above reasoning, and E 2 is open because the function and all deriva­
tives are continuous. Therefore either E1 or Ez must be empty. If E 1 

is empty, the function is identically zero. If E1 is empty, f(z) can never 
vanish together with all its derivatives. 

Assume that f(z) is not identically zero. Then, if f(a) = 0, there 
exists a first derivativefChl(a) which is different from zero. We say then 
that a is a zero of order h, and the result that we have just proved expresses 
that there are no zeros of infinite order. In this respect an analytic 
function has the same local behavior as a polynomial, and just as in the 
case of polynomials we find that it is possible to write f(z) = (z - a)hfh(z) 
where fh(z) is analytic and fh(a) ~ 0. 

In the same situation, sincefh(z) is continuous,jh(z) ~ 0 in a neighbor­
hood of a and z = a is the only zero of f(z) in this neighborhood. In 
other words, the zeros of an analytic function which does not vanish 
identically are isolated. This property can also be formulated as a 
uniqueness theorem: lf f(z) and g(z) are analytic in Q, and if f(z) = g(z) 
on a set which has an accumulation point in !J, then f(z) is identically 
equal to g(z). The conclusion follows by consideration of the difference 
f(z) - g(z). 

Particular instances of this result which deserve to be quoted are the 
following: If f(z) is identically zero in a subregion of Q, then it is identi­
cally zero in !J, and the same is true if f(z) vanishes on an arc which 
does not reduce to a point. We can also say that an analytic function is 
uniquely determined by its values on any set with an accumulation point 
in the region of analyticity. This does not mean that we know of any 
way in which the values of the function can be computed. 

We consider now a function f(z) which is analytic in a neighborhood 
of a, except perhaps at a itself. In other words, f(z) shall be analytic in 
a region 0 < lz - al < o. The point a is called an isolated singularity 
of f(z). We have already treated the case of a removable singularity. 
Since we can then define f(a) so that f(z) becomes analytic in the disk 
lz - a! < o, it needs no further consideration. t 

If lim f(z) = oo, the point a is said to be a pole of f(z), and we set 
z-+a 

f(a) = oo. There exists a o' ~ o such that f(z) ~ 0 for 0 < lz - ai < o'. 
In this region the function g(z) = 1/f(z) is defined and analytic. But 
the singularity of g(z) at a is removable, and g(z) has an analytic exten-

t If a is a removable singularity, f(z) is frequently said to be regular at a; this 
term is sometimes used as a synonym for analytic. 
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sion with g(a) = 0. Since g(z) does not vanish identically, the zero at 
a has a finite order, and we can write g(z) = (z - a)hgh(z) with gh(a) ~ 0. 
The number h is the order of the pole, and f(z) has the representation 
f(z) = (z - a)-hjh(z) where fh(z) = 1/gh(z) is analytic and different from 
zero in a neighborhood of a. The nature of a pole is thus exactly the 
same as in the case of a rational function. 

A function f(z) which is analytic in a region !J, except for poles, is said 
to be meromorphic in Q. More precisely, to every a e Q there shall exist 
a neighborhood \z - a\ < o, contained in Q, such that either .f(z) is ana­
lytic in the whole neighborhood, or elsef(z) is analytic for 0 < \z - a\ < o, 
and the isolated singularity is a pole. Observe that the poles of a mero­
morphic function are isolated by definition. The quotient f(z)/g(z) of 
two analytic functions in Q is a meromorphic function in !J, provided 
that g(z) is not identically zero. The only possible poles are the zeros of 
g(z), but a common zero of f(z) and g(z) can also be a removable singu­
larity. If this is the case, the value of the quotient must be determined 
by continuity. More generally, the sum, the product, and the quotient 
of two meromorphic functions are meromorphic. The case of an identi­
cally vanishing denominator must be excluded, unless we wish to con­
sider the constant oo as a meromorphic function. 

For a more detailed discussion of isolated singularities, we consider 
the conditions (1) lim \z - a\a\f(z) \ = 0, (2) lim \z - a\a\f(z) \ = oo, for 

z->a z->a 

real values of a. If (1) holds for a certain a, then it holds for all larger a, 

and hence for some integer m. Then (z - a)mj(z) has a removable singu­
larity and vanishes for z = a. Either f(z) is identically zero, in which 
case (1) holds for all a, or (z - a)mf(z) has a zero of finite order k. In 
the latter case it follows at once that (1) holds for all a > h = m - k, 
while (2) holds for all a < h. Assume now that (2) holds for some a; 
then it holds for all smaller a, and hence for some integer n. The func­
tion (z - a)nf(z) has a pole of finite order Z, and setting h = n + l we 
find again that (1) holds for a > h and (2) for a < h. The discussion 
shows that there are three possibilities: (i) condition (1) holds for all a, 

and f(z) vanishes identically; (ii) there exists an integer h such that (1) 
holds for a > hand (2) for a < h; (iii) neither (1) nor (2) holds for any a. 

Case (i) is uninteresting. In case (ii) h may be called the algebraic 
order of f(z) at a. It is positive in case of a pole, negative in case of a 
zero, and zero if f(z) is analytic but ~ 0 at a. The remarkable thing is 
that the order is always an integer; there is no single-valued analytic 
function which tends to 0 or oo like a fractional power of \z - a\. 

In the case of a pole of order h, let us apply Theorem 8 to the analytic 
function (z - a)hj(z). We obtain a development of the form 

(z- a)hf(z) = B,. + Bh_1(z - a) + · · · + B1(z - a)h-l + <p(z)(z - a)~ 
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where <p(z) is analytic at z = a. For z ~ a we can divide by (z - a)" 
and find 

The part of this development which precedes <p(z) is called the singular 
part of f(z) at z = a. A pole has thus not only an order, but also a well­
defined singular part. The difference of two functions with the same 
singular part is analytic at a. 

In case (iii) the point a is an essential isolated singularity. In 
the neighborhood of an essential singularity .f(z) is at the same time 
unbounded and comes arbitrarily close to zero. As a characterization 
of the complicated behavior of a function in the neighborhood of an essen­
tial singularity, we prove the following classical theorem of Weierstrass: 

Theorem 9. An analytic function comes arbitrarily close to any complex 
value in every neighborhood of an essential singularity. 

If the assertion were not true, we could find a complex number A and 
a o > 0 such that !f(z) - AI > o in a neighborhood of a (except for 
z = a). For any a < 0 we have then lim lz - alalf(z) - AI = oo. 

z--+a 

Hence a would not be an essential singularity of f(z) - A. Accord­
ingly, there exists a {3 with lim lz - a!ll!f(z) - A I = 0, and we are free 

z--+a 

to choose {3 > 0. Since in that case lim lz - alll!AI = 0 it would follow 
z--+a 

that lim lz - a!lllf(z) I = 0, and a would not be an essential singularity of 
z--+a 

f(z). The contradiction proves the theorem. 
The notion of isolated singularity applies also to functions which are 

analytic in a neighborhood !zl > R of oo. Since f( oo) is not defined, we 
treat oo as an isolated singularity, and by convention it has the same 
character of removable singularity, pole, or essential singularity as the 
singularity of g(z) = f(l/z) at z = 0. If the singularity is nonessential, 
f(z) has an algebraic order h such that lim z-hf(z) is neither zero nor 

Z--+ oo 

infinity, and for a pole the singular part is a polynomial in z. If oo is 
an essential singularity, the function has the property expressed by 
Theorem 9 in every neighborhood of infinity. 

EXERCISES 

1. If f(z) and g(z) have the algebraic orders h and k at z = a, show 
thatfg has the order h + k, f/g the order h- k, andf + g an order which 
does not exceed max (h,k). 


