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FIG. 15

The following theorem gives a necessary and sufficient condition
under which a line integral depends only on the end points.

Theorem 1. The line integral /7 p dx + q dy, defined in Q, depends only

on the end points of vy if und only if there exists a function U(z,y) in Q
with the partial derivatives dU/ox = p, dU/dy = q.

The sufficiency follows at once, for if the condition is fulfilled we can
write, with the usual notations,

[pdatqay = [° (%’ 20 +37 y'<t>) a = "L Ueoye) @
= Ul®)y®)) — U@ y@),

and the value of this difference depends only on the end points. To
prove the necessity we choose a fixed point (zo,0) € 2, join it to (z,9)
by a polygon v, contained in @, whose sides are parallel to the coordinate
axes (Fig. 15) and define a function by

Uy) = [ pdz +qdy.

Since the integral depends only on the end points, the function is well
defined. Moreover, if we choose the last segment of v horizontal, we
can keep y constant and let z vary without changing the other segments.
On the last segment we can choose z for parameter and obtain

Uz,y) = /z p(z,y) dx + const.,

the lower limit of the integral being irrelevant. From this expression it
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follows at once that 8U/dz = p. In the same way, by choosing the last
segment vertical, we can show that U /gy = ¢.

It is customary to write dU = (9U/dz) dz + (8U/3y) dy and to say
that an expression p dz + ¢ dy which can be written in this form is an
exact differential. Thus an integral depends only on the end points if and
only if the integrand is an exact differential. Observe that p, g and U can
be either real or complex. The function U, if it exists, is uniquely deter-
mined up to an additive constant, for if two functions have the same
partial derivative their difference must be constant.

Whenisf(z) dz = f(2) dz + if(2) dy an exact differential? According
to the definition there must exist a function F(2) in @ with the partial
derivatives

oF(z)
5 = 1)
0F(z) .
5 = ).
If this is so, F(2) fulfills the Cauchy-Riemann equation
OF _ _oF,
oz = " "oy’

since f(2) is by assumption continuous (otherwise f f dz would not be
T
defined) F(z) is analytic with the derivative f(2) (Chap. 2, Seec. 1.2).
The integral L I dz, with continuous f, depends only on the end points of

v of and only if f is the derivative of an analytic function in Q.
Under these circumstances we shall prove later that f(z) is itself
analytic.

As an immediate application of the above result we find that
11) [7 (z = a)"dz = 0

for all closed curves v, provided that the integer 7 is = 0. In fact,
(z — a)* is the derivative of (z — a)**1/(n + 1), a function which is
analytic in the whole plane. If n is negative, but # —1, the same
result holds for all closed curves which do not pass through a, for in the
complementary region of the point a the indefinite integral is still analytic
and single-valued. For n = —1, (11) does not always hold. Consider
a circle C' with the center @, represented by the equation z = a + pe,
0=<t=2r. Weobtain

dz
cz—a

= ﬂf”idt ~— By
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This result shows that it is impossible to define a single-valued branch of
log (z — @) in an annulus p; < |2 — a| < p2. On the other hand, if the
closed curve v is contained in a half plane which does not contain a, the
integral vanishes, for in such a half plane a single-valued and analytic
branch of log (z — a) can be defined.

EXERCISES
1. Compute

fvxdz

where v is the directed line segment from 0 to 1 + 4.
2. Compute
f x dz,
lzl =7

for the positive sense of the circle, in two ways: first, by use of a parameter,

1 2 .
and second, by observing that z = % (z+2) = 5 (z + %) on the circle.

3. Compute
/ dz
l4=222 — 1
for the positive sense of the circle.
4, Compute

[le |z — 1| - |dz].

5. Suppose that f(2) is analytic on a closed curve v (i.e., f is analytic
in a region that contains v). Show that

[ 7@f @) d

is purely imaginary. (The continuity of f’(2) is taken for granted.)
6. Assume that f(2) is analytic and satisfies the inequality |f(z) — 1|
< 11in aregion . Show that

'), _
7 # =0
for every closed curve in @. (The continuity of f'(z) is taken for granted.)
7. If P(2) is a polynomial and C denotes the circle |z — a} = R, what
is the value of _/c P(z) dz2? Answer: —2miR*P'(a).
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8. Describe a set of circumstances under which the formula

/Tlogzdz =0

is meaningful and true.

1.4. Cauchy’s Theorem for a Rectangle. There are several forms of
Cauchy’s theorem, but they differ in their topological rather than in their
analytical content. It is natural to begin with a case in which the topo-
logical considerations are trivial.

We consider, specifically, a rectangle R defined by inequalities
a =<z =bc=y=d Itsperimeter can be considered as a simple closed
curve consisting of four line segments whose direction we choose so that R
lies to the left of the directed segments. The order of the vertices is thus
(a,c), (b,e), (b,d), (a,d). We refer to this closed curve as the boundary
curve or contour of R, and we denote it by oR.

We emphasize that R is chosen as a closed point set and, hence, is not
a region. In the theorem that follows we consider a function which is
analytic on the rectangle E. We recall to the reader that such a fune-
tion is by definition defined and analytic in a region which contains R.

The following is a preliminary version of Cauchy’s theorem:

Theorem 2. If the function f(z) is analytic on R, then

(12) /a f(@) dz = 0.

The proof is based on the method of bisection. Let us introduce the
notation

w(R) = [, 76) d

which we will also use for any rectangle contained in the given one. If
R is divided into four congruent rectangles RV, R® R® R®, we find
that

(13) 2(R) = n(R®) + n(R®) + n(R®) 4 n(R®),

for the integrals over the common sides cancel each other. Tt is impor-
tant to note that this fact can be verified explicitly and does not make
illicit use of geometric intuition. Nevertheless, a reference to Fig. 16 is
helpful. B

T This is standard notation, and we shall use it repeatedly. Note that by earlier
convention 8 is also the boundary of R as a point set (Chap. 3, Sec. 1.2).
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FIG.16. Bisection of rectangle.

It follows from (13) that at least one of the rectangles R® k = 1,2, 3,
4, must satisfy the condition

In(B®)| = Ha(R)I.

We denote this rectangle by Ri; if several R® have this property, the
choice shall be made according to some definite rule.

This process can be repeated indefinitely, and we obtain a sequence of
nested rectanglesR D R1 DR D - - - D R, D - - - with the property

[7(R.)| Z tn(Ra-)|
and hence

(14) [n(Ra)| = 4n(R)|.

The rectangles R, converge to a point z* € R in the sense that E, will
be contained in a preseribed neighborhood |z — 2*| < & as soon as n is
sufficiently large. First of all, we choose & so small that f(2) is defined
and analytic in |z — z*| < 8. Secondly, if ¢ > 0 is given, we can choose
d so that

— &
1O =1 _ | <
or

(15) 1f@) = f(z*) — (2 — 2)'(@M)| < ¢lz — 2*|

for |z — z*| < 5. We assume that & satisfies both conditions and that
R, is contained in |z — z*| < .
We make now the observation that

/r(R,.) de =0
/I‘(R,.) zdz = 0.
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These trivial special cases of our theorem have already been proved in
Sec. 1.1. We recall that the proof depended on the fact that 1 and z are
the derivatives of z and 2?/2, respectively.

By virtue of these equations we are able to write

1B = [ U@ = 16%) — = 7 ) e,
and it follows by (15) that
(16) @] S € [ 1o — 2% - 1dl.

In the last integral |z — 2*| is at most equal to the diagonal d, of R,,.
If L, denotes the length of the perimeter of R,, the integral is hence
=< dnlin. Butif d and L are the corresponding quantities for the original
rectangle R, it is clear that d, = 2-»d and L, = 2-*L. By (16) we have
hence

In(R.)| < 4™ dL e,
and comparison with (14) yields
n(R)| £ dL «.

Since eis arbitrary, we can only have n(R) = 0, and the theorem is proved.

This beautiful proof, which could hardly be simpler, is essentially due
to B. Goursat who discovered that the classical hypothesis of a continu-
ous f’(2) is redundant. At the same time the proof is simpler than the
earlier proofs inasmuch as it leans neither on double integration nor on
differentiation under the integral sign.

The hypothesis in Theorem 2 can be weakened considerably. We
shall prove at once the following stronger theorem which will find very
important use.

Theorem 3. Let f(z) be analytic on the set R’ obtained from a rectangle B
by omilting a finite number of interior points ¢;. If it 1s true that

limep,(z — £)(2) = 0
for all j, then

[BR f(2) dz = 0.

It is sufficient to consider the case of a single exceptional peint ¢, for
evidently R can be divided into smaller rectangles which contain at most
one ;.

We divide R into nine rectangles, as shown in Fig. 17, and apply
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s e i i}

of

FIG. 17

Theorem 2 to all but the rectangle R, in the center. If the corresponding
equations (12) are added, we obtain, after cancellations,

amn . fdz = - fdz.
If ¢ > 0 we can choose the rectangle R, so small that

€

le = ¢l

lf@)| =

on dk,. By (17) we have thus

| farde] e [ e

If we assume, as we may, that R, is a square of center {, elementary esti-
mates show that

|dz|
/aﬁso e—g <%

Thus we obtain

IfaRfdz| < 8,

and since e is arbitrary the theorem follows. _
We observe that the hypothesis of the theorem is certainly fulfilled if
f(2) is analytic and bounded on R'.

1.5. Cauchy’s Theorem in a Circular Disk. It is not true that the
integral of an analytic function over a closed curve is always zero.
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Indeed, we have found that

dz

= 2w
cz—a

when C' is a circle about @. In order to make sure that the integral
vanishes, it is necessary to make a special assumption concerning the
region @ in which f(z) is known to be analytic and to which the curve v is
restricted. We are not yet in a position to formulate this condition, and
for this reason we must restrict attention to a very special case. In
what follows we assume that Q is an open circular disk [z — 2| < p to
be denoted by A.

Theorem 4. If f(z) is analytic in an open disk A, then

(18) [7 fz2)dz = 0

for every closed curve v in A.

The proof is a repetition of the argument used in proving the second
half of Theorem 1. We define a function F(z) by

(19) F(z) = / fdz

where o consists of the horizontal line segment from the center (z,y0)
to (z,50) and the vertical segment from (z,50) to (z,y); it is immediately
seen that dF/dy = 4f(z). On the other hand, by Theorem 2 ¢ can be
replaced by a path consisting of a vertical segment followed by a hori-
zontal segment. This choice defines the same funection F(z), and we
obtain 9F/dz = f(z). Hence F(z) is analytic in A with the derivative
f(2), and f(2) dz is an exact differential.

Clearly, the same proof would go through for any region which con-
tains the rectangle with the opposite vertices z, and z as soon as it con-
tains z. A rectangle, a half plane, or the inside of an ellipse all have
this property, and hence Theorem 4 holds for any of these regions. By
this method we cannot, however, reach full generality.

For the applications it is very important that the conclusion of
Theorem 4 remains valid under the weaker condition of Theorem 3. We
state this as a separate theorem.

Theorem 5. Let f(z) be analytic in the region A’ obtained by omitting a
finite number of points ¢; from an open disk A. If f(2) satisfies the con-
dition lim, ¢,z — £)f(2) = O for all 7, then (17) holds for any closed
curve y in A’.
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FIG. -4

The proof must be modified, for we cannot let ¢ pass through the
exceptional points. Assume first that no {; lies on the lines z = z, and
¥ = yo. It is then possible to avoid the exceptional points by letting o
consist of three segments (Fig. 44). By an obvious application of
Theorem 3 we find that the value of F(2) in (18) is independent of the
choice of the middle segment; moreover, the last segment can be either
vertical or horizontal. We conclude as before that F(z) is an indefinite
integral of f(z), and the theorem follows.

In case there are exceptional points on the lines # = z, and Y = Yo
the reader will easily convince himself that a similar proof can be carried
out, provided that we use four line segments in the place of three.

2. CAUCHY’S INTEGRAL FORMULA

Through a very simple application of Cauchy’s theorem it becomes
possible to represent an analytic function f(2) as a line integral in which
the variable z enters as a parameter. This representation, known as
Cauchy’s inlegral formula, has numerous important applications. Above
all, it enables us to study the local properties of an analytic funection in
great detail,

2.1. The Index of a Point with Respect to a Closed Curve. As 3
preliminary to the derivation of Cauchy’s formula we must define a notion
which in a precise way indicates how many times a closed curve winds
around a fixed point not on the curve. If the curve is piecewise differ-
entiable, as we shall assume without serious loss of generality, the defi-
nition can be based on the following lemma.:
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Lemma 1. If the piecewise differentiable closed curve v does not pass
through the point a, then the value of the integral
dz

T —a

s a mulitple of 2.
This lemma may seem trivial, for we can write

/7zliza=/;dlog (z—a) =/Ydlog |z — a +7,"/;darg (z — a).

When z describes a closed curve, log |z — a| returns to its initial value and
arg (z — a) increases or decreases by a multiple of 2r. This would seem
to imply the lemma, but more careful thought shows that the reasoning is
of no value unless we define arg (z — @) in a unique way.

The simplest proof is computational. If the equation of yisz = 2(f),
a £t £ B, let us consider the function

t_2'(t)
h(t) = N 2(—0'—"_—Gdt.

It is defined and continuous on the closed interval [o,8], and it has the
derivative

'
ey — 2
O = =%
whenever 2/(f) is continuous. From this equation it follows that the
derivative of e*®(2(t) — a) vanishes except perhaps at a finite number of

points, and since this function is continuous it must reduce to a constant.
We have thus

any _ 2 —a
e()—z(oe)-a

Since z(8) = z(a) we obtain et® = 1, and therefore h(8) must be a multiple
of 2ri. This proves the lemma.

We can now define the index of the point a with respect to the curve y
by the equation

1 dz
n(r,e) = %/—:z —a
With a suggestive terminology the index is also called the winding number
of v with respect to a.
It is clear that n(—v,8) = —n(y,a).
The following property is an immediate consequence of Theorem 4:
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(1) If v lies inside of a circle, then n(v,a) = 0 for all points a outside of
the same circle.

As a point set v is closed and bounded. Its complement is open and
can be represented as a union of disjoint regions, the components of the
complement. We shall say, for short, that v determines these regions.
If the complementary regions are considered in the extended plane, there
is exactly one which contains the point at infinity. Consequently, v
determines one and only one unbounded region.

(i) As a function of a the index n(v,a) is constant in each of the regions
determined by v, and zero in the unbounded region.

Any two points in the same region determined by « can be joined by a
polygon which does not meet y. For this reason it is sufficient to prove
that n(v,a) = n(y,b) if v does not meet the line segment from a to b.
Outside of this segment the function (z — a)/(z — b) is never real and
= 0. For this reason the principal branch of log [(z — a)/(z — b)] is
analytic in the complement of the segment. Its derivative is equal to
(z — a)™! — (z — b)~Y, and if ¥ does not meet the segment we must have

1 1
/v(z—a—z—b>dz=0’

hence n(y,a) = n(y,b). If |a| is sufficiently large, v is contained in a
disk || < p < |a| and we conclude by (i) that n(y,a) = 0. This proves
that n(y,a) = 0 in the unbounded region.

We shall find the case n(v,a) = 1 particularly important, and it is
desirable to formulate a geometric condition which leads to this conse-
quence. For simplicity we take ¢ = 0.

Lemma 2. Let 21, 22 be two points on a closed curve v which does not
pass through the origin. Denote the subarc from zi to z; in the direction of
the curve by v, and the subarc from z; to 21 by vs. Suppose that 2, lies in
the lower half plane and z, in the upper half plane. If v, does not meet the
negative real axis and v does not meet the positive real axis, then n(v,0) = 1.

For the proof we draw the half lines L; and L, from the origin through
21 and z; (Fig. 4-5). Let {1, {» be the points in which L,, L, intersect a
circle C about the origin. If C is described in the positive sense, the
arc Ci from {; to {, does not intersect the negative axis, and the arc C.
from ¢, to {1 does not intersect the positive axis. Denote the directed
line segments from z, to ¢; and from z, to ¢ by &, ;. - Introducing the
Closed curves o1 = vy =+ 6, — 01 = 51, gy = Y2 + & — Cz — 62 we find
that n(v,0) = n(C,0) + n(s1,0) + n(s:,0) because of cancellations. But
o1 does not meet the negative axis. Hence the origin belongs to the
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FIG. 4-5

unbounded region determined by ¢1, and we obtain n(¢1,0) = 0. For a
similar reason n(s,,0) = 0, and we conclude that n(v,0) = n(C,0) = 1.

*EXERCISES

These are not routine exercises. They serve to illustrate the topo-
logical use of winding numbers.

L. Give an alternate proof of Lemma 1 by dividing v into a finite
number of subares such that there exists a single-valued branch of
arg (z — a) on each subarc. Pay particular attention to the compact-
ness argument that is needed to prove the existence of such a subdivision.

2. It is possible to define n(y,a) for any continuous closed curve «
that does not pass through a, whether piecewise differentiable or not. For

this purpose v is divided into subares i, . . ., vs, each contained
in a disk that does not include a. Let o« be the directed line segment
from the initial to the terminal point of v;, and set ¢ = o1 + * * - + on.

We define n(vy,a) to be the value of n(s,a).

To justify the definition, prove the following:

{(a) the result is independent of the subdivision;

(b) if v is piecewise differentiable the new definition is equivalent to
the old;

(¢c) the properties (i) and (ii) of the text continue to hold.
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FIG. 4-6. Part of the Jordan curve theorem.

3. The Jordan curve theorem asserts that every Jordan curve in the
plane determines exactly two regions. The notion of winding number
leads to a quick proof of one part of the theorem, namely that the comple-
ment of a Jordan curve v has at least two components. This will be so if
there exists a point a with n(y,a) = 0.

We may assume that Re z > 0 on v, and that there are points z;,
z3€y with Im 2; < 0, Im 2, > 0. These points may be chosen so that
there are no other points of « on the line segments from 0 to z; and from 0
to 2z2. Let v, and v; be the arcs of v from z; to 2 (excluding the end
points).

Let 01 be the closed curve that consists of the line segment from 0 to
z; followed by «; and the segment from 2, to 0, and let o2 be constructed in
the same way with v. in the place of ;. Then gy — ¢ = v or —vy.

The positive real axis intersects both v, and vs (why?). Choose the

notation so that the intersection x, farthest to the right is with v, (Fig. 4-6).

Prove the following:

(@) n(oy,z2) = 0, hence n(s1,2) = O for z € vs;

(®) n(e1,2) = n(re,x) = 1 for small z > 0 (Lemma 2);

(c) the first intersection z, of the positive real axis with v lies on v1;
(@) n(oo,21) = 1, hence n(es2) = 1 for z € v1;

(e) there exists a segment, of the positive real axis with one end point

on vy, the other on vy, and no other points on y. The points z between
the end points satisfy n(y,z) = 1 or —1.

2.2. The Integral Formula. Let f(z) be analytic in an open disk A.
Consider a closed curve v in A and a point @ € A which does not lie on ¥.

We apply Cauchy’s theorem to the function

F(2) = (&) — f(a)

zZ2—a
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This function is analytic for z # a. For z = a it is not defined, but it
satisfies the condition

lim F(2)(z — a) = lim (f(z) — f(a)) =0
which is the condition of Theorem 5. We conclude that

JECES ORI
vy z—a
This equation can be written in the form

[@de _ oo [ _de

b
y&— Y — a

and we observe that the integral in the right-hand member is by defi-
nition 2x¢ - n(y,a). We have thus proved:

Theorem 6. Suppose that f(z) is analytic in an open disk A, and let v
be a closed curve in A. For any point a not on vy

> 10 < 195

where n(v,a) s the index of a with respect to v.

In this statement we have suppressed the requirement that a be a
point in A. We have done so in view of the obvious interpretation of
the formula (20) for the case that a is not in A. Indeed, in this case
n(y,a) and the integral in the right-hand member are both zero.

It is clear that Theorem 6 remains valid for any region @ to which
Theorem 5 can be applied. The presence of exceptional points ¢; is per-
mitted, provided none of them coincides with a.

The most common application is to the case where n(y,a) = 1.. We
have then

1 1 f(z)dz
@1 f@ =5 [ LA,

and this we interpret as a representation formula. Indeed, it permits us
to compute f(a) as soon as the values of f(z) on v are given, together
with the fact that f(z) is analytic in A. In (21) we may let a take differ-
ent values, provided that the order of a with respect to vy remains equal
to 1. We may thus treat a as a variable, and it is convenient to change
the notation and rewrite (21) in the form

(22) 16) = o [ KO &,




