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6. Find the interior, closure, and boundary for the set {z ∈ C : 1 ≤ |z| < 2} (no
proof required).

7. Prove that w ∈ C is in the closure of a set E ⊂ C if and only if there is a
sequence {zn} ⊂ E such that lim zn = w. Thus, a set E is closed if and only if
it contains all limits of convergent sequences of points in E.

8. Does limz→0 f(z) exist if f(z) =
|z − z|

|z| with domain C \ {0}? How about if

the domain is restricted to be just R \ {0}?

9. Prove that Re(z), Im(z), and z are continuous functions of z.

10. At which points of C is the function (1 − z4)−1 continuous.

11. Prove that argI is continuous except on its cut line.

12. Use the result of the preceding exercise to prove that a branch of the log function
is continuous except on its cut line.

13. Use Theorem 2.1.13 to prove that if f and g are continuous functions with open
domains Uf and Ug and if g(Ug) ⊂ Uf , then f ◦ g is continuous on Ug.

14. Prove that if f is a continuous function defined on an open subset U of C, then
sets of the form {z ∈ U : |f(z)| < r} and {z ∈ U : Re(f(z)) < r} are open.

15. Use the result of the preceding exercise to come up with an open subset of C
that has not been previously described in this text.

16. Prove that a function f with open domain U is continuous at a point a ∈ U
if and only if whenever {zn} ⊂ U is a sequence converging to a, the sequence
{f(zn)} converges to f(a).

2.2. The Complex Derivative

There is nothing surprising about the definition of the derivative of a function of
a complex variable – it looks just like the definition of the derivative of a function
of a real variable. What is surprising are the consequences of a function having a
derivative in this sense.

Definition 2.2.1. Let f be a function defined on a neighborhood of z ∈ C. If

lim
w→z

f(w) − f(z)

w − z

exists, then we denote it by f ′(z) and we say f is differentiable at z with complex
derivative f ′(z). If f is defined and differentiable at every point of an open set U ,
then we say that f is analytic on U .

Remark 2.2.2. When convenient, we will make the change of variables λ = w− z
and write the derivative in the form

(2.2.1) f ′(z) = lim
λ→0

f(z + λ) − f(z)

λ
.

Clearly constant functions are differentiable and have complex derivative 0,
since the difference quotient in Definition 2.2.1 is identically 0 for such a function.
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2.2. The Complex Derivative 35

The first hint that there is something fundamentally different about this notion
of derivative is in the following example.

Example 2.2.3. Show that the function f(z) = z is differentiable everywhere on
C with derivative 1 and, hence, is analytic on C, but the function f(z) = z is
differentiable nowhere.

Solution: For f(z) = z, the difference quotient in (2.2.1) is

λ

λ
= 1,

which clearly has limit 1 as λ → 0 for every z. On the other hand, if f(z) = z, then
the difference quotient is

λ

λ
= e−2iθ,

if λ = r eiθ in polar form. The limit of this function as λ → 0 clearly does not exist,
since it has a different fixed value along each ray emanating from 0. This is true
no matter what z is, and so z is nowhere differentiable.

What makes this example so surprising, at first, is that, as a function of the
two real variables x and y, z = x − iy is of class C∞ – meaning that its partial
derivatives of all orders exist and are continuous – and yet, its complex derivative
does not exist. Thus, existence of the complex derivative involves more than just
smoothness of the function.

We will soon prove that a function which has a power series expansion that
converges on an open disc is analytic on that disc. This would imply that the
exponential function, for example, is analytic on all of C. We do not have to wait,
however, to prove this fact. There is an elementary proof that ez is analytic on C.

Example 2.2.4. Prove that ez is an analytic function of z on the entire complex
plane and show that it is its own derivative.

Solution: Given an arbitrary point z ∈ C, we will show that ez has derivative
ez at z. By the law of exponents

ez+λ − ez

λ
= ez eλ −1

λ
.

Thus, to show that the derivative of ez is ez we need only show that

(2.2.2) lim
λ→0

eλ −1

λ
= 1.

However, if t = |λ|, inspection of the power series for eλ and et shows that

(2.2.3)

∣∣∣∣
eλ −1

λ
− 1

∣∣∣∣ =

∣∣∣∣
eλ −1 − λ

λ

∣∣∣∣ ≤
et −1 − t

t
.

Now to show that the expression on the left has limit zero and, thus, verify (2.2.2),
we simply apply L’Hôpital’s rule to the expression on the right.
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36 2. Analytic Functions

Elementary Properties of the Derivative. A simple result about derivatives
of functions of a real variable that also holds in the context of complex derivatives
is the following. The proof is elementary and is left to the exercises.

Theorem 2.2.5. If the complex derivative f ′ of f exists at a ∈ C, then f is
continuous at a.

The complex derivative has all of the familiar properties in relation to sums,
products, and quotients of functions. The proofs of these are in no way different
from the proofs of the corresponding results for functions of a real variable. In the
following theorem, Part (a) is trivial and we leave Parts (b) and (c) to the exercises.

Theorem 2.2.6. If f and g are functions of a complex variable which are differ-
entiable at z ∈ C, then

(a) f + g is differentiable at z and (f + g)′(z) = f ′(z) + g′(z);

(b) fg is differentiable at z and (fg)′(z) = f ′(z)g(z) + f(z)g′(z);

(c) if g(z) ̸= 0, 1/g is differentiable at z and (1/g)′(z) = −g′(z)/g2(z).

Parts (a) and (b) of this theorem and the fact that constant functions and the
function z are analytic on C imply that every polynomial in z is analytic on C. Of
course, since z is not analytic, we cannot expect mixed polynomials that contain
powers of both z and z to be analytic.

Parts (b) and (c) of the theorem imply that f/g is differentiable at z if f and
g are and if g(z) ̸= 0. They also imply the quotient rule

(
f

g

)′
(z) =

f ′(z)g(z) − g′(z)f(z)

g2(z)
.

The chain rule also holds for the complex derivative.

Theorem 2.2.7. If g is differentiable at a and f is differentiable at b = g(a), then
f ◦ g is differentiable at a and

(f ◦ g)′(a) = f ′(g(a))g′(a).

Proof. Let U be a neighborhood of b on which f is defined. We define a function
h(w) on U in the following way

h(w) =

⎧
⎨

⎩

f(w) − f(b)

w − b
, if w ̸= b;

f ′(b), if w = b.

Then h is continuous at b, since

f ′(b) = lim
w→b

f(w) − f(b)

w − b
.

Also,

(2.2.4)
f ◦ g(z) − f ◦ g(a)

z − a
= h(g(z))

g(z) − g(a)

z − a

for all z in the deleted neighborhood V = g−1(U) \ {a} of a. If we take the limit
of both sides of (2.2.4) and use the fact that f and h are continuous at b and g is
continuous at a, we conclude that (f ◦ g)′(a) = f ′(g(a))g′(a), as required. !
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2.2. The Complex Derivative 37

Example 2.2.8. Suppose p(z) is a polynomial in z. Where is the function ep(z)

analytic and what is its derivative?

Solution: Since ez and p(z) both are differentiable everywhere, so is the com-
position ep(z), by Theorem 2.2.7, and the derivative is

(
ep(z)

)′
= p′(z) ep(z) .

The Cauchy-Riemann Equations. Since a function f of a complex variable
may be regarded as a complex-valued function on a subset of R2, we can write it
in the form

(2.2.5) f(x + iy) = u(x, y) + iv(x, y),

where u and v are the real and imaginary parts of f , regarded as functions defined
on a subset of R2. It is natural to ask what the existence of a complex derivative
for f implies about the functions u and v as functions of the two real variables x
and y. It is easy to see that it implies the existence of the partial derivatives ux,
uy, vx and vy. In fact, it implies much more as the following discussion will show.

Recall that a function g of two real variables is said to be differentiable at (x, y)
if there are numbers A and B such that

g(x + h, y + k) − g(x, y) = Ah + Bk + ϵ(h, k),

where ϵ(h, k)/|(h, k)| → 0 as (h, k) → (0, 0). If g is differentiable at (x, y), then the
numbers A and B are the partial derivatives gx and gy at (x, y).

Suppose f is a complex-valued function defined in a neighborhood of z ∈ C. If
M = f ′(z) exists, then we may write

(2.2.6) f(z + λ) − f(z) = Mλ + ϵ(λ),

where ϵ(λ)/λ → 0 as λ → 0. In fact, ϵ(λ) is given by

ϵ(λ) = f(z + λ) − f(z) − Mλ,

and so, the fact that ϵ(λ)/λ → 0 as λ → 0 is equivalent to the statement that f ′(z)
exists and is equal to M .

If we write f, M, z,λ, and ϵ in terms of their real and imaginary parts: f =
u + iv, M = C + iD, z = x + iy,λ = h + ik, and ϵ = ρ + iω, then (2.2.6) becomes

(2.2.7) u(x + h, y + k) + iv(x + h, y + k) − u(x, y) − iv(x, y)

= (C + iD)(h + ik) + ρ(h, k) + iω(h, k).

On equating real and imaginary parts, this leads to the two equations

u(x + h, y + k) − u(x, y) = Ch − Dk + ρ(h, k),

v(x + h, y + k) − v(x, y) = Dh + Ck + ω(h, k).
(2.2.8)

The condition that ϵ(λ)/λ → 0 as λ → 0 implies that ρ(h, k)/|(h, k)| → 0 and
ω(h, k)/|(h, k)| → 0 (note that |(h, k)| =

√
h2 + k2 = |λ|). Thus, we can draw two

conclusions from the existence of f ′(z): (1) u and v are differentiable at (x, y), and
(2) the partial derivatives of u and v at (x, y) are given by

ux(x, y) = C, uy(x, y) = −D,

vx(x, y) = D, vy(x, y) = C.
(2.2.9)
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38 2. Analytic Functions

A surprising consequence of this is that if f ′ exists at z = x + iy, then

ux = vy,

uy = −vx
(2.2.10)

at (x, y). Equations (2.2.10) are the Cauchy-Riemann equations . Equations (2.2.9)
also show that if f ′ exists at z, then f ′(z) = C + iD = ux + ivx = −i(uy + ivy). If
we set fx = ux + ivx and fy = uy + ivy, then this can be written as f ′ = fx = −ify

wherever f ′ exists.

The above discussion shows that, at any point where f has a complex derivative,
its real and imaginary parts are differentiable functions and satisfy the Cauchy-
Riemann equations. The converse is also true: If the real and imaginary parts of f
are differentiable and satisfy the Cauchy-Riemann equations at a point z = x + iy,
then f ′(z) exists. The proof of this is a matter of working backwards through the
above discussion, beginning with the assumption that u and v are differentiable at
(x, y), with partial derivatives that satisfy ux = vy = C and uy = −vx = −D. This
leads to (2.2.8), which eventually leads back to the conclusion that C + iD is the
derivative of f at z = x + iy. We leave the details to the exercises. The result is
the following theorem.

Theorem 2.2.9. If f = u + iv is a complex-valued function defined in a neigh-
borhood of z ∈ C, with real and imaginary parts u and v, then f has a complex
derivative at z if and only if u and v are differentiable and satisfy the Cauchy-
Riemann equations (2.2.10) at z = x + iy. In this case,

f ′ = fx = −ify.

Example 2.2.10. We already know that ez is analytic everywhere. However, give
a different proof of this by showing ez satisfies the Cauchy-Riemann equations.

Solution: With z = x + iy, we write ez = ex(cos y + i sin y). The real and
imaginary parts of ez are u(x, y) = ex cos y and v(x, y) = ex sin y. Thus,

ux(x, y) = ex cos y = vy, and

uy(x, y) = − ex sin y = −vx.

Example 2.2.11. Use the Cauchy-Riemann equations to prove that, for each
branch of the log function, log(z) is analytic everywhere except on its cut line
and has derivative 1/z.

Solution: We first prove that the principal branch of the log function is an-
alytic on the right half-plane H = {z ∈ C : Re(z) > 0}. For z ∈ H we have
z = x + iy = r eiθ where

r =
√

x2 + y2 and θ = tan−1(y/x).

Thus, the principal branch of log on H is

log(x + iy) = (1/2) ln(x2 + y2) + i tan−1(y/x).
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2.2. The Complex Derivative 39

Taking partial derivatives yields

∂

∂x
(1/2) ln(x2 + y2) =

x

x2 + y2
,

∂

∂x
tan−1(y/x) =

−y/x2

1 + (y/x)2
=

−y

x2 + y2
,

∂

∂y
(1/2) ln(x2 + y2) =

y

x2 + y2
,

∂

∂y
tan−1(y/x) =

1/x

1 + (y/x)2
=

x

x2 + y2
.

(2.2.11)

Thus, the Cauchy-Riemann equations are satisfied by the principal branch of the
log function on H. Furthermore

(log z)′ =
∂

∂x
log(x + iy) =

x − iy

x2 + y2
=

1

z
.

Now if z is any point not on the negative real axis and not in H, then we simply
rotate z into H. That is, we choose α = ±π/2 such that eiα z ∈ H. Then

log z = log(eiα z) − iα.

Since log has derivative 1/w at w = eiα z, it follows from the chain rule that log has
derivative eiα /(eiα z) = 1/z at z. Thus, the principal branch of the log function is
analytic with derivative 1/z at any point z not on its cut line.

The analogous statement for other branches of the log function also follows
from a rotation argument, as above. That is, each such function is just the principal
branch of the log function composed with a rotation.

Harmonic Functions. In the next chapter, we will prove that analytic functions
are C∞– that is, they have continuous complex derivatives of all orders. This, in
particular, implies that analytic functions have continuous partial derivatives of all
orders with respect to x and y. Assuming this result for the moment, we have

Theorem 2.2.12. The real and imaginary parts of an analytic function on U are
harmonic functions on U , meaning they satisfy Laplace’s equation

uxx + uyy = 0.

Proof. If f = u + iv is an analytic function, then u and v satisfy the Cauchy-
Riemann equations and so

uxx = (ux)x = (vy)x = (vx)y = (−uy)y = −uyy.

This shows that the real part of f satisfies Laplace’s equation. Since v is the real
part of the analytic function −if , it follows that v is also harmonic. Thus, both
real and imaginary parts of an analytic function are harmonic. !

If u and v are harmonic functions such that the function f = u+ iv is analytic,
then we say u and v are harmonic conjugates of one another.

Example 2.2.13. Prove that u(x, y) = ex cos y is a harmonic function on all of R2

and find a harmonic conjugate for it.
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40 2. Analytic Functions

Solution: The function u is the real part of f(z) = ez and is, therefore,
harmonic by the previous theorem. The imaginary part of f is v(x, y) = ex sin y,
and so this function v is a harmonic conjugate of u.

Exercise Set 2.2

1. Fill in the details in Example 2.2.4 by verifying the inequality (2.2.3) and
showing that the limit of the expression on the right is 0.

2. Prove Theorem 2.2.5.

3. Prove Part (b) of Theorem 2.2.6.

4. Prove Part (c) of Theorem 2.2.6.

5. Use induction and Theorem 2.2.6 to show that (zn)′ = nzn−1 if n is a non-
negative integer.

6. Find the derivative of z7 + 5z4 − 2z3 + z2 − 1. Which results from this section
are used in this calculation?

7. Find the derivative of ez3
.

8. If we use the principal branch of the log function, at which points of C does
log z

z
have a complex derivative? What is its derivative at these points?

9. Finish the proof of Theorem 2.2.9 by showing that if f = u + iv, u and v are
differentiable at z, and u and v satisfy the Cauchy-Riemann equations at z,
then f ′(z) exists.

10. Use the Cauchy-Riemann equations to verify that the function f(z) = z2 is
analytic everywhere.

11. Describe all real-valued functions which are analytic on C.

12. Derive the Cauchy-Riemann equations in polar coordinates:

ur = r−1vθ,

uθ = −rvr

by using the change of variable formulas x = r cos θ, y = r sin θ and the chain
rule.

13. We showed in Example 2.2.11 that each branch of the log function is analytic
on the complex plane with its cut line removed. Use the Cauchy-Riemann
equations in polar form (previous problem) to give another proof of this fact.

14. Assuming each branch of the log function is analytic, use the chain rule to give
another prove that each such function has derivative 1/z.

15. Use the Cauchy-Riemann equations to prove that if f is analytic on an open set
U , then the function g defined by g(z) = f(z) is analytic on the set {z : z ∈ U}.

16. Verify that the function log |z| is harmonic on C\{0} and find a harmonic con-
jugate for it on the set consisting of C with the non-positive real axis removed.
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2.3. Contour Integrals 41

2.3. Contour Integrals

Integration plays a key role in this subject – specifically, integration along curves
in C. A curve or contour in the plane C is a continuous function γ from an interval
on the line into C. Such an object is sometimes called a parameterized curve and
the interval I is called the parameter interval. We will be interested in a particular
kind of curve, one whose parameter interval is a closed bounded interval which can
be subdivided into finitely many subintervals, on each of which γ is continuously
differentiable.

Smooth Curves. Let I = [a, b] be a closed interval on the real line and let
γ : I → C be a complex-valued function on I. If c ∈ I, then the derivative γ′(c) of
γ at c is defined in the usual way:

(2.3.1) γ′(c) = lim
t→c

γ(t) − γ(c)

t − c
.

Of course, γ is complex-valued and so this limit should be interpreted as the type
of limit discussed in Section 2.1. It can be calculated by expressing γ in terms of
its real and imaginary parts, that is, by writing γ(t) = x(t) + iy(t), where x(t) and
y(t) are real-valued functions on I. Then γ′(t) = x′(t) + iy′(t) (Exercise 2.3.6).

What about the endpoints a and b of the interval I? Should we either not talk
about the derivative at the endpoints or, perhaps, use one-sided derivatives defined
in terms of one-sided limits (limit from the right at a and limit from the left at b)?
Actually, there is no need to do anything special at a and b or to exclude them. If
the domain of γ is [a, b], then our domain dependent definition of limit takes care
of the problem. If c = a, the limit as t → a in (2.3.1) only involves values of t to
the right of a, since only those are in the domain of the difference quotient that
appears in this limit. Similarly, if c = b, the limit as t → b involves only points to
the left of b. Thus, the derivatives at a and b that our definition leads to are what
in calculus would be called the right derivative at a and the left derivative at b.

The curve γ is differentiable at c if the limit defining γ′(c) exists. It is contin-
uously differentiable or smooth on I if it is differentiable at every point of I and if
the derivative is a continuous function on I. In this case we will write γ ∈ C1(I).

Definition 2.3.1. A curve γ : [a, b] → C in C is called piecewise smooth if there
is a partition a = a0 < a1 < · · · < an = b of [a, b] such that the restriction of γ to
[aj−1, aj ] is smooth for each j = 1, · · · , n. A curve which is piecewise smooth will
be called a path.

With appropriate choices of parameterization, familiar geometric objects in C
can be described as the image of a path.

Example 2.3.2. Find a path γ that traces once around the circle of radius r,
centered at 0, in the counterclockwise direction. Describe γ′.

Solution: The smooth path γ(t) = r eit, t ∈ [0, 2π] does the job. Its derivative
may be obtained by writing it as r(cos t + i sin t) and differentiating the real and
imaginary parts. The result is γ′(t) = r(− sin t + i cos t) = ir eit.
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γ(a)

γ(b)

γ(t)

.

.
.

Figure 2.3.1. A Path in the Plane.

Example 2.3.3. Let z and w be two points in C. Find a path which traces the
straight line from z to w and find its derivative.

Solution: The path γ, with parameter interval [0, 1], defined by

γ(t) = (1 − t)z + tw = z + t(w − z),

satisfies γ(0) = z and γ(1) = w. It is a parametric form of a straight line in the
plane, and its derivative is γ′(t) = w − z.

Example 2.3.4. Find a path that traces once around the square with vertices
0, 1, 1 + i, i in the counterclockwise direction. Find γ′(t) on the subintervals where
γ is smooth.

Solution: We choose [0, 1] as the parameter interval and define a path γ as
follows (see Figure 2.3.2):

γ(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

4t, if 0 ≤ t ≤ 1/4;

1 + (4t − 1)i, if 1/4 ≤ t ≤ 1/2;

3 − 4t + i, if 1/2 ≤ t ≤ 3/4;

(4 − 4t)i, if 3/4 ≤ t ≤ 1.

This is continuous on [0, 1] and smooth on each subinterval in the partition 0 <
1/4 < 1/2 < 3/4 < 1. It traces each side of the square in succession, moving in
the counterclockwise direction. On the first interval, γ′ is the constant 4, on the
second it is 4i, on the third it is −4, and on the fourth it is −4i.

Riemann Integral of Complex-Valued Functions. The integral of a function
along a path will be defined in terms of the Riemann integral on an interval. This
is the familiar Riemann integral from calculus, except that the functions being
integrated will be complex-valued. This difference requires a few comments.

If f(t) = g(t) + ih(t) is a complex-valued function on an interval [a, b], where
g and h are real-valued, then we will say that f is Riemann integrable on [a, b] if
both g and h are Riemann integrable on [a, b] as real-valued functions. We then
define the integral of f on [a, b] by

(2.3.2)

∫ b

a
f(t) dt =

∫ b

a
g(t) dt + i

∫ b

a
h(t) dt.
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1

i

0

1+i

Figure 2.3.2. The Path of Example 2.3.4.

This Riemann integral for complex-valued functions has the properties one
would expect given knowledge of the Riemann integral for real-valued functions.
The next three theorems cover some of these properties.

Theorem 2.3.5. Let f1 and f2 be Riemann integrable functions on [a, b] and α
and β complex numbers. Then, αf1 + βf2 is integrable on [a, b], and

∫ b

a
(αf1(t) + βf2(t)) dt = α

∫ b

a
f1(t) dt + β

∫ b

a
f2(t) dt.

Proof. That this is true if the constants α and β are real follows directly from
expressing f1 and f2 in terms of their real and imaginary parts. Thus, to prove

the theorem we just need to show that
∫ b

a if(t) dt = i
∫ b

a f(t) dt if f = g + ih is an
integrable function on [a, b]. However,

∫ b

a
i(g(t) + ih(t)) dt =

∫ b

a
(−h(t) + ig(t)) dt

= −
∫ b

a
h(t) dt + i

∫ b

a
g(t) dt = i

(∫ b

a
(g(t) + ih(t)) dt

)
.

This completes the proof. !
Theorem 2.3.6. If f is a function defined on [a, b] and c ∈ (a, b), then f is
integrable on [a, b] if and only if it is integrable on [a, c] and [c, b]. In this case

∫ b

a
f(t) dt =

∫ c

a
f(t) dt +

∫ b

c
f(t) dt.

Proof. This follows from the fact that the same things are true of the integrals of
the real and imaginary parts g and h of f . !
Theorem 2.3.7. If f is an integrable function on [a, b], then

∣∣∣∣∣

∫ b

a
f(t) dt

∣∣∣∣∣ ≤
∫ b

a
|f(t)| dt.
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44 2. Analytic Functions

Proof. This is proved using a trick. We set w =
∫ b

a f(t) dt. If w = 0, there is
nothing to prove. If w ̸= 0, let u = w/|w|. Then uw = |w| and so

∣∣∣∣∣

∫ b

a
f(t) dt

∣∣∣∣∣ = u

∫ b

a
f(t) dt =

∫ b

a
uf(t) dt.

Since this is a real number, the integral of the imaginary part of uf is zero and we
have ∣∣∣∣∣

∫ b

a
f(t) dt

∣∣∣∣∣ =

∫ b

a
Re(uf(t)) dt ≤

∫ b

a
|uf(t)| dt =

∫ b

a
|f(t)| dt. !

A complex-valued function which is defined and continuous on an interval [a, b]
is clearly Riemann integrable on [a, b], since its real and imaginary parts are continu-
ous, and continuous real-valued functions on closed, bounded intervals are Riemann
integrable.

Integration Along a Path. If γ is a path, then γ′ exists and is continuous on
each interval [ai−1, ai] in a partition a = a0 < a1 < · · · < an = b of the parameter
interval [a, b]. At the points a1, a2, · · · , an−1 the definition of γ′ is ambiguous –
γ′(aj) has one value from the derivative of γ on [aj−1, aj ] and another from the
derivative of γ on [aj , aj+1]. In order to remove this ambiguity, we choose to define
γ′ so as to be left continuous at these points. That is, at aj , we choose the value for
γ′ that comes from its definition on [aj−1, aj ]. Then γ′ is well defined on I = [a, b].

If f is a complex-valued function defined and continuous on a set E containing
γ(I), then the function f(γ(t))γ′(t) is a well-defined function on I which is piecewise
continuous in the following sense: It is continuous everywhere on [a, b] except at
the partition points a1, a2, · · · , an−1. It is left continuous at these points, and the
limit from the right exists and is finite at these points as well. In other words, this
function is continuous from the left everywhere on [a, b] and continuous except at
finitely many points where it has simple jump discontinuities.

A function of this type is Riemann integrable on [a, b]. To see this, first observe
that it is Riemann integrable on each subinterval [aj−1, aj ] because, on such an
interval, the function agrees with a continuous function except at one point, aj−1.
A continuous function on a closed interval is Riemann integrable and changing its
value at one point does not effect this fact or the value of the integral. Furthermore,
by Theorem 2.3.6, if a function is Riemann integrable on two contiguous intervals,
then it is integrable on their union. It follows that a function which is integrable
on each subinterval in a partition of [a, b] will be integrable on [a, b].

The above discussion settles the question of the Riemann integrability of the
integrand in the following definition.

Definition 2.3.8. Let γ : [a, b] → C be a path and let f be a function which is
defined and continuous on a set E which contains γ([a, b]). Then we define the
integral of f over γ to be

(2.3.3)

∫

γ
f(z) dz =

∫ b

a
f(γ(t))γ′(t) dt.
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2.3. Contour Integrals 45

One may think of this definition in the following way: the contour integral on
the left in (2.3.3) is defined to be the Riemann integral obtained by replacing z by
γ(t) and dz by γ′(t)dt and integrating over the parameter interval for γ.

In practice, we will calculate contour integrals by breaking the path up into its
smooth sections, calculating the integrals over these sections and then adding the
results. That this is legitimate follows from the fact that the Riemann integral of
a function over the union of two contiguous intervals on the line is the sum of the
integrals over the two intervals.

Examples.

Example 2.3.9. Find
∫
γ z dz if γ is the circular path defined in Example 2.3.2.

Solution: By Example 2.3.2, we have γ(t) = r eit for 0 ≤ t ≤ 2π and γ′(t) =
ir eit. Thus,

∫

γ
z dz =

∫ 2π

0
r eit ir eit dt = ir2

∫
e2it dt = ir2

∫ 2π

0
(cos 2t + i sin 2t) dt

= ir2

∫ 2π

0
cos 2t dt − r2

∫ 2π

0
sin 2t dt = 0.

Example 2.3.10. Find a path γ which traces the straight line from 0 to i followed
by the straight line from i to i + 1. Then calculate

∫
γ z2 dz for this path γ.

Solution: We may choose γ to be the path parameterized on [0, 2] as follows:

γ(t) =

{
it, if 0 ≤ t ≤ 1;

i + t − 1, if 1 ≤ t ≤ 2.

We calculate the integrals over each of the two smooth sections of the path. On
[0, 1] we have (γ(t))2 = −t2 and γ′(t) = i. Thus, the integral over the first section
of the path is

∫ 1

0
(γ(t))2γ′(t) dt =

∫ 1

0
−t2i dt = −t3i/3

∣∣1
0

= −i/3.

On [1, 2] we have (γ(t))2 = t2 − 2t+2(t− 1)i and γ′(t) = 1. Thus, the integral over
the second section of the path is
∫ 2

1
(γ(t))2γ′(t) dt =

∫ 1

0
(t2−2t+2(t−1)i) dt = (t3/3− t2 +(t2−2t)i)

∣∣2
1

= −2/3+ i.

Thus,
∫
γ z2 dz = −i/3 − 2/3 + i = −2/3 + 2i/3.

Example 2.3.11. Find a path γ which traces once around the triangle with vertices
0, 1, i in the counterclockwise direction, starting at 0. For this path γ, find

∫
γ z dz.

Solution: A path γ with the required properties has parameter interval [0, 3]
and is given by

γ(t) =

⎧
⎪⎨

⎪⎩

t, if 0 ≤ t ≤ 1;

2 − t + (t − 1)i if 1 ≤ t ≤ 2;

(3 − t)i if 2 ≤ t ≤ 3.
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46 2. Analytic Functions

On the interval [0, 1], we have γ(t) = t and γ′(t) = 1. Hence,
∫ 1

0
γ(t)γ′(t) dt =

∫ 1

0
t dt = 1/2.

On the interval [1, 2], we have γ(t) = 2 − t − (t − 1)i and γ′(t) = −1 + i. Hence,
∫ 2

1
γ(t)γ′(t) dt =

∫ 2

1
(2t − 3 + i) dt = i.

On the interval [2, 3], we have γ(t) = t − 3 and γ′(t) = −i. Hence,
∫ 1

0
γ(t)γ′(t) dt =

∫ 3

2
(3 − t)i dt = i/2.

If we add the contributions of each of these three intervals, the result is
∫

γ
z dz = 1/2 + i + i/2 = 1/2 + (3/2)i.

Exercise Set 2.3

1. Find
∫ π
0 eit dt.

2. Find
∫ 1
0 sin(it) dt.

3. Find
∫ 2π
0 eint eimt dt for all integers n and m.

4. Find a path which traces the straight line joining 2 − i to −1 + 3i.

5. If z0 ∈ C, find a path which traces the circle of radius r, centered at z0, (a)
once in the counterclockwise direction, (b) once in the clockwise direction, (c)
three times in the counterclockwise direction.

6. Prove that if γ(t) = x(t) + iy(t) is a curve defined on an interval I, with real
and imaginary parts x(t) and y(t), and if c ∈ I, then γ′(c) exists if and only if
x′(c) and y′(c) exist and, in this case, γ′(c) = x′(c) + iy′(c).

7. Show that if f is a smooth complex-valued function on an interval [a, b], then∫ b
a f ′(t) dt = f(b) − f(a).

8. Suppose γ is a path with parameter interval [a, b]. Use the result of the previous
exercise to show that

∫
γ 1 dz = γ(b) − γ(a).

9. Find
∫
γ z2 dz if γ traces a straight line from 0 to w.

10. Find
∫
γ z−1 dz and

∫
γ z dz for the circular path γ(t) = 3 eit, 0 ≤ t ≤ 2π.

11. Find
∫
γ Re(z) dz if γ is the path of Example 2.3.11.

12. With γ as in the previous exercise, find
∫
γ Im(z2) dz.

13. Is it generally true that Re(
∫
γ f(z) dz) =

∫
γ Re(f(z)) dz?
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2.4. Properties of Contour Integrals 47

2.4. Properties of Contour Integrals

We begin this section with the question of parameter independence. To what
extent does the integral of a function along a path depend on how the path is
parameterized? The same geometric figure γ(I) may be parameterized in many
ways. For example, the top third of the unit circle may be parameterized by

γ1(t) = −t + i
√

1 − t2, −
√

3/2 ≤ t ≤
√

3/2, or

γ2(t) = eit = cos t + i sin t, π/6 ≤ t ≤ 5π/6,
(2.4.1)

and these are only two of infinitely many possibilities. Does the integral of a function
over the upper third of the unit circle depend on which of these parmeterizations
is chosen?

Parameter Changes that Change the Integral. The following example shows
that some changes of parameterization do change the integral.

Example 2.4.1. Find
∫
γ1

1/z dz if γ1(t) = r eit on [0, 2π] is the circular path of
Example 2.3.2. Does the answer change if the circle is traversed in the clockwise
direction instead, using the path γ2(t) = r e−it on [0, 2π]?

Solution: From Example 2.3.2 we know that the path γ1(t) = r eit has γ′
1(t) =

ir eit and so the given integral is
∫

γ1

dz

z
=

∫ 2π

0

(r eit)′

r eit
dt =

∫ 2π

0
i dt = 2πi.

On the other hand, the derivative of γ2 = e−it is −ir e−it and so
∫

γ2

dz

z
=

∫ 2π

0
−i dt = −2πi.

This example shows that the integral along a path depends not only on the
geometric figure that is the image γ(I) of the path, but also on the direction the
path is traversed (at the very least).

Also, traversing a portion of the curve more than once may affect the integral.
For example, if we were to go around the circle twice in Example 2.4.1, by choosing
γ(t) = e2it on [0, 2π], the result would be 4πi instead of 2πi.

The Independence of Parameterization Theorem. There is a degree to which
the integral is independent of the parameterization. Certain ways of changing the
parameterization do not effect the integral, as the following theorem shows.

Theorem 2.4.2. Let γ1 : [a, b] → C be a path and α : [c, d] → [a, b] a smooth
function with α(c) = a and α(d) = b. If γ2 is the path with parameter interval [c, d]
defined by γ2(t) = γ1(α(t)), then

∫

γ2

f(z)dz =

∫

γ1

f(z)dz

for every function f defined and continuous on a set E containing γ1([a, b]) =
γ2([c, d]).
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48 2. Analytic Functions

Proof. We have γ2(t) = γ1(α(t)) and, by the chain rule,

γ′
2(t) = γ′

1(α(t))α′(t).

Thus,
∫

γ2

f(z) dz =

∫ d

c
f(γ2(t))γ

′
2(t) dt

=

∫ d

c
f(γ1(α(t)))γ′

1(α(t))α′(t) dt

=

∫ b

a
f(γ1(s))γ

′
1(s) ds

=

∫

γ1

f(z) dz,

where the third equality follows from the substitution s = α(t). This completes the
proof. !

Note that the condition that α(c) = a and α(d) = b is essential in the above
theorem. It says that α takes the endpoints of the parameter inverval [c, d] to the
endpoints of the parameter interval [a, b] in an order preserving fashion.

Example 2.4.3. Are the integrals of a continuous function over the two paths in
(2.4.1) necessarily the same?

Solution: Yes. If we set α(t) = − cos t, then α is a smooth function mapping
the parameter interval [π/6, 5π/6] to the parameter interval [−

√
3/2,

√
3/2] in an

order preserving fashion. Furthermore, γ2 = γ1 ◦ α. Thus, the above theorem
insures that the integral of a continuous function over γ1 is the same as its integral
over γ2.

Doesn’t Example 2.4.1 contradict Theorem 2.4.2? After all, if γ1(t) = eit on
[0, 2π] and α : [0, 2π] → [0, 2π] is defined by α(t) = 2π − t, then γ2(t) = γ1(α(t)) =
e−it. By Example 2.4.1 the integrals of 1/z over these two curves are different.
Doesn’t Theorem 2.4.2 say they should be the same? No. The conditions α(a) = c
and α(b) = d are not satisfied by this choice of α, since α(0) = 2π and α(2π) = 0.
In other words, this choice of α reverses the order of the endpoints of the parameter
interval rather than preserving that order.

In general, the conditions α(a) = c and α(b) = d guarantee that, overall, γ2

traverses the curve in the same direction as γ1. If α′ were positive on the entire
interval, then α would be increasing on this interval and γ1 and γ2 would be moving
in the same direction at each point of the curve. If α′ is not positive on all of [c, d],
then there may be intervals where one path reverses direction and backtracks, while
the other path does not. These things do not affect the integral, because if a curve
does backtrack for a time, it has to turn around and recover the same ground in
order to catch up to the other curve in the end. This is an intuitive explanation;
the actual proof that the integral is unaffected is in the proof of the above theorem.

Theorem 2.4.2 leads to a strategy which, for some paths γ1 and γ2 with the
same image, yields a proof that they determine the same integral: Suppose that the
parameter intervals for the two paths can each be partitioned into n subintervals
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2.4. Properties of Contour Integrals 49

in such a way that for j = 1, · · · , n, γ1 on its jth subinterval and γ2 on its jth
subinterval are related by a smooth function αj , as in Theorem 2.4.2. If this can
be done, then it clearly follows that

∫
γ1

f(z) dz =
∫
γ2

f(z) dz for any function f

which is continuous on a set containing γ1(I). For this reason, Theorem 2.4.2 is
sometimes called the independence of parameterization theorem.

Remark 2.4.4. Since path integrals are essentially independent of the way the
path is parameterized, we will often describe a path without specifying a parame-
terization. Instead, we will just give a description of the geometric object that is
traced, the direction, and how many times. For example, we may describe a path
as tracing once around the unit circle in the counterclockwise direction, or tracing
once around the boundary ∂∆ of a given triangle ∆ in the counterclockwise direc-
tion, or as tracing the straight line path from a complex number w1 to a complex
number w2. In the first two cases we may simply write

∫

|z|=1
f(z) dz or

∫

∂∆
f(z) dz

for the corresponding path integral. In the latter case, we may write
∫ w2

w1

f(z) dz

for the path integral along the straight line from w1 to w2.

Closed Curves. The curves in Examples 2.3.2 and 2.3.4 both have the property
that they begin and end at the same point – that is, they are closed curves. A closed
curve γ on a parameter interval [a, b] is one that satisfies γ(a) = γ(b). A closed
curve which is a path will be called a closed path.

The famous integral theorem of Cauchy states that the integral of an analytic
function f around a closed path is 0, provided there is an appropriate relationship
between the curve γ and the domain U on which f is analytic (roughly speaking,
the curve should lie in U but not go around any holes in U). Since the function
f(z) = z is analytic on C (as is any polynomial in z), the next example illustrates
this phenomenon.

Example 2.4.5. Find
∫
γ z dz if γ is the path of Example 2.3.4.

Solution: From Example 2.3.4 we know that the path γ(t) has values 4t, 1 +
(4t−1)i, 3−4t+i, (4−4t)i and derivatives 4, 4i,−4, and −4i on the four subintervals
of the partition 0 < 1/4 < 1/2 < 3/4 < 1. Thus, the integrals over the four smooth
pieces of our curve are

∫ 1/4

0
4t · 4 dt = 8t2

∣∣1/4

0
= 1/2,

∫ 1/2

1/4
(1 + (4t − 1)i) · 4i dt = (4ti − 8t2 + 4t)

∣∣1/2

1/4
= i − 1/2,

∫ 3/4

1/2
(3 − 4t + i) · (−4) dt = (−12t + 8t2 − 4ti)

∣∣3/4

1/2
= −1/2 − i,

∫ 1

3/4
(4 − 4t)i · (−4i) dt = (+16t − 8t2)

∣∣1
3/4

= 1/2.
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a cb

γ  (a)1 2γ1γ
2γ  (c)

γ  (b)1 2γ  (b)=

Figure 2.4.1. The Join of Two Paths.

Since these add up to 0, we have
∫
γ z dz = 0.

The function 1/z is also analytic, except at z = 0. The circular path of Example
2.4.1 is closed and lies in the domain where 1/z is analytic. So why is the integral
not 0? Because the path goes around a hole in the domain of 1/z – it goes around
{0}.

Additivity Properties of Contour Integrals. If γ is a path with parameter
interval [a, b], then we can use Theorem 2.4.2 to change the parameter interval to
any other interval [c, d] with c < d, in a way that does not affect the image of γ or
integrals over γ. In fact, if we set

α(t) = a +
b − a

d − c
(t − c),

then α is smooth, α([c, d]) = [a, b], α(c) = a and α(d) = b. Thus, γ1(t) = γ(α(t))
defines a path γ1 with the same image as γ and, by Theorem 2.4.2, a path which
determines the same integral for continuous functions on its image. Thus, without
loss of generality, we may always assume that the parameter interval for a path is
any interval we choose.

If γ1 and γ2 are two paths so that γ1 ends where γ2 begins, then we can join
the two paths to form a single new path γ1 + γ2. We do this as follows: If γ1 has
parameter interval [a, b], we choose a parameter interval of the form [b, c] for γ2.
The fact that γ2 begins where γ1 ends means that γ1(b) = γ2(b). We define γ1 + γ2

on [a, c] by

(2.4.2) (γ1 + γ2)(t) =

{
γ1(t) if t ∈ [a, b],

γ2(t) if t ∈ [b, c].

The path γ1 + γ2 is called the join of γ1 and γ2.

In Example 2.4.1, changing the path from one tracing the circle counterclock-
wise to one tracing the circle clockwise had the effect of changing the sign of the
integral. As we shall see, this always happens. If γ : [a, b] :→ C is a path, denote
by −γ the path defined by

−γ(t) = γ(a + b − t).
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2.4. Properties of Contour Integrals 51

Then −γ(a) = γ(b) and −γ(b) = γ(a). In fact, −γ traces the same geometric figure
as γ, but it does so in the opposite direction.

For some closed curves, such as circles, and boundaries of rectangles, triangles,
etc., there is clearly a clockwise direction around the curve and a counterclockwise
direction. If such a curve is parameterized so that it is traversed in the counter-
clockwise direction, we will say the resulting closed path has positive orientation.
If it is traversed in the clockwise direction, we will say it has negative orientation.
Clearly, if γ has positive orientation, then −γ has negative orientation.

The common starting and ending point of a closed path can be changed without
changing the integral of a function over this path. This is done by representing the
closed path as the join of two paths which connect the original starting and ending
point to the new one. One then uses part (b) of the next theorem. The details are
left to the exercises.

The next theorem states the elementary properties of path integrals having
to do with linearity and path additivity. Part (b) follows immediately from the
corresponding additivity property of the Riemann integral on the line and we have
already used it several times. We leave the proofs of (a) and (c) to the exercises
(Exercise 2.4.5).

Theorem 2.4.6. Let γ, γ1, γ2 be paths with γ1 ending where γ2 begins, f and g two
functions which are continuous on a set E containing the images of these paths,
and a and b complex numbers. Then

(a)

∫

γ
(af(z) + bg(z)) dz = a

∫

γ
f(z) dz + b

∫

γ
g(z) dz;

(b)

∫

γ1+γ2

f(z) dz =

∫

γ1

f(z) dz +

∫

γ2

f(z) dz;

(c)

∫

−γ
f(z) dz = −

∫

γ
f(z) dz.

Part (a) of this theorem says that a path integral is a linear function of the
integrand, Part (b) says that it is an additive function of the path, while Part (c)
shows why the notation −γ is appropriate for the curve that is γ traversed in the
opposite direction.

Length of a Path. We define the length ℓ(γ) of a path γ in C in the same way
the length of a curve in R2 is defined in calculus.

Definition 2.4.7. If γ(t) = x(t) + iy(t) is a path in C with parameter interval
[a, b], then the length ℓ(γ) of γ is defined to be

ℓ(γ) =

∫ b

a
|γ′(t)| dt =

∫ b

a

√
x′(t)2 + y′(t)2 dt.

Example 2.4.8. Prove that the above definition of length yields the correct length
for a path which traces once around a circle of radius r.

Solution: The path is γ(t) = r eit, with parameter interval [0, 2π]. The deriv-

ative of γ is γ′(t) = ir eit and so |γ′(t)| = r. Thus, ℓ(γ) =
∫ 2π
0 r dt = 2πr.
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It will be important in coming sections to be able to obtain good upper bounds
on the absolute value of a path integral. The key theorem that produces such upper
bounds is the following.

Theorem 2.4.9. Let γ be a path in C and f a function continuous on a set con-
taining γ(I). If |f(z)| ≤ M for all z ∈ γ(I), then

∣∣∣∣

∫

γ
f(z) dz

∣∣∣∣ ≤ Mℓ(γ).

Proof. If the parameter interval for γ is [a, b], then
∣∣∣∣
∫

γ
f(z) dz

∣∣∣∣ =

∣∣∣∣∣

∫ b

a
f(γ(t))γ′(t) dt

∣∣∣∣∣ ≤
∫ b

a
|f(γ(t))γ′(t)| dt

≤
∫ b

a
M |γ′(t)| dt = M

∫ b

a
|γ′(t)| dt = Mℓ(γ). !

The next example is a typical application of this theorem.

Example 2.4.10. Show that if f is a bounded continuous function on C, and γR

is the path γR(z) = R eit for t ∈ [0, 2π], then

(2.4.3) lim
R→∞

∫

γR

f(z)

(z − w)2
dz = 0

for each w ∈ C.

Solution: The statement that f is bounded means there is an upper bound
M for |f |. That is, |f(z)| ≤ M for all z ∈ C. We also have |z − w| ≥ |z| − |w|
by the second form of the triangle inequality. If z ∈ γ(I), then |z| = R and so
|z − w| ≥ R − |w|, which implies |z − w|−2 ≤ (R − |w|)−2. Thus, for z ∈ γ(I), we
have the following bound on the integrand of (2.4.3):

∣∣∣∣
f(z)

z − w

∣∣∣∣ ≤
M

(R − |w|)2 .

Since ℓ(γR) = 2πR, Theorem 2.4.9 implies that
∣∣∣∣
∫

γR

f(z)

(z − w)2
dz

∣∣∣∣ ≤
2πMR

(R − |w|)2 .

The right side of this inequality has limit 0 as R → ∞ and this implies (2.4.3).

Exercise Set 2.4

1. Compute
∫
γ z2 dz if γ is any path which traces once around the circle of radius

one in the counterclockwise direction.

2. Compute
∫
γ 1/z dz if γ is any path which traces twice around the circle of radius

one, centered at 0, in the counterclockwise direction.

3. If z0 and w0 are two points of C, compute
∫
γ z dz if γ is any path which traces

the straight line from z0 to w0 once.
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2.5. Cauchy’s Integral Theorem for a Triangle 53

4. Compute the integral of the previous exercise for any smooth path γ which
begins at z0 and ends at w0.

5. Prove Parts (a) and (c) of Theorem 2.4.6.

6. Describe a smooth, order preserving function α which takes the parameter
interval [0, 1] to the parameter interval [2, 5].

7. Prove that a parameter change γ → γ ◦ α, like the one in Theorem 2.4.2, does
not change the length of a path provided α is an non-decreasing function (has
a non-negative derivative).

8. Show that

∣∣∣∣
∫

γ

cos z

z
dz

∣∣∣∣ ≤ 2πe if γ is a path that traces the unit circle once.

Hint: Show that | cos z| ≤ e if |z| = 1.

9. Show that if ∆ is a triangle in the plane of diameter d (length of its longest
side), and if f is a continuous function on ∆ with |f | bounded by M on ∆,
then ∣∣∣∣

∫

∂∆
f(z) dz

∣∣∣∣ ≤ 3Md.

10. Prove that
∫
γ p(z) dz = 0 if γ(t) = eit, 0 ≤ t ≤ 2π, and p(z) is any polynomial

in z (this is a special case of Cauchy’s Theorem, but do not assume Cauchy’s
Theorem in your proof).

11. Let R(z) be the remainder after n terms in the power series for ez. That is,

R(z) = ez −
n∑

k=1

zk

k!
=

∞∑

k=n+1

zk

k!
.

Prove that |R(z)| ≤ e − 1

(n + 1)!
if |z| ≤ 1.

12. Prove that
∫
γ ez dz = 0 if γ(t) = eit, 0 ≤ t ≤ 2π using the previous exercise

and Exercise 10.

13. Prove that if γ is a closed path with parameter interval I = [a, b] and common
starting and ending point z = γ(a) = γ(b) and w is any other point on γ(I),
then there is another closed path γ1 with γ1(I) = γ(I), which determines the
same integral, but has w as common starting and ending point. Hint: Use part
(b) of Theorem 2.4.6.

2.5. Cauchy’s Integral Theorem for a Triangle

The core material of any beginning Complex Variables text is the proof of Cauchy’s
Integral Theorem and the exploration of its consequences. Roughly speaking,
Cauchy’s Integral Theorem states that the integral of an analytic function around
a closed path is zero, provided the path is contained in the open set U on which the
function is analytic and does not go around any “holes” in U . Part of the problem
here is to make sense of the idea of a “hole” in an open set and to decide what it
means for a path to go around such a hole.
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c

c

(a) (b)

Figure 2.5.3. Dealing with an Exceptional Point c.

of each of these is zero, so the integral around ∂∆ is also 0. This completes the
proof. !

Exercise Set 2.5

1. Prove the Bolzano-Weierstrass Theorem: If K is a compact subset of Rn, then
every sequence in K has a subsequence which converges to an element of K.

2. Use Corollary 2.5.5 to show that if K is a compact subset of C and f is a
continuous complex-valued function on K, then the modulus |f(z)| of f takes
on a maximal value at some point of K.

3. Show that if K is a compact subset of C, then there is a point z0 ∈ K of
minimum modulus – that is, a point z0 ∈ K such that

|z0| ≤ |z| for all z ∈ K.

4. Prove that if g is analytic on an open subset U of C and γ : [a, b] → U is a path
in U , then

(g(γ(t)))′ = g′(γ(t))γ′(t)

for t ∈ [a, b]. Hint: The proof is very similar to the proof of Theorem 2.2.7.

5. Calculate
∫
γ zn dz if n is a non-negative integer and γ is a path in the plane

joining the point z0 to the point w0. Hint: Use Theorem 2.5.6.

6. Show that
∫
γ p(z) dz = 0 if γ is any closed path in the plane and p is any

polynomial.

7. Calculate
∫
γ 1/z dz if γ is any path in C joining −i to i which does not cross

the half-line (−∞, 0] on the real axis. Hint: Use the result of Example 2.2.11
and Theorem 2.5.6.
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60 2. Analytic Functions

8. Using the same hint as in the previous exercise, show that
∫

γ

1

z
dz = 0

if γ is any closed path contained in the complement of the set of non-positive
real numbers. Compare this with Example 2.4.1.

9. If
√

z is defined by
√

z = e(log z)/2 for the branch of the log function defined
by the condition −π/2 ≤ arg(z) ≤ 3π/2, find an antiderivative for

√
z and

then find
∫
γ

√
z dz, where γ is any path from −1 to 1 which lies in the upper

half-plane.

10. Prove that if f is analytic in an open set containing a rectangle R, then the
path integral of f around the boundary of this rectangle is 0.

11. Let γ be the path which traces the straight line from 1 to 1+i, then the straight
line from 1 + i to i and then the straight line from i to 0. Calculate

∫
γ zn dz.

12. Let ∆ be the triangle with vertices 1− i, i, and−1− i and S be the square with
vertices 1− i, 1 + i,−1 + i, and− 1− i. If f is any function which is analytic on
C \ {0}, prove that ∫

∂∆
f(z) dz =

∫

∂S
f(z) dz,

where ∂∆ and ∂S are traversed in the counterclockwise direction.

13. For any pair of points a, b in C, denote the integral of a function f along the

straight line segment joining a to b by
∫ b

a f(z) dz, as in Remark 2.4.4. Suppose
f is analytic in an open set containing the triangle with vertices a, b, c. Show
that ∫ c

a
f(z) dz −

∫ b

a
f(z) dz =

∫ c

b
f(z) dz.

14. Show that Theorem 2.5.9 can be strengthened to conclude that the integral of
f around any triangle in U is 0 if f is continuous on U and analytic on U \ I,
where I is an interval contained in U . Hint: First consider the case where one
side of the triangle lies along the interval I.

15. If f is analytic on an open set U , then the integral of f around the boundary of
any triangle in U is 0 (Theorem 2.5.8), as is its integral around the boundary
of any rectangle in U (Exercise 2.5.10). What other geometric figures have this
property? What is the most general theorem along these lines you can think
of?

2.6. Cauchy’s Theorem for a Convex Set

A convex set C in C is a set with the property that if a and b are points in C, then
the line segment joining a and b is also contained in C.

Existence of Antiderivatives. The strategy for proving Cauchy’s Theorem for
convex sets is to prove that every analytic function on a convex set has an antideriv-
ative and then apply Theorem 2.5.6. The first step in this program is accomplished
with the following theorem.
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2.6. Cauchy’s Theorem for a Convex Set 65

even if the function is not analytic at some point but is continuous there, it follows
that

0 =

∫

γ
g(z, w)dw =

∫

γ

f(w)

w − z
dw −

∫

γ

f(z)

w − z
dw

=

∫

γ

f(w)

w − z
dw − 2πi Indγ(z)f(z),

as long as z is not on the contour γ (note that this is required in order to write
the integral in the first line above as the difference of two integrals, since otherwise
these two integrals might not exist individually). We conclude that

Indγ(z)f(z) =
1

2πi

∫

γ

f(w)

w − z
dw,

as required. This completes the proof. !

This is a striking result, for it says that the values of an analytic function at
points “inside” a closed path are determined by its values at points on the path.
Here, a point is considered inside the path if the path has non-zero index at the
point.

Corollary 2.6.8. If U is a convex open set, z ∈ U and γ is a closed path in U
with Indγ(z) = 1, then

f(z) =
1

2πi

∫

γ

f(w)

w − z
dw

for every function f analytic on U .

Intuitively, the meaning of the hypothesis Indγ(z) = 1 in the above corollary is
that the closed path γ goes around z once and does so in the positive direction.

Cauchy’s Integral Theorem and Cauchy’s Integral Formula have a wealth of
applications. We will begin exploring these in the next chapter.

However, in order for Cauchy’s Integral Theorem, in the above form, to be us-
able, we need to be able to easily compute the index of a curve around a given point.
The last section of this chapter is devoted to developing the essential properties of
the index function which make this possible.

Exercise Set 2.6

1. Prove that a function which has complex derivative identically 0 on a convex
open set U is constant on U .

2. Calculate
∫
γ(z2 − 4)−1 dz if γ is the unit circle traversed once in the positive

direction.

3. Calculate
∫
γ(1 − ez)−1 dz if γ is the circle γ(t) = 2i + eit.

4. Calculate
∫
γ 1/z dz if γ is any circle which does not pass through 0. Note that

the answer depends on γ.

5. Find
∫
γ 1/z2 dz if γ is any closed path in C \ {0}.
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66 2. Analytic Functions

6. Show that the principal branch of the log function can be described by the
formula log(z) =

∫ z
1 1/w dw for z /∈ (−∞, 0].

7. Prove Corollary 2.6.3.

8. Without doing any calculating, show that the integral of 1/z around the bound-
ary of the triangle with vertices i, 1 − i,−1 − i is 2πi.

9. Let f be a function which is analytic on C\{z0}. Show that the contour integral
of f around a circle of radius r > 0, centered at z0, is independent of r.

10. Calculate Indγ(z0) if γ(t) = z0 + eint, t ∈ [0, 2π] and n is any integer.

11. Calculate Indγ(1 + i) if γ is the path which traces the line from 0 to 2, then
proceeds counterclockwis around the circle |z| = 2 from 2 to 2i and then traces
the line from 2i to 0. What is the answer if this path is traversed in the opposite
direction?

12. Use Cauchy’s Integral Formula to calculate

∫

|z|=1

ez

z
dz.

13. Use Cauchy’s Formula to show that
∫

|z−1|=1

1

z2 − 1
dz = πi,

∫

|z+1|=1

1

z2 − 1
dz = −πi.

14. Show that ∫

|z|=3

1

z2 − 1
dz = 0.

Hint: Use the result of the preceding exercise.

15. Use Cauchy’s Integral Formula to prove that if f is a function which is analytic
in an open set containing the closed unit disc D1(0), and if T = {z : |z| = 1} is
the unit circle, then |f(0)| ≤ M , where M is the maximum value of |f | on T .

16. Show that if γ is a path from z1 to z2 which does not pass through the point
z0, then

∫

γ

1

w − z0
dw = log

(
z2 − z0

z1 − z0

)
,

for some branch of the log function. Note that, in the case where z1 = z2, this
is just Theorem 2.6.6.

2.7. Properties of the Index Function

If γ is a closed path, then removing γ(I) from the plane results in a set which is
divided into a number of connected pieces. These are open sets called the connected
components of the complement of γ(I). We will prove that Indγ(z) is constant on
each of these components. Thus, to calculate Indγ(z) on a given component, one
only needs to calculate it at one point of the component.

Before proving this, we need to have a firm idea of what a connected component
is. This leads to a discussion of connected sets.

Purchased from American Mathematical Society for the exclusive use of Domingo Toledo (tldmx)
Copyright 2017 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.


