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Preface
This manual contains solutions with notes and comments to problems from the
textbook

Partial Differential Equations
with Fourier Series and Boundary Value Problems

Second Edition

Most solutions are supplied with complete details and can be used to supplement
examples from the text. Additional solutions will be posted on my website

www.math.missouri.edu/˜ nakhle
as I complete them and will be included in future versions of this manual.

I would like to thank users of the first edition of my book for their valuable com-
ments. Any comments, corrections, or suggestions would be greatly appreciated.
My e-mail address is

nakhle@math.missouri.edu
Nakhlé H. Asmar
Department of Mathematics
University of Missouri
Columbia, Missouri 65211



Errata
The following mistakes appeared in the first printing of the second edition (up-dates
24 March 2005).

Corrections in the text and figures
p. 224, Exercise #13 is better done after Section 4.4.
p. 268, Exercise #8(b), n should be even.
p.387, Exercise#12, use y2 = I0(x) not y2 = J1(x).
p.420, line 7, the integrals should be from −∞ to ∞.
p. 425 Figures 5 and 6: Relabel the ticks on the x-axis as −π, −π/2, π/2, π, instead
of −2π, −π, π, 2π.
p. 467, line (−3): Change reference (22) to (20).
p. 477, line 10: (xt) ↔ (x, t).
p. 477, line 19: Change ”interval” to ”triangle”
p. 487, line 1: Change ”is the equal” to ”is equal”
p. 655, line 13: Change ln | ln(x2 + y2)| to ln(x2 + y2).
p. A38, the last two lines of Example 10 should be:
= (a1 − 2a0) + (2a2 − a1)x+

∑∞
m=2 . . . =

∑∞
m=0[(m + 1)am+1 + am(m2 − 2)]xm.

Last page on inside back cover: Improper integrals, lines −3, the first integral
should be from 0 to ∞ and not from −∞ to ∞.

Corrections to Answers of Odd Exercises
Section 7.2, # 7: Change i to −i.
Section 7.8, # 13: f(x) = 3 for 1 < x < 3 not 1 < x < 2.

Section 7.8, # 35:
√

2
π

(e−iw−1)
w

∑3
j=1 j sin(jw). # 37: i

√
2
π

1
w3 , # 51: 3√

2π
[δ1 − δ0].

# 57: The given answer is the derivative of the real answer, which should be

1√
2π

(
(x+2)

(
U−2− U0

)
+(−x+2)

(
U0− U1

)
+
(
U1 − U3

)
+(−x+4)

(
U3− U4

))

# 59: The given answer is the derivative of the real answer, which should be
1
2

1√
2π

(
(x+ 3)

(
U−3 − U−2

)
+ (2x+ 5)

(
U−2 − U−1

)
+ (x+ 4)

(
U−1 − U0

)

+(−x + 4)
(
U0 − U1

)
+ (−2x+ 5)

(
U1 − U2

)
+ (−x + 3)

(
U2 − U3

))

Section 7.10, # 9: 1
2

[
t sin(x+ t) + 1

2
cos(x+ t) − 1

2
cos(x− t)

]
.

Appendix A.2, # 43: y = c1 cos 3x+ c2 sin 3x− 1
18x cos 3x+

∑6
n=1, n6=3

sin nx
n(9−n2) .

# 49: yp = . . .↔ yp = x(. . . .
# 67: y = −1

8
ex + 1

32
e3x + (1

8
x+ 3

32
)e−x.

Appendix A.3, # 9:y = c1 x+ c2

[
x
2 ln

(
1+x
1−x

)
− 1
]
.

# 25 ln(cos x) ↔ ln | cosx|. # 27 y = c1(1 + x) + c2e
x − x3

2 − 3
2x

2.
Appendix A.4, # 13 −1 + 4

∑∞
n=0(−1)nxn

Appendix A.5, # 15 y = 1 − 6x2 + 3x4 + 4
5x

6 + · · ·
Any suggestion or correction would be greatly appreciated. Please send them

to my e-mail address
nakhle@math.missouri.edu

Nakhlé H. Asmar
Department of Mathematics
University of Missouri
Columbia, Missouri 65211



Section 1.1 What Is a Partial Differential Equation? 1

Solutions to Exercises 1.1

1. If u1 and u2 are solutions of (1), then

∂u1

∂t
+
∂u1

∂x
= 0 and

∂u2

∂t
+
∂u2

∂x
= 0.

Since taking derivatives is a linear operation, we have

∂

∂t
(c1u1 + c2u2) +

∂

∂x
(c1u1 + c2u2) = c1

∂u1

∂t
+ c2

∂u2

∂t
+ c1

∂u1

∂x
+ c2

∂u2

∂x

= c1

=0︷ ︸︸ ︷(
∂u1

∂t
+
∂u1

∂x

)
+c2

=0︷ ︸︸ ︷(
∂u2

∂t
+ +

∂u2

∂x

)
= 0,

showing that c1u1 + c2u2 is a solution of (1).
5. Let α = ax+ bt, β = cx+ dt, then

∂u

∂x
=

∂u

∂α

∂α

∂x
+
∂u

∂β

∂β

∂x
= a

∂u

∂α
+ c

∂u

∂β

∂u

∂t
=

∂u

∂α

∂α

∂t
+
∂u

∂β

∂β

∂t
= b

∂u

∂α
+ d

∂u

∂β
.

Recalling the equation, we obtain

∂u

∂t
− ∂u

∂x
= 0 ⇒ (b− a)

∂u

∂α
+ (d− c)

∂u

∂β
= 0.

Let a = 1, b = 2, c = 1, d = 1. Then

∂u

∂α
= 0 ⇒ u = f(β) ⇒ u(x, t) = f(x + t),

where f is an arbitrary differentiable function (of one variable).

9. (a) The general solution in Exercise 5 is u(x, t) = f(x + t). When t = 0, we get
u(x, 0) = f(x) = 1/(x2 + 1). Thus

u(x, t) = f(x + t) =
1

(x+ t)2 + 1
.

(c) As t increases, the wave f(x) = 1
1+x2 moves to the left.
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Figure for Exercise 9(b).

13. To find the characteristic curves, solve dy
dx = sinx. Hence y = − cosx +

C or y + cos x = C. Thus the solution of the partial differential equation is
u(x, y) = f (y + cosx). To verify the solution, we use the chain rule and get
ux = − sinxf ′ (y + cosx) and uy = f ′ (y + cos x). Thus ux + sinxuy = 0, as
desired.
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Exercises 1.2

1. We have

∂

∂t

(
∂u

∂t

)
= −

∂

∂t

(
∂v

∂x

)
and

∂

∂x

(
∂v

∂t

)
= −

∂

∂x

(
∂u

∂x

)
.

So
∂2u

∂t2
= − ∂2v

∂t∂x
and

∂2v

∂x∂t
= −∂

2u

∂x2
.

Assuming that ∂2v
∂t∂x = ∂2v

∂x∂t, it follows that ∂2u
∂t2 = ∂2u

∂x2 , which is the one dimensional
wave equation with c = 1. A similar argument shows that v is a solution of the one
dimensional wave equation.

5. (a) We have u(x, t) = F (x + ct) + G(x− ct). To determine F and G, we use
the initial data:

u(x, 0) =
1

1 + x2
⇒ F (x) + G(x) =

1
1 + x2

; (1)

∂u

∂t
(x, 0) = 0 ⇒ cF ′(x) − cG′(x) = 0

⇒ F ′(x) = G′(x) ⇒ F (x) = G(x) + C, (2)

where C is an arbitrary constant. Plugging this into (1), we find

2G(x) + C =
1

1 + x2
⇒ G(x) =

1
2

[
1

1 + x2
−C

]
;

and from (2)

F (x) =
1
2

[
1

1 + x2
+ C

]
.

Hence

u(x, t) = F (x+ ct) +G(x− ct) =
1
2

[
1

1 + (x+ ct)2
+

1
1 + (x− ct)2

]
.

9. As the hint suggests, we consider two separate problems: The problem in
Exercise 5 and the one in Exercise 7. Let u1(x, t) denote the solution in Exercise 5
and u2(x, t) the solution in Exercise 7. It is straightforward to verify that u =
u1 + u2 is the desired solution. Indeed, because of the linearity of derivatives, we
have utt = (u1)tt + (u2)tt = c2(u1)xx + c2(u2)xx, because u1 and u2 are solutions
of the wave equation. But c2(u1)xx + c2(u2)xx = c2(u1 + u2)xx = uxx and so
utt = c2uxx, showing that u is a solution of the wave equation. Now u(x, 0) =
u1(x, 0)+u2(x, 0) = 1/(1+x2)+0, because u1(x, 0) = 1/(1+x2) and u2(x, 0) = 0.
Similarly, ut(x, 0) = −2xe−x2

; thus u is the desired solution. The explicit formula
for u is

u(x, t) =
1
2

[
1

1 + (x+ ct)2
+

1
1 + (x− ct)2

]
+

1
2c

[
e−(x+ct)2 − e−(x−ct)2

]
.

13. The function being graphed is

u(x, t) = sinπx cosπt− 1
2

sin 2πx cos 2πt +
1
3

sin 3πx cos 3πt.

In frames 2, 4, 6, and 8, t = m
4

, where m = 1, 3, 5, and 7. Plugging this into
u(x, t), we find

u(x, t) = sinπx cos
mπ

4
− 1

2
sin 2πx cos

mπ

2
+

1
3

sin 3πx cos
3mπ

4
.



Section 1.2 Solving and Interpreting a Partial Differential Equation 3

For m = 1, 3, 5, and 7, the second term is 0, because cos mπ
2

= 0. Hence at these
times, we have, for, m = 1, 3, 5, and 7,

u(x,
m

4
) = sinπx cosπt+

1
3

sin 3πx cos 3πt.

To say that the graph of this function is symmetric about x = 1/2 is equivalent
to the assertion that, for 0 < x < 1/2, u(1/2 + x, m

4 ) = u(1/2 − x, m
4 ). Does this

equality hold? Let’s check:

u(1/2 + x,
m

4
) = sinπ(x+ 1/2) cos

mπ

4
+

1
3

sin3π(x+ 1/2) cos
3mπ

4

= cos πx cos
mπ

4
− 1

3
cos 3πx cos

3mπ
4

,

where we have used the identities sinπ(x + 1/2) = cos πx and sin 2π(x + 1/2) =
− cos 3πx. Similalry,

u(1/2 − x,
m

4
) = sinπ(1/2 − x) cos

mπ

4
+

1
3

sin3π(1/2 − x) cos
3mπ

4

= cos πx cos
mπ

4
− 1

3
cos 3πx cos

3mπ
4

.

So u(1/2 + x, m
4 ) = u(1/2− x, m

4 ), as expected.

17. Same reasoning as in the previous exercise, we find the solution

u(x, t) =
1
2

sin
πx

L
cos

cπt

L
+

1
4

sin
3πx
L

cos
3cπt
L

+
2
5

sin
7πx
L

cos
7cπt
L

.

21. (a) We have to show that u(1
2
, t) is a constant for all t > 0. With c = L = 1,

we have

u(x, t) = sin 2πx cos 2πt ⇒ u(1/2, t) = sinπ cos 2πt = 0 for all t > 0.

(b) One way for x = 1/3 not to move is to have u(x, t) = sin 3πx cos 3πt. This
is the solution that corresponds to the initial condition u(x, 0) = sin 3πx and
∂u
∂t

(x, 0) = 0. For this solution, we also have that x = 2/3 does not move for
all t.

25. The solution (2) is

u(x, t) = sin
πx

L
cos

πct

L
.

Its initial conditions at time t0 = 3L
2c are

u(x,
3L
2c

) = sin
πx

L
cos
(
πc

L
· 3L

2c

)
= sin

πx

L
cos

3π
2

= 0;

and

∂u

∂t
(x,

3L
2c

) = −πc
L

sin
πx

L
sin
(
πc

L
· 3L

2c

)
= −πc

L
sin

πx

L
sin

3π
2

=
πc

L
sin

πx

L
.
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Solutions to Exercises 2.1
1. (a) cosx has period 2π. (b) cos πx has period T = 2π

π = 2. (c) cos 2
3x has

period T = 2π
2/3 = 3π. (d) cos x has period 2π, cos 2x has period π, 2π, 3π,.̇. A

common period of cosx and cos 2x is 2π. So cos x+ cos 2x has period 2π.

5. This is the special case p = π of Exercise 6(b).

9. (a) Suppose that f and g are T -periodic. Then f(x+T ) · g(x+T ) = f(x) · g(x),
and so f · g is T periodic. Similarly,

f(x+ T )
g(x+ T )

=
f(x)
g(x)

,

and so f/g is T periodic.
(b) Suppose that f is T -periodic and let h(x) = f(x/a). Then

h(x+ aT ) = f

(
x+ aT

a

)
= f

(x
a

+ T
)

= f
(x
a

)
(because f is T -periodic)

= h(x).

Thus h has period aT . Replacing a by 1/a, we find that the function f(ax) has
period T/a.
(c) Suppose that f is T -periodic. Then g(f(x + T )) = g(f(x)), and so g(f(x)) is
also T -periodic.

13. ∫ π/2

−π/2

f(x) dx =
∫ π/2

0

1 dx = π/2.

17. By Exercise 16, F is 2 periodic, because
∫ 2

0
f(t) dt = 0 (this is clear from

the graph of f). So it is enough to describe F on any interval of length 2. For
0 < x < 2, we have

F (x) =
∫ x

0

(1 − t) dt = t− t2

2

∣∣∣
x

0
= x− x2

2
.

For all other x, F (x+2) = F (x). (b) The graph of F over the interval [0, 2] consists
of the arch of a parabola looking down, with zeros at 0 and 2. Since F is 2-periodic,
the graph is repeated over and over.

21. (a) With p = 1, the function f becomes f(x) = x−2
[

x+1
2

]
, and its graph is the

first one in the group shown in Exercise 20. The function is 2-periodic and is equal
to x on the interval −1 < x < 1. By Exercise 9(c), the function g(x) = h(f(x) is 2-
periodic for any function h; in particular, taking h(x) = x2, we see that g(x) = f(x)2

is 2-periodic. (b) g(x) = x2 on the interval −1 < x < 1, because f(x) = x on that
interval. (c) Here is a graph of g(x) = f(x)2 =

(
x− 2

[
x+1
2

])2, for all x.

Plot x 2 Floor x 1 2 ^2, x, 3, 3

-3 -2 -1 1 2 3

1



Section 2.1 Periodic Functions 5

25. We have

|F (a+ h) − F (a)| =

∣∣∣∣∣

∫ a

0

f(x) dx −
∫ a+h

0

f(x) dx

∣∣∣∣∣

=

∣∣∣∣∣

∫ a+h

a

f(x) dx

∣∣∣∣∣ ≤ M · h,

where M is a bound for |f(x)|, which exists by the previous exercise. (In deriving
the last inequality, we used the following property of integrals:

∣∣∣∣∣

∫ b

a

f(x) dx

∣∣∣∣∣ ≤ (b − a) ·M,

which is clear if you interpret the integral as an area.) As h → 0, M ·h→ 0 and so
|F (a+h)−F (a)| → 0, showing that F (a+h) → F (a), showing that F is continuous
at a.
(b) If f is continuous and F (a) =

∫ a

0 f(x) dx, the fundamental theorem of calculus
implies that F ′(a) = f(a). If f is only piecewise continuous and a0 is a point of
continuity of f , let (xj−1, xj) denote the subinterval on which f is continuous and
a0 is in (xj−1, xj). Recall that f = fj on that subinterval, where fj is a continuous
component of f . For a in (xj−1, xj), consider the functions F (a) =

∫ a

0
f(x) dx and

G(a) =
∫ a

xj−1
fj(x) dx. Note that F (a) = G(a) +

∫ xj−1

0 f(x) dx = G(a) + c. Since
fj is continuous on (xj−1, xj), the fundamental theorem of calculus implies that
G′(a) = fj(a) = f(a). Hence F ′(a) = f(a), since F differs from G by a constant.
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Solutions to Exercises 2.2

1. The graph of the Fourier series is identical to the graph of the function, except
at the points of discontinuity where the Fourier series is equal to the average of the
function at these points, which is 1

2 .

5. We compute the Fourier coefficients using he Euler formulas. Let us first note
that since f(x) = |x| is an even function on the interval −π < x < π, the product
f(x) sin nx is an odd function. So

bn =
1
π

∫ π

−π

odd function︷ ︸︸ ︷
|x| sinnx dx = 0,

because the integral of an odd function over a symmetric interval is 0. For the other
coefficients, we have

a0 =
1
2π

∫ π

−π

f(x) dx =
1
2π

∫ π

−π

|x| dx

= =
1
2π

∫ 0

−π

(−x) dx+
1
2π

∫ π

0

x dx

=
1
π

∫ π

0

x dx =
1
2π
x2
∣∣∣
π

0
=
π

2
.

In computing an (n ≥ 1), we will need the formula

∫
x cos ax dx =

cos(a x)
a2

+
x sin(a x)

a
+C (a 6= 0),

which can be derived using integration by parts. We have, for n ≥ 1,

an =
1
π

∫ π

−π

f(x) cos nx dx =
1
π

∫ π

−π

|x| cosnx dx

=
2
π

∫ π

0

x cosnx dx

=
2
π

[
x

n
sinnx+

1
n2

cos nx
] ∣∣∣

π

0

=
2
π

[
(−1)n

n2
− 1
n2

]
=

2
πn2

[
(−1)n − 1

]

=
{

0 if n is even
− 4

πn2 if n is odd.

Thus, the Fourier series is

π

2
− 4
π

∞∑

k=0

1
(2k + 1)2

cos(2k + 1)x .
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s n_, x_ : Pi 2 4 Pi Sum 1 2 k 1 ^2 Cos 2 k 1 x , k, 0, n

partialsums Table s n, x , n, 1, 7 ;

f x_ x 2 Pi Floor x Pi 2 Pi

g x_ Abs f x

Plot g x , x, 3 Pi, 3 Pi

Plot Evaluate g x , partialsums , x, 2 Pi, 2 Pi

The function g(x) = | x | 
and its periodic extension

Partial sums of 
the Fourier series.  Since we are 
summing over the odd integers,
when n = 7, we are actually summing 
the 15th partial sum. 

9. Just some hints:
(1) f is even, so all the bn’s are zero.
(2)

a0 =
1
π

∫ π

0

x2 dx =
π2

3
.

(3) Establish the identity

∫
x2 cos(ax) dx =

2x cos(a x)
a2

+

(
−2 + a2 x2

)
sin(a x)

a3
+C (a 6= 0),

using integration by parts.

13. You can compute directly as we did in Example 1, or you can use the result
of Example 1 as follows. Rename the function in Example 1 g(x). By comparing
graphs, note that f(x) = −2g(x + π). Now using the Fourier series of g(x) from
Example, we get

f(x) = −2
∞∑

n=1

sinn(π + x)
n

= 2
∞∑

n=1

(−1)n+1

n
sinnx.

17. Setting x = π in the Fourier series expansion in Exercise 9 and using the fact
that the Fourier series converges for all x to f(x), we obtain

π2 = f(π) =
π2

3
+ 4

∞∑

n=1

(−1)n

n2
cos nπ =

π2

3
+ 4

∞∑

n=1

1
n2
,

where we have used cosnπ = (−1)n. Simplifying, we find

π2

6
=

∞∑

n=1

1
n2
.
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21. (a) Interpreting the integral as an area (see Exercise 16), we have

a0 =
1
2π

· 1
2
· π

2
=

1
8
.

To compute an, we first determine the equation of the function for π
2 < x < π.

From Figure 16, we see that f(x) = 2
π (π − x) if π

2 < x < π. Hence, for n ≥ 1,

an =
1
π

∫ π

π/2

2
π

u︷ ︸︸ ︷
(π − x)

v′

︷ ︸︸ ︷
cosnx dx

=
2
π2

(π − x)
sinnx
n

∣∣∣
π

π/2
+

2
π2

∫ π

π/2

sinnx
n

dx

=
2
π2

[
−π
2n

sin
nπ

2

]
− 2
π2n2

cosnx
∣∣∣
π

π/2

= − 2
π2

[
π

2n
sin

nπ

2
+

(−1)n

n2
− 1
n2

cos
nπ

2

]
.

Also,

bn =
1
π

∫ π

π/2

2
π

u︷ ︸︸ ︷
(π − x)

v′

︷ ︸︸ ︷
sinnx dx

= − 2
π2

(π − x)
cos nx
n

∣∣∣
π

π/2
− 2
π2

∫ π

π/2

cosnx
n

dx

=
2
π2

[
π

2n
cos

nπ

2
+

1
n2

sin
nπ

2

]
.

Thus the Fourier series representation of f is

f(x) =
1
8

+
2
π2

∞∑

n=1

{
−
[
π

2n
sin

nπ

2
+

(−1)n

n2
−

1
n2

cos
nπ

2

]
cos nx

+
[
π

2n
cos

nπ

2
+

1
n2

sin
nπ

2

]
sinnx

}
.

(b) Let g(x) = f(−x). By performing a change of variables x↔ −x in the Fourier
series of f , we obtain (see also Exercise 24 for related details) Thus the Fourier
series representation of f is

g(x) =
1
8

+
2
π2

∞∑

n=1

{
−
[
π

2n
sin

nπ

2
+

(−1)n

n2
− 1
n2

cos
nπ

2

]
cosnx

−
[
π

2n
cos

nπ

2
+

1
n2

sin
nπ

2

]
sinnx

}
.

25. For (a) and (b), see plots.
(c) We have sn(x) =

∑n
k=1

sin kx
k

. So sn(0) = 0 and sn(2π) = 0 for all n. Also,
limx→0+ f(x) = π

2 , so the difference between sn(x) and f(x) is equal to π/24 at
x = 0. But even we look near x = 0, where the Fourier series converges to f(x), the
difference |sn(x)−f(x)| remains larger than a positive number, that is about .28 and
does not get smaller no matter how large n. In the figure, we plot |f(x)− s150(x)|.
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As you can see, this difference is 0 everywhere on the interval (0, 2π), except near
the points 0 and 2π, where this difference is approximately .28. The precise analysis
of this phenomenon is done in the following exercise.
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Solutions to Exercises 2.3
1. (a) and (b) Since f is odd, all the an’s are zero and

bn =
2
p

∫ p

0

sin
nπ

p
dx

=
−2
nπ

cos
nπ

p

∣∣∣
π

0
=

−2
nπ

[
(−1)n − 1

]

=
{

0 if n is even,
4

nπ if n is odd.

Thus the Fourier series is
4
π

∞∑

k=0

1
(2k + 1)

sin
(2k + 1)π

p
x. At the points of discon-

tinuity, the Fourier series converges to the average value of the function. In this
case, the average value is 0 (as can be seen from the graph.

5. (a) and (b) The function is even. It is also continuous for all x. All the bns are
0. Also, by computing the area between the graph of f and the x-axis, from x = 0
to x = p, we see that a0 = 0. Now, using integration by parts, we obtain

an =
2
p

∫ p

0

−
(

2c
p

)
(x− p/2) cos

nπ

p
x dx = −4c

p2

∫ p

0

u︷ ︸︸ ︷
(x− p/2)

v′

︷ ︸︸ ︷
cos

nπ

p
x dx

= −4c
p2




=0︷ ︸︸ ︷
p

nπ
(x− p/2) sin

nπ

p
x
∣∣∣
p

x=0
− p

nπ

∫ p

0

sin
nπ

p
x dx




= −4c
p2

p2

n2π2
cos

nπ

p
x
∣∣∣
p

x=0
=

4c
n2π2

(1 − cosnπ)

=

{
0 if n is even,

8c
n2π2 if n is odd.

Thus the Fourier series is

f(x) =
8c
π2

∞∑

k=0

cos
[
(2k + 1)π

px
]

(2k + 1)2
.

9. The function is even; so all the bn’s are 0,

a0 =
1
p

∫ p

0

e−cx dx = − 1
cp
e−cx

∣∣∣
p

0
=

1 − e−cp

cp
;

and with the help of the integral formula from Exercise 15, Section 2.2, for n ≥ 1,

an =
2
p

∫ p

0

e−cx cos
nπx

p
dx

=
2
p

1
n2π2 + p2c2

[
nπpe−cx sin

nπx

p
− p2ce−cx cos

nπx

p

] ∣∣∣
p

0

=
2pc

n2π2 + p2c2
[
1 − (−1)ne−cp

]
.

Thus the Fourier series is

1
pc

(1 − e−cp) + 2cp
∞∑

n=1

1
c2p2 + (nπ)2

(1 − e−cp(−1)n) cos(
nπ

p
x) .

13. Take p = 1 in Exercise 1, call the function in Exercise 1 f(x) and the function
in this exercise g(x). By comparing graphs, we see that

g(x) =
1
2

(1 + f(x)) .
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Thus the Fourier series of g is

1
2

(
1 +

4
π

∞∑

k=0

1
(2k + 1)

sin(2k + 1)πx

)
=

1
2

+
2
π

∞∑

k=0

1
(2k + 1)

sin(2k + 1)πx.

f x_ Which x 0, 0, 0 x 1, 1, x 1, 0

s n_, x_ 1 2 2 Pi Sum 1 2 k 1 Sin 2 k 1 Pi x , k, 0, n ;

Plot Evaluate f x , s 20, x , x, 1, 1

Which x 0, 0, 0 x 1, 1, x 1, 0

The 41st partial sum of the Fourier series
and the function on the interval (-1, 1).

17. (a) Take x = 0 in the Fourier series of Exercise 4 and get

0 =
p2

3
− 4p2

π2

∞∑

n=1

(−1)n−1

n2
⇒ π2

12
=

∞∑

n=1

(−1)n−1

n2
.

(b) Take x = p in the Fourier series of Exercise 4 and get

p2 =
p2

3
−

4p2

π2

∞∑

n=1

(−1)n−1(−1)n

n2
⇒

π2

6
=

∞∑

n=1

1
n2
.

Summing over the even and odd integers separately, we get

π2

6
=

∞∑

n=1

1
n2

=
∞∑

k=0

1
(2k + 1)2

+
∞∑

k=1

1
(2k)2

.

But
∑∞

k=1
1

(2k)2
= 1

4

∑∞
k=1

1
k2 = 1

4
π2

6
. So

π2

6
=

∞∑

k=0

1
(2k + 1)2

+
π2

24
⇒

∞∑

k=0

1
(2k + 1)2

=
π2

6
− π2

24
=
π2

8
.

21. From the graph, we have

f(x) =
{

−1 − x if − 1 < x < 0,
1 + x if 0 < x < 1.

So

f(−x) =
{

1 − x if − 1 < x < 0,
−1 + x if 0 < x < 1;

hence

fe(x) =
f(x) + f(−x)

2
=
{

−x if − 1 < x < 0,
x if 0 < x < 1,
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and

fo(x) =
f(x) − f(−x)

2
=
{

−1 if − 1 < x < 0,
1 if 0 < x < 1.

Note that, fe(x) = |x| for −1 < x < 1. The Fourier series of f is the sum of the
Fourier series of fe and fo. From Example 1 with p = 1,

fe(x) =
1
2
− 4
π2

∞∑

k=0

1
(2k + 1)2

cos[(2k + 1)πx].

From Exercise 1 with p = 1,

fo(x) =
4
π

∞∑

k=0

1
2k + 1

sin[(2k + 1)πx].

Hence

f(x) =
1
2

+
4
π

∞∑

k=0

[
−cos[(2k + 1)πx]

π(2k + 1)2
+

sin[(2k + 1)πx]
2k + 1

]
.

25. Since f is 2p-periodic and continuous, we have f(−p) = f(−p + 2p) = f(p).
Now

a′0 =
1
2p

∫ p

−p

f ′(x) dx =
1
2p
f(x)

∣∣∣
p

−p
=

1
2p

(f(p) − f(−p)) = 0.

Integrating by parts, we get

a′n =
1
p

∫ p

−p

f ′(x) cos
nπx

p
dx

=
1
p

=0︷ ︸︸ ︷
f(x) cos

nπx

p

∣∣∣
p

−p
+
nπ

p

bn︷ ︸︸ ︷
1
p

∫ p

−p

f(x) sin
nπx

p
dx

=
nπ

p
bn.

Similarly,

b′n =
1
p

∫ p

−p

f ′(x) sin
nπx

p
dx

=
1
p

=0︷ ︸︸ ︷
f(x) sin

nπx

p

∣∣∣
p

−p
−nπ
p

an︷ ︸︸ ︷
1
p

∫ p

−p

f(x) cos
nπx

p
dx

= −nπ
p
an.

29. The function in Exercise 8 is piecewise smooth and continuous, with a piecewise
smooth derivative. We have

f ′(x) =





− c
d if 0 < x < d,

0 if d < |x| < p,
c
d

if − d < x < 0.

The Fourier series of f ′ is obtained by differentiating term by term the Fourier series
of f (by Exercise 26). Now the function in this exercise is obtained by multiplying
f ′(x) by −d

c
. So the desired Fourier series is

−d
c
f ′(x) = −d

c

2cp
dπ2

∞∑

n=1

1 − cos dnπ
p

n2

(
−nπ
p

)
sin

nπ

p
x =

2
π

∞∑

n=1

1 − cos dnπ
p

n
sin

nπ

p
x.
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33. The function F (x) is continuous and piecewise smooth with F ′(x) = f(x) at all
the points where f is continuous (see Exercise 25, Section 2.1). So, by Exercise 26,
if we differentiate the Fourier series of F , we get the Fourier series of f . Write

F (x) = A0 +
∞∑

n=1

(
An cos

nπ

p
x+ Bn sin

nπ

p
x

)

and

f(x) =
∞∑

n=1

(
an cos

nπ

p
x+ bn sin

nπ

p
x

)
.

Note that the a0 term of the Fourier series of f is 0 because by assumption∫ 2p

0
f(x) dx = 0. Differentiate the series for F and equate it to the series for f

and get

∞∑

n=1

(
−An

nπ

p
sin

nπ

p
x+

nπ

p
Bn cos

nπ

p
x

)
=

∞∑

n=1

(
an cos

nπ

p
x+ bn sin

nπ

p
x

)
.

Equate the nth Fourier coefficients and get

−An
nπ

p
= bn ⇒ An = − p

nπ
bn;

Bn
nπ

p
= an ⇒ Bn =

p

nπ
an.

This derives the nth Fourier coefficients of F for n ≥ 1. To get A0, note that
F (0) = 0 because of the definition of F (x) =

∫ x

0
f(t) dt. So

0 = F (0) = A0 +
∞∑

n=1

An = A0 +
∞∑

n=1

− p

nπ
bn;

and so A0 =
∑∞

n=1
p

nπ bn. We thus obtained the Fourier series of F in terms of the
Fourier coefficients of f ; more precisely,

F (x) =
p

π

∞∑

n=1

bn
n

+
∞∑

n=1

(
− p

nπ
bn cos

nπ

p
x+

p

nπ
an sin

nπ

p
x

)
.

The point of this result is to tell you that, in order to derive the Fourier series of
F , you can integrate the Fourier series of f term by term. Furthermore, the only
assumption on f is that it is piecewise smooth and integrates to 0 over one period
(to guarantee the periodicity of F .) Indeed, if you start with the Fourier series of
f ,

f(t) =
∞∑

n=1

(
an cos

nπ

p
t + bn sin

nπ

p
t

)
,

and integrate term by term, you get

F (x) =
∫ x

0

f(t) dt =
∞∑

n=1

(
an

∫ x

0

cos
nπ

p
t dt+ bn

∫ x

0

sin
nπ

p
t dt

)

=
∞∑

n=1

(
an

( p

nπ

)
sin

nπ

p
t
∣∣∣
x

0
dt+ bn

(
− p

nπ

)
cos

nπ

p
t
∣∣∣
x

0

)

=
p

π

∞∑

n=1

bn
n

+
∞∑

n=1

(
− p

nπ
bn cos

nπ

p
x+

p

nπ
an sin

nπ

p
x

)
,

as derived earlier. See the following exercise for an illustration.
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Solutions to Exercises 2.4

1. The even extension is the function that is identically 1. So the cosine Fourier
series is just the constant 1. The odd extension yields the function in Exercise 1,
Section 2.3, with p = 1. So the sine series is

4
π

∞∑

k=0

sin((2k + 1)πx)
2k+ 1

.

This is also obtained by evaluating the integral in (4), which gives

bn = 2
∫ 1

0

sin(nπx) dx = − 2
nπ

cosnπx
∣∣∣
1

0
=

2
nπ

(1 − (−1)n).

9. We have

bn = 2
∫ 1

0

x(1 − x) sin(nπx) dx.

To evaluate this integral, we will use integration by parts to derive the following
two formulas: for a 6= 0,

∫
x sin(ax) dx = −x cos(a x)

a
+

sin(a x)
a2

+ C,

and
∫
x2 sin(ax) dx =

2 cos(a x)
a3

− x2 cos(a x)
a

+
2x sin(a x)

a2
+ C.

So
∫
x(1 − x) sin(ax) dx

=
−2 cos(a x)

a3
−
x cos(a x)

a
+
x2 cos(a x)

a
+

sin(a x)
a2

−
2x sin(a x)

a2
+C.

Applying the formula with a = nπ, we get

∫ 1

0

x(1 − x) sin(nπx) dx

=
−2 cos(nπ x)

(nπ)3
− x cos(nπ x)

nπ
+
x2 cos(nπ x)

nπ
+

sin(nπ x)
(nπ)2

− 2x sin(nπ x)
(nπ)2

∣∣∣
1

0

=
−2 ((−1)n − 1)

(nπ)3
− (−1)n

nπ
+

(−1)n

nπ
=

−2 ((−1)n − 1)
(nπ)3

=
{ 4

(nπ)3
if n is odd,

0 if n is even.

Thus

bn =
{ 8

(nπ)3 if n is odd,
0 if n is even,

Hence the sine series in

8
π3

∞∑

k=0

sin(2k + 1)πx
(2k + 1)3

.
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b k_ 8 Pi^3 1 2 k 1 ^3;

ss n_, x_ : Sum b k Sin 2 k 1 Pi x , k, 0, n ;

partialsineseries Table ss n, x , n, 1, 5 ;

f x_ x 1 x

Plot Evaluate partialsineseries, f x , x, 0, 1

0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

Perfect!

13. We have
sinπx cosπx =

1
2

sin 2πx.

This yields the desired 2-periodic sine series expansion.

17. (b) Sine series expansion:

bn =
2
p

∫ a

0

h

a
x sin

nπx

p
dx+

2
p

∫ p

a

h

a− p
(x− p) sin

nπx

p
dx

=
2h
ap

[
− x

p

nπ
cos

nπx

p

∣∣∣
a

0
+

p

nπ

∫ a

0

cos
nπx

p
dx
]

+
2h

(a − p)p

[
(x− p)

(−p)
nπ

cos(
nπ x

p
)
∣∣∣
p

a
+
∫ p

a

p

nπ
cos

nπ x

p
dx
]

=
2h
pa

[−ap
nπ

cos
nπa

p
+

p2

(nπ)2
sin

nπa

p

]

+
2h

(a − p)p

[ p
nπ

(a− p) cos
nπa

p
− p2

(nπ)2
sin

nπa

p

]

=
2hp

(nπ)2
sin

nπa

p

[1
a
− 1
a− p

]

=
2hp2

(nπ)2(p− a)a
sin

nπa

p
.

Hence, we obtain the given Fourier series.
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Solutions to Exercises 2.5

1. We have

f(x) =
{

1 if 0 < x < 1,
−1 if − 1 < x < 0;

The Fourier series representation is

f(x) =
4
π

∞∑

k=0

1
2k + 1

sin(2k + 1)πx.

The mean square error (from (5)) is

EN =
1
2

∫ 1

−1

f2(x) dx− a2
0 −

1
2

N∑

n=1

(a2
n + b2n).

In this case, an = 0 for all n, b2k = 0, b2k+1 = 4
π(2k+1)

, and

1
2

∫ 1

−1

f2(x) dx =
1
2

∫ 1

−1

dx = 1.

So

E1 = 1 − 1
2
(b21) = 1 − 8

π2
≈ 0.189.

Since b2 = 0, it follows that E2 = E1. Finally,

E1 = 1 −
1
2
(b21 + b23) = 1 −

8
π2

−
8

9π2
≈ 0.099.

5. We have

EN =
1
2

∫ 1

−1

f2(x) dx− a2
0 −

1
2

N∑

n=1

(a2
n + b2n)

= 1 − 1
2

N∑

n=1

b2n = 1 − 8
π2

∑

1≤n odd≤N

1
n2
.

With the help of a calculator, we find that E39 = .01013 and E41 = .0096. So take
N = 41.

9. We have f(x) = π2x− x3 for −π < x < π and, for n ≥ 1, bn = 12
n3 (−1)n+1. By

Parseval’s identity

1
2

∞∑

n=1

(
12
n3

)2

=
1
2π

∫ π

−π

(
π2x− x3

)2

=
1
π

∫ π

0

(
π4x2 − 2π2x4 + x6

)
dx

=
1
π

(
π4

3
x3 − 2π2

5
x5 +

x7

7

) ∣∣∣
π

0

= π6

(
1
3
− 2

5
+

1
7

)
=

8
105

π6.

Simplifying, we find that

ζ(6) =
∞∑

n=1

1
n6

=
(8)(2)

(105)(144)
π6 =

π6

945
.
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13. For the given function, we have bn = 0 and an = 1
n2 . By Parseval’s identity,

we have

1
2π

∫ π

−π

f2(x) dx =
1
2

∞∑

n=1

1
n4

⇒
∫ π

−π

f2(x) dx = π

∞∑

n=1

1
n4

= πζ(4) =
π5

90
,

where we have used the table preceding Exercise 7 to compute ζ(4).

17. For the given function, we have

a0 = 1, an =
1
3n
, bn =

1
n

for n ≥ 1.

By Parseval’s identity, we have

1
2π

∫ π

−π

f2(x) dx = a2
0 +

1
2

∞∑

n=1

(a2
n + b2n)

= 1 +
1
2

∞∑

n=1

(
1

(3n)2
+

1
n2

)

=
1
2

+
1
2

+
1
2

∞∑

n=1

1
9n

+
1
2

∞∑

n=1

1
n2

=
1
2

+
1
2

∞∑

n=0

1
9n

+
1
2

∞∑

n=1

1
n2
.

Using a geometric series, we find

∞∑

n=0

1
9n

=
1

1 − 1
9

=
9
8
.

By Exercise 7(a),
∞∑

n=1

1
n2

=
π2

6
.

So ∫ π

−π

f2(x) dx = 2π(
1
2

+
1
2

9
8

+
1
2
π2

6
) =

17π
8

+
π3

6
.
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Solutions to Exercises 2.6

1. From Example 1, for a 6= 0,±i,±2i,±3i, . . .,

eax =
sinhπa
π

∞∑

n=−∞

(−1)n

a− in
einx (−π < x < π);

consequently,

e−ax =
sinhπa
π

∞∑

n=−∞

(−1)n

a+ in
einx (−π < x < π),

and so, for −π < x < π,

cosh ax =
eax + e−ax

2

=
sinhπa

2π

∞∑

n=−∞
(−1)n

(
1

a+ in
+

1
a− in

)
einx

=
a sinhπa

π

∞∑

n=−∞

(−1)n

n2 + a2
einx.

2. From Example 1, for a 6= 0,±i,±2i,±3i, . . .,

eax =
sinhπa
π

∞∑

n=−∞

(−1)n

a− in
einx (−π < x < π);

consequently,

e−ax =
sinhπa
π

∞∑

n=−∞

(−1)n

a+ in
einx (−π < x < π),

and so, for −π < x < π,

sinh ax =
eax − e−ax

2

=
sinhπa

2π

∞∑

n=−∞
(−1)n

(
1

a− in
− 1
a+ in

)
einx

=
i sinhπa

π

∞∑

n=−∞
(−1)n n

n2 + a2
einx.

5. Use identities (1); then

cos 2x+ 2 sin 3x =
e2ix + e−2ix

2
+ 2

e3ix − e−3ix

2i

= ie−3ix +
e−2ix

2
+
e2ix

2
− ie3ix.

9. If m = n then

1
2p

∫ p

−p

ei mπ
p xe−i nπ

p xdx =
1
2p

∫ p

−p

ei mπ
p xe−i mπ

p xdx =
1
2p

∫ p

−p

dx = 1.
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If m 6= n, then

1
2p

∫ p

−p

ei mπ
p xe−i nπ

p xdx =
1
2p

∫ p

−p

ei
(m−n)π

p xdx

=
−i

2(m− n)π
ei (m−n)π

p x
∣∣∣
p

−p

=
−i

2(m− n)π

(
ei(m−n)π − e−i(m−n)π

)

=
−i

2(m− n)π
(cos[(m− n)π] − cos[−(m− n)π]) = 0.

13. (a) At points of discontinuity, the Fourier series in Example 1 converges to
the average of the function. Consequently, at x = π the Fourier series converges to
eaπ+e−aπ

2 = cosh(aπ). Thus, plugging x = π into the Fourier series, we get

cosh(aπ) =
sinh(πa)

π

∞∑

n=−∞

(−1)n

a2 + n2
(a+ in)

=(−1)n

︷︸︸︷
einπ =

sinh(πa)
π

∞∑

n=−∞

(a+ in)
a2 + n2

.

The sum
∑∞

n=−∞
in

a2+n2 is the limit of the symmetric partial sums

i

N∑

n=−N

n

a2 + n2
= 0.

Hence
∑∞

n=−∞
in

a2+n2 = 0 and so

cosh(aπ) =
sinh(πa)

π

∞∑

n=−∞

a

a2 + n2
⇒ coth(aπ) =

a

π

∞∑

n=−∞

1
a2 + n2

,

upon dividing both sides by sinh(aπ). Setting t = aπ, we get

coth t =
t

π2

∞∑

n=−∞

1
( t

π
)2 + n2

=
∞∑

n=−∞

t

t2 + (πn)2
,

which is (b). Note that since a is not an integer, it follows that t is not of the form
kπi, where kis an integer.

17. (a) In this exercise, we let a and b denote real numbers such that a2 + b2 6= 0.
Using the linearity of the integral of complex-valued functions, we have

I1 + iI2 =
∫
eax cos bx dx+ i

∫
eax sin bx dx

=
∫

(eax cos bx+ ieax sin bx) dx

=
∫
eax

eibx

︷ ︸︸ ︷
(cos bx+ i sin bx) dx

=
∫
eaxeibx dx =

∫
ex(a+ib) dx

=
1

a+ ib
ex(a+ib) +C,

where in the last step we used the formula
∫
eαx dx = 1

αe
αx +C (with α = a+ ib),

which is valid for all complex numbers α 6= 0 (see Exercise 19 for a proof).
(b) Using properties of the complex exponential function (Euler’s identity and the
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fact that ez+w = ezew), we obtain

I1 + iI2 =
1

a+ ib
ex(a+ib) +C

=
(a+ ib)

(a+ ib) · (a+ ib)
eaxeibx +C

=
a− ib

a2 + b2
eax
(
cos bx+ i sin bx

)
+ C

=
eax

a2 + b2
[(
a cos bx+ b sin bx

)
+ i
(
− b cos bx+ a sin bx

)]
+ C.

(c) Equating real and imaginary parts in (b), we obtain

I1 =
eax

a2 + b2
(
a cos bx+ b sin bx

)

and
I2 =

eax

a2 + b2
(
− b cos bx+ a sin bx

)
.

21. By Exercise 19,
∫ 2π

0

(
eit + 2e−2it

)
dt =

1
i
eit +

2
−2i

e−2it
∣∣∣
2π

0

= −i

=1︷︸︸︷
e2πi +i

=1︷ ︸︸ ︷
e−2πi −(−i + i) = 0.

Of course, this result follows from the orthogonality relations of the complex expo-
nential system (formula (11), with p = π).

25. First note that

1 + it

1 − it
=

(1 + it)2

(1 − it)(1 + it)
=

1 − t2 + 2it
1 + t2

=
1 − t2

1 + t2
+ i

2t
1 + t2

.

Hence
∫

1 + it

1 − it
dt =

∫
1 − t2

1 + t2
dt+ i

∫
2t

1 + t2
dt

=
∫

(−1 +
2

1 + t2
dt+ i

∫
2t

1 + t2
dt

= −t + 2 tan−1 t + i ln(1 + t2) + C.
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Solutions to Exercises 2.7

1. (a) General solution of y′′ + 2y′ + y = 0. The characteristic equation is
λ2 +2λ+1 = 0 or (λ+1)2 = 0. It has one double characteristic root λ = −1. Thus
the general solution of the homogeneous equation y′′ + 2y′ + y = 0 is

y = c1e
−t + c2te

−t.

To find a particular solution of y′′ + 2y′ + y = 25 cos 2t, we apply Theorem 1 with
µ = 1, c = 2, and k = 1. The driving force is already given by its Fourier series:
We have bn = an = 0 for all n, except a2 = 25. So αn = βn = 0 for all n,
except α2 = A2a2

A2
2+B2

2
and β2 = B2a2

A2
2+B2

2
, where A2 = 1 − 22 = −3 and B2 = 4.

Thus α2 = −75
25 = −3 and β2 = 100

25 = 4, and hence a particular solution is
yp = −3 cos 2t+ 4 sin 2t. Adding the general solution of the homogeneous equation
to the particular solution, we obtain the general solution of the differential equation
y′′ + 2y′ + y = 25 cos 2t

y = c1e
−t + c2te

−t − 3 cos 2t+ 4 sin 2t.

(b) Since limt→∞ c1e
−t + c2te

−t = 0, it follows that the steady-state solution is

ys = −3 cos 2t+ 4 sin 2t.

5. (a) To find a particular solution (which is also the steady-state solution) of
y′′ + 4y′ + 5y = sin t− 1

2 sin 2t, we apply Theorem 1 with µ = 1, c = 4, and k = 5.
The driving force is already given by its Fourier series: We have bn = an = 0 for
all n, except b1 = 1 and b2 = −1/2. So αn = βn = 0 for all n, except, possibly, α1,
α2, β1, and beta2. We have A1 = 4, A2 = 1, B1 = 4, and B2 = 8. So

α1 =
−B1b1
A2

1 + B2
1

=
−4
32

= −1
8
,

α2 =
−B2b2
A2

2 + B2
2

=
4
65

=
4
65
,

β1 =
A1b1

A2
1 + B2

1

=
4
32

=
1
8
,

β2 =
A2b2

A2
2 + B2

2

=
−1/2
65

= − 1
130

.

Hence the steady-state solution is

yp = −1
8

cos t+
1
8

sin t+
4
65

cos 2t− 1
130

sin 2t.

(b) We have

yp = −1
8

cos t +
1
8

sin t+
4
65

cos 2t− 1
130

sin 2t,

(yp)′ =
1
8

sin t+
1
8

cos t −
8
65

sin 2t−
1
65

cos 2t,

(yp)′′ =
1
8

cos t− 1
8

sin t − 16
65

cos 2t+
2
65

sin 2t,

(yp)′′ + 4(yp)′ + 5yp =
(

1
8

+
4
8
− 5

8

)
cos t+

(
−1

8
+

4
8

+
5
8

)
sin t

+
(

2
65

− 32
65

− 5
130

)
sin 2t+

(
−16

65
− 4

65
+

20
65

)
cos 2t

= sin t+
(

2
75

− 32
65

− 5
130

)
sin 2t− 1

2
sin 2t,

which shows that yp is a solution of the nonhomogeneous differential equation.
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9. (a) Natural frequency of the spring is

ω0 =

√
k

µ
=

√
10.1 ≈ 3.164.

(b) The normal modes have the same frequency as the corresponding components
of driving force, in the following sense. Write the driving force as a Fourier series
F (t) = a0 +

∑∞
n=1 fn(t) (see (5). The normal mode, yn(t), is the steady-state

response of the system to fn(t). The normal mode yn has the same frequency as
fn. In our case, F is 2π-periodic, and the frequencies of the normal modes are
computed in Example 2. We have ω2m+1 = 2m + 1 (the n even, the normal mode
is 0). Hence the frequencies of the first six nonzero normal modes are 1, 3, 5, 7, 9,
and 11. The closest one to the natural frequency of the spring is ω3 = 3. Hence, it
is expected that y3 will dominate the steady-state motion of the spring.

13. According to the result of Exercise 11, we have to compute y3(t) and for this
purpose, we apply Theorem 1. Recall that y3 is the response to f3 = 4

3π
sin 3t, the

component of the Fourier series of F (t) that corresponds to n = 3. We have a3 = 0,
b3 = 4

3π , µ = 1, c = .05, k = 10.01, A3 = 10.01− 9 = 1.01, B3 = 3(.05) = .15,

α3 =
−B3b3
A2

3 +B2
3

=
−(.15)(4)/(3π)
(1.01)2 + (.15)2

≈ −.0611 and β3 =
A3b3

A3 +B2
3

≈ .4111.

So

y3 = −.0611 cos 3t+ .4111 sin 3t.

The amplitude of y3 is
√
.06112 + .41112 ≈ .4156.

17. (a) In order to eliminate the 3rd normal mode, y3, from the steady-state
solution, we should cancel out the component of F that is causing it. That is, we
must remove f3(t) = 4 sin 3t

3π . Thus subtract 4 sin 3t
3π from the input function. The

modified input function is

F (t) − 4 sin 3t
3π

.

Its Fourier series is he same as the one of F , without the 3rd component, f3(t). So
the Fourier series of the modified input function is

4
π

sin t+
4
π

∞∑

m=2

sin(2m + 1)t
2m + 1

.

(b) The modified steady-state solution does not have the y3-component that we
found in Exercise 13. We compute its normal modes by appealing to Theorem 1
and using as an input function F (t) − f3(t). The first nonzero mode is y1; the sec-
ond nonzero normal mode is y5. We compute them with the help of Mathematica.
Let us first enter the parameters of the problem and compute αn and βn, using the
definitions from Theorem 1. The input/output from Mathematica is the following
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Clear a, mu, p, k, alph, bet, capa, capb, b, y

mu 1;

c 5 100;

k 1001 100;

p Pi;

a0 0;

a n_ 0;

b n_ 2 Pi n 1 Cos n Pi ;

alph0 a0 k;

capa n_ k mu n Pi p ^2

capb n_ c n Pi p

alph n_ capa n a n capb n b n capa n ^2 capb n ^2

bet n_ capa n b n capb n a n capa n ^2 capb n ^2

1001
100

n2

n
20

1 Cos n

10 n2

400
1001
100

n2
2

2 1001
100

n2 1 Cos n

n n2

400
1001
100

n2
2

It appears that

αn =
− (1 − cos(nπ))

10
(

n2

400
+
(

1001
100

− n2
)2)

π
and βn =

2
(

1001
100

− n2
)

(1 − cos(nπ))

n
(

n2

400
+
(

1001
100

− n2
)2)

π

Note how these formulas yield 0 when n is even. The first two nonzero modes of
the modified solution are

y1(t) = α1 cos t+ β1 sin t = −.0007842 cos t+ .14131 sin t

and
y5(t) = α5 cos 5t+ β5 sin 5t− .00028 cos 5t− .01698 sin5t.

(c) In what follows, we use 10 nonzero terms of the original steady-state solution
and compare it with 10 nonzero terms of the modified steady-state solution. The
graph of the original steady-state solution looks like this:

steadystate t_ Sum alph n Cos n t bet n Sin n t , n, 1, 20 ;

Plot Evaluate steadystate t , t, 0, 4 Pi

2 4 6 8 10 12

-0.4

-0.2

0.2

0.4
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The modified steady-state is obtained by subtracting y3 from the steady-state.
Here is its graph.

modifiedsteadystate t_ steadystate t alph 3 Cos 3 t bet 3 Sin 3 t ;

Plot Evaluate modifiedsteadystate t , t, 0, 4 Pi

2 4 6 8 10 12

-0.1

-0.05

0.05

0.1

In order to compare, we plot both functions on the same graph.

Plot Evaluate steadystate t , modifiedsteadystate t , t, 0, 4 Pi

2 4 6 8 10 12

-0.4

-0.2

0.2

0.4

It seems like we were able to reduce the amplitude of the steady-state solution
by a factor of 2 or 3 by removing the third normal mode. Can we do better? Let
us analyze the amplitudes of the normal modes. These are equal to

√
α2

n + β2
n. We

have the following numerical values:

amplitudes N Table Sqrt alph n ^2 bet n ^2 , n, 1, 20

0.141312, 0., 0.415652, 0., 0.0169855, 0., 0.00466489, 0., 0.00199279, 0.,

0.00104287, 0., 0.000616018, 0., 0.000394819, 0., 0.000268454, 0., 0.000190924, 0.

It is clear from these values that y3 has the largest amplitude (which is what
we expect) but y1 also has a relatively large amplitude. So, by removing the
first component of F , we remove y1, and this may reduce the oscillations even
further. Let’s see the results. We will plot the steady-state solution ys, ys − y3,
and ys − y1 − y3.
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modifiedfurther t_ modifiedsteadystate t alph 1 Cos t bet 1 Sin t ;

Plot

Evaluate modifiedfurther t , steadystate t , modifiedsteadystate t , t, 0, 4 Pi

2 4 6 8 10 12

-0.4

-0.2

0.2

0.4

21. (a) The input function F (t) is already given by its Fourier series: F (t) =
2 cos 2t+sin 3t. Since the frequency of the component sin 3t of the input function is
3 and is equal to the natural frequency of the spring, resonance will occur (because
there is no damping in the system). The general solution of y′′+9y = 2 cos 2t+sin 3t
is y = yh +yp , where yh is the general solution of y′′ +9y = 0 and yp is a particular
solution of the nonhomogeneous equation. We have yh = c1 sin 3t + c2 cos 3t and,
to find yp, we apply Exercise 20 and get

yp =
(
a2

A2
cos 2t+

b2
A2

sin 2t
)

+R(t),

where a2 = 2, b2 = 0, A2 = 9 − 22 = 5, an0 = 0, bn0 = 1, and

R(t) = − t

6
cos 3t.

Hence
yp =

2
5

cos 2t− t

6
cos 3t

and so the general solution is

y = c1 sin 3t+ c2 cos 3t+
2
5

cos 2t− t

6
cos 3t.

(b) To eliminate the resonance from the system we must remove the component of
F that is causing resonance. Thus add to F (t) the function − sin 3t. The modified
input function becomes Fmodified(t) = 2 cos 2t.

25. The general solution is y = c1 sin 3t+ c2 cos 3t+ 2
5 cos 2t− t

6 cos 3t. Applying
the initial condition y(0) = 0 we get c2 + 2

5
= 0 or c2 = −2

5
. Thus

y = c1 sin 3t− 2
5

cos 3t+
2
5

cos 2t− t

6
cos 3t.

Applying the initial condition y′(0) = 0, we obtain

y′ = 3c1 cos 3t+
6
5

sin 3t− 6
5

sin 2t− 1
6

cos 3t+
t

2
sin 3t,

y′(0) = 3c1 −
1
6
,

y′(0) = 0 ⇒ c1 =
1
18
.
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Thus
y =

1
18

sin 3t− 2
5

cos 3t+
2
5

cos 2t− t

6
cos 3t.
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Solutions to Exercises 2.9

1.

|fn(x)| =
∣∣∣∣
sinnx√

n

∣∣∣∣ ≤
1√
n

→ 0 as n → ∞.

The sequence converges uniformly to 0 for all real x, because 1√
n

controls its size
independently of x.

5. If x = 0 then fn(0) = 0 for all n. If x 6= 0, then applying l’Hospital’s rule, we
find

lim
n→∞

|fn(x)| = |x| lim
n→∞

n

e−nx
= |x| lim

n→∞

1
|x|e−n

= 0.

The sequence does not converge uniformly on any interval that contains 0 because
fn( 1

n ) = e−1, which does not tend to 0.

9.
∣∣coskx

k2

∣∣ ≤ 1
k2 = Mk for all x. Since

∑
Mk < ∞ (p-series with p > 1), the series

converges uniformly for all x.

17.
∣∣∣ (−1)k

|x|+k2

∣∣∣ ≤ 1
k2 = Mk for all x. Since

∑
Mk < ∞ (p-series with p > 1), the

series converges uniformly for all x.
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Solutions to Exercises 2.10

5. The cosine part converges uniformly for all x, by the Weierstrass M -test. The
sine part converges for all x by Theorem 2(b). Hence the given series converges for
all x.

9. (a) If limk→∞ sin kx = 0, then

lim
k→∞

sin2 kx = 0 ⇒ lim
k→∞

(1 − cos2 kx) = 0 ⇒ lim
k→∞

cos2 kx = 1 (∗).

Also, if limk→∞ sinkx = 0, then limk→∞ sin(k + 1)x) = 0. But sin(k + 1)x =
sin kx cosx+ cos kx sinx, so

0 = lim
k→∞

(

→0︷ ︸︸ ︷
sin kx cosx+ cos kx sinx) ⇒ lim

k→∞
cos kx sinx = 0

⇒ lim
k→∞

cos kx = 0 or sinx = 0.

By (*), cos kx does not tend to 0, so sinx = 0, implying that x = mπ. Consequently,
if x 6= mπ, then limk → ∞ sin kx is not 0 and the series

∑∞
k=1 sin kx does not

converge by the nth term test, which proves (b).
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Solutions to Exercises 3.1

1. uxx + uxy = 2u is a second order, linear, and homogeneous partial differential
equation. ux(0, y) = 0 is linear and homogeneous.

5. utux+uxt = 2u is second order and nonlinear because of the term utux. u(0, t)+
ux(0, t) = 0 is linear and homogeneous.

9. (a) Let u(x, y) = eaxeby. Then

ux = aeaxeby

uy = beaxeby

uxx = a2eaxeby

uyy = b2eaxeby

uxy = abeaxeby.

So

Auxx + 2Buxy +Cuyy +Dux + Euy + Fu = 0
⇔ Aa2eaxeby + 2Babeaxeby +Cb2eaxeby

+Daeaxeby +Ebeaxeby + Feaxeby = 0
⇔ eaxeby

(
Aa2 + 2Bab +Cb2 +Da +Eb+ F

)
= 0

⇔ Aa2 + 2Bab+ Cb2 +Da+ Eb+ F = 0,

because eaxeby 6= 0 for all x and y.
(b) By (a), in order to solve

uxx + 2uxy + uyy + 2ux + 2uy + u = 0,

we can try u(x, y) = eaxeby, where a and b are solutions of

a2 + 2ab+ b2 + 2a+ 2b+ 1 = 0.

But
a2 + 2ab+ b2 + 2a+ 2b+ 1 = (a + b+ 1)2.

So a + b + 1 = 0. Clearly, this equation admits infinitely many pairs of solutions
(a, b). Here are four possible solutions of the partial differential equation:

a = 1, b = −2 ⇒ u(x, y) = exe−2y

a = 0, b = −1 ⇒ u(x, y) = e−y

a = −1/2, b = −1/2 ⇒ u(x, y) = e−x/2e−y/2

a = −3/2, b = 1/2 ⇒ u(x, y) = e−3x/2ey/2

13. We follow the outlined solution in Exercise 12. We have

A(u) = ln(u), φ(x) = ex, ⇒ A(u(x(t)), t)) = A(φ(x(0))) = ln(ex(0)) = x(0).

So the characteristic lines are

x = tx(0) + x(0) ⇒ x(0) = L(x t) =
x

t+ 1
.

So u(x, t) = f(L(x, t)) = f
(

x
t+1

)
. The condition u(x, 0) = ex implies that f(x) =

ex and so
u(x, t) = e

x
t+1 .

Check: ut = −e
x

t+1 x
(t+1)2 , ux = e

x
t+1 1

t+1 ,

ut + ln(u)ux = −e
x

t+1
x

(t+ 1)2
+

x

t+ 1
e

x
t+1

1
t+ 1

= 0.
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17. We have

A(u) = u2, φ(x) =
√
x, ⇒ A(u(x(t)), t)) = A(φ(x(0))) = x(0).

So the characteristic lines are

x = tx(0) + x(0) ⇒ x(0)(t+ 1) − x = 0.

Solving for x(0), we find
x(0) =

x

t+ 1
,

and so

u(x, t) = f

(
x

t + 1

)
.

Now
u(x, 0) = f(x) =

√
x.

So

u(x, t) =
√

x

t+ 1
.
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Solutions to Exercises 3.3

1. The solution is

u(x, t) =
∞∑

n=1

sin
nπx

L

(
bn cos c

nπt

L
+ b∗n sin c

nπt

L

)
,

where bn are the Fourier sine coefficients of f and b∗n are L
cnπ times the

Fourier coefficients of g. In this exercise, b∗n = 0, since g = 0, b1 = 0.05; and
bn = 0 for all n > 1, because f is already given by its Fourier sine series
(period 2). So u(x, t) = 0.05 sinπx cos t.

5. (a) The solution is

u(x, t) =
∞∑

n=1

sin(nπx) (bn cos(4nπt) + b∗n sin(4nπt)) ,

where bn is the nth sine Fourier coefficient of f and b∗n is L/(cn) times the
Fourier coefficient of g, where L = 1 and c = 4. Since g = 0, we have b∗n = 0
for all n. As for the Fourier coefficients of f , we can get them by using
Exercise 17, Section 2.4, with p = 1, h = 1, and a = 1/2. We get

bn =
8
π2

sin
nπ
2

n2
.

Thus

u(x, t) =
8
π2

∞∑

n=1

sin nπ
2

n2
sin(nπx) cos(4nπt)

=
8
π2

∞∑

k=0

(−1)k

(2k + 1)2
sin((2k + 1)πx) cos(4(2k + 1)πt).

(b) Here is the initial shape of the string. Note the new Mathematica com-
mand that we used to define piecewise a function. (Previously, we used the
If command.)

Clear f

f x_ : 2 x ; 0 x 1 2

f x_ : 2 1 x ; 1 2 x 1

Plot f x , x, 0, 1

Because the period of cos(4(2k + 1)πt) is 1/2, the motion is periodic
in t with period 1/2. This is illustrated by the following graphs. We use
two different ways to plot the graphs: The first uses simple Mathematica
commands; the second one is more involved and is intended to display the
graphs in a convenient array.
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Clear partsum

partsum x_, t_ :

8 Pi^2 Sum Sin 1 ^k 2 k 1 Pi x Cos 4 2 k 1 Pi t 2 k 1 ^2, k, 0, 10

Plot Evaluate partsum x, 0 , f x , x, 0, 1

Here is the motion in an array.

tt Table

Plot Evaluate partsum x, t , x, 0, 1 , PlotRange 0, 1 , 1, 1 ,

Ticks .5 , 1, .5, .5, 1 , DisplayFunction Identity , t, 0, 1, 1 20 ;

Show GraphicsArray Partition tt, 4
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9. The solution is

u(x, t) =
∞∑

n=1

sin(nπx) (bn cos(nπt) + b∗n sin(nπt)) ,
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where b∗1 = 1
π and all other b∗n = 0. The Fourier coefficients of f are

bn = 2
∫ 1

0
x(1 − x) sin(nπx) dx.

To evaluate this integral, we will use integration by parts to derive first the
formula: for a 6= 0,

∫
x sin(ax) dx = −x cos(a x)

a
+

sin(a x)
a2

+ C,

and
∫

x2 sin(ax) dx =
2 cos(a x)

a3
− x2 cos(a x)

a
+

2 x sin(a x)
a2

+ C;

thus
∫

x(1 − x) sin(ax) dx

=
−2 cos(a x)

a3
− x cos(a x)

a
+

x2 cos(a x)
a

+
sin(a x)

a2
− 2 x sin(a x)

a2
+ C.

Applying the formula with a = nπ, we get

∫ 1

0
x(1− x) sin(nπx) dx

=
−2 cos(nπ x)

(nπ)3
− x cos(nπ x)

nπ
+

x2 cos(nπ x)
nπ

+
sin(nπ x)

(nπ)2
− 2 x sin(nπ x)

(nπ)2

∣∣∣
1

0

=
−2 ((−1)n − 1)

(nπ)3
− (−1)n

nπ
+

(−1)n

nπ
=

−2 ((−1)n − 1)
(nπ)3

=

{
4

(nπ)3
if n is odd,

0 if n is even.

Thus

bn =

{
8

(nπ)3
if n is odd,

0 if n is even,

and so

u(x, t) =
8
π3

∞∑

k=0

sin((2k + 1)πx) cos((2k + 1)πt)
(2k + 1)3

+
1
π

sin(πx) sin(πt).

13. To solve

∂2u

∂t2
+

∂u

∂t
=

∂2u

∂x2
,

u(0, t) = u(π, t) = 0,

u(x, 0) = sinx,
∂u

∂t
(x, 0) = 0,

we follow the method of the previous exercise. We have c = 1, k = .5,
L = π, f(x) = sinx, and g(x) = 0. Thus the real number Lk

cπ = .5 is not an
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integer and we have n > kL
π for all n. So only Case III from the solution of

Exercise 12 needs to be considered. Thus

u(x, t) =
∞∑

n=1

e−.5t sinnx
(
an cos λnt + bn sinλnt,

where
λn =

√
(.5n)2 − 1.

Setting t = 0, we obtain

sinx =
∞∑

n=1

an sin nx.

Hence a1 = 1 and an = 0 for all n > 1. Now since

bn =
kan

λn
+

2
λnL

∫ L

0

g(x) sin
nπ

L
x dx, n = 1, 2, . . . ,

it follows that bn = 0 for all n > 1 and and the solution takes the form

u(x, t) = e−.5t sin x
(
cosλ1t + b1 sin λ1t

)
,

where λ1 =
√

(.5)2 − 1 =
√

.75 =
√

3
2 and

b1 =
ka1

λ1
=

1√
3
.

So

u(x, t) = e−.5t sin x
(
cos(

√
3

2
t) +

1√
3

sin(
√

3
2

t)
)
.
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Solutions to Exercises 3.4

1. We will use (5), since g∗ = 0. The odd extension of period 2 of f(x) =
sinπx is f∗(x) = sinπx. So

u(x, t) =
1
2
[
sin(π(x +

t

π
)) + sin(π(x− t

π
))

]
=

1
2
[
sin(πx + t) + sin(πx− t)

]
.

5. The solution is of the form

u(x, t) =
1
2
[
f∗(x − t) + f(x + t)

]
+

1
2
[
G(x + t) − G(x− t)

]

=
1
2
[(

f∗(x− t) − G(x− t)
)

+
(
f∗(x + t) + G(x + t)

)]
,

where f∗ is the odd extension of f and G is as in Example 3. In the second
equality, we expressed u as the average of two traveling waves: one wave
traveling to the right and one to the left. Note that the waves are not the
same, because of the G term. We enter the formulas in Mathematica and
illustrate the motion of the string.

The difficult part in illustrating this example is to define periodic functions with Mathematica.  This can be done by

appealing to results from Section 2.1.   We start by defining the odd extensions of f and G (called big g) on the

interval [-1, 1].

Clear f, bigg

f x_ : 2 x ; 1 2 x 1 2

f x_ : 2 1 x ; 1 2 x 1

f x_ : 2 1 x ; 1 x 1 2

bigg x_ 1 2 x^2 1 2

Plot f x , bigg x , x, 1, 1

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Here is a tricky Mathematica construction. (Review Section 2.1.)
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extend x_ : x 2 Floor x 1 2

periodicf x_ : f extend x

periodicbigg x_ : bigg extend x

Plot periodicf x , periodicbigg x , x, 3 , 3

-3 -2 -1 1 2 3

-1

-0.5

0.5

1

Because f∗ and G are 2-periodic, it follows immediately that f∗(x± ct)
and G(x ± ct) are 2/c-periodic in t. Since c = 1, u is 2-periodic in t.
The following is an array of snapshots of u. You can also illustrate the
motion of the string using Mathematica (see the Mathematica notebooks).
Note that in this array we have graphed the exact solution and not just
an approximation using a Fourier series. This is a big advantage of the
d’Alembert’s solution over the Fourier series solution.
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u x_, t_ : 1 2 periodicf x t periodicf x t

1 2 periodicbigg x t periodicbigg x t

tt Table

Plot Evaluate u x, t , x, 0, 1 , PlotRange 0, 1 , 1, 1 ,

Ticks .5 , 1, .5, .5, 1 , DisplayFunction Identity , t, 0, 2.3, 1 5 ;

Show GraphicsArray Partition tt, 4

9. You can use Exercise 11, Section 3.3, which tells us that the time period
of motion is T = 2L

c . So, in the case of Exercise 1, T = 2π, and in the case of
Exercise 5, T = 2. You can also obtain these results directly by considering
the formula for u(x, t). In the case of Exercise 1, u(x, t) = 1

2

[
sin(πx + t) +

sin(πx − t)
]

so u(x, t + 2π) = 1
2

[
sin(πx + t2π) + sin(πx − t2π)

]
= u(x, t).

In the case of Exercise 5, use the fact that f∗ and G are both 2-periodic.

13. We have

u(x, t) =
1
2

[f∗(x + ct) + f∗(x− ct)] +
1
2c

∫ x+ct

x−ct
g∗(s) ds,

where f∗ and g∗ are odd and 2L-periodic. So

u(x, t +
L

c
) =

1
2

[f∗(x + ct + L) + f∗(x − ct − L)] +
1
2c

∫ x+ct+L

x−ct−L
g∗(s) ds.

Using the fact that f∗ is odd, 2L-period, and satisfies f∗(L − x) = f∗(x)
(this property is given for f but it extends to f∗), we obtain

f∗(x + ct + L) = f∗(x + ct + L − 2L) = f∗(x + ct − L)
= −f∗(L − x − ct) = −f∗(L − (x + ct)) = −f∗(x + ct).

Similarly

f∗(x − ct − L) = −f∗(L − x + ct)
= −f∗(L − x + ct) = −f∗(L − (x − ct)) = −f∗(x − ct).
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Also g∗(s+L) = −g∗(−s−L) = −g∗(−s−L+2L) = −g∗(L− s) = −g∗(s),
by the given symmetry property of g. So, using a change of variables, we
have

1
2c

∫ x+ct+L

x−ct−L
g∗(s) ds =

1
2c

∫ x+ct

x−ct
g∗(s + L) ds = − 1

2c

∫ x+ct

x−ct
g∗(s) ds.

Putting these identities together, it follows that u(x, t + L
c ) = −u(x, t).

17. (a) To prove that G is even, see Exercise 14(a). That G is 2L-periodic
follows from the fact that g is 2L-periodic and its integral over one period
is 0, because it is odd (see Section 2.1, Exercise 15).

Since G is an antiderivative of g∗, to obtain its Fourier series, we apply
Exercise 33, Section 3.3, and get

G(x) = A0 −
L

π

∞∑

n=1

bn(g)
n

cos
nπ

L
x,

where bn(g) is the nth Fourier sine coefficient of g∗,

bn(g) =
2
L

∫ L

0
g(x) sin

nπ

L
x dx

and

A0 =
L

π

∞∑

n=1

bn(g)
n

.

In terms of b∗n, we have

L

π

bn(g)
n

=
2

nπ

∫ L

0
g(x) sin

nπ

L
x dx = cb∗n,

and so

G(x) =
L

π

∞∑

n=1

bn(g)
n

− L

π

∞∑

n=1

bn(g)
n

cos
nπ

L
x

=
∞∑

n=1

cb∗n

(
1 − cos(

nπ

L
x)

)
.

(b) From (a), it follows that

G(x + ct) − G(x − ct) =
∞∑

n=1

cb∗n

[(
1 − cos(

nπ

L
(x + ct))

)
−

(
1 − cos(

nπ

L
(x − ct))

)]

=
∞∑

n=1

−cb∗n

[
cos(

nπ

L
(x + ct)) − cos(

nπ

L
(x − ct))

]
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(c) Continuing from (b) and using the notation in the text, we obtain

1
2c

∫ x+ct

x−ct
g∗(s) ds =

1
2c

[G(x + ct) − G(x − ct)]

=
∞∑

n=1

−b∗n
1
2

[
cos(

nπ

L
(x + ct)) − cos(

nπ

L
(x − ct))

]

=
∞∑

n=1

b∗n sin(
nπ

L
x) sin(

nπ

L
ct)

=
∞∑

n=1

b∗n sin(
nπ

L
x) sin(λnt).

(d) To derive d’Alembert’s solution from (8), Section 3.3, proceed as follows:

u(x, t) =
∞∑

n=1

bn sin(
nπ

L
x) cos(λnt) +

∞∑

n=1

b∗n sin(
nπ

L
x) sin(λnt)

=
1
2
(
f∗(x − ct) + f∗(x + ct)

)
+

1
2c

[G(x + ct) − G(x − ct)] ,

where in the last equality we used Exercise 16 and part (c).

21. Follow the labeling of Figure 8 in Section 3.4. Let P1 = (x0, t0) be an
arbitrary point in the region II . Form a characteristic parallelogram with
vertices P1, P2, Q1, Q2, as shown in Figure 8 in Section 3.4. The vertices
P2 and Q1 are on the characteristic line x + 2t = 1 and the vertex Q2 is on
the boundary line x = 1. From Proposition 1, we have

u(P1) = u(Q1) + u(Q2) − u(P2) = u(Q1) − u(P2),

because u(Q2) = 0. We will find u(P2) and u(Q1) by using the formula
u(x, t) = −4t2 + x − x2 + 8tx from Example 4, because P2 and Q1 are in
the region I .

The point Q1 is the intersection point of the characteristic lines x−2t =
x0 − 2t0 and x + 2t = 1. Adding the equations and then solving for x, we
get

x =
x0 + 1 − 2t0

2
.

The second coordinate of Q1 is then

t =
1 − x0 + 2t0

4
.

The point Q2 is the intersection point of the characteristic line x + 2t =
x0 + 2t0 and x = 1. Thus

t =
x0 + 2t0 − 1

2
.

The point P2 is the intersection point of the characteristic lines x+2t = 1
and x− 2t = 1− (x0 + 2t0 − 1). Solving for x and t, we find the coordinates
of P2 to be

x =
3− x0 − 2t0

2
and t =

−1 + x0 + 2t0
4

.
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To simplify the notation, replace x0 and t0 by x and y in the coordinates of
the points Q1 and P2 and let φ(x, t) = −4t2 + x − x2 + 8tx. We have

u(x, t) = u(Q1) − u(P2)

= φ

(
x + 1 − 2t

2
,

1− x + 2t

4

)
− φ

(
3− x − 2t

2
,
−1 + x + 2t

4

)

= 5 − 12t − 5x + 12tx,

where the last expression was derived after a few simplifications that we
omit. It is interesting to note that the formula satisfies the wave equation
and the boundary condition u(1, t) = 0 for all t > 0. Its restriction to the
line x+2t = 1 (part of the boundary of region I) reduces to the formula for
u(x, t) for (x, t) in region I . This is to be expected since u is continuous in
(x, t).
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Solutions to Exercises 3.5

1. Multiply the solution in Example 1 by 78
100 to obtain

u(x, t) =
312
π

∞∑

k=0

e−(2k+1)2t

2k + 1
sin(2k + 1)x.

5. We have

u(x, t) =
∞∑

n=1

bne−(nπ)2t sin(nπx),

where

bn = 2
∫ 1

0
x sin(nπx) dx = 2

[
−x cos(n π x)

n π
+

sin(n π x)
n2 π2

] ∣∣∣
1

0

= −2
cosn π

n π
= 2

(−1)n+1

nπ
.

So

u(x, t) =
2
π

∞∑

n=1

(−1)n+1e−(nπ)2t sin(nπx)
n

.

9. (a) The steady-state solution is a linear function that passes through the
points (0, 0) and (1, 100). Thus, u(x) = 100x.
(b) The steady-state solution is a linear function that passes through the
points (0, 100) and (1, 100). Thus, u(x) = 100. This is also obvious: If
you keep both ends of the insulated bar at 100 degrees, the steady-state
temperature will be 100 degrees.

13. We have u1(x) = −50
π x + 100. We use (13) and the formula from

Exercise 10, and get (recall the Fourier coefficients of f from Exercise 3)

u(x, t) = −50
π

x + 100

+
∞∑

n=1

[
132
π

sin(nπ
2 )

n2
− 100

(
2 − (−1)n

nπ

)]
e−n2t sin nx.

17. Fix t0 > 0 and consider the solution at time t = t0:

u(x, t0) =
∞∑

n=1

bn sin
nπ

L
xe−λ2

nt0 .

We will show that this series converges uniformly for all x (not just 0 ≤ x ≤
L) by appealing to the Weierstrass M -test. For this purpose, it suffices to
establish the following two inequalities:
(a)

∣∣bn sin nπ
L xe−λ2

nt0
∣∣ ≤ Mn for all x; and

(b)
∑∞

n=1 Mn < ∞.
To establish (a), note that

|bn| =
∣∣∣∣
2
L

∫ L

0

f(x) sin
nπ

L
x dx

∣∣∣∣ ≤
2
L

∫ L

0

∣∣∣f(x) sin
nπ

L
x
∣∣∣ dx

(The absolute value of the integral is
≤ the integral of the absolute value.)

≤ 2
L

∫ L

0
|f(x)| dx = A (because | sinu| ≤ 1 for all u).



42 Chapter 3 Partial Differential Equations in Rectangular Coordinates

Note that A is a finite number because f is bounded, so its absolute value
is bounded and hence its integral is finite on [0, L]. We have

∣∣bn sin
nπ

L
xe−λ2

nt0
∣∣ ≤ Ae−λ2

nt0 = Ae−
c2π2t0

L2 n2

≤ A

(
e−

c2π2t0
L2

)n

= Arn,

where r = e−
c2π2t0

L2 < 1. Take Mn = Arn. Then a holds and
∑

Mn is
convergent because it is a geometric series with ratio r < 1.
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Solutions to Exercises 3.6

1. Since the bar is insulated and the temperature inside is constant, there is
no exchange of heat, and so the temperature remains constant for all t > 0.
Thus u(x, t) = 100 for all t > 0. This is also a consequence of (2), since in
this case all the an’s are 0 except a0 = 100.

5. Apply the separation of variables method as in Example 1; you will
arrive at the following equations in X and T :

X ′′ − kX = 0, X(0) = 0, X ′(L) = 0

T ′ − kc2T = 0 .

We now show that the separation constant k has to be negative by ruling
out the possibilities k = 0 and k > 0.

If k = 0 then X ′′ = 0 ⇒ X = ax+b. Use the initial conditions X(0) = 0
implies that b = 0, X ′(L) = 0 implies that a = 0. So X = 0 if k = 0.

If k > 0, say k = µ2, where µ > 0, then

X ′′ − µ2X = 0 ⇒ X = c1 coshµx + c2 sinh µx;

X(0) = 0 ⇒ 0 = c1; X = c2 sinhµx;

X ′(L) = 0 ⇒ 0 = c2µ cosh(µL)

⇒ c2 = 0,

because µ 6= 0 and cosh(µL) 6= 0. So X = 0 if k > 0. This leaves the case
k = −µ2, where µ > 0. In this case

X ′′ + µ2X = 0 ⇒ X = c1 cosµx + c2 sin µx;

X(0) = 0 ⇒ 0 = c1; X = c2 sinµx;

X ′(L) = 0 ⇒ 0 = c2µ cos(µL)

⇒ c2 = 0 or cos(µL) = 0.

To avoid the trivial solution, we set cos(µL) = 0, which implies that

µ = (2k + 1)
π

2L
, k = 0, 1, . . . .

Plugging this value of k in the equation for T , we find

T ′ + µ2c2T = 0 ⇒ T (t) = Bke−µ2c2t = Bke−((2k+1) π
2L)2

c2t.

Forming the product solutions and superposing them, we find that

u(x, t) =
∞∑

k=0

Bke−µ2c2t =
∞∑

k=0

Bke−((2k+1) π
2L)2

c2t sin
[
(2k + 1)

π

2L
x
]
.

To determine the coefficients Bk , we use the initial condition and proceed
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as in Example 1:

u(x, 0) = f(x) ⇒ f(x) =
∞∑

k=0

Bk sin
[
(2k + 1)

π

2L
x
]
;

⇒ f(x) sin
[
(2n + 1)

π

2L
x
]

=
∞∑

k=0

Bk sin
[
(2k + 1)

π

2L
x
]
sin

[
(2n + 1)

π

2L
x
]

⇒
∫ L

0
f(x) sin

[
(2n + 1)

π

2L
x
]
dx

=
∞∑

k=0

Bk

∫ L

0
sin

[
(2k + 1)

π

2L
x
]
sin

[
(2n + 1)

π

2L
x
]
dx

⇒
∫ L

0

f(x) sin
[
(2n + 1)

π

2L
x
]
dx

= Bn

∫ L

0
sin2

[
(2n + 1)

π

2L
x
]

dx,

where we have integrated the series term by term and used the orthogonality
of the functions sin

[
(2k + 1) π

2Lx
]

on the interval [0, L]. The orthogonality
can be checked directly by verifying that

∫ L

0

sin
[
(2k + 1)

π

2L
x
]
sin

[
(2n + 1)

π

2L
x
]
dx = 0

if n 6= k. Solving for Bn and using that
∫ L

0
sin2

[
(2n + 1)

π

2L
x
]

dx =
L

2

(check this using a half-angle formula), we find that

Bn =
2
L

∫ L

0
f(x) sin

[
(2n + 1)

π

2L
x
]
dx.

9. This is a straightforward application of Exercise 7. For Exercise 1 the
average is 100. For Exercise 2 the average is a0 = 0.

13. The solution is given by (8), where cn is given by (11). We have
∫ 1

0
sin2 µnx dx =

1
2

∫ 1

0
(1 − cos(2µnx) dx

=
1
2

(
x − 1

2µn
sin(2µnx)

) ∣∣∣
1

0
=

1
2

(
1 − 1

2µn
sin(2µn)

)
.

Since µn is a solution of tanµ = −µ, we have sin µn = −µn cos µn, so

sin 2µn = 2 sinµn cosµn = −2µn cos2 µn,

and hence ∫ 1

0
sin2 µnx dx =

1
2

(
1 + cos2 µn

)
.
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Also, ∫ 1/2

0
sinµnx dx =

1
µn

(
1− cos

µn

2
)
.

Applying (11), we find

cn =
∫ 1/2

0
100 sin µnx dx

/∫ 1

0
sin2 µnx dx

=
100
µn

(
1 − cos

µn

2
)
/

1
2

(
1 + cos2 µn

)

=
200

(
1 − cos µn

2

)

µn (1 + cos2 µn)
.

Thus the solution is

u(x, t) =
∞∑

n=1

200
(
1− cos µn

2

)

µn (1 + cos2 µn)
e−µ2

nt sin µnx.

17. Part (a) is straightforward as in Example 2. We omit the details that
lead to the separated equations:

T ′ − kT = 0,

X ′′ − kX = 0, X ′(0) = −X(0), X ′(1) = −X(1),

where k is a separation constant.
(b) If k = 0 then

X ′′ = 0 ⇒ X = ax + b,

X ′(0) = −X(0) ⇒ a = −b

X ′(1) = −X(1) ⇒ a = −(a + b) ⇒ 2a = −b;
⇒ a = b = 0.

So k = 0 leads to trivial solutions.
(c) If k = α2 > 0, then

X ′′ − µ2X = 0 ⇒ X = c1 cosh µx + c2 sinh µx;
X ′(0) = −X(0) ⇒ µc2 = −c1

X ′(1) = −X(1) ⇒ µc1 sinh µ + µc2 cosh µ = −c1 cosh µ − c2 sinh µ

⇒ µc1 sinh µ − c1 cosh µ = −c1 cosh µ − c2 sinh µ

⇒ µc1 sinh µ = −c2 sinh µ

⇒ µc1 sinh µ =
c1

µ
sinhµ.

Since µ 6= 0, sinh µ 6= 0. Take c1 6= 0 and divide by sinhµ and get

µc1 =
c1

µ
⇒ µ2 = 1 ⇒ k = 1.

So X = c1 cosh x + c2 sinh x. But c1 = −c2, so

X = c1 cosh x + c2 sinhx = c1 coshx − c1 sinh x = c1e
−x.
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Solving the equation for T , we find T (t) = et; thus we have the product
solution

c0e
−xet,

where, for convenience, we have used c0 as an arbitrary constant.
(d) If k = −α2 < 0, then

X ′′ + µ2X = 0 ⇒ X = c1 cos µx + c2 sinµx;
X ′(0) = −X(0) ⇒ µc2 = −c1

X ′(1) = −X(1) ⇒ −µc1 sin µ + µc2 cosµ = −c1 cosµ − c2 sinµ

⇒ −µc1 sin µ − c1 cos µ = −c1 cos µ − c2 sinµ

⇒ −µc1 sin µ = −c2 sinµ

⇒ −µc1 sin µ =
c1

µ
sin µ.

Since µ 6= 0, take c1 6= 0 (otherwise you will get a trivial solution) and divide
by c1 and get

µ2 sin µ = − sinµ ⇒ sin µ = 0 ⇒ µ = nπ,

where n is an integer. So X = c1 cosnπx + c2 sin nπx. But c1 = −c2µ, so

X = −c1

(
nπ cosnπx − sinnπx

)
.

Call Xn = nπ cos nπx− sinnπx.
(e) To establish the orthogonality of the Xn’s, treat the case k = 1 separately.
For k = −µ2, we refer to the boundary value problem

X ′′ + µ2
nX = 0, X(0) = −X ′(0), X(1) = −X ′(1),

that is satisfied by the Xn’s, where µn = nπ. We establish orthogonality
using a trick from Sturm-Liouville theory (Chapter 6, Section 6.2). Since

X ′′
m = µ2

mXm and X ′′
n = µ2

nXn,

multiplying the first equation by Xn and the second by Xm and then sub-
tracting the resulting equations, we obtain

XnX ′′
m = µ2

mXmXn and XmX ′′
n = µ2

nXnXm

XnX ′′
m − XmX ′′

n = (µ2
n − µ2

m)XmXn(
XnX ′

m − XmX ′
n

)′ = (µ2
n − µ2

m)XmXn

where the last equation follows by simply checking the validity of the identity
XnX ′′

m − XmX ′′
n =

(
XnX ′

m − XmX ′
n

)′. So

(µ2
n − µ2

m)
∫ 1

0

Xm(x)Xn(x) dx =
∫ 1

0

(
Xn(x)X ′

m(x)− Xm(x)X ′
n(x)

)′
dx

= Xn(x)X ′
m(x)− Xm(x)X ′

n(x)
∣∣∣
1

0
,

because the integral of the derivative of a function is the function itself. Now
we use the boundary conditions to conclude that

Xn(x)X ′
m(x)− Xm(x)X ′

n(x)
∣∣∣
1

0

= Xn(1)X ′
m(1)− Xm(1)X ′

n(1)− Xn(0)X ′
m(0) + Xm(0)X ′

n(0)
= −Xn(1)Xm(1) + Xm(1)Xn(1) + Xn(0)Xm(0)− Xm(0)Xn(0)
= 0.
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Thus the functions are orthogonal. We still have to verify the orthogonality
when one of the Xn’s is equal to e−x. This can be done by modifying the
argument that we just gave.
(f) Superposing the product solutions, we find that

u(x, t) = c0e
−xet +

∞∑

n=1

cnTn(t)Xn(x).

Using the initial condition, it follows that

u(x, 0) = f(x) = c0e
−x +

∞∑

n=1

cnXn(x).

The coefficients in this series expansion are determined by using the orthog-
onality of the Xn’s in the usual way. Let us determine c0. Multiplying both
sides by e−x and integrating term by term, it follows from the orthogonality
of the Xn that

∫ 1

0
f(x)e−x dx = c0

∫ 1

0
e−2xdx +

∞∑

n=1

cn

=0︷ ︸︸ ︷∫ 1

0
Xn(x)e−x dx .

Hence ∫ 1

0
f(x)e−x dx = c0

∫ 1

0
e−2xdx = c0

1 − e−2

2
.

Thus

c0 =
2e2

e2 − 1

∫ 1

0
f(x)e−x dx.

In a similar way, we prove that

cn =
1
κn

∫ 1

0
f(x)Xn(x) dx

where

κn =
∫ 1

0
X2

n(x) dx .

This integral can be evaluated as we did in Exercise 15 or by straightforward
computations, using the explicit formula for the Xn’s, as follows:
∫ 1

0
X2

n(x) dx =
∫ 1

0

(
nπ cosnπx − sinnπx

)2
dx

=
∫ 1

0

(
n2π2 cos2 nπx + sin2 nπx − 2nπ cos(nπx) sin(nπx)

)
dx

=

=(n2π2)/2︷ ︸︸ ︷∫ 1

0
n2π2 cos2 nπx dx+

=1/2︷ ︸︸ ︷∫ 1

0
sin2 nπx dx

−2nπ

=0︷ ︸︸ ︷∫ 1

0
cos(nπx) sin(nπx) dx

=
n2π2 + 1

2
.
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Solutions to Exercises 3.7

5. We proceed as in Exercise 3. We have

u(x, y, t) =
∞∑

n=1

∞∑

m=1

(Bmn cos λmnt + B∗
mn sinλmnt) sinmπx sinnπy,

where λmn =
√

m2 + n2, Bmn = 0, and

B∗
mn =

4√
m2 + n2

∫ 1

0

∫ 1

0
sin mπx sin nπy dx dy

=
4√

m2 + n2

∫ 1

0
sinmπx dx

∫ 1

0
sinnπy dy

=

{
16√

m2+n2(mn)π2
if m and n are both odd,

0 otherwise.

Thus

u(x, y, t) =
∞∑

k=0

∞∑

l=0

16 sin((2k + 1)πx) sin((2l + 1)πy)√
(2k + 1)2 + (2l + 1)2 (2k + 1)(2l + 1)π2

sin
√

(2k + 1)2 + (2l + 1)2t
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Solutions to Exercises 3.8

1. The solution is given by

u(x, y) =
∞∑

n=1

Bn sin(nπx) sinh(nπy),

where

Bn =
2

sinh(2nπ)

∫ 1

0
x sin(nπx) dx

=
2

sinh(2nπ)

[
−x cos(n π x)

n π
+

sin(n π x)
n2 π2

] ∣∣∣
1

0

=
2

sinh(2nπ)
−(−1)n

n π
=

2
sinh(2nπ)

(−1)n+1

n π
.

Thus,

u(x, y) =
2
π

∞∑

n=1

(−1)n+1

n sinh(2nπ)
sin(nπx) sinh(nπy).

5. Start by decomposing the problem into four subproblems as described
by Figure 3. Let uj(x, y) denote the solution to problem j (j = 1, 2, 3, 4).
Each uj consists of only one term of the series solutions, because of the
orthogonality of the sine functions. For example, to compute u1, we have

u1(x, y) =
∞∑

n=1

An sinnπx sinh[nπ(1− y)],

where

An =
2

sinhnπ

∫ 1

0
sin 7πx sinnπx dx.

Since the integral is 0 unless n = 7 and, when n = 7,

A7 =
2

sinh 7π

∫ 1

0
sin2 7πx dx =

1
sinh 7π

.

Thus
u1(x, y) =

1
sinh 7π

sin 7πx sinh[7π(1− y)].

In a similar way, appealing to the formulas in the text, we find

u2(x, y) =
1

sinh π
sinπx sinh(πy)

u3(x, y) =
1

sinh 3π
sinh[3π(1− x)] sin(3πy)

u4(x, y) =
1

sinh 6π
sinh 6πx sin(6πy);

u(x, y) = u1(x, y) + u2(x, y) + u3(x, y) + u4(x, y)

=
1

sinh 7π
sin 7πx sinh[7π(1− y)] +

1
sinh π

sin(πx) sinh(πy)

+
1

sinh 3π
sinh[3π(1− x)] sin(3πy) +

1
sinh 6π

sinh(6πx) sin(6πy)
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Solutions to Exercises 3.9

1. We apply (2), with a = b = 1:

u(x, y) =
∞∑

n=1

∞∑

m=1

Emn sin mπx sinnπy,

where

Emn =
−4

π2(m2 + n2)

∫ 1

0

∫ 1

0
x sinmπx sinnπy dx dy

=
−4

π2(m2 + n2)

∫ 1

0
x sinmπx dx

=
1−(−1)n

nπ︷ ︸︸ ︷∫ 1

0
sin nπy dy

=
−4

π4(m2 + n2)
1 − (−1)n

n

(
−x cos(m π x)

m
+

sin(m x)
m2π

) ∣∣∣
1

0

=
4

π4(m2 + n2)
1 − (−1)n

n

(−1)m

m
.

Thus

u(x, y) =
8
π4

∞∑

k=0

∞∑

m=1

(−1)m

(m2 + (2k + 1)2)m(2k + 1)
sinmπx sin((2k + 1)πy).

5. We will use an eigenfunction expansion based on the eigenfunctions
φ(x, y) = sinmπx sinnπy, where ∆π(x, y) = −π2

(
m2+n2

)
sin mπx sinnπy.

So plug

u(x, y) =
∞∑

n=1

∞∑

m=1

Emn sinmπx sinnπy

into the equation ∆u = 3u− 1, proceed formally, and get

∆ (
∑∞

n=1

∑∞
m=1 Emn sinmπx sinnπy) = 3

∑∞
n=1

∑∞
m=1 Emn sinmπx sinnπy − 1∑∞

n=1

∑∞
m=1 Emn∆ (sinmπx sinnπy) = 3

∑∞
n=1

∑∞
m=1 Emn sinmπx sinnπy − 1∑∞

n=1

∑∞
m=1 −Emnπ2

(
m2 + n2

)
sinmπx sinnπy

= 3
∑∞

n=1

∑∞
m=1 Emn sinmπx sinnπy − 1∑∞

n=1

∑∞
m=1

(
3 + π2

(
m2 + n2

))
Emn sin mπx sinnπy = 1.

Thinking of this as the double sine series expansion of the function identically
1, it follows that

(
3+π2

(
m2 +n2

))
Emn are double Fourier sine coefficients,

given by (see (8), Section 3.7)

(
3 + π2

(
m2 + n2

))
Emn = 4

∫ 1

0

∫ 1

0
sin mπx sinnπy dx dy

= 4
1 − (−1)m

mπ

1 − (−1)n

nπ

=
{

0 if either m or n is even,
16

π2m n
if both m and n are even.

.

Thus

Emn =

{
0 if either m or n is even,

16

π2m n
(
3+π2

(
m2+n2

)) if both m and n are even,
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and so

u(x, y) =
16
π2

∞∑

k=0

∞∑

l=0

sin((2k + 1)πx) sin((2l + 1)πy)
(2k + 1) (2l + 1)

(
3 + π2

(
(2k + 1)2 + (2l + 1)2

)) .
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Solutions to Exercises 3.10

1. We use a combination of solutions from (2) and (3) and try a solution
of the form

u(x, y) =
∞∑

n=1

sin mx
[
Am coshm(1 − y) + Bm sinhmy

]
.

(If you have tried a different form of the solution, you can still do the prob-
lem, but your answer may look different from the one derived here. The
reason for our choice is to simplify the computations that follow.) The
boundary conditions on the vertical sides are clearly satisfied. We now
determine Am and Bm so as to satisfy the conditions on the other sides.
Starting with u(1, 0) = 100, we find that

100 =
∞∑

m=1

Am cosh m sinmx.

Thus Am coshm is the sine Fourier coefficient of the function f(x) = 100.
Hence

Am coshm =
2
π

∫ π

0
100 sinmx dx ⇒ Am =

200
πm coshm

[1 − (−1)m] .

Using the boundary condition uy(x, 1) = 0, we find

0 =
∞∑

m=1

sinmx
[
Am(−m) sinh[m(1− y)] + mBm cosh my

]∣∣∣
y=1

.

Thus

0 =
∞∑

m=1

mBm sinmx coshm.

By the uniqueness of Fourier series, we conclude that mBm cosh m = 0 for
all m. Since m coshm 6= 0, we conclude that Bm = 0 and hence

u(x, y) =
200
π

∞∑

m=1

[1 − (−1)m]
m coshm

sin mx cosh[m(1− y)]

=
400
π

∞∑

k=0

sin[(2k + 1)x]
(2k + 1) cosh(2k + 1)

cosh[(2k + 1)(1− y)].

5. We combine solutions of different types from Exercise 4 and try a solution
of the form

u(x, y) = A0 + B0y +
∞∑

m=1

cos
mπ

a
x
[
Am cosh[

mπ

a
(b− y)] + Bm sinh[

mπ

a
y]

]
.

Using the boundary conditions on the horizontal sides, starting with uy(x, b) =
0, we find that

0 = B0 +
∞∑

m=1

mπ

a
Bm cos

mπ

a
x cosh

[mπ

a
b
]
.
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Thus B0 = 0 and Bm = 0 for all m ≥ 1 and so

A0 +
∞∑

m=1

Am cos
mπ

a
x cosh[

mπ

a
(b − y)].

Now, using u(x, 0) = g(x), we find

g(x) = A0 +
∞∑

m=1

Am cosh[
mπ

a
b] cos

mπ

a
x.

Recognizing this as a cosine series, we conclude that

A0 =
1
a

∫ a

0
g(x) dx

and
Am cosh[

mπ

a
b] =

2
a

∫ a

0
g(x) cos

mπ

a
x dx;

equivalently, for m ≥ 1,

Am =
2

a cosh[mπ
a b]

∫ a

0
g(x) cos

mπ

a
x dx.

9. We follow the solution in Example 3. We have

u(x, y) = u1(x, y) + u2(x, y),

where

u1(x, y) =
∞∑

m=1

Bm sinmx sinhmy,

with

Bm =
2

πm cosh(mπ)

∫ π

0
sinmx dx =

2
πm2 cosh(mπ)

(1 − (−1)m);

and

u2(x, y) =
∞∑

m=1

Am sinmx cosh[m(π − y)],

with

Am =
2

π cosh(mπ)

∫ π

0
sin mx dx =

2
πm cosh(mπ)

(1 − (−1)m).

Hence

u(x, y) =
2
π

∞∑

m=1

(1− (−1)m)
m cosh(mπ)

sin mx

[
sinh my

m
+ cosh[m(π − y)]

]

=
4
π

∞∑

k=0

sin(2k + 1)x
(2k + 1) cosh[(2k + 1)π]

[
sinh[(2k + 1)y]

(2k + 1)
+ cosh[(2k + 1)(π − y)]

]
.
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Solutions to Exercises 4.1

1. We could use Cartesian coordinates and compute ux, uy, uxx, and uyy

directly from the definition of u. Instead, we will use polar coordinates,
because the expression x2 + y2 = r2, simplifies the denominator, and thus it
is easier to take derivatives. In polar coordinates,

u(x, y) =
x

x2 + y2
=

r cos θ

r2
=

cos θ

r
= r−1 cos θ .

So

ur = −r−2 cos θ, urr = 2r−3 cos θ, uθ = −r−1 sin θ, uθθ = −r−1 cos θ.

Plugging into (1), we find

∇2u = urr +
1
r
ur +

1
r2

uθθ =
2 cos θ

r3
− cos θ

r3
− cos θ

r3
= 0 (if r 6= 0).

If you used Cartesian coordinates, you should get

uxx =
2x(x2 − 3y2)
(x2 + y2)2

and uyy = −2x(x2 − 3y2)
(x2 + y2)2

.

5. In spherical coordinates:

u(r, θ, φ) = r3 ⇒ urr = 6r, uθ = 0, uθθ = 0, uφφ = 0.

Plugging into (3), we find

∇2u =
∂2u

∂r2
+

2
r

∂u

∂r
+

1
r2

(∂2u

∂θ2
+ cot θ

∂u

∂θ
+ csc2 θ

∂2u

∂φ2

)
= 6r + 6r = 12r.

9. (a) If u(r, θ, φ) depends only on r, then all partial derivatives of u with
respect to θ and φ are 0. So (3) becomes

∇2u =
∂2u

∂r2
+

2
r

∂u

∂r
+

1
r2

(∂2u

∂θ2
+ cot θ

∂u

∂θ
+ csc2 θ

∂2u

∂φ2

)
=

∂2u

∂r2
+

2
r

∂u

∂r
.

(b) If u(r, θ, φ) depends only on r and θ, then all partial derivatives of u
with respect to φ are 0. So (3) becomes

∇2u =
∂2u

∂r2
+

2
r

∂u

∂r
+

1
r2

(∂2u

∂θ2
+ cot θ

∂u

∂θ

)
.
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Solutions to Exercises 4.2

1. We appeal to the solution (5) with the coefficients (6). Since f(r) = 0, then
An = 0 for all n. We have

Bn =
1

αnJ1(αn)2

∫ 2

0

J0(
αnr

2
)r dr

=
4

α3
nJ1(αn)2

∫ αn

0

J0(s)s ds (let s =
αn

2
r)

=
4

α3
nJ1(αn)2

[sJ1(s)]
∣∣∣∣
αn

0

=
4

α2
nJ1(αn)

for all n ≥ 1.

Thus

u(r, t) = 4
∞∑

n=1

J0(αnr
2 )

α2
nJ1(αn)

sin(
αnt

2
).

5. Since g(r) = 0, we have Bn = 0 for all n. We have

An =
2

J1(αn)2

∫ 1

0

J0(α1r)J0(αnr)r dr = 0 for n 6= 1 by orthogonality.

For n = 1,

A1 =
2

J1(α1)2

∫ 1

0

J0(α1r)2r dr = 1,

where we have used the orthogonality relation (12), Section 4.8, with p = 0. Thus

u(r, t) = J0(α1r) cos(α1t).

9. (a) Modifying the solution of Exercise 3, we obtain

u(r, t) =
∞∑

n=1

J1(αn/2)
α2

ncJ1(αn)2
J0(αnr) sin(αnct).

(b) Under suitable conditions that allow us to interchange the limit and the sum-
mation sign (for example, if the series is absolutely convergent), we have, for a given
(r, t),

lim
c→∞

u(r, t) = lim
c→∞

∞∑

n=1

J1(αn/2)
α2

ncJ1(αn)2
J0(αnr) sin(αnct)

=
∞∑

n=1

lim
c→∞

J1(αn/2)
α2

ncJ1(αn)2
J0(αnr) sin(αnct)

= 0,

because limc→∞
J1(αn/2)

α2
ncJ1(αn)2 = 0 and sin(αnct) is bounded. If we let u1(r, t) denote

the solution corresponding to c = 1 and uc(r, t) denote the solution for arbitrary
c > 0. Then, it is easy t check that

uc(r, t) =
1
c
u1(r, ct).

This shows that if c increases, the time scale speeds proportionally to c, while the
displacement decreases by a factor of 1

c .
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Solutions to Exercises 4.3

1. The condition g(r, θ) = 0 implies that a∗mn = 0 = b∗mn. Since f(r, θ) is
proportional to sin 2θ, only b2,n will be nonzero, among all the amn and bmn. This
is similar to the situation in Example 2. For n = 1, 2, . . ., we have

b2,n =
2

πJ3(α2,n)2

∫ 1

0

∫ 2π

0

(1 − r2)r2 sin 2θJ2(α2,nr) sin 2θr dθ dr

=
2

πJ3(α2,n)2

∫ 1

0

=π︷ ︸︸ ︷∫ 2π

0

sin2 2θ dθ(1 − r2)r3J2(α2,nr) dr

=
2

J3(α2,n)2

∫ 1

0

(1 − r2)r3J2(α2,nr) dr

=
2

J3(α2,n)2
2

α2
2,n

J4(α2,n) =
4J4(α2,n)

α2
2,nJ3(α2,n)2

,

where the last integral is evaluated with the help of formula (15), Section 4.3. We
can get rid of the expression involving J4 by using the identity

Jp−1(x) + Jp+1(x) =
2p
x
Jp(x).

With p = 3 and x = α2,n, we get

=0︷ ︸︸ ︷
J2(α2,n) +J4(α2,n) =

6
α2,n

J3(α2,n) ⇒ J4(α2,n) =
6

α2,n
J3(α2,n).

So

b2,n =
24

α3
2,nJ3(α2,n)

.

Thus

u(r, θ, t) = 24 sin 2θ
∞∑

n=1

J2(α2,nr)
α3

2,nJ3(α2,n)
cos(α2,nt).

5. We have amn = bmn = 0. Also, all a∗mn and b∗mn are zero except b∗2,n. We have

b∗2,n =
2

πα2,nJ3(α2,n)2

∫ 1

0

∫ 2π

0

(1 − r2)r2 sin 2θJ2(α2,nr) sin 2θr dθ dr.

The integral was computed in Exercise 1. Using the computations of Exercise 1,
we find

b∗2,n =
24

α4
2,nJ3(α2,n)

.

hus

u(r, θ, t) = 24 sin2θ
∞∑

n=1

J2(α2,nr)
α4

2,nJ3(α2,n)
sin(α2,nt).

9. (a) For l = 0 and all k ≥ 0, the formula follows from (7), Section 4.8, with
p = k: ∫

rk+1Jk(r) dr = rk+1Jk+1(r) + C.

(b) Assume that the formula is true for l (and all k ≥ 0). Integrate by parts, using
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u = r2l, dv = rk+1Jk+1(r) dr, and hence du = 2lr2l−1dr and v = rk+1Jk+1(r):
∫
rk+1+2lJk(r) dr =

∫
r2l[rk+1Jk(r)] dr

= r2l rk+1Jk+1(r) − 2l
∫
r2l−1rk+1Jk+1(r) dr

= rk+1+2lJk+1(r) − 2l
∫
rk+2lJk+1(r) dr

= rk+1+2lJk+1(r) − 2l
∫
r(k+1)+1+2(l−1)Jk+1(r) dr

and so, by the induction hypothesis, we get

∫
rk+1+2lJk(r) dr = rk+1+2lJk+1(r) − 2l

l−1∑

n=0

(−1)n2n(l − 1)!
(l − 1 − n)!

rk+2l−nJk+n+2(r) + C

= rk+1+2lJk+1(r)

+
l−1∑

n=0

(−1)n+12n+1l!
(l − (n + 1))!

rk+1+2l−(n+1)Jk+(n+1)+1(r) + C

= rk+1+2lJk+1(r) +
l∑

m=1

(−1)m2ml!
(l −m)!

rk+1+2l−mJk+m+1(r) + C

=
l∑

m=0

(−1)m2ml!
(l −m)!

rk+1+2l−mJk+m+1(r) + C,

which completes the proof by induction for all integers k ≥ 0 and all l ≥ 0.

13. The proper place for this problem is in the next section, since its solution
invovles solving a Dirichlet problem on the unit disk. The initial steps are similar
to the solution of the heat problem on a rectangle with nonzero boundary data
(Exercise 11, Section 3.8). In order to solve the problem, we consider the following
two subproblems: Subproblem #1 (Dirichlet problem)

(u1)rr +
1
r
(u1)r +

1
r2

(u1)θθ = 0, 0 < r < 1, 0 ≤ θ < 2π,

u1(1, θ) = sin 3θ, 0 ≤ θ < 2π.

Subproblem #2 (to be solved after finding u1(r, θ) from Subproblem #1)

(u2)t = (u2)rr + 1
r (u2)r + 1

r2 (u2)θθ, 0 < r < 1, 0 ≤ θ < 2π, t > 0,

u2(1, θ, t) = 0, 0 ≤ θ < 2π, t > 0,

u2(r, θ, 0) = −u1(r, θ), 0 < r < 1, 0 ≤ θ < 2π.

You can check, using linearity (or superposition), that

u(r, θ, t) = u1(r, θ) + u2(r, θ, t)

is a solution of the given problem.
The solution of subproblem #1 follows immediately from the method of Sec-

tion 4.5. We have
u2(r, θ) = r3 sin 3θ.
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We now solve subproblem #2, which is a heat problem with 0 boundary data and
initial temperature distribution given by −u2(r, θ) = −r3 sin 3θ. reasoning as in
Exercise 10, we find that the solution is

u2(r, θ, t) =
∞∑

n=1

b3nJ3(α3nr) sin(3θ)e−α2
3nt,

where

b3n =
−2

πJ4(α3n)2

∫ 1

0

∫ 2π

0

r3 sin2 3θJ3(α3nr)r dθ dr

=
−2

J4(α3n)2

∫ 1

0

r4J3(α3nr) dr

=
−2

J4(α3n)2
1
α5

3n

∫ α3n

0

s4J3(s) ds (where α3nr = s)

=
−2

J4(α3n)2
1
α5

3n

s4J4(s)
∣∣∣
α3n

0

=
−2

α3nJ4(α3n)
.

Hence

u(r, θ, t) = r3 sin 3θ − 2 sin(3θ)
∞∑

n=1

J3(α3nr)
α3nJ4(α3n)

e−α2
3nt.
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Exercises 4.4

1. Since f is already given by its Fourier series, we have from (4)

u(r, θ) = r cos θ = x.

5. Let us compute the Fourier coefficients of f . We have

a0 =
50
π

∫ π/4

0

dθ =
25
2

;

an =
100
π

∫ π/4

0

cosnθ dθ =
100
nπ

sinnθ
∣∣∣∣
π

0

=
100
nπ

sin
nπ

4
;

bn =
100
π

∫ π/4

0

sinnθ dθ = −100
nπ

cos nθ
∣∣∣∣
π

0

=
100
nπ

(1 − cos
nπ

4
).

Hence

f(θ) =
25
2

+
100
π

∞∑

n=1

1
n

(
sin

nπ

4
cosnθ + (1 − cos

nπ

4
) sinnθ

)
;

and

u(r, θ) =
25
2

+
100
π

∞∑

n=1

1
n

(
sin

nπ

4
cos nθ + (1 − cos

nπ

4
) sinnθ

)
rn.

9. u(r θ) = 2r2 sin θ cos θ = 2xy. So u(x y) = T if and only if 2xy = T if and only
if y = T

2x , which shows that the isotherms lie on hyperbolas centered at the origin.

13. We follow the steps in Example 4 (with α = π
4 ) and arrive at the same equation

in Θ and R. The solution in Θ is

Θn(θ) = sin(4nθ), n = 1, 2, . . . ,

and the equation in R is

r2R′′ + rR′ − (4n)2R = 0.

The indicial equation for this Euler equation is

ρ2 − (4n)2 = 0 ⇒ ρ = ±4n.

Taking the bounded solutions only, we get

Rn(r) = r4n.

Thus the product solutions are r4n sin 4θ and the series solution of the problem is
of the form

u(r, θ) =
∞∑

n=1

bnr
4n sin 4nθ.

To determine bn, we use the boundary condition:

ur(r, θ)
∣∣
r=1

= sin θ ⇒
∞∑

n=1

bn4nr4n−1 sin 4nθ
∣∣
r=1

= sin θ

⇒
∞∑

n=1

bn4n sin 4nθ = sin θ

⇒ 4nbn =
2
π/4

∫ π/4

0

sin θ sin 4nθ dθ.
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Thus

bn =
2
πn

∫ π/4

0

sin θ sin 4nθ dθ

=
1
πn

∫ π/4

0

[− cos[(4n+ 1)θ] + cos[(4n− 1)θ]] dθ

=
1
πn

[
−

sin[(4n+ 1)θ]
4n+ 1

+
sin[(4n− 1)θ]

4n− 1

] ∣∣∣
π/4

0

=
1
πn

[
−

sin[(4n+ 1)π
4

4n+ 1
+

sin[(4n− 1)π
4

4n− 1

]

=
1
πn

[
−

cos(nπ) sin π
4
]

4n+ 1
−

cos(nπ) sin π
4

4n− 1

]

=
(−1)n

πn

√
2

2

[
−1

4n+ 1
− 1

4n− 1

]

=
(−1)n+1

√
2

π

4
16n2 − 1

.

Hence

u(r, θ) =
4
√

2
π

∞∑

n=1

(−1)n+1

16n2 − 1
r4n sin 4nθ.

17. Since u satsifies Laplace’s equation in the disk, the separation of variables
method and the fact that u is 2π-periodic in θ imply that u is given by the series (4),
where the coefficients are to be determined from the Neumann boundary condition.
From

u(r, θ) = a0 +
∞∑

n=1

( r
a

)n [
an cosnθ + bn sinnθ

]
,

it follows that

ur(r, θ) =
∞∑

n=1

(
n
rn−1

an

)[
an cosnθ + bn sinnθ

]
.

Using the boundary condition ur(a, θ) = f(θ), we obtain

f(θ) =
∞∑

n=1

n

a

[
an cos nθ + bn sinnθ

]
.

In this Fourier series expansion, the n = 0 term must be 0. But the n = 0 term is
given by

1
2π

∫ 2π

0

f(θ) dθ,

thus the compatibility condition
∫ 2π

0

f(θ) dθ = 0

must hold. Once this condition is satsified, we determine the coefficients an and bn
by using the Euler formulas, as follows:

n

a
an =

1
π

∫ 2π

0

f(θ) cos nθ dθ
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and
n

a
bn =

1
π

∫ 2π

0

f(θ) sin nθ dθ.

Hence

an =
a

nπ

∫ 2π

0

f(θ) cos nθ dθ and bn =
a

nπ

∫ 2π

0

f(θ) sin nθ dθ.

Note that a0 is still arbitray. Indeed, the solution of a Neumann problem is not
unique. It can be determined only up to an additive constant (which does not affect
the value of the normal derivative at the boundary).

21. Using the fact that the solutions must be bounded as r → ∞, we see that
c1 = 0 in the first of the two equations in (3), and c2 = 0 in the second of the two
equations in (3). Thus

R(r) = Rn(r) = cnr
−n =

( r
a

)n

for n = 0, 1, 2, . . . .

The general solution becomes

u(r, θ) = a0 +
∞∑

n=1

(a
r

)n

(an cosnθ + bn sinnθ) , r > a.

Setting r = a and using the boundary condition, we obtain

f(θ) = a0 +
∞∑

n=1

(an cosnθ + bn sinnθ) ,

which implies that the an and bn are the Fourier coefficients of f and hence are
given by (5).

25. The hint does it.

29. (a) Recalling the Euler formulas for the Fourier coefficients, we have

u(r, θ) = a0 +
∞∑

n=1

(r
a

)n

[an cosnθ + bn sinnθ]

=
1
2π

∫ 2π

0

f(φ) dφ

+
∞∑

n=1

( r
a

)n
[

1
π

∫ 2π

0

f(φ) cos nφdφ cosnθ +
1
π

∫ 2π

0

f(φ) sinnφdφ sinnθ
]

=
1
2π

∫ 2π

0

f(φ) dφ

+
∞∑

n=1

( r
a

)n
[

1
π

∫ 2π

0

f(φ)
[
cos nφ cosnθ + sinnφ sinnθ

]
dφ

]

=
1
2π

∫ 2π

0

f(φ) dφ+
∞∑

n=1

( r
a

)n 1
π

∫ 2π

0

f(φ) cos n(θ − φ) dφ

=
1
2π

∫ 2π

0

f(φ)

[
1 + 2

∞∑

n=1

( r
a

)n

cos n(θ − φ)

]
dφ.
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(b) Continuing from (a) and using Exercise 28, we obtain

u(r, θ) =
1
2π

∫ 2π

0

f(φ)
1 −

(
r
a

)2

1 − 2
(

r
a

)
cos θ +

(
r
a

)2

=
1
2π

∫ 2π

0

f(φ)
a2 − r2

a2 − 2ar cos(θ − φ) + r2
dφ

=
1
2π

∫ 2π

0

f(φ)P
(
r/a, θ − φ

)
dφ.
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Solutions to Exercises 4.5

1. Using (2) and (3), we have that

u(ρ, z) =
∞∑

n=1

AnJ0(λnρ) sinh(λnz), λn =
αn

a
,

where αn = α0,n is the nth positive zero of J0, and

An =
2

sinh(λnh)a2J1(αn)2

∫ a

0
f(ρ)J0(λnρ)ρ dρ

=
200

sinh(2αn)J1(αn)2

∫ 1

0
J0(αnρ)ρ dρ

=
200

sinh(2αn)α2
nJ1(αn)2

∫ αn

0

J0(s)s ds (let s = αnρ)

=
200

sinh(2αn)α2
nJ1(αn)2

[J1(s)s]
∣∣∣∣
αn

0

=
200

sinh(2αn)αnJ1(αn)
.

So

u(ρ, z) = 200
∞∑

n=1

J0(αnρ) sinh(αnz)
sinh(2αn)αnJ1(αn)

.

5. (a) We proceed exactly as in the text and arrive at the condition Z(h) = 0
which leads us to the solutions

Z(z) = Zn(z) = sinh(λn(h − z)), where λn =
αn

a
.

So the solution of the problem is

u(ρ, z) =
∞∑

n=1

CnJ0(λnρ) sinh(λn(h − z)),

where

Cn =
2

a2J1(αn)2 sinh(λnh)

∫ a

0

f(ρ)J0(λnρ)ρ dρ.

(b) The problem can be decomposed into the sum of two subproblems, one
treated in the text and one treated in part (a). The solution of the problem
is the sum of the solutions of the subproblems:

u(ρ, z) =
∞∑

n=1

(
AnJ0(λnρ) sinh(λnz) + CnJ0(λnρ) sinh(λn(h − z))

)
,

where

An =
2

a2J1(αn)2 sinh(λnh)

∫ a

0
f2(ρ)J0(λnρ)ρ dρ,

and

Cn =
2

a2J1(αn)2 sinh(λnh)

∫ a

0
f1(ρ)J0(λnρ)ρ dρ.
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9. We use the solution in Exercise 8 with a = 1, h = 2, f(z) = 10z. Then

Bn =
1

I0

(
nπ
2

)
∫ 2

0
0z sin

nπz

2
dz

=
40

nπ I0

(
nπ
2

)(−1)n+1.

Thus

u(ρ, z) =
40
π

∞∑

n=1

(−1)n+1

n I0

(
nπ
2

)I0

(nπ

2
ρ
)

sin
nπz

2
.
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Solutions to Exercises 4.6

1. Write (1) in polar coordinates:

φrr +
1
r
φr +

1
r2
φθθ = −kφ φ(a, θ) = 0.

Consider a product solution φ(r, θ) = R(r)Θ(θ). Since θ is a polar angle, it follows
that

Θ(θ + 2π) = Θ(θ);

in other words, Θ is 2π-periodic. Plugging the product solution into the equation
and simplifying, we find

R′′Θ + 1
r
R′Θ + 1

r2RΘ′′ = −kRΘ;(
R′′ + 1

rR
′ + kR

)
Θ = − 1

r2RΘ′′;

r2 R′′

R
+ rR′

R
+ kr2 = −Θ′′

Θ
;

hence
r2
R′′

R
+ r

R′

R
+ kr2 = λ,

and
−Θ′′

Θ
= λ ⇒ Θ′′ + λΘ = 0,

where λ is a separation constant. Our knowledge of solutions of second order linear
ode’s tells us that the last equation has 2π-periodic solutions if and only if

λ = m2, m = 0, ±1, ±2, . . . .

This leads to the equations
Θ′′ +m2Θ = 0,

and
r2
R′′

R
+ r

R′

R
+ kr2 = m2 ⇒ r2R′′ + rR′ + (kr2 −m2)R = 0.

These are equations (3) and (4). Note that the condition R(a) = 0 follows from
φ(a, θ) = 0 ⇒ R(a)Θ(θ) = 0 ⇒ R(a) = 0 in order to avoid the constant 0 solution.

5. We proceed as in Example 1 and try

u(r, θ) =
∞∑

m=0

∞∑

n=1

Jm(λmnr)(Amn cosmθ + Bmn sinmθ) =
∞∑

m=0

∞∑

n=1

φmn(r, θ),

where φmn(r, θ) = Jm(λmnr)(Amn cosmθ + Bmn sinmθ). We plug this solution
into the equation, use the fact that ∇2(φmn) = −λ2

mnφmn, and get

∇2

( ∞∑

m=0

∞∑

n=1

φmn(r, θ)

)
= 1 −

∞∑

m=0

∞∑

n=1

φmn(r, θ)

⇒
∞∑

m=0

∞∑

n=1

∇2 (φmn(r, θ)) = 1 −
∞∑

m=0

∞∑

n=1

φmn(r, θ)

⇒
∞∑

m=0

∞∑

n=1

−λ2
mnφmn(r, θ) = 1 −

∞∑

m=0

∞∑

n=1

φmn(r, θ)

⇒
∞∑

m=0

∞∑

n=1

(1 − α2
mn)φmn(r, θ) = 1.

We recognize this expansion as the expansion of the function 1 in terms of the
functions φmn. Because the right side is independent of θ, it follows that all Amn

and Bmn are zero, except A0,n. So
∞∑

n=1

(1 − α2
mn)A0,nJ0(α0,n)r) = 1,
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which shows that (1 − α2
mn)A0,n = a0,n is the nth Bessel coefficient of the Bessel

series expansion of order 0 of the function 1. This series is computed in Example 1,
Section 4.8. We have

1 =
∞∑

n=1

2
α0,nJ1(α0,n)

J0(α0,nr) 0 < r < 1.

Hence

(1 − α2
mn)A0,n =

2
α0,nJ1(α0,n)

⇒ A0,n =
2

(1 − α2
mn)α0,nJ1(α0,n)

;

and so

u(r, θ) =
∞∑

n=1

2
(1 − α2

mn)α0,nJ1(α0,n)
J0(α0,nr).

9. Let

h(r) =
{
r if 0 < r < 1/2,
0 if 1/2 < r < 1.

Then the equation becomes ∇2u = f(r, θ), where f(r, θ) = h(r) sin θ. We proceed
as in the previous exercise and try

u(r, θ) =
∞∑

m=0

∞∑

n=1

Jm(λmnr)(Amn cosmθ + Bmn sinmθ) =
∞∑

m=0

∞∑

n=1

φmn(r, θ),

where φmn(r, θ) = Jm(λmnr)(Amn cosmθ + Bmn sinmθ). We plug this solution
into the equation, use the fact that ∇2(φmn) = −λ2

mnφmn = −α2
mnφmn, and get

∇2

( ∞∑

m=0

∞∑

n=1

φmn(r, θ)

)
= h(r) sin θ

⇒
∞∑

m=0

∞∑

n=1

∇2 (φmn(r, θ)) = h(r) sin θ

⇒
∞∑

m=0

∞∑

n=1

−α2
mnφmn(r, θ) = h(r) sin θ.

We recognize this expansion as the expansion of the function h(r) sin θ in terms of
the functions φmn. Because the right side is proportional to sin θ, it follows that
all Amn and Bmn are zero, except B1,n. So

sin θ
∞∑

n=1

−α2
1nB1,nJ1(α1nr) = h(r) sin θ,

which shows that −α2
1nB1,n is the nth Bessel coefficient of the Bessel series expan-

sion of order 1 of the function h(r):

−α2
1nB1,n =

2
J2(α1,n)2

∫ 1/2

0

r2J1(α1,nr) dr

=
2

α3
1,nJ2(α1,n)2

∫ α1,n/2

0

s2J1(s) ds

=
2

α3
1,nJ2(α1,n)2

s2J2(s)
∣∣∣
α1,n/2

0

=
J2(α1,n/2)

2α1,nJ2(α1,n)2
.



Section 4.6 The Helmholtz and Poisson Equations 67

Thus

u(r, θ) = sin θ
∞∑

n=1

− J2(α1,n/2)
2α3

1,nJ2(α1,n)2
J1(α1,nr).
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Solutions to Exercises 4.7

1. Bessel equation of order 3. Using (7), the first series solution is

J3(x) =
∞∑

k=0

(−1)k

k!(k+ 3)!

(x
2

)2k+3

=
1

1 · 6
x3

8
− 1

1 · 24
x5

32
+

1
2 · 120

x7

128
+ · · · .

5. Bessel equation of order 3
2
. The general solution is

y(x) = c1J 3
2

+ c2J− 3
2

= c1

(
1

1 · Γ(5
2)

(x
2

) 3
2 − 1

1 · Γ(7
2 )

(x
2

) 7
2

+ · · ·
)

+c2

(
1

1 · Γ(−1
2

)

(x
2

)− 3
2 − 1

1 · Γ(1
2
)

(x
2

) 1
2

+ · · ·
)
.

Using the basic property of the gamma function and (15), we have

Γ(5
2 ) = 3

2Γ(3
2) = 3

2
1
2Γ(1

2) = 3
4

√
π

Γ(7
2) = 5

2Γ(5
2 ) = 15

8

√
π

−1
2
Γ(−1

2
) = Γ(1

2
) =

√
π ⇒ Γ(−1

2
) = −2

√
π.

So

y(x) = c1

√
2
πx

(
4
3
x2

4
− 8

15
x4

16
+ · · ·

)

c2

√
2
πx

(−1)
(
−1

2
2
x
− x

2
− · · ·

)

= c1

√
2
πx

(
x2

3
− x4

30
+ · · ·

)
+ c2

√
2
πx

(
1
x

+
x

2
− · · ·

)

9. Divide the equation through by x2 and put it in the form

y′′ +
1
x
y′ +

x2 − 9
x2

y = 0 for x > 0.

Now refer to Appendix A.6 for terminology and for the method of Frobenius that
we are about to use in this exercise. Let

p(x) =
1
x

for q(x) =
x2 − 9
x2

.

The point x = 0 is a singular point of the equation. But since x p(x) = 1 and
x2 q(x) = x2 − 9 have power series expansions about 0 (in fact, they are already
given by their power series expansions), it follows that x = 0 is a regular singular
point. Hence we may apply the Frobenius method. We have already found one
series solution in Exercise 1. To determine the second series solution, we consider
the indicial equation

r(r − 1) + p0r + q0 = 0,

where p0 = 1 and q0 = −9 (respectively, these are the constant terms in the series
expansions of xp(x) and x2q(x)). Thus the indicial equation is

r − 9 = 0 ⇒ r1 = 3, r2 = −3.

The indicial roots differ by an integer. So, according to Theorem 2, Appendix A.6,
the second solution y2 may or may not contain a logarithmic term. We have, for
x > 0,

y2 = ky1 lnx+ x−3
∞∑

m=0

bmx
m = ky1 lnx+

∞∑

m=0

bmx
m−3,
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where a0 6= 0 and b0 6= 0, and k may or may not be 0. Plugging this into the
differential equation

x2y′′ + xy′ + (x2 − 9)y = 0

and using the fact that y1 is a solution, we have

y2 = ky1 lnx+
∞∑

m=0

bmx
m−3

y′2 = ky′1 lnx+ k
y1
x

+
∞∑

m=0

(m − 3)bmxm−4;

y′′2 = ky′′1 lnx+ k
y′1
x

+ k
xy′1 − y1

x2
+

∞∑

m=0

(m − 3)(m − 4)bmxm−5

= ky′′1 lnx+ 2k
y′1
x

− k
y1
x2

+
∞∑

m=0

(m− 3)(m − 4)bmxm−5;

x2y′′2 + xy′2 + (x2 − 9)y2

= kx2y′′1 lnx+ 2kxy′1 − ky1 +
∞∑

m=0

(m − 3)(m− 4)bmxm−3

+kxy′1 lnx+ ky1 +
∞∑

m=0

(m − 3)bmxm−3

+(x2 − 9)

[
ky1 lnx+

∞∑

m=0

bmx
m−3

]

= k lnx
[

=0︷ ︸︸ ︷
x2y′′1 + xy′1 + (x2 − 9)y1

]

+2kxy′1 +
∞∑

m=0

[
(m − 3)(m − 4)bm + (m − 3)bm − 9bm

]
xm−3

+x2
∞∑

m=0

bmx
m−3

= 2kxy′1 +
∞∑

m=0

(m − 6)mbmxm−3 +
∞∑

m=0

bmx
m−1.

To combine the last two series, we use reindexing as follows
∞∑

m=0

(m − 6)mbmxm−3 +
∞∑

m=0

bmx
m−1

= −5b1x−2 +
∞∑

m=2

(m− 6)mbmxm−3 +
∞∑

m=2

bm−2x
m−3

= −5b1x−2 +
∞∑

m=2

[
(m − 6)mbm + bm−2

]
xm−3.

Thus the equation
x2y′′2 + xy′2 + (x2 − 9)y2 = 0

implies that

2kxy′1 − 5b1x−2 +
∞∑

m=2

[
(m − 6)mbm + bm−2

]
xm−3 = 0.
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This equation determines the coefficients bm (m ≥ 1) in terms of the coefficients of
y1. Furthermore, it will become apparent that k cannot be 0. Also, b0 is arbitrary
but by assumption b0 6= 0. Let’s take b0 = 1 and determine the the first five bm’s.

Recall from Exercise 1

y1 =
1

1 · 6
x3

8
− 1

1 · 24
x5

32
+

1
2 · 120

x7

128
+ · · · .

So

y′1 =
3

1 · 6
x2

8
− 5

1 · 24
x4

32
+

7
2 · 120

x6

128
+ · · ·

and hence (taking k = 1)

2kxy′1 =
6k

1 · 6
x3

8
− 10k

1 · 24
x5

32
+

14k
2 · 120

x7

128
+ · · · .

The lowest exponent of x in

2kxy′1 − 5b1x−2 +
∞∑

m=2

[
(m − 6)mbm + bm−2

]
xm−3

is x−2. Since its coefficient is −5b1, we get b1 = 0 and the equation becomes

2xy′1 +
∞∑

m=2

[
(m− 6)mbm + bm−2

]
xm−3.

Next, we consider the coefficient of x−1. It is (−4)2b2 + b0. Setting it equal to 0,
we find

b2 =
b0
8

=
1
8
.

Next, we consider the constant term, which is the m = 3 term in the series. Setting
its coefficient equal to 0, we obtain

(−3)3b3 + b1 = 0 ⇒ b3 = 0

because b1 = 0. Next, we consider the term in x, which is the m = 4 term in the
series. Setting its coefficient equal to 0, we obtain

(−2)4b4 + b2 = 0 ⇒ b4 =
1
8
b2 =

1
64
.

Next, we consider the term in x2, which is the m = 5 term in the series. Setting its
coefficient equal to 0, we obtain b5 = 0. Next, we consider the term in x3, which
is the m = 6 term in the series plus the first term in 2kxy′1. Setting its coefficient
equal to 0, we obtain

0 + b4 +
k

8
= 0 ⇒ k = −8b4 = −1

8
.

Next, we consider the term in x4, which is the m = 7 term in the series. Setting
its coefficient equal to 0, we find that b7 = 0. It is clear that b2m+1 = 0 and that

y2 ≈ −1
8
y1 lnx+

1
x3

+
1

8x
+

1
64
x+ · · ·

Any nonzero constant multiple of y2 is also a second linearly independent solution
of y1. In particular, 384 y2 is an alternative answer (which is the answer given in
the text).

13. The equation is of the form given in Exercise 10 with p = 3/2. Thus its general
solution is

y = c1x
3/2J3/2(x) + c2x

3/2Y3/2(x).
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Using Exercise 22 and (1), you can also write this general solution in the form

y = c1x

[
sinx
x

− cosx
]

+ c2x
[
−cosx

x
− sinx

]

= c1 [sinx− x cosx] + c2 [− cos x− x sinx] .

In particular, two linearly independent solution are

y1 = sinx− x cosx and y2 = cosx+ x sinx.

This can be verified directly by using the differential equation (try it!).

17. We have

y = x−pu,

y′ = −px−p−1u+ x−pu′,

y′′ = p(p+ 1)x−p−2u+ 2(−p)x−p−1u′ + x−pu′′,

xy′′ + (1 + 2p)y′ + xy = x
[
p(p+ 1)x−p−2u− 2px−p−1u′ + x−pu′′

]

+(1 + 2p)
[
− px−p−1u+ x−pu′

]
+ xx−pu

= x−p−1
[
x2u′′ + [−2px+ (1 + 2p)x]u′

+[p(p+ 1) − (1 + 2p)p+ x2]u
]

= x−p−1
[
x2u′′ + xu′ + (x2 − p2)u

]
.

Thus, by letting y = x−pu, we transform the equation

xy′′ + (1 + 2p)y′ + xy = 0

into the equation
x−p−1

[
x2u′′ + xu′ + (x2 − p2)u

]
= 0,

which, for x > 0, is equivalent to

x2u′′ + xu′ + (x2 − p2)u = 0,

a Bessel equation of ordr p > 0 in u. The general solution of the last equation is

u = c1Jp(x) + c2Yp(x).

Thus the general solution of the original equation is

Y = c1x
−pJp(x) + c2x

−pYp(x).

21. Using (7),

J− 1
2
(x) =

∞∑

k=0

(−1)k

k!Γ(k − 1
2 + 1)

(x
2

)2k−1
2

=

√
2
x

∞∑

k=0

(−1)k

k!Γ(k + 1
2
)
x2k

22k

=

√
2
x

∞∑

k=0

(−1)k

k!
22kk!

(2k)!
√
π

x2k

22k
(by Exercise 44(a))

=

√
2
π x

∞∑

k=0

(−1)k

k!
x2k

(2k)!
=

√
2
π x

cosx.
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22. (a) Using (7),

J 3
2
(x) =

∞∑

k=0

(−1)k

k!Γ(k+ 3
2 + 1)

(x
2

)2k+3
2

=

√
2
x

∞∑

k=0

(−1)k

k!Γ(k+ 2 + 1
2 )
x2k+2

22k+2

=

√
2
πx

∞∑

k=0

(−1)k

k!
2 22k+1k!

(2k + 3)(2k + 1)!
x2k+2

22k+2

(Γ(k + 2 +
1
2
) = Γ(k + 1 +

1
2
)Γ(k + 1 +

1
2
) then use Exercise 44(b))

=

√
2
π x

∞∑

k=0

(−1)k(2k + 2)
(2k + 3)!

x2k+2 (multiply and divide by (2k + 2))

=

√
2
π x

∞∑

k=1

(−1)k−1(2k)
(2k + 1)!

x2k (change k to k − 1)

=

√
2
π x

∞∑

k=1

(−1)k−1[(2k + 1) − 1]
(2k + 1)!

x2k

=

√
2
π x

∞∑

k=1

(−1)k−1

(2k)!
x2k −

√
2
π x

∞∑

k=1

(−1)k−1

(2k + 1)!
x2k

=

√
2
π x

(
− cos x+

sinx
x

)
.

25. (a) Let u = 2
a e

− 1
2 (at−b), Y (u) = y(t), e−at+b = a2

4 u2; then

dy

dt
=
dY

du

du

dt
= Y ′ (−e−

1
2 (at−b));

d2y

dt2
=

d

du

(
Y ′ (−e−

1
2 (at−b))

)
= Y ′′e−at+b+Y ′a

2
e−

1
2 (at−b).

So

Y ′′e−at+b + Y ′ a

2
e−

1
2 (at−b) + Y e−at+b = 0 ⇒ Y ′′ +

a

2
Y ′e−

1
2 (at−b) + Y = 0,

upon multiplying by eat−b. Using u = 2
ae

− 1
2 (at−b), we get

Y ′′ +
1
u
Y ′ + Y = 0 ⇒ u2Y ′′ + uY ′ + u2Y = 0,

which is Bessel’s equation of order 0.
(b) The general solution of u2Y ′′ + uY ′ + u2Y = 0 is Y (u) = c1J0(u) + c2Y0(u).
But Y (u) = y(t) and u = 2

ae
− 1

2 (at−b), so

y(t) = c1J0(
2
a
e−

1
2 (at−b)) + c2Y0(

2
a
e−

1
2 (at−b)).

(c) (i) If c1 = 0 and c2 6= 0, then

y(t) = c2Y0(
2
a
e−

1
2 (at−b)).

As t → ∞, u→ 0, and Y0(u) → −∞. In this case, y(t) could approach either +∞
or −∞ depending on the sign of c2. y(t) would approach infinity linearly as near
0, Y0(x) ≈ lnx so y(t) ≈ ln

(
2
ae

− 1
2 (at−b)

)
≈ At.

(ii) If c1 6= 0 and c2 = 0, then

y(t) = c1J0(
2
a
e−

1
2 (at−b)).
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As t → ∞, u(t) → 0, J0(u) → 1, and y(t) → c1. In this case the solution is
bounded.
(ii) If c1 6= 0 and c2 6= 0, as t → ∞, u(t) → 0, J0(u) → 1, Y0(u) → −∞. Since Y0

will dominate, the solution will behave like case (i).
It makes sense to have unbounded solutions because eventually the spring wears

out and does not affect the motion. Newton’s laws tell us the mass will continue
with unperturbed momentum, i.e., as t → ∞, y′′ = 0 and so y(t) = c1t + c2, a
linear function, which is unbounded if c1 6= 0.

33. (a) In (13), let u2 = t, 2u du = dt, then

Γ(x) =
∫ ∞

0

tx−1e−t dt =
∫ ∞

0

u2(x−1)e−u2
(2u)du = 2

∫ ∞

0

u2x−1e−u2
du.

(b) Using (a)

Γ(x)Γ(y) = 2
∫ ∞

0

u2x−1e−u2
du2

∫ ∞

0

v2y−1e−v2
dv

= 4
∫ ∞

0

∫ ∞

0

e−(u2+v2)u2x−1v2y−1du dv.

(c) Switching to polar coordinates: u = r cos θ, v = r sin θ, u2 + v2 = r2, dudv =
rdrdθ; for (u, v) varying in the first quadrant (0 ≤ u < ∞ and 0 ≤ v < ∞), we
have 0 ≤ θ ≤ π

2
, and 0 ≤ r < ∞, and the double integral in (b) becomes

Γ(x)Γ(y) = 4
∫ ∞

0

∫ π
2

0

e−r2
(r cos θ)2x−1(r sin θ)2y−1rdrdθ

= 2
∫ π

2

0

(cos θ)2x−1(sin θ)2y−1dθ

=Γ(x+y)︷ ︸︸ ︷
2
∫ ∞

0

r2(x+y)−1e−r2
dr

(use (a) with x+ y in place of x)

= 2Γ(x+ y)
∫ π

2

0

(cos θ)2x−1(sin θ)2y−1dθ,

implying (c).
41. Let I =

∫ π/2

0 sin2k+1 θ dθ. Applying Exercise 33, we take 2x− 1 = 0 and
2y − 1 = 2k + 1, so x = 1

2 and y = k + 1. Then

2I =
Γ(1

2) Γ(k + 1)
Γ(k + 1 + 1

2)
=

√
π k!

(k + 1
2)Γ(k + 1

2 )
=

2
√
π k!

(2k + 1)Γ(k + 1
2 )
.

As in (a), we now use Γ(k + 1
2 ) = (2k)!

22kk!

√
π, simplify, and get

I =
22k(k!)2

(2k + 1)!
.
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Solutions to Exercises 4.8

1. (a) Using the series definition of the Bessel function, (7), Section 4.7, we have

d

dx
[x−pJp(x)] =

d

dx

∞∑

k=0

(−1)k

2pk!Γ(k + p+ 1)

(x
2

)2k

=
∞∑

k=0

(−1)k

2pk!Γ(k + p+ 1)
d

dx

(x
2

)2k

=
∞∑

k=0

(−1)k2k
2pk!Γ(k+ p+ 1)

1
2

(x
2

)2k−1

=
∞∑

k=0

(−1)k

2p(k − 1)!Γ(k+ p+ 1)

(x
2

)2k−1

= −
∞∑

m=0

(−1)m

2pm!Γ(m + p+ 2)

(x
2

)2m+1

(set m = k − 1)

= −x−p
∞∑

m=0

(−1)m

m!Γ(m + p + 2)

(x
2

)2m+p+1

= −x−pJp+1(x).

To prove (7), use (1):

d

dx
[xpJp(x)] = xpJp−1(x) ⇒

∫
xpJp−1(x) dx = xpJp(x) + C.

Now replace p by p+ 1 and get
∫
xp+1Jp(x) dx = xp+1Jp+1(x) + C,

which is (7). Similarly, starting with (2),

d

dx
[x−pJp(x)] = −x−pJp+1(x) ⇒ −

∫
x−pJp+1(x) dx = x−pJp(x) + C

⇒
∫
x−pJp+1(x) dx = −x−pJp(x) + C.

Now replace p by p− 1 and get
∫
x−p+1Jp(x) dx = −x−p+1Jp−1(x) + C,

which is (8).
(b) To prove (4), carry out the differentiation in (2) to obtain

x−pJ ′
p(x) − px−p−1Jp(x) = −x−pJp+1(x) ⇒ xJ ′

p(x) − pJp(x) = −xJp+1(x),

upon multiplying through by xp+1. To prove (5), add (3) and (4) and then divide
by x to obtain

Jp−1(x) − Jp+1(x) = 2J ′
p(x).

To prove (6), subtract (4) from (3) then divide by x.

5.
∫
J1(x) dx = −J0(x) + C, by (8) with p = 1.

9. ∫
J3(x) dx =

∫
x2[x−2J3(x)] dx

x2 = u, x−2J3(x) dx = dv, 2x dx = du, v = −x−2J2(x)

= −J2(x) + 2
∫
x−1J2(x) dx = −J2(x) − 2x−1J1(x) + C

= J0(x) −
2
x
J1(x) −

2
x
J1(x) + C(use (6) with p = 1)

= J0(x) −
4
x
J1(x) + C.
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13. Use (6) with p = 4. Then

J5(x) =
8
x
J4(x) − J3(x)

=
8
x

[
6
x
J3(x) − J2(x)

]
− J3(x) (by (6) with p = 3)

=
(

48
x2

− 1
)
J3(x) −

8
x
J2(x)

=
(

48
x2

− 1
)(

4
x
J2(x) − J1(x)

)
− 8
x
J2(x) (by (6) with p = 2)

=
(

192
x3

− 12
x

)
J2(x) −

(
48
x2

− 1
)
J1(x)

=
12
x

(
16
x2

− 1
)[

2
x
J1(x) − J0(x)

]
−
(

48
x2

− 1
)
J1(x)

(by (6) with p = 1)

= −12
x

(
16
x2

− 1
)
J0(x) +

(
384
x4

− 72
x2

+ 1
)
J1(x).

17. (a) From (17),

Aj =
2

J1(αj)2

∫ 1

0

f(x)J0(αjx)x dx =
2

J1(αj)2

∫ c

0

J0(αjx)x dx

=
2

α2
jJ1(αj)2

∫ cαj

0

J0(s)s ds (let αjx = s)

=
2

α2
jJ1(αj)2

J1(s)s

∣∣∣∣∣

cαj

0

=
2cJ1(αj)
αjJ1(αj)2

.

Thus, for 0 < x < 1,

f(x) =
∞∑

j=1

2cJ1(αj)
αjJ1(αj)2

J0(αjx).

(b) The function f is piecewise smooth, so by Theorem 2 the series in (a) converges
to f(x) for all 0 < x < 1, except at x = c, where the series converges to the average
value f(c+)+f(c−)

2
= 1

2
.

21. (a) Take m = 1/2 in the series expansion of Exercise 20 and you’ll get

√
x = 2

∞∑

j=1

J1/2(αjx)
αj J3/2(αj)

for 0 < x < 1,

where αj is the jth positive zero of J1/2(x). By Example 1, Section 4.7, we have

J1/2(x) =

√
2
π x

sinx.

So
αj = jπ for j = 1, 2, . . . .

(b) We recall from Exercise 11 that

J3/2(x) =

√
2
π x

(
sinx
x

− cos x
)
.
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So the coefficients are

Aj =
2

αj J3/2(αj)
=

2
jπ J3/2(jπ)

=
2

jπ
√

2
π jπ

(
sin jπ

jπ
− cos jπ

)

= (−1)j−1

√
2
j

and the Bessel series expansion becomes, or 0 < x < 1,

√
x =

∞∑

j=1

(−1)j−1

√
2
j
J1/2(αjx).

(c) Writing J1/2(x) in terms of sinx and simplifying, this expansion becomes

√
x =

∞∑

j=1

(−1)j−1

√
2
j
J1/2(αjx)

=
∞∑

j=1

(−1)j−1

√
2
j

√
2

π αj
sinαj

=
2
π

∞∑

j=1

(−1)j−1

j

sin(jπx)√
x

.

Upon multiplying both sides by
√
x, we obtain

x =
2
π

∞∑

j=1

(−1)j−1

j
sin(jπx) for 0 < x < 1,

which is the familiar Fourier sine series (half-range expansion) of the function
f(x) = x.

25. By Theorem 2 with p = 1, we have

Aj =
2

J2(α1,j)2

∫ 1

1
2

J1(α1,jx) dx

=
2

α1,jJ2(α1,j)2

∫ α1,j

α1,j
2

J1(s) ds (let α1,jx = s)

=
2

α1,jJ2(α1,j)2
[−J0(s)

∣∣∣∣
α1,j

α1,j
2

(by (8) with p = 1)

=
−2
[
J0(α1,j) − J0(

α1,j

2
)
]

α1,jJ2(α1,j)2

=
−2
[
J0(α1,j) − J0(

α1,j

2
)
]

α1,jJ0(α1,j)2
,

where in the last equality we used (6) with p = 1 at x = α1,j (so J0(α1,j)+J2(α1,j) =
0 or J0(α1,j) = −J2(α1,j)). Thus, for 0 < x < 1,

f(x) = −2
∞∑

j=1

−2
[
J0(α1,j) − J0(

α1,j

2 )
]

α1,jJ0(α1,j)2
J1(α1,jx).
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29. By Theorem 2 with p = 1, we have

Aj =
1

2 J2(α1,j)2

∫ 2

0

J1(α2,jx/2)x dx

=
2

α2
1,jJ2(α1,j)2

∫ α1,j

0

J1(s)s ds (let α1,jx/2 = s).

Since we cannot evaluate the definite integral in a simpler form, just leave it as it
is and write the Bessel series expansion as

1 =
∞∑

j=1

2
α2

1,jJ2(α1,j)2

[∫ α1,j

0

J1(s)s ds
]
J1(α1,jx/2) for 0 < x < 2.

33. p = 1
2
, y = c1J 1

2
(λx) + c2Y 1

2
(λx). For y to be bounded near 0, we must

take c2 = 0. For y(π) = 0, we must take λ = λj =
α 1

2 ,j

π = j, j = 1, 2, . . . (see
Exercises 21); and so

y = yi = c1,jJ1(
α 1

2 ,j

π
x) = c1,j

√
2
πx

sin(jx)

(see Example 1, Section 4.7).

One more formula. To complement the integral formulas from this section,
consider the following interesting formula. Let a, b, c, and p be positive real numbers
with a 6= b. Then

∫ c

0

Jp(ax) Jp(bx)x dx =
c

b2 − a2

[
aJp(bc)Jp−1(ac) − bJp(ac)Jp−1(bc)

]
.

To prove this formula, we note that y1 = Jp(ax) satisfies

x2y′′1 + xy′1 + (a2x2 − p2)y1 = 0

and y2 = Jp(bx) satisfies

x2y′′2 + xy′2 + (b2x2 − p2)y2 = 0.

Write these equations in the form

(
xy′1
)′ + y′1 +

a2x2 − p2

x
y1 = 0

and
(
xy′2
)′ + y′2 +

b2x2 − p2

x
y1 = 0.

Multiply the first by y2 and the second by y − 1, subtract, simplify, and get

y2
(
xy′1
)′ − y1

(
xy′2
)′ = y1y2(b2 − a2)x.

Note that
y2
(
xy′1
)′ − y1

(
xy′2
)′ =

d

dx

[
y2(xy′1) − y1(xy′2)

]
.

So
(b2 − a2)y1y2x =

d

dx

[
y2(xy′1) − y1(xy′2)

]
,

and, after integrating,

(b2 − a2)
∫ c

0

y1(x)y2(x)x dx =
[
y2(xy′1) − y1(xy′2)

]∣∣∣
c

0
= x

[
y2y

′
1 − y1y

′
2

]∣∣∣
c

0
.
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On the left, we have the desired integral times (b2 − a2) and, on the right, we have

c
[
Jp(bc)aJ ′

p(ac) − bJp(ac)J ′
p(bc)

]
− c
[
aJp(0)J ′

p(0) − bJp(0)J ′
p(0)

]
.

Since Jp(0) = 0 if p > 0 and J ′
0(x) = −J1(x), it follows that Jp(0)J ′

p(0) −
Jp(0)J ′

p(0) = 0 for all p > 0. Hence the integral is equal to

I =
∫ c

0

Jp(ax) Jp(bx)x dx =
c

b2 − a2

[
aJp(bc)J ′

p(ac) − bJp(ac)J ′
p(bc)

]
.

Now using the formula

J ′
p(x) =

1
2
[
Jp−1(x) − Jp+1(x)

]
,

we obtain

I =
c

2(b2 − a2)
[
aJp(bc)

(
Jp−1(ac) − Jp+1(ac)

)
− bJp(ac)

(
Jp−1(bc) − Jp+1(bc)

)]
.

Simplify with the help of the formula

Jp+1(x) =
2p
x
Jp(x) − Jp−1(x)

and you get

I =
c

2(b2 − a2)

[
aJp(bc)

(
Jp−1(ac) − (

2p
ac
Jp(ac) − Jp−1(ac))

)

−bJp(ac)
(
Jp−1(bc) − (

2p
bc
Jp(bc) − Jp−1(bc))

)]

=
c

b2 − a2

[
aJp(bc)Jp−1(ac) − bJp(ac)Jp−1(bc)

]
,

as claimed.
Note that this formula implies the orthogonality of Bessel functions. In fact its

proof mirrors the proof of orthogonality from Section 4.8.
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Solutions to Exercises 4.9

1. We have

J0(x) =
1
π

∫ π

0

cos
(
− x sin θ

)
dθ =

1
π

∫ π

0

cos
(
x sin θ

)
dθ.

So
J0(0) =

1
π

∫ π

0

dθ = 1.

For n 6= 0,

Jn(x) =
1
π

∫ π

0

cos
(
nθ − x sin θ

)
dθ;

so
Jn(0) =

1
π

∫ π

0

cos nθ dθ = 0.

5. All the terms in the series

1 = J0(x)2 + 2
∞∑

n=1

Jn(x)2

are nonnegative. Since they all add-up to 1, each must be less than or equal to 1.
Hence

J0(x)2 ≤ 1 ⇒ |J0(x)| ≤ 1

and, for n ≥ 2,

2Jn(x)2 ≤ 1 ⇒ |Jn(x)| ≤ 1√
2
.
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Solutions to Exercises 5.1
1. Start with Laplace’s equation in spherical coordinates

(1)
∂2u

∂r2
+

2
r

∂u

∂r
+

1
r2

(∂2u

∂θ2
+ cot θ

∂u

∂θ
+ csc2 θ

∂2u

∂φ2

)
= 0,

where 0 < r < a, 0 < φ < 2π, and 0 < θ < π. To separate variable, take a product
solution of the form

u(r, θ, φ) = R(r)Θ(θ)Φ(φ) = RΘΦ,

and plug it into (1). We get

R′′ΘΦ +
2
r
R′ΘΦ +

1
r2

(
RΘ′′Φ + cot θRΘ′Φ + csc2 θ RΘΦ′′

)
= 0.

Divide by RΘΦ and multiply by r2:

r2
R′′

R
+ 2r

R′

R
+

Θ′′

Θ
+ cot θ

Θ′

Θ
+ csc2 θ

Φ′′

Φ
= 0.

Now proceed to separate the variables:

r2
R′′

R
+ 2r

R′

R
= −

(
Θ′′

Θ
+ cot θ

Θ′

Θ
+ csc2 θ

Φ′′

Φ

)
.

Since the left side is a function of r and the right side is a function of φ and θ, each
side must be constant and the constants must be equal. So

r2
R′′

R
+ 2r

R′

R
= µ

and
Θ′′

Θ
+ cot θ

Θ′

Θ
+ csc2 θ

Φ′′

Φ
= −µ.

The equation in R is equivalent to (3). Write the second equation in the form

Θ′′

Θ
+ cot θ

Θ′

Θ
+ µ = − csc2 θ

Φ′′

Φ
;

sin2 θ

(
Θ′′

Θ
+ cot θ

Θ′

Θ
+ µ

)
= −Φ′′

Φ
.

This separates the variables θ and φ, so each side must be constant and the constant
must be equal. Hence

sin2 θ

(
Θ′′

Θ
+ cot θ

Θ′

Θ
+ µ

)
= ν

and

ν = −Φ′′

Φ
⇒ Φ′′ + νΦ = 0.

We expect 2π-periodic solutions in Φ, because φ is and azimuthal angle. The only
way for the last equation to have 2π-periodic solutions that are essentially different
is to set ν = m2, where m = 0, 1, 2, . . .. This gives the two equations

Φ′′ +m2Φ = 0

(equation (5)) and

sin2 θ

(
Θ′′

Θ
+ cot θ

Θ′

Θ
+ µ

)
= m2,

which is equivalent to (6).
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Solutions to Exercises 5.2
1. This problem is similar to Example 2. Note that f is its own Legendre series:

f(θ) = 20 (P1(cos θ) + P0(cos θ)).

So really there is no need to compute the Legendre coefficients using integrals. We
simply have A0 = 20 and A1 = 20, and the solution is

u(r, θ) = 20 + 20 r cos θ.

3. We have

u(r, θ) =
∞∑

n=0

Anr
nPn(cos θ),

with

An =
2n+ 1

2

∫ π

0

f(θ)Pn(cos θ) sin θ dθ

=
2n+ 1

2

∫ π
2

0

100Pn(cos θ) sin θ dθ +
2n+ 1

2

∫ π

π
2

20Pn(cos θ) sin θ dθ.

Let x = cos θ, dx = − sin θ dθ. Then

An = 50(2n+ 1)
∫ 1

0

Pn(x) dx+ 10 (2n+ 1)
∫ 0

−1

Pn(x) dx.

The case n = 0 is immediate by using P0(x) = 1,

A0 = 50
∫ 1

0

dx+ 10
∫ 0

−1

dx = 60.

For n > 0, the integrals are not straightforward and you need to refer to Exercise 10,
Section 5.6, where they are evaluated. Quoting from this exercise, we have

∫ 1

0

P2n(x)dx = 0, n = 1, 2, . . . ,

and ∫ 1

0

P2n+1(x) dx =
(−1)n(2n)!

22n+1(n!)2(n + 1)
, n = 0, 1, 2, . . . .

Since P2n(x) is an even function, then, for n > 0,
∫ 0

−1

P2n(x) dx =
∫ 1

0

P2n(x) dx = 0.

Hence for n > 0,
A2n = 0.

Now P2n+1(x) is an odd function, so
∫ 0

−1

P2n+1(x) dx = −
∫ 1

0

P2n+1(x) dx = − (−1)n(2n)!
22n+1(n!)2(n+ 1)

.

Hence for n = 0, 1, 2, . . .,

A2n+1 = 50(4n+ 3)
∫ 1

0

P2n+1(x) dx+ 10 (4n+ 3)
∫ 0

−1

P2n+1(x) dx

= 50(4n+ 3)
(−1)n(2n)!

22n+1(n!)2(n+ 1)
− 10 (4n+ 3)

(−1)n(2n)!
22n+1(n!)2(n+ 1)

= 40 (4n+ 3)
(−1)n(2n)!

22n+1(n!)2(n + 1)

= 20 (4n+ 3)
(−1)n(2n)!

22n(n!)2(n + 1)
.
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So

u(r, θ) = 60 + 20
∞∑

n=0

(4n+ 3)
(−1)n(2n)!

22n(n!)2(n + 1)
r2n+1P2n+1(cos θ).

5. Solution We have

u(r, θ) =
∞∑

n=0

Anr
nPn(cos θ),

with

An =
2n+ 1

2

∫ π

0

f(θ)Pn(cos θ) sin θ dθ

=
2n+ 1

2

∫ π
2

0

cos θ Pn(cos θ) sin θ dθ

=
2n+ 1

2

∫ 1

0

xPn(x) dx,

where, as in Exercise 3, we made the change of variables x = cos θ. At this point,
we have to appeal to Exercise 11, Section 5.6, for the evaluation of this integral.
(The cases n = 0 and 1 can be done by referring to the explicit formulas for the
Pn, but we may as well at this point use the full result of Exercise 11, Section 5.6.)
We have ∫ 1

0

xP0(x) dx =
1
2
;
∫ 1

0

xP1(x) dx =
1
3
;

∫ 1

0

xP2n(x) dx =
(−1)n+1(2n− 2)!

22n((n− 1)!)2n(n+ 1)
; n = 1, 2, . . . ;

and ∫ 1

0

xP2n+1(x) dx = 0; n = 1, 2, . . . .

Thus,

A0 =
1
2

1
2

=
1
4
; A1 =

3
2

1
3

=
1
2
; A2n+1 = 0, n = 1, 2, 3, . . . ;

and for n = 1, 2, . . .,

A2n =
2(2n) + 1

2
(−1)n+1(2n− 2)!

22n((n − 1)!)2n(n + 1)
= (4n+ 1)

(−1)n+1(2n− 2)!
22n+1((n− 1)!)2n(n+ 1)

.

So

u(r, θ) =
1
4

+
1
2
r cos θ +

∞∑

n=1

(−1)n+1(4n+ 1)(2n− 2)!
22n+1((n− 1)!)2n(n+ 1)

r2nP2n(cos θ).
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Solutions to Exercises 5.3
1. (c) Starting with (4) with n = 2, we have

Y2,m(θ, φ) =

√
5
4π

(2 −m)!
(2 +m)!

Pm
2 (cos θ)eimφ,

where m = −2, −1, 0, 1, 2. To compute the spherical harmonics explicitely, we will
need the explicit formula for the associated Legendre functions from Example 1,
Section 5.7. We have

P−2
2 (x) = 1

8
(1 − x2); P−1

2 (x) = 1
2
x
√

1 − x2; P 0
2 (x) = P2(x) = 3x2−1

2
;

P 1
2 (x) = −3x

√
1 − x2; P 2

2 (x) = 3(1 − x2).

So

Y2,−2(θ, φ) =

√
5
4π

(2 + 2)!
(2 − 2)!

P−2
2 (cos θ)e−2iφ

=

√
5
4π

4!
1

1
8

=sin2 θ︷ ︸︸ ︷
(1 − cos2 θ) e−2iφ

=

√
30
π

1
8

sin2 θe−2iφ =
3
4

√
5

6π
sin2 θe−2iφ;

Y2,−1(θ, φ) =

√
5
4π

(2 + 1)!
(2 − 1)!

P−1
2 (cos θ)e−iφ

=

√
5
4π

3!
1!

1
2

cos θ

=sin θ︷ ︸︸ ︷√
1 − cos2 θ e−iφ

=

√
15
2π

1
2

cos θ sin θe−iφ =
3
2

√
5

6π
cos θ sin θe−iφ.

Note that since 0 ≤ θ ≤ π, we have sin θ ≥ 0, and so the equality
√

1 − cos2 θ = sin θ
that we used above does hold. Continuing the list of spherical harmonics, we have

Y2,0(θ, φ) =

√
5
4π

(2 + 0)!
(2 − 0)!

P2(cos θ)e−iφ

=

√
5
4π

3 cos2 θ − 1
2

=
1
4

√
5
π

(3 cos2 θ − 1).

The other spherical harmonics are computed similarly; or you can use the identity
in Exercise 4. We have

Y2,2 = (−1)2 Y2,−2 = Y2,−2 =
3
4

√
5

6π
sin2 θe−2iφ

=
3
4

√
5

6π
sin2 θe2iφ.

In the preceding computation, we used two basic properties of the operation of
complex conjugation:

az = az if a is a real number;

and
eia = e−ia if a is a real number.



84 Chapter 5 Partial Differential Equations in Spherical Coordinates

Finally,

Y2,1 = (−1)1 Y2,−1 = −Y2,−1 = −3
2

√
5

6π
cos θ sin e−iφ

= −3
2

√
5

6π
cos θ sin eiφ.

�

5. (a) If m = 0, the integral becomes
∫ 2π

0

φdφ =
1
2
φ2
∣∣∣
2π

0
= 2π2.

Now suppose that m 6= 0. Using integration by parts, with u = φ, du = dφ, dv =
e−imφ, v = 1

−ime
−imφ, we obtain:

∫ 2π

0

=u︷︸︸︷
φ

=dv︷ ︸︸ ︷
e−imφ dφ =

[
φ

1
−im e−imφ

∣∣∣∣
2π

0

+
1
im

∫ 2π

0

e−imφ dφ

We have
e−imφ

∣∣
φ=2π

=
[
cos(mφ) − i sin(mφ)

∣∣∣
φ=2π

= 1,

and
∫ 2π

0

e−imφ dφ =
∫ 2π

0

(
cosmφ − i sinmφ

)
dφ

=
{

0 if m 6= 0,
2π if m = 0

So if m 6= 0, ∫ 2π

0

φ e−imφ dφ =
2π
−im

=
2π
m
i.

Putting both results together, we obtain
∫ 2π

0

φ e−imφ dφ =
{

2π
m
i if m 6= 0,

2π2 if m = 0.

(b) Using n = 0 and m = 0 in (9), we get

A0,0 =
1
2π

√
1
4π

0!
0!

=2π2

︷ ︸︸ ︷∫ 2π

0

φdφ

∫ π

0

P0(cos θ) sin θ dθ

= π
1

2
√
π

∫ π

0

1√
2

sin θ dθ

= π
1

2
√
π

=2︷ ︸︸ ︷∫ π

0

sin θ dθ =
√
π

Using n = 1 and m = 0 in (9), we get

A1,0 =
1
2π

√
3
4π

1
1

∫ 2π

0

φ dφ

∫ π

0

P1(cos θ) sin θ dθ

=
1
4π

√
3
π

(2π2)

=0︷ ︸︸ ︷∫ 1

−1

P1(x) dx

= 0,
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where we used
∫ 1

−1
P1(x) dx = 0, because P1(x) = x is odd. Using n = 1 and

m = −1 in (9), and appealing to the formulas for the associated Legendre functions
from Section 5.7, we get

A1,−1 =
1
2π

√
3
4π

2!
0!

= 2π
(−1) i

︷ ︸︸ ︷∫ 2π

0

φ eiφ dφ

∫ π

0

P−1
1 (cos θ) sin θ dθ

= −i
√

3
2π

1
2

= π
2︷ ︸︸ ︷∫ π

0

sin2 θ dθ (P−1
1 (cos θ) =

1
2

sin θ)

= − i

4

√
3π
2
.

Using n = 1 and m = 1 in (9), and appealing to the formulas for the associated
Legendre functions from Section 5.7, we get

A1,1 =
1
2π

√
3
4π

0!
2!

= 2π
1 i︷ ︸︸ ︷∫ 2π

0

φ e−iφ dφ

∫ π

0

P 1
1 (cos θ) sin θ dθ

= i

√
3
8π

=−π
2︷ ︸︸ ︷∫ π

0

− sin2 θ dθ (P 1
1 (cos θ) = − sin θ)

= − i

4

√
3π
2
.

(c) The formula for An,0 contains the integral
∫ π

0 P 0
n(cos θ) sin θ dθ. But P 0

n = Pn,
the nth Legendre polynomial; so

∫ π

0

P 0
n(cos θ) sin θ dθ =

∫ π

0

Pn(cos θ) sin θ dθ

=
∫ 1

−1

Pn(x) dx

= 0 (n = 1, 2, . . .),

where the last equality follows from the orthogonality of Legendre polynomials (take
m = 0 in Theorem 1, Section 5.6, and note that P0(x) = 1, so

∫ 1

−1
(1)Pn(x) dx = 0,

as desired.)

9. We apply (11). Since f is its own spherical harmonics series, we have

u(r, θ, φ) = Y0,0(θ, φ) =
1

2
√
π
. �
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Solutions to Exercises 5.4

5. We apply Theorem 3 and note that since f depends only on r and not on θ
or φ, the series expansion should also not depend on θ or φ. So all the coefficients
in the series are 0 except for the coefficients Aj,0,0, which we will write as Aj for
simplicity. Using (16) with m = n = 0, a = 1, f(r, θ, φ) = 1, and Y0,0(θ, φ) = 1

2
√

π
,

we get

Aj =
2

j21(α 1
2 , j)

∫ 1

0

∫ 2π

0

∫ π

0

j0(λ0, j r)
1

2
√
π
r2 sin θ dθ dφ dr

=
1√

π j21(α 1
2 , j)

=2π︷ ︸︸ ︷∫ 2π

0

dφ

=2︷ ︸︸ ︷∫ π

0

sin θ dθ
∫ 1

0

j0(λ0, j r)r2 dr

=
4
√
π

j21(α 1
2 , j)

∫ 1

0

j0(λ0, j r)r2 dr,

where λ0, j = α 1
2 , j , the jth zero of the Bessel function of order 1

2
. Now

J1/2(x) =

√
2
πx

sinx

(see Example 1, Section 4.7), so the zeros of J1/2 are precisely the zeros of sinx,
which are jπ. Hence

λ0, j = α 1
2 , j = jπ.

Also, recall that

j0(x) =
sinx
x

(Exercises 38, Section 4.8), so

∫ 1

0

j0(λ0, j r)r2 dr =
∫ 1

0

j0(jπ r)r2 dr =
∫ 1

0

sin(jπr)
jπ r

r2 dr

=
1
jπ

= (−1)j+1

jπ︷ ︸︸ ︷∫ 1

0

sin(jπ r)r dr

=
(−1)j+1

(jπ)2
,

where the last integral follows by integration by parts. So,

Aj =
4
√
π

j21(jπ)
(−1)j+1

(jπ)2
.

This can be simplified by using a formula for j1. Recall from Exercise 38, Sec-
tion 4.7,

j1(x) =
sinx− x cosx

x2
.

Hence

j21(jπ) =
[
sin(jπ) − jπ cos(jπ)

(jπ)2

]2
=
[
− cos(jπ)

jπ

]2
=
[
(−1)j+1

jπ

]2
=

1
(jπ)2

,

and
Aj = 4(−1)j+1√π,
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and so the series expansion becomes: for 0 < r < 1,

1 =
∞∑

j=1

4(−1)j+1√π
sin jπr
jπr

Y0,0(θ, φ)

=
∞∑

j=1

4(−1)j+1√π
sin jπr
jπr

1
2
√
π

=
∞∑

j=1

2(−1)j+1 sin jπr
jπr

.

It is interesting to note that this series is in fact a half range sine series expansion.
Indeed, multiplying both sides by r, we get

r =
2
π

∞∑

j=1

(−1)j+1 sin jπr
j

(0 < r < 1),

which is a familiar sines series expansion (compare with Example 1, Section 2.4).�
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Solutions to Exercises 5.5

1. Putting n = 0 in (9), we obtain

P0(x) =
1
20

0∑

m=0

(−1)m (0 − 2m)!
m!(0 −m)!(0 − 2m)!

x0−2m .

The sum contains only one term corresponding to m = 0. Thus

P0(x) = (−1)0
0!

0!0!0!
x0 = 1,

because 0! = 1. For n = 1, formula (9) becomes

P1(x) =
1
21

M∑

m=0

(−1)m (2 − 2m)!
m!(1 −m)!(1 − 2m)!

x1−2m,

where M = 1−1
2 = 0. Thus the sum contains only one term corresponding to m = 0

and so
P1(x) =

1
21

(−1)0
2!

0!1!1!
x1 = x.

For n = 2, we have M = 2
2 = 1 and (9) becomes

P2(x) =
1
22

1∑

m=0

(−1)m (4 − 2m)!
m!(2 −m)!(2 − 2m)!

x2−2m

=
1
22

m=0︷ ︸︸ ︷
(−1)0

4!
0!2!2!

x2 +
1
22

m=1︷ ︸︸ ︷
(−1)1

(4 − 2)!
1!1!0!

x0

=
1
4
6x2 +

1
4
(−1)2 =

3
2
x2 − 1

2
.

For n = 3, we have M = 3−1
2 = 1 and (9) becomes

P3(x) =
1
23

1∑

m=0

(−1)m (6 − 2m)!
m!(3 −m)!(3 − 2m)!

x3−2m

=
1
23

(−1)0
6!

0!3!3!
x3 +

1
23

(−1)1
4!

1!2!1!
x1

=
5
2
x3 − 3

2
x.

For n = 4, we have M = 4
2

= 2 and (9) becomes

P4(x) =
1
24

2∑

m=0

(−1)m (8 − 2m)!
m!(4 −m)!(4 − 2m)!

x4−2m

=
1
24

8!
0!4!4!

x4 − 1
24

6!
1!3!2!

x2 +
1
24

4!
2!2!0!

x0

=
1
8
(35x4 − 30x2 + 3)

5. Using the explicit formulas for the Legendre polynomials, we find
∫ 1

−1

P3(x) dx =
∫ 1

−1

(
5
2
x3 − 3

2
x) dx

= (
5
8
x4 − 3

4
x2)
∣∣∣∣
1

−1

= 0
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Another faster way to see the answer is to simply note that P3 is an odd function, so
its integral over any symmetric interval is 0. There is yet another more important
reason for this integral to equal 0. In fact,

∫ 1

−1

Pn(x) dx = 0 for all n 6= 0.

This is a consequence of orthogonality that you will study in Section 5.6.

9. This is Legendre’s equation with n(n + 1) = 30 so n = 5. Its general solution
is of the form

y = c1P5(x) + c2Q5(x)

= c1
1
8
(63x5 − 70x3 + 15x) + c2

(
1 − 15x2 + 30x4 + · · ·

)

= c1(63x5 − 70x3 + 15x) + c2
(
1 − 15x2 + 30x4 + · · ·

)

In finding P5(x), we used the given formulas in the text. In finding the first few
terms of Q5(x), we used (3) with n = 5. (If you are comparing with the answers in
your textbook, just remember that c1 and c2 are arbitrary constants.)

13. This is Legendre’s equation with n(n + 1) = 6 or n = 2. Its general solution
is y = c1P2(x) + c2Q2(x). The solution will be bounded on [−1, 1] if and only
if c2 = 0; that’s because P2 is bounded in [−1, 1] but Q2 is not. Now, using
P2(x) = 1

2(3x2 − 1), we find

y(0) = c1P2(0) + c2Q2(0) = −c1
2

+ c2Q2(0)

If c2 = 0, then c1 = 0 and we obtain the zero solution, which is not possible (since
we are given y′(0) = 1, the solution is not identically 0). Hence c2 6= 0 and the
solutions is not bounded.

17. (To do this problem we can use the recurrence relation for the coefficients,
as we have done below in the solution of Exercise 19. Instead, we offer a different
solution based on an interesting observation.) This is Legendre’s equation with
n(n+1) = 3

4 or n = 1
2 . Its general solution is still given by (3) and (4), with n = 1

2 :

y = c1y1 + c2y2,

where

y1(x) = 1 −
1
2 (1

2 + 1)
2!

x2 +
(1
2 − 2)1

2 (1
2 + 1)(1

2 + 3)
4!

x4 + · · ·

= 1 − 3
8
x2 − 21

128
x4 + · · ·

and

y2(x) = x−
(1
2 − 1)(1

2 + 2)
3!

x3 +
(1
2 − 3)(1

2 − 1)(1
2 + 2)(1

2 + 4)
5!

x5 + · · ·

= x+
5
24
x3 +

15
128

x5 + · · ·

Since y1(0) = 1 and y2(0) = 0, y′1(0) = 0 and y′2(0) = 1 (differentiate the series term
by term, then evaluate at x = 0), it follows that the solution is y = y1(x) + y2(x),
where y1 and y2 are as describe above.

29. (a) Since
∣∣∣(x+ i

√
1 − x2 cos θ)n

∣∣∣ =
∣∣∣x+ i

√
1 − x2 cos θ

∣∣∣
n

,
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it suffices to prove the inequality
∣∣∣x+ i

√
1 − x2 cos θ

∣∣∣ ≤ 1,

which in turn will follow from
∣∣∣x+ i

√
1 − x2 cos θ

∣∣∣
2

≤ 1.

For any complex number α+ iβ, we have |α+ iβ|2 = α2 + β2. So

∣∣∣x+ i
√

1 − x2 cos θ
∣∣∣
2

= x2 + (
√

1 − x2 cos θ)2

= x2 + (1 − x2) cos2 θ
≤ x2 + (1 − x2) = 1,

which proves the desired inequality.
(b) Using Laplace’s formula, we have, for −1 ≤ x ≤ 1,

|Pn(x)| =
1
π

∣∣∣∣
∫ π

0

(x + i
√

1 − x2 cos θ)n dθ

∣∣∣∣

≤ 1
π

∫ π

0

∣∣∣(x+ i
√

1 − x2 cos θ)n
∣∣∣ dθ

≤ 1
π

∫ π

0

dθ (by (a))

= 1
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Solutions to Exercises 5.6

1. Bonnet’s relation says: For n = 1, 2, . . . ,

(n+ 1)Pn+1(x) + nPn−1(x) = (2n+ 1)xPn(x).

We have P0(x) = 1 and P1(x) = x. Take n = 1, then

2P2(x) + P0(x) = 3xP1(x),

2P2(x) = 3x · x− 1,

P2(x) =
1
2
(3x2 − 1).

Take n = 2 in Bonnet’s relation, then

3P3(x) + 2P1(x) = 5xP2(x),

3P3(x) = 5x
(1
2
(3x2 − 1)

)
− 2x,

P3(x) =
5
2
x3 − 3

2
x.

Take n = 3 in Bonnet’s relation, then

4P4(x) + 3P2(x) = 7xP3(x),

4P4(x) = 7x
(5
2
x3 − 3

2
x
)
− 3

2
(
x2 − 1

)
,

P4(x) =
1
4

[
35
2
x4 − 15x2 +

3
2

]
.

5. By Bonnet’s relation with n = 3,

7xP3(x) = 4P4(x) + 3P2(x),

xP3(x) =
4
7
P4(x) +

3
7
P2(x).

So
∫ 1

−1

xP2(x)P3(x) dx =
∫ 1

−1

(
4
7
P4(x) +

3
7
P2(x)

)
P2(x) dx

=
4
7

∫ 1

−1

P4(x)P2(x) dx+
3
7

∫ 1

−1

[P2(x)]2 dx

= 0 +
3
7

2
5

=
6
35
,

where we have used Theorem 1(i) and (ii) to evaluate the last two integrals.
9. (a) Write (4) in the form

(2n+ 1)Pn(t) = P ′
n+1(t) − P ′

n−1(t).

Integrate from x to 1,

(2n+ 1)
∫ 1

x

Pn(t) dt =
∫ 1

x

P ′
n+1(t) dt−

∫ 1

x

P ′
n−1(t) dt

= Pn+1(t)
∣∣∣
1

x
− Pn−1(t)

∣∣∣
1

x

=
(
Pn−1(x) − Pn+1(x)

)
+
(
Pn+1(1) − Pn−1(1)

)
.
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By Example 1, we have Pn+1(1) − Pn−1(1) = 0. So for n = 1, 2, . . .

∫ 1

x

Pn(t) dt =
1

2n+ 1
[Pn−1(x) − Pn+1(x)] .

(b) First let us note that because Pn is even when is even and odd when is odd, it
follows that Pn(−1) = (−1)nPn(1) = (−1)n. Taking x = −1 in (a), we get

∫ 1

−1

Pn(t) dt =
1

2n+ 1
[Pn−1(−1) − Pn+1(−1)] = 0,

because n−1 and n+1 are either both even or both odd, so Pn−1(−1) = Pn+1(−1).
(c) We have

0 =
∫ 1

−1

Pn(t) dt =
∫ x

−1

Pn(t) dt+
∫ 1

x

Pn(t) dt.

So
∫ x

−1

Pn(t) dt = −
∫ 1

x

Pn(t) dt

= − 1
2n+ 1

[Pn−1(x) − Pn+1(x)]

=
1

2n+ 1
[Pn+1(x) − Pn−1(x)]

13. We will use Dnf to denote the nth derivative of f . Using Exercise 12,

∫ 1

−1

(1 − x2)P13(x) dx =
(−1)13

213(13)!

∫ 1

−1

D13[(1 − x2)] (x2 − 1)13 dx = 0

because D13[(1 − x2)] = 0.

17. Using Exercise 12,

∫ 1

−1

ln(1 − x)P2(x) dx =
(−1)2

222!

∫ 1

−1

D2[ln(1 − x)] (x2 − 1)2 dx

=
1
8

∫ 1

−1

−1
(1 − x)2

(x− 1)2(x+ 1)2 dx

=
−1
8

∫ 1

−1

(x+ 1)2 dx =
−1
24

(x+ 1)3
∣∣∣
1

−1
=

−1
3
.

21. For n > 0, we have

Dn[ln(1 − x)] =
−(n − 1)!
(1 − x)n

. So
∫ 1

−1

ln(1 − x)Pn(x) dx =
(−1)n

2nn!

∫ 1

−1

Dn[ln(1 − x)] (x2 − 1)n dx

=
(−1)n+1(n− 1)!

2nn!

∫ 1

−1

(x+ 1)n(x− 1)n

(1 − x)n
dx

=
−1
2nn

∫ 1

−1

(x+ 1)n dx =
−1

2nn(n+ 1)
(x+ 1)n+1

∣∣∣
1

−1

=
−2

n(n+ 1)
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For n = 0, we use integration by parts. The integral is a convergent improper
integral (the integrand has a problem at 1)

∫ 1

−1

ln(1 − x)P0(x) dx =
∫ 1

−1

ln(1 − x) dx

= −(1 − x) ln(1 − x) − x
∣∣∣
1

−1
= −2 + 2 ln2.

To evaluate the integral at x = 1, we used limx→1(1 − x) ln(1 − x) = 0.
29. Call the function in Exercise 28 g(x). Then

g(x) =
1
2

(|x|+ x) =
1
2

(|x|+ P1(x)) .

Let Bk denote the Legendre coefficient of g and Ak denote the Legendre coefficient
of f(x) = |x|, for −1 < x < 1. Then, because P1(x) is its own Legendre series, we
have

Bk =

{
1
2Ak if k 6= 1
1
2 (Ak + 1) if k = 1

Using Exercise 27 to compute Ak, we find

B0 =
1
2
A0 =

1
4
, B1 =

1
2

+
1
2
A1 =

1
2

+ 0 =
1
2
, B2n+1 = 0, n = 1, 2, . . . ,

and

B2n =
1
2
A2n =

(−1)n+1(2n− 2)!
22n+1((n − 1)!)2n

(
4n+ 1
n+ 1

)
.
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Solutions to Exercises 6.1

1. Let fj(x) = cos(jπx), j = 0, 1, 2, 3, and gj(x) = sin(jπx), j = 1, 2, 3. We
have to show that

∫ 2

0
fj(x)gk(x) dx = 0 for all possible choices of j and k. If j = 0,

then ∫ 2

0

fj(x)gk(x) dx =
∫ 2

0

sinkπx dx =
−1
kπ

cos(kπx)
∣∣∣
2

0
= 0.

If j 6= 0, and j = k, then using the identity sinα cosα = 1
2 sin 2α,

∫ 2

0

fj(x)gj(x) dx =
∫ 2

0

cos(jπx) sin(jπx) dx

=
1
2

∫ 2

0

sin(2jπx) dx

=
−1
4jπ

cos(2jπx)
∣∣∣
2

0
= 0.

If j 6= 0, and j 6= k, then using the identity

sinα cos β =
1
2
(
sin(α+ β) + sin(α− β)

)
,

we obtain
∫ 2

0

fj(x)gk(x) dx =
∫ 2

0

sin(kπx) cos(jπx) dx

=
1
2

∫ 2

0

(
sin(k + j)πx + sin(k − j)πx

)
dx

=
−1
2π

( 1
k + j

cos(k + j)πx +
1

k − j
cos(k − j)πx

)∣∣∣
2

0
= 0.

5. Let f(x) = 1, g(x) = 2x, and h(x) = −1 + 4x. We have to show that
∫ 1

−1

f(x)g(x)w(x) dx = 0,
∫ 1

−1

f(x)h(x)w(x) dx = 0,
∫ 1

−1

g(x)h(x)w(x) dx = 0.

Let’s compute:
∫ 1

−1

f(x)g(x)w(x) dx =
∫ 1

−1

2x
√

1 − x2 dx = 0,

because we are integrating an odd function over a symmetric interval. For the
second integral, we have
∫ 1

−1

f(x)h(x)w(x) dx =
∫ 1

−1

(−1 + 4x2)
√

1 − x2 dx

=
∫ π

0

(−1 + 4 cos2 θ) sin2 θ dθ

(x = cos θ, dx = − sin θ dθ, sin θ ≥ 0 for 0 ≤ θ ≤ π.)

= −
∫ π

0

sin2 θ dθ + 4
∫ π

0

(cos θ sin θ)2 dθ

= −

= π
2︷ ︸︸ ︷∫ π

0

1 − cos 2θ
2

dθ+4
∫ π

0

(1
2

sin(2θ)
)2
dθ

= −π
2

+

= π
2︷ ︸︸ ︷∫ π

0

1 − cos(4θ)
2

dθ = 0



Section 6.2 Sturm-Liouville Theory 95

For the third integral, we have
∫ 1

−1

g(x)h(x)w(x) dx =
∫ 1

−1

2x(−1 + 4x2)
√

1 − x2 dx = 0,

because we are integrating an odd function over a symmetric interval.

9. In order for the functions 1 and a+ bx+ x2 to be orthogonal, we must have
∫ 1

−1

1 · (a+ bx+ x2) dx = 0

Evaluating the integral, we find

ax+
b

2
x2 +

1
3
x3
∣∣∣
1

−1
= 2a+

2
3

= 0

a = −1
3
.

In order for the functions x and 1
3 + bx+ x2 to be orthogonal, we must have

∫ 1

−1

1 · (1
3

+ bx+ x2)x dx = 0

Evaluating the integral, we find

1
6
x2 +

b

3
x3 +

1
4
x4
∣∣∣
1

−1
=

b

3
= 0

b = 0.

13. Using Theorem 1, Section 5.6, we find the norm of Pn(x) to be

‖Pn‖ =
(∫ 1

−1

Pn(x)2 dx
)1

2

=
(

2
2n+ 1

) 1
2

=
√

2√
2n+ 1

.

Thus the orthonormal set of functions obtained from the Legendre polynomials is
√

2√
2n+ 1

Pn(x), n = 0, 2, . . . .

17. For Legendre series expansions, the inner product is defined in terms of
integration against the Legendre polynomials. That is,

(f, Pj) =
∫ 1

−1

f(x)Pj(x) dx =
2

2j + 1
Aj

where Aj is the Legendre coefficient of f (see (7), Section 5.6). According to the
generalized Parseval’s identity, we have

∫ 1

−1

f2(x) dx =
∞∑

j=0

|(f, Pj)|2

‖Pj‖2

=
∞∑

j=0

(
2

2j + 1
Aj

)2 2
2j + 1

=
∞∑

j=0

2
2j + 1

A2
j .

(The norm ‖Pj‖ is computed in Exercise 13.)
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Solutions to Exercises 6.2

1. Sturm-Liouville form:
(
xy′
)′ + λy = 0, p(x) = x, q(x) = 0, r(x) = 1. Singular

problem because p(x) = 0 at x = 0.

5. Divide the equation through by x2 and get y′′

x − y′

x2 + λy
x = 0. Sturm-Liouville

form:
(

1
x
y′
)′ + λy

x
= 0, p(x) = 1

x
, q(x) = 0, r(x) = 1

x
. Singular problem because

p(x) and r(x) are not continuous at x = 0.

9. Sturm-Liouville form:
(
(1−x2) y′

)′+λy = 0, p(x) = 1−x2, q(x) = 0, r(x) = 1.
Singular problem because p(±1) = 0.

13. Before we proceed with the solution, we can use our knowledge of Fourier
series to guess a family of orthogonal functions that satisfy the Sturm-Liouville
problem: yk(x) = sin 2k+1

2
x, k = 0, 1, 2, . . .. It is straightforward to check the

validity of our guess. Let us instead proceed to derive these solutions. We organize
our solution after Example 2. The differential equation fits the form of (1) with
p(x) = 1, q(x) = 0, and r(x) = 1. In the boundary conditions, a = 0 and b = π,
with c1 = d2 = 1 and c2 = d1 = 0, so this is a regular Sturm-Liouville problem.

We consider three cases.

CASE 1: λ < 0. Let us write λ = −α2, where α > 0. Then the equation becomes
y′′ − α2y = 0, and its general solution is y = c1 sinhαx + c2 coshαx. We need
y(0) = 0, so substituting into the general solution gives c2 = 0. Now using the
condition y′(π) = 0, we get 0 = c1α coshαπ, and since cosh x 6= 0 for all x, we infer
that c1 = 0. Thus there are no nonzero solutions in this case.
CASE 2: λ = 0. Here the general solution of the differential equation is y =
c1x+ c2, and as in Case 1 the boundary conditions force c1 and c2 to be 0. Thus
again there is no nonzero solution.

CASE 3: λ > 0. In this case we can write λ = α2 with α > 0, and so the
equation becomes y′′ + α2y = 0. The general solution is y = c1 cosαx+ c2 sinαx.
From y(0) = 0 we get 0 = c1 cos 0 + c2 sin 0 or 0 = c1. Thus y = c2 sinαx. Now
we substitute the other boundary condition to get 0 = c2α cosαπ. Since we are
seeking nonzero solutions, we take c2 6= 0. Thus we must have cosαπ = 0, and
hence α = 2k+1

2 . Since λ = α2, the problem has eigenvalues

λk =
(

2k + 1
2

)2

,

and corresponding eigenfunctions

yk = sin
2k + 1

2
x, k = 0, 1, 2, . . . .

17. Case I If λ = 0, the general solution of the differential equation is X = ax+b.
As in Exercise 13, check that the only way to satisfy the boundary conditions is to
take a = b = 0. Thus λ = 0 is not an eigenvalue since no nontrivial solutions exist.

Case II If λ = −α2 < 0, then the general solution of the differential equation
is X = c1 coshαx+ c2 sinhαx. We have X ′ = c1α sinhx+ c2α coshαx. In order to
have nonzero solutions, we suppose throughout the solution that c1 or c2 is nonzero.
The first boundary condition implies

c1 + αc2 = 0 c1 = −αc2.

Hence both c1 and c2 are nonzero. The second boundary condition implies that

c1(coshα+ α sinhα) + c2(sinhα+ α coshα) = 0.

Using c1 = −αc2, we obtain

−αc2(coshα+ α sinhα) + c2(sinhα+ α coshα) = 0 (divide byc2 6= 0)
sinhα(1− α2) = 0

sinhα = 0 or 1 − α2 = 0
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Since α 6= 0, it follows that sinhα 6= 0 and this implies that 1− α2 = 0 or α = ±1.
We take α = 1, because the value −1 does not yield any new eigenfunctions. For
α = 1, the corresponding solution is

X = c1 coshx+ c2 sinhx = −c2 cosh x+ c2 sinhx,

because c1 = −αc2 = −c2. So in this case we have one negative eigenvalue λ =
−α2 = −1 with corresponding eigenfunction X = cosh x− sinhx.

Case III If λ = α2 > 0, then the general solution of the differential equation is

X = c1 cosαx+ c2 sinαx .

We have X ′ = −c1α sinαx+ c2α cosαx. In order to have nonzero solutions, one of
the coefficients c1 or c2 must be 6= 0. Using the boundary conditions, we obtain

c1 + αc2 = 0
c1(cosα− α sinα) + c2(sinα+ α cosα) = 0

The first equation implies that c1 = −αc2 and so both c1 and c2 are neq0. From
the second equation, we obtain

−αc2(cosα− α sinα) + c2(sinα+ α cosα) = 0
−α(cosα− α sinα) + (sinα+ α cosα) = 0

sinα(α2 + 1) = 0

Since α2 + 1 6= 0, then sinα = 0, and so α = nπ, where n = 1, 2, . . .. Thus the
eigenvalues are

λn = (nπ)2

with corresponding eigenfunctions

yn = −nπ cos nπx+ sinnπx, n = 1, 2, . . . .

21. If λ = α2, then the solutions are of the form c1 coshαx + c2 sinhαx. Using
the boundary conditions, we find

y(0) = 0 ⇒ c1 = 0
y(1) = 0 ⇒ c2 sinhα = 0.

But α 6= 0, hence sinhα 6= 0, and so c2 = 0. There are no nonzero solutions if λ > 0
and so the problem as no positive eigenvalues. This does not contradict Theorem 1
because if we consider the equation y′′ − λy = 0 as being in the form (1), then
r(x) = −1 < 0 and so the problem is a singular Sturm-Liouville problem to which
Theorem 1 does not apply.

25. The eigenfunctions in Example 2 are yj(x) = sin jx, j = 1, 2, . . .. Since f is
one of these eigenfunctions, it is equal to its own eigenfunction expansion.

29. You can verify the orthogonality directly by checking that
∫ 2π

0

sin
nx

2
sin

mx

2
dx = 0 if m 6= n (m, n integers).

You can also quote Theorem 2(a) because the problem is a regular Sturm-Liouville
problem.

33. (a) From Exercise 36(b), Section 4.8, with y = J0(λr) and p = 0, we have

2λ2

∫ a

0

[y(r)]2r dr = [ay′(a)]2 + λ2a2[y(a)]2.
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But y satisfies the boundary condition y′(a) = −κy(a), so

2λ2

∫ a

0

[y(r)]2r dr = a2κ2[y(a)]2 + λ2a2[y(a)]2;

∫ a

0

[y(r)]2r dr =
a2

2

[
κ2 [J0(λka)]2

λ2
k

+ [J0(λka)]2
]

=
a2

2
[
[J0(λka)]2 + [J1(λka)]2

]
,

because, by (7), [J0(λka)]2 =
[

λk

κ J1(λka)
]2

.
(b) Reproduce the sketch of proof of Theorem 1. The given formula for the coeffi-
cients is precisely formula (5) in this case.
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Solutions to Exercises 6.3

1. (a) The initial shape of the chain is given by the function

f(x) = −.01(x− .5), 0 < x < .5,

and the initial velocity of the chain is zero. So the solution is given by (10), with
L = .5 and Bj = 0 for all j. Thus

u(x, t) =
∞∑

j=1

AjJ0

(
αj

√
2x
)

cos
(√

2g
αj

2
t
)
.

To compute Aj , we use (11), and get

Aj =
2

J2
1 (αj)

∫ .5

0

(−.01)(x− .5)J0

(
αj

√
2x
)
dx

=
−.02
J2

1 (αj)

∫ .5

0

(x− .5)J0

(
αj

√
2x
)
dx

Make the change of variables s = αj

√
2x, or s2 = 2α2

jx, so 2s ds = 2α2
j dx or

dx = s
α2

j
ds. Thus

Aj =
−.02
J2

1 (αj)

∫ αj

0

(
.5
α2

j

s2 − .5)J0(s)
s

α2
j

ds

=
−.01

α4
jJ

2
1 (αj)

∫ αj

0

(s2 − α2
j)J0(s)s ds

=
.01

α4
jJ

2
1 (αj)

[
2
α4

j

α2
j

J2(αj)

]

=
.02

α2
jJ

2
1 (αj)

J2(αj),

where we have used the integral formula (15), Section 4.3, with a = α = αj. We
can give our answer in terms of J1 by using formula (6), Section 4.8, with p = 1,
and x = αj. Since αj is a zero of J0, we obtain

2
αj
J1(αj) = J0(αj) + J2(αj) = J2(αj).

So
Aj =

.02
α2

jJ
2
1 (αj)

2
αj
J1(αj) =

.04
α3

jJ1(αj)
.

Thus the solution is

u(x, t) =
∞∑

j=1

.04
α3

jJ1(αj)
J0

(
αj

√
2x
)

cos
(√

2g
αj

2
t
)
,

where g ≈ 9.8 m/sec2.
Going back to the questions, to answer (a), we have the normal modes

uj(x, t) =
.04

α3
jJ1(αj)

J0

(
αj

√
2x
)

cos
(√

2g
αj

2
t
)
.

The frequency of the jth normal mode is

νj =
√

2g
αj

4π
.
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A six-term approximation of the solution is

u(x, t) ≈
6∑

j=1

.04
α3

jJ1(αj)
J0

(
αj

√
2x
)

cos
(√

2g
αj

2
t
)
.

At this point, we use Mathematica (or your favorite computer system) to approxi-
mate the numerical values of the coefficients. Here is a table of relevant numerical
data.

j 1 2 3 4 5 6
αj 2.40483 5.52008 8.65373 11.7915 14.9309 18.0711
νj .847231 1.94475 3.04875 4.15421 5.26023 6.36652
Aj .005540 −.000699 .000227 −.000105 .000058 −.000036

Table 1 Numerical data for Exercise 1.
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Exercises 6.4

1. This is a special case of Example 1 with L = 2 and λ = α4. The values of α
are the positive roots of the equation

cos 2α =
1

cosh 2α
.

There are infinitely many roots, αn (n = 1, 2, . . .), that can be approximated with
the help of a computer (see Figure 1). To each αn corresponds one eigenfunction

Xn(x) = coshαnx− cosαnx− cosh 2αn − cos 2αn

sinh 2αn − sin 2αn
(sinhαnx− sinαnx) .

5. There are infinitely many eigenvalues λ = α4, where α is a positive root of the
equation

cosα =
1

coshα
.

As in Example 1, the roots of this equation, αn (n = 1, 2, . . .), can be approxi-
mated with the help of a computer (see Figure 1). To each αn corresponds one
eigenfunction

Xn(x) = coshαnx− cosαnx−
coshαn − cosαn

sinhαn − sinαn
(sinhαnx− sinαnx) .

The eigenfunction expansion of f(x) = x(1 − x), 0 < x < 1, is

f(x) =
∞∑

n=1

AnXn(x),

where

An ==

∫ 1

0
x(1 − x)Xn(x) dx
∫ 1

0
X2

n(x) dx
.

After computing several of these coefficients, it was observed that:
∫ 1

0

X2
n(x) dx = 1 for all n = 1, 2, . . . ,

A2n = 0 for all n = 1, 2, . . . .

The first three nonzero coefficients are

A1 = .1788, A3 = .0331, A5 = .0134.

So
f(x) ≈ .1788X1(x) + .0331X3(x) + .0134X5(x),

where Xn described explicitely in Example 1. We have

X1(x) = cosh(4.7300x)− cos(4.7300x) + .9825 (sin(4.7300x)− sinh(4.7300x)),
X2(x) = cosh(1.0008x)− cos(1.0008x) + 1.0008 (sin(1.0008x)− sinh(1.0008x)),
X3(x) = cosh(10.9956x)− cos(10.9956x) + sin(10.9956x)− sinh(10.9956x),
X4(x) = cosh(14.1372x)− cos(14.1372x) + sin(14.1372x)− sinh(14.1372x),
X5(x) = cosh(17.2788x)− cos(17.2788x) + sin(17.2788x)− sinh(17.2788x).

9. Assume that µ and X are an eigenvalue and a corresponding eigenfunction of
the Sturm-Liouville problem

X ′′ + µX = 0, X(0) = 0, X(L) = 0 .
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Differentiate twice to see that X also satisfies the fourth order Sturm-Liouville
problem

X(4) − λX = 0,
X(0) = 0, X′′(0) = 0, X(L) = 0, X′′(L) = 0 .

If α and X are an eigenvalue and a corresponding eigenfunction of

X ′′ + µX = 0, X(0) = 0, X(L) = 0,

then differentiating twice the equation, we find

X(4) + µX ′′ = 0, X(0) = 0, X(L) = 0.

But X ′′ = −µX, so X(4)−µ2X = 0 and hence X satisfies the equation X(4)−λX =
0 with λ = µ2. Also, from X(0) = 0, X(L) = 0 and the fact that X ′′ = −µX, it
follows that X ′′(0) = 0 and X ′′(L) = 0.
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Exercises 6.6

1. uxxyy = 0, uxxxx = 4!, uyyyy = −4!, ∇4u = 0.

5. Express v in Cartesian coordinates as follows:

v = r2 cos(2θ)(1 − r2)
= r2[cos2 θ − sin2 θ](1 − r2)
= (x2 − y2)

(
1 − (x2 + y2)

)
.

Let u = x2 − y2. Then u is harmonic and so v is biharmonic by Example 1, with
A = 1, D = 1, B = C = 0.

7. Write v = r2 · rn cosnθ and let u = rn cos nθ. Then u is harmonic (use the
Laplacian in polar coordinates to check this last assertion) and so v is biharmonic,
by Example 1 with A = 1 and B = C = D = 0.

9. Write v = ar2 ln r + br2 + c ln r + d = φ + ψ, where φ = [ar2 + c] ln r and
ψ = br2+d. From Example 1, it follows that ψ is biharmonic. Also, ln r is harmonic
(check the Laplacian in polar coordinates) and so, by Example 1, φ is biharmonic.
Consequently, v is biharmonic, being the sum of two biharmonic functions.

13. We follow the method of Theorem 1, as illustrated by Example 2. First, solve
the Dirichlet problem ∇2w = 0, w(1, θ) = cos 2θ, for 0 ≤ r < 1, 0 ≤ θ ≤ 2π.
The solution in this case is w(r, θ) = r2 cos 2θ. (This is a simple application of
the method of Section 4.4, since the boundary function is already given by its
Fourier series.) We now consider a second Dirichlet problem on the unit disk with
boundary values v(1, θ) = 1

2

(
wr(1, θ) − g(θ)

)
. Since g(θ) = 0 and wr(r, θ) =

2r cos 2θ, it follows that v(1, θ) = cos 2θ. The solution of th Dirichlet problem in v
is v(r, θ) = r2 cos 2θ. Thus the solution of biharmonic problem is

u(r, θ) = (1 − r2)r2 cos 2θ + r2 cos 2θ = 2r2 cos 2θ − r4 cos 2θ.

This can be verified directly by plugging into the biharmonic equation and the
boundary conditions.

17. u(1, 0) = 0 implies that w = 0 and so v(1, θ) = − g(θ)
2 . So

v(r, θ) = −1
2
[
a0 +

∞∑

n=1

rn(cos nθ + bn sinnθ)
]
,

where an and bn are the Fourier coefficients of g. Finally,

u(r, θ) = (1 − r2)v(r, θ) = −1
2
(1 − r2)

[
a0 +

∞∑

n=1

rn(cos nθ + bn sinnθ)
]
.
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Exercises 6.7

12. Correction to the suggested proof: y2 = I0 and not J1.

17. Let u1(r, t) denote the solution of the problem in Example 3 and let u2(r, t)
denote the solution in Example 3. Then, by linearity or superposition, u(r, t) =
u1(r, t) + u2(r, t) is the desired solution.
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Solutions to Exercises 7.1

1. We have

f(x) =
{

1 if −a < x < a, (a > 0)
0 otherwise,

This problem is very similar to Example 1. From (3), if ω 6= 0, then

A(ω) =
1
π

∫ ∞

−∞
f(t) cos ωt dt =

1
π

∫ a

−a

cos ωt dt =
[
sinωt
πω

]a

−a

=
2 sin aω
πω

.

If ω = 0, then

A(0) =
1
π

∫ ∞

−∞
f(t) dt =

1
π

∫ a

−a

dt =
2a
π
.

Since f(x) is even, B(ω) = 0. For |x| 6= a the function is continuous and Theorem
1 gives

f(x) =
2a
π

∫ ∞

0

sin aω cosωx
ω

dω .

For x = ±a, points of discontinuity of f , Theorem 1 yields the value 1/2 for the
last integral. Thus we have the Fourier integral representation of f

2a
π

∫ ∞

0

sin aω cos ωx
ω

dω =





1 if |x| < a,
1/2 if |x| = a,
0 if |x| > a.

�
5. since f(x) = e−|x| is even, B(w) = 0 for all w, and

A(w) =
2
π

∫ ∞

0

e−t coswt dt

=
2
π

e−t

1 +w2
[− coswt+w sinwt]

∣∣∣∣
∞

0

=
2
π

1
1 +w2

,

where we have used the result of Exercise 17, Sec. 2.6, to evaluate the integral.
Applying the Fourier integral representation, we obtain:

e−|x| =
2
π

∫ ∞

0

1
1 +w2

coswxdw.

9. The function

f(x) =





x if −1 < x < 1,
2 − x if 1 < x < 2,
−2 − x if −2 < x < −1,
0 otherwise,

is odd, as can be seen from its graph. Hence A(w) = 0 and

B(w) =
2
π

∫ ∞

0

f(t) sinwt dt

=
2
π

∫ 1

0

t sinwt dt+
2
π

∫ 2

1

(2 − t) sinwt dt

=
2
π

[
−t
w

coswt
∣∣∣∣
1

0

+
∫ 1

0

coswt
w

dt

]

+
2
π

[
−2 − t

w
coswt

∣∣∣∣
2

1

+
∫ 2

1

coswt
w

dt

]

=
2

πw2
[2 sinw − sin 2w] .
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Since f is continuous, we obtain the Fourier integral representation of

f(x) =
2
π

∫ ∞

0

1
w2

[2 sinw − sin 2w] sinwx, dw.

13. (a) Take x = 1 in the Fourier integral representation of Example 1:

2
π

∫ ∞

0

sinw cosw
w

dw =
1
2

⇒
∫ ∞

0

sinw cosw
w

dw =
π

4
.

(b) Integrate by parts: u = sin2w, du = 2 sinw cosw dw, dv = 1
w2 dw, v = − 1

w :

∫ ∞

0

sin2 ω

ω2
dω =

=0︷ ︸︸ ︷
sin2w

w

∣∣∣∣
∞

0

+2
∫ ∞

0

sinw cosw
w2

dw =
π

2
,

by (a).

17. ∫ ∞

0

cosxω + ω sinxω
1 + ω2

dω =





0 if x < 0,
π/2 if x = 0,
πe−x if x > 0.

Solution. Define

f(x) =





0 if x < 0,
π/2 if x = 0,
πe−x if x > 0.

Let us find the Fourier integral representation of f :

A(w) =
1
π

∫ ∞

0

πe−x coswxdx =
1

1 +w2

(see Exercise 5);

B(w) =
1
π

∫ ∞

0

πe−x sinwxdx =
w

1 +w2
,

(see Exercise 17, Sec. 2.6). So

f(x) =
∫ ∞

0

coswx+w sinwx
1 + w2

dw,

which yields the desired formula.

25. We have

Si(a) =
∫ a

0

sin t
t

dt, Si(b) =
∫ b

0

sin t
t

dt.

So

Si(b) − Si(a) =
∫ b

0

sin t
t

dt−
∫ a

0

sin t
t

dt =
∫ b

a

sin t
t

dt.
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Solutions to Exercises 7.2

1. In computing f̂ , the integral depends on the values of f on the interval (−1, 1).
Since on this interval f is odd, it follows that f(x) coswx is odd and f(x) sinwx is
even on the interval (−1, 1). Thus

f̂ (w) =
1√
2π

∫ ∞

−∞
f(x)e−iwx dx

=
1√
2π

=0︷ ︸︸ ︷∫ 1

−1

f(x) coswxdx− i√
2π

∫ 1

−1

f(x) sinwxdx

= − 2i√
2π

∫ 1

0

sinwxdx

=
2i√
2π

coswx
w

∣∣∣
1

0

= i

√
2
π

cosw − 1
w

.

5. Use integration by parts to evaluate the integrals:

f̂ (w) =
1√
2π

∫ ∞

−∞
f(x)e−iwx dx

=
1√
2π

∫ 1

−1

(1 − |x|)(coswx− i sinwx) dx

=
1√
2π

∫ 1

−1

(1 − |x|) coswxdx− i√
2π

=0︷ ︸︸ ︷∫ 1

−1

(1 − |x|) sinwxdx

=
2√
2π

∫ 1

0

u︷ ︸︸ ︷
(1 − x)

dv︷ ︸︸ ︷
coswxdx

=
2√
2π

(
(1 − x)

sinwx
w

)∣∣∣∣
1

0

+
2√
2πw

∫ 1

0

sinwxdx

= −
√

2
π

coswx
w2

∣∣∣∣∣

1

0

=

√
2
π

1 − cosw
w2

.

9. In Exercise 1,

f̂ (0) =
1√
2π

× (area between graph of f(x) and the xaxis) = 0.

In Exercise 7,

f̂ (0) =
1√
2π

× (area between graph of f(x) and the xaxis) =
100√
2π
.

13. We argue as in Exercise 11. Consider g(x) = sin ax
x

where we assume a > 0.
For the case a < 0, use sin(−ax) = − sin ax and linearity of the Fourier transform.
Let f(x) = 1 if |x| < a and 0 otherwise. Recall from Example 1 that

F(f(x))(w) =

√
2
π

sin aw
w

=

√
2
π
g(w).
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Multiplying both sides by
√

π
2 and using the linearity of the Fourier transform, it

follows that

F(
√
π

2
f(x))(w) = g(w).

So

Fg = FF
(√

π

2
f(x)

)
=
√
π

2
f(x),

by the reciprocity relation. Using the symbol w as a variable, we get

F
(

sin ax
x

)
=
√
π

2
f(w) =

{ √
π
2 if |w| < a,

0 otherwise.

17. (a) Consider first the case a > 0. Using the definition of the Fourier transform
and a change of variables

F(f(ax))(w) =
1√
2π

∫ ∞

−∞
f(ax)e−iωx dx

=
1
a

1√
2π

∫ ∞

−∞
f(x)e−i ω

a x dx (ax = X, dx =
1
a
dX)

=
1
a
F(f)(

w

a
).

If a < 0, then

F(f(ax))(w) =
1√
2π

∫ ∞

−∞
f(ax)e−iωx dx

=
1
a

1√
2π

∫ −∞

∞
f(x)e−i ω

a x dx

= −1
a
F(f)(

w

a
).

Hence for all a 6= 0, we can write

=
1
|a|

F(f)
(ω
a

)
.

(b) We have

F(e−|x|)(w) =

√
2
π

1
1 +w2

.

By (a),

F(e−2|x|)(w) =
1
2

√
2
π

1
1 + (w/2)2

=

√
2
π

2
4 +w2

.

(c) Let f(x) denote the function in Example 2. Then g(x) = f(−x). So

ĝ(w) = f̂(−w) =
1 + iw√

2π(1 +w2)
.

Let h(x) = e−|x|. Then h(x) = f(x) + g(x). So

ĥ(w) = f̂ (w) + ĝ(w) =
1 − iw√

2π(1 +w2)
+

1 + iw√
2π(1 + w2)

=

√
2
π

1
1 + w2

.

21. We have F(e−x2
) = 1√

2
e−w2/4, by Theorem 5. Using Exercise 20, we have

F(
cosx
ex2 ) = F(cos xe−x2

)

=
1

2
√

2

(
e−

(w−a)2

4 + e−
(w+a)2

4

)
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25 Let

g(x) =
{

1 if |x| < 1,
0 otherwise,

and note that f(x) = cos(x) g(x). Now F(g(x)) =
√

2
π

sin w
w

. Using Exercise 20, we
have

F(f(x)) = F(cos xg(x))

=
1
2

√
2
π

(sin(w − 1)
w − 1

+
sin(w + 1)
w + 1

)
.

29. Take a = 0 and relabel b = a in Exercise 27, you will get the function f(x) = h
if 0 < x < a. Its Fourier transform is

f̂ (w) ==

√
2
π
he−i a

2 w sin
(

a w
2

)

w
.

Let g(x) denote the function in the figure. Then g(x) = 1
ax f(x) and so, by Theo-

rem 3,

ĝ(w) =
1
a
i
d

dw
f̂ (w)

= i

√
2
π

h

a

d

dw

[
e−i a

2 w sin
(

a w
2

)

w

]

= i

√
2
π

h

a

e−i a
2 w

w

[
a
cos
(

a w
2

)
− i sin

(
a w
2

)

2
−

sin
(

a w
2

)

w

]

= i

√
2
π

h

a
e−i a

2 w

[
−2 sin

(
a w
2

)
+ aw e−i a

2 w

2w2

]
.

33. Let g(x) denote the function in this exercise. By the reciprocity relation, since
the function is even, we have F(F(g)) = g(−x) = g(x). Taking inverse Fourier
transforms, we obtain F−1(g) = F(g). Hence it is enough to compute the Fourier
transform. We use the notation and the result of Exercise 34. We have

g(x) = 2f2a(x) − fa(x).

Verify this identity by drawing the graphs of f2a and fa and then drawing the graph
of f2a(x) − fa(x). With the help of this identity and the result of Exercise 34, we
have

ĝ(w) = 2f̂2a(w) − f̂a(w)

= 2
8a√
2π

sin2 (aw)
4(aw)2

− 4a√
2π

sin2
(

aw
2

)

(aw)2

=
4

a
√

2π

[
sin2 (aw)

w2
−

sin2
(

aw
2

)

w2

]
.

37. By Exercise 27,

F(e−x2
) =

1√
2
e−w2/4.
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By Theorem 3(i)

F(xe−x2
) = i

d

dw

( 1√
2
e−w2/4

)

=
i

2
√

2
e−w2/4.

41. We have F( 1
1+x2 ) =

√
π
2
e−|w|. So if w > 0

F(
x

1 + x2
)(w) = i

√
π

2
d

dw
e−w = −i

√
π

2
e−w.

If w < 0

F(
x

1 + x2
)(w) = i

√
π

2
d

dw
ew = i

√
π

2
ew .

If w = 0,

F(
x

1 + x2
)(0) =

1√
2π

∫ ∞

−∞

x

1 + x2
dx = 0

(odd integrand). We can combine these answers into one formula

F(
x

1 + x2
)(w) = −i

√
π

2
sgn (w)e−|w|.

45. Theorem 3 (i) and Exercise 19:

F(xe−
1
2 (x−1)2) = i

d

dw

(
F(e−

1
2 (x−1)2)

)

= i
d

dw

(
e−iwF(e−

1
2 x2

)
)

= i
d

dw

(
e−iwe−

1
2 w2

)
)

= i
d

dw

(
e−

1
2 w2−iw)

)

= i(−w − i)e−
1
2 w2−iw

= (1 − iw)e−
1
2 w2−iw.

49.

ĥ(ω) = e−ω2
· 1
1 + ω2

= F
( 1√

2
e−x2/4

)
· F
(√π

2
e−|x|).

Hence

h(x) = f ∗ g(x) =
1√
2π

∫ ∞

−∞

1√
2
e−

(x−t)2

4

√
π

2
e−|t|dt

=
1

2
√

2

∫ ∞

−∞
e−

(x−t)2

4 e−|t|dt.

53. Let f(x) = xe−x2/2 and g(x) = e−x2
.

(a) F(f)(w) = −iwe− w2
2 , and F(g)(w) = 1√

2
e−

w2
4 .

(b)

{ ∗ } = { · }

= −i w√
2
e−

w2
4 e−

w2
2

= −i w√
2
e−3 w2

4 .
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(c) With the help of Theorem 3

f ∗ g = F−1
(
− i

w√
2
e−3w2

4

)

= F−1
(
i

1√
2

4
6
d

dw
e−3 w2

4

)

=
1√
2

2
3
F−1

(
i
d

dw
e−3 w2

4

)
=

1√
2

2
3
xF−1

(
e−3 w2

4

)

=
2

3
√

3
xe−

1
3 x2

.

In computing F−1
(
e−3 w2

4

)
, use Exercise 10(a) and (5) to obtain

F−1
(
e−aw2

)
=

1√
2a
e−

(−x)2

4a =
1√
2a
e−

x2
4a .

57. Recall that f is integrable means that
∫ ∞

−∞
|f(x)| dx < ∞.

If f and g are integrable, then

f ∗ g(x) =
1√
2π

∫ ∞

−∞
f(x − t)g(t) dt.

So, using properties of the integral:
∫ ∞

−∞
|f ∗ g(x)|dx =

∫ ∞

−∞

∣∣∣∣
1√
2π

∫ ∞

−∞
f(x − t)g(t) dt

∣∣∣∣ dx

≤ 1√
2π

∫ ∞

−∞

∫ ∞

−∞
|f(x− t)g(t)| dx dt

(Interchange order of integration.

≤ 1√
2π

∫ ∞

−∞

=
∫ ∞
−∞ |f(x)|dx

︷ ︸︸ ︷∫ ∞

−∞
|f(x− t)| dx |g(t)| dt

(Change variables in the inner integral X = x− t.)

≤ 1√
2π

∫ ∞

−∞
|f(x)| dx

∫ ∞

−∞
|g(t)| dt < ∞;

thus f ∗ g is integrable.
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Solutions to Exercises 7.3

1.

∂2u

∂t2
=
∂2u

∂x2
,

u(x, 0) =
1

1 + x2
,

∂u

∂t
(x, 0) = 0.

Follow the solution of Example 1. Fix t and Fourier transform the problem with
respect to the variable x:

d2

dt2
û(w, t) = −w2û(w, t),

û(w, 0) = F
( 1
1 + x2

)
=
√
π

2
e−|w|,

d

dt
û(w, 0) = 0.

Solve the second order differential equation in û(w, t):

û(w, t) = A(w) coswt+B(w) sinwt.

Using d
dt û(w, 0) = 0, we get

−A(w)w sinwt+ B(w)w coswt
∣∣∣
t=0

= 0 ⇒ B(w)w = 0 ⇒ B(w) = 0.

Hence
û(w, t) = A(w) coswt.

Using û(w, 0) =
√

π
2 e

−|w|, we see that A(w) =
√

π
2 e

−|w| and so

û(w, t) =
√
π

2
e−|w| coswt.

Taking inverse Fourier transforms, we get

u(x, t) =
∫ ∞

−∞
e−|w| coswt eixw dw.

5.

∂2u

∂t2
= c2

∂2u

∂x2
,

u(x, 0) =

√
2
π

sinx
x

,
∂u

∂t
(x, 0) = 0.

Fix t and Fourier transform the problem with respect to the variable x:

d2

dt2
û(w, t) = −c2w2û(w, t),

û(w, 0) = F
(√ sinx

x

)
(w) = f̂ (w) =

{
1 if |w| < 1
0 if |w| > 1,

d

dt
û(w, 0) = 0.

Solve the second order differential equation in û(w, t):

û(w, t) = A(w) cos cwt+B(w) sin cwt.

Using d
dt û(w, 0) = 0, we get

û(w, t) = A(w) cos cwt.
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Using û(w, 0) = f̂ (w), we see that

û(w, t) = f̂ (w) coswt.

Taking inverse Fourier transforms, we get

u(x, t) =
1√
2π

∫ ∞

−∞
f̂ (w) cos cwt eixw dw =

1√
2π

∫ 1

−1

cos cwt eixw dw.

17.

∂2u

∂t2
=
∂4u

∂x4

u(x, 0) =
{

100 if |x| < 2,
0 otherwise.

Fourier transform the problem with respect to the variable x:

d2

dt2
û(w, t) = w4û(w, t),

û(w, 0) = f̂ (w) = 100

√
2
π

sin 2w
w

.

Solve the second order differential equation in û(w, t):

û(w, t) = A(w)e−w2t + B(w)ew2t.

Because a Fourier transform is expected to tend to 0 as w → ±∞, if we fix t > 0
and let w → ∞ or w → −∞, we see that one way to make û(w, t) → 0 is to take
B(w) = 0. Then û(w, t) = A(w)e−w2t, and from the initial condition we obtain
B(w) = f̂ (w). So

û(w, t) = f̂ (w)e−w2t = 100

√
2
π

sin 2w
w

e−w2t.

Taking inverse Fourier transforms, we get

u(x, t) =
1√
2π

∫ ∞

−∞
100

√
2
π

sin 2w
w

e−w2t eixw dw

=
100
π

∫ ∞

−∞

sin 2w
w

e−w2t eixw dw.

21. (a) To verify that

u(x, t) =
1
2
[f(x− ct) + f(x + ct)] +

1
2c

∫ x+ct

x−ct

g(s) ds

is a solution of the boundary value problem of Example 1 is straightforward. You
just have to plug the solution into the equation and the initial and boundary con-
ditions and see that the equations are verified. The details are sketched in Section
3.4, following Example 1 of that section.
(b) In Example 1, we derived the solution as an inverse Fourier transform:

u(x, t) =
1√
2π

∫ ∞

−∞

[
f̂ (w) cos cwt+

1
cw

ĝ(w) sin cwt
]
eiwx dx.

Using properties of the Fourier transform, we will show that

1√
2π

∫ ∞

−∞
f̂(w) cos cwteiwx dw =

1
2
[f(x− ct) + f(x + ct)];(1)

1√
2π

∫ ∞

−∞

1
w
ĝ(w) sin cwt eiwx dw =

1
2

∫ x+ct

x−ct

g(s) ds.(2)
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To prove (1), note that

cos cwt =
eicwt + e−icwt

2
,

so

1√
2π

∫ ∞

−∞
f̂ (w) cos cwteiwx dw

=
1√
2π

∫ ∞

−∞
f̂(w) (

eicwt + e−icwt

2
)eiwx dw

=
1
2

[
1√
2π

∫ ∞

−∞
f̂ (w) eiw(x+ct) dw

1√
2π

∫ ∞

−∞
f̂ (w) eiw(x−ct) dw

]

=
1
2
[f(x+ ct) + f(x − ct)];

because the first integral is simply the inverse Fourier transform of f̂ evaluated at
x + ct, and the second integral is the inverse Fourier transform of f̂ evaluated at
x− ct. This proves (1). To prove (2), we note that the left side of (2) is an inverse
Fourier transform. So (2) will follow if we can show that

(3) F
{∫ x+ct

x−ct

g(s) ds
}

=
2
w
ĝ(w) sin cwt.

Let G denote an antiderivative of g. Then (3) is equivalent to

F (G(x+ ct) − G(x− ct)) (w) =
2
w
Ĝ′(w) sin cwt.

Since Ĝ′ = iwĜ, the last equation is equivalent to

(4) F (G(x+ ct)) (w) − F (G(x− ct)) (w) = 2iĜ(w) sin cwt.

Using Exercise 19, Sec. 7.2, we have

F (G(x+ ct)) (w) −F (G(x− ct)) (w) = eictwF(G)(w) − e−ictwF(G)(w)
= F(G)(w)

(
eictw − e−ictw

)

= 2iĜ(w) sin cwt,

where we have applied the formula

sin ctw =
eictw − e−ictw

2i
.

This proves (4) and completes the solution.

25. Using the Fourier transform, we obtain

d2

dt2
û(w, t) = c2w4û(w, t),

û(w, 0) = f̂ (w),
d

dt
û(w, 0) = ĝ(w) .

Thus
û(w, t) = A(w)e−cw2t + B(w)ecw2t.

Using the initial conditions:

û(w, 0) = f̂ (w) ⇒ A(w) + B(w) = f̂(w) ⇒ A(w) = f̂ (w) −B(w);
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and

d

dt
û(w, 0) = ĝ(w) ⇒ −cw2A(w) + cw2B(w) = ĝ(w)

⇒ −A(w) +B(w) =
ĝ(w)
cw2

⇒ −f̂ (w) + 2B(w) =
ĝ(w)
cw2

⇒ B(w) =
1
2

(
f̂ (w) +

ĝ(w)
cw2

)
;

⇒ A(w) =
1
2

(
f̂(w) − ĝ(w)

cw2

)
.

Hence

û(w, t) =
1
2

(
f̂ (w) − ĝ(w)

cw2

)
e−cw2t +

1
2

(
f̂ (w) +

ĝ(w)
cw2

)
ecw2t.

= f̂ (w)
(ecw2t + e−cw2t)

2
+
ĝ(w)
cw2

(ecw2t − e−cw2t)
2

= f̂ (w) cosh(cw2t) +
ĝ(w)
cw2

sinh(cw2t)

Taking inverse Fourier transforms, we get

u(x, t) =
1√
2π

∫ ∞

−∞

(
f̂ (w) cosh(cw2t) +

ĝ(w)
cw2

sinh(cw2t)
)
eixw dw.
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Solutions to Exercises 7.4

1. Repeat the solution of Example 1 making some adjustments: c = 1
2
, gt(x) =

√
2√
t
e−

x2
t ,

u(x, t) = f ∗ gt(x)

=
1√
2π

∫ ∞

−∞
f(s)

√
2√
t
e−

(x−s)2

t ds

=
20√
tπ

∫ 1

−1

e−
(x−s)2

t ds (v =
x− s√

t
, dv = − 1√

t
ds)

=
20√
π

∫ x+1√
t

x−1√
t

e−v2
ds

= 10
(

erf(
x+ 1√

t
) − erf(

x− 1√
t

)
)
.

5. Apply (4) with f(s) = s2:

u(x, t) = f ∗ gt(x)

=
1√
2t

1√
2π

∫ ∞

−∞
s2e−

(x−s)2

t ds.

You can evaluate this integral by using integration by parts twice and then appealing
to Theorem 5, Section 7.2. However, we will use a different technique based on the
operational properties of the Fourier transform that enables us to evaluate a much
more general integral. Let n be a nonnegative integer and suppose that f and
snf(s) are integrable and tend to 0 at ±∞. Then

1√
2π

∫ ∞

−∞
snf(s) ds = (i)n

[
dn

dwn
F(f)(w)

]

w=0

.

This formula is immediate if we recall Theorem 3(ii), Section 7.2, and that

φ̂(0) =
1√
2π

∫ ∞

−∞
φ(s) ds.

We will apply this formula with

f(s) =
1√
2t
e−

(x−s)2

t .

We have

F
(

1√
2t
e−

(x−s)2

t

)
(w) = e−iwxF

(
1√
2t
e−

s2
t

)
(w) (by Exercise 19, Sec. 7.2)

= e−iwxe−w2t = e−(iwx+w2t) (See the proof of Th. 1.)
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So

u(x, t) =
1√
2t

1√
2π

∫ ∞

−∞
s2e−

(x−s)2

t ds

= −
[
d2

dw2
F
(

1√
2t
e−

(x−s)2

t

)
(w)
]

w=0

= −
[
d2

dw2
e−(iwx+w2t)

]

w=0

= −
[
d

dw
− e−(iwx+w2t)(ix + 2wt)

]

w=0

=
[
−e−(iwx+w2t)(ix+ 2wt)2 + 2te−(iwx+w2t)

]
w=0

= x2 + 2t.

You can check the validity of this answer by plugging it back into the heat equation.
The initial condition is also obviously met: u(x, 0) = x2.

The approach that we took can be used to solve the boundary value problem
with f(x)xn as initial temperature distribution. See the end of this section for
interesting applications.

9. Fourier transform the problem:

du

dt
û(w, t) = −e−tw2û(w, t), û(w, 0) = f̂ (w).

Solve for û(w, t):
û(w, t) = f̂ (w)e−w2(1−e−t).

Inverse Fourier transform and note that

u(x, t) = f ∗ F−1
(
e−w2(1−e−t)

)
.

With the help of Theorem 5, Sec. 7.2 (take a = 1 − e−t), we find

F−1
(
e−w2(1−e−t)

)
=

1√
2
√

1 − e−t
e
− x2

4(1−e−t ) .

Thus

u(x, t) =
1

2
√
π
√

1 − e−t

∫ ∞

−∞
f(s)e−

(x−s)2

4(1−e−t) ds.

13. If in Exercise 9 we take

f(x) =
{

100 if |x| < 1,
0 otherwise,

then the solution becomes

u(x, t) =
50

√
π
√

1− e−t

∫ 1

−1

e
− (x−s)2

4(1−e−t) ds.

Let z = x−s
2
√

1−e−t , dz = −ds
2
√

1−e−t . Then

u(x, t) =
50

√
π
√

1 − e−t
2
√

1 − e−t

∫ x+1

2
√

1−e−t

x−1

2
√

1−e−t

e−z2
dz

=
100√
π

∫ x+1

2
√

1−e−t

x−1

2
√

1−e−t

e−z2
dz

= 50
[
erf
(

x+ 1
2
√

1 − e−t

)
− erf

(
x− 1

2
√

1 − e−t

)]
.
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As t increases, the expression erf
(

x+1
2
√

1−e−t

)
−erf

(
x−1

2
√

1−e−t

)
approaches very quickly

erf
(

x+1
2

)
− erf

(
x−1

2

)
, which tells us that the temperature approaches the limiting

distribution

50
[
erf
(
x+ 1

2

)
− erf

(
x− 1

2

)]
.

You can verify this assertion using graphs.

17. (a) If

f(x) =
{
T0 if a < x < b,
0 otherwise,

then

u(x, t) =
T0

2c
√
πt

∫ b

a

e−
(x−s)2

4c2t ds.

(b) Let z = x−s
2c

√
t
, dz = −ds

2c
√

t
. Then

u(x, t) =
T0

2c
√
πt

2c
√
t

∫ x−a

2c
√

t

x−b

2c
√

t

e−z2
dz

=
T0

2

[
erf
(
x− a

2c
√
t

)
− erf

(
x− b

2c
√
t

)]
.

25. Let u2(x, t) denote the solution of the heat problem with initial temperature
distribution f(x) = e−(x−1)2 . Let u(x, t) denote the solution of the problem with
initial distribution e−x2

. Then, by Exercise 23, u2(x, t) = u(x− 1, t)
By (4), we have

u(x, t) =
1

c
√

2t
e−x2/(4c2t) ∗ e−x2

.

We will apply Exercise 24 with a = 1
4c2t and b = 1. We have

ab

a+ b
=

1
4c2t

× 1
1

4c2t + 1

=
1

1 + 4c2t
1√

2(a+ b)
=

1√
2( 1

4c2t + 1)

=
c
√

2t√
4c2t+ 1

.

So

u(x, t) =
1

c
√

2t
e−x2/(4c2t) ∗ e−x2

=
1

c
√

2t
· c

√
2t√

4c2t+ 1
e
− x2

1+4c2 t

=
1√

4c2t + 1
e
− x2

1+4c2t ,

and hence

u2(x, t) =
1√

4c2t+ 1
e
− (x−1)2

1+4c2 t .
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29. Parts (a)-(c) are obvious from the definition of gt(x).
(d) The total area under the graph of gt(x) and above the x-axis is

∫ ∞

−∞
gt(x) dx =

1
c
√

2t

∫ ∞

−∞
e−x2/(4c2t) dx

=
2c
√
t

c
√

2t

∫ ∞

−∞
e−z2

dz (z =
x

2c
√
t
, dx = 2c

√
t dz)

√
2
∫ ∞

−∞
e−z2

dz =
√

2π,

by (4), Sec. 7.2.
(e) To find the Fourier transform of gt(x), apply (5), Sec. 7.2, with

a =
1

4c2t
,

1√
2a

= 2c
√

2t,
1
4a

= c2t.

We get

ĝt(w) =
1

c
√

2t
F
(
e−x2/(4c2t)

)
dx

=
1

c
√

2t
× 2c

√
2te−c2tω2

= e−c2tω2
.

(f) If f is an integrable and piecewise smooth function, then at its points of conti-
nuity, we have

lim
t→0

gt ∗ f(x) = f(x).

This is a true fact that can be proved by using properties of Gauss’s kernel. If we
interpret f(x) as an initial temperature distribution in a heat problem, then the
solution of this heat problem is given by

u(x, t) = gt ∗ f(x).

If t→ 0, the temperature u(x, t) should approach the initial temperature distribu-
tion f(x). Thus limt→0 gt ∗ f(x) = f(x).

Alternatively, we can use part (e) and argue as follows. Since

lim
t→0

F (gt) (ω) = lim
t→0

e−c2tω2
= 1,

So
lim
t→0

F (gt ∗ f) = lim
t→0

F (gt)F (f) = F (f) .

You would expect that the limit of the Fourier transform be the transform of the
limit function. So taking inverse Fourier transforms, we get limt→0 gt∗f(x) = f(x).
(Neither one of the arguments that we gave is rigorous.)

A generalization of Exercise 5 Suppose that you want to solve the heat equation
ut = uxx subject to the initial condition u(x, 0) = xn where n is a nonnegative
integer. We have already done the case n = 0 (in Exercise 19) and n = 2 (in
Exercise 5). For the general case, proceed as in Exercise 5 and apply (4) with
f(s) = sn:

u(x, t) = f ∗ gt(x)

=
1√
2t

1√
2π

∫ ∞

−∞
sne−

(x−s)2

t ds.

Use the formula

1√
2π

∫ ∞

−∞
snf(s) ds = (i)n

[
dn

dwn
F(f)(w)

]

w=0

,
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with
f(s) =

1√
2t
e−

(x−s)2

t

and

F
(

1√
2t
e−

(x−s)2

t

)
(w) = e−(iwx+w2t)

(see the solution of Exercise 5). So

u(x, t) = (i)n

[
dn

dwn
e−(iwx+w2t)

]

w=0

.

To compute this last derivative, recall the Taylor series formula

f(x) =
∞∑

n=0

f (n)(a)
n!

(x− a)n.

So knowledge of the Taylor series gives immediately the values of the derivatives at
a. Since

eaw =
∞∑

n=0

(aw)n

n!
,

we get [
dj

dwj
eaw

]

w=0

= aj.

Similarly,
[
dk

dwk
ebw2

]

w=0

=





0 if k is odd,

bj(2j)!
j! if k = 2j.

Returning to u(x, t), we compute the nth derivative of e−(iwx+w2t) using the Leibniz
rule and use the what we just found and get

u(x, t) = (i)n

[
dn

dwn
e−w2te−iwx

]

w=0

= (i)n
n∑

j=0

(
n
j

)
dj

dwj
e−w2t · dn−j

dwn−j
e−iwx

∣∣∣∣
w=0

= (i)n

[n
2 ]∑

j=0

(
n
2j

)
d2j

dw2j
e−w2t · dn−2j

dwn−2j
e−iwx

∣∣∣∣
w=0

= (i)n

[n
2 ]∑

j=0

(
n
2j

)
(−t)j (2j)!

j!
· (−ix)n−2j

=
[n
2 ]∑

j=0

(
n
2j

)
tj(2j)!
j!

· xn−2j.

For example, if n = 2,

u(x, t) =
1∑

j=0

(
2
2j

)
tj(2j)!
j!

· x2−2j = x2 + 2t,

which agrees with the result of Exercise 5. If n = 3,

u(x, t) =
1∑

j=0

(
3
2j

)
tj(2j)!
j!

· x3−2j = x3 + 6tx.
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You can easily check that this solution verifies the heat equation and u(x, 0) = x3.
If n = 4,

u(x, t) =
2∑

j=0

(
4
2j

)
tj(2j)!
j!

· x4−2j = x4 + 12tx2 + 12t2.

Here too, you can check that this solution verifies the heat equation and u(x, 0) =
x4.

We now derive a recurrence relation that relates the solutions corresponding to
n− 1, n, and n+ 1. Let un = un(x, t) denote the solution with initial temperature
distribution un(x, 0) = xn. We have the following recurrence relation

un+1 = xun + 2ntun−1.

The proof of this formula is very much like the proof of Bonnet’s recurrence formula
for the Legendre polynomials (Section 5.6). Before we give the proof, let us verify
the formula with n = 3. The formula states that u4 = 4u3 + 6tu2. Sine u4 =
x4 + 12tx2 + 12t2, u3 = x3 + 6tx, and u2 = x2 + 2t, we see that the formula is true
for n = 3. We now prove the formula using Leibniz rule of differentiation. As in
Section 5.6, let us use the symbol Dn to denote the nth derivative, We have

un+1(x, t) = (i)n+1

[
dn+1

dwn+1
e−(iwx+w2t)

]

w=0

= (i)n+1
[
Dn+1e−(iwx+w2t)

]
w=0

= (i)n+1
[
Dn
(
De−(iwx+w2t)

)]
w=0

= (i)n+1
[
Dn
(
−(ix+ 2wt)e−(iwx+w2t)

)]
w=0

= (i)n+1
[
Dn
(
−(ix+ 2wt)e−(iwx+w2t)

)]
w=0

= (i)n+1
[
−Dn

(
e−(iwx+w2t)

)
(ix + 2wt) − 2ntDn−1

(
e−(iwx+w2t)

)]
w=0

= x(i)n Dn
(
e−(iwx+w2t)

)∣∣∣
w=0

+ 2nt (i)n−1Dn−1
(
e−(iwx+w2t)

)∣∣∣
w=0

= xun + 2ntun−1.
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Solutions to Exercises 7.5

1. To solve the Dirichlet problem in the upper half-plane with the given boundary
function, we use formula (5). The solution is given by

u(x, y) =
y

π

∫ ∞

−∞

f(s)
(x− s)2 + y2

ds

=
50y
π

∫ 1

−1

ds

(x − s)2 + y2

=
50
π

{
tan−1

(
1 + x

y

)
+ tan−1

(
1 − x

y

)}
,

where we have used Example 1 to evaluate the definite integral.

5. Appealing to (4) in Section 7.5, with y = y1, y2, y1 + y2, we find

F(Py1)(w) = e−y1|w|, F(Py2)(w) = e−y2|w|, F(Py1+y2 )(w) = e−(y1+y2)|w|.

Hence

F(Py1)(w) · F(Py2)(w) = e−y1|w|e−y2|w| = e−(y1+y2)|w| = F(Py1+y2 )(w).

But
F(Py1)(w) · F(Py2)(w) = F(Py1 ∗ Py2)(w),

Hence
F(Py1+y2)(w) = F(Py1 ∗ Py2)(w);

and so Py1+y2 = Py1 ∗ Py2 .

9. Modify the solution of Example 1(a) to obtain that, in the present case, the
solution is

u(x, y) =
T0

π

[
tan−1

(
a+ x

y

)
+ tan−1

(
a − x

y

)]
.

To find the isotherms, we must determine the points (x, y) such that u(x, y) = T .
As in the solution of Example 1(b), these points satisfy

x2 +
(
y − a cot(

πT

T0
)
)2

=
(
a csc(

πT

T0
)
)2

.

Hence the points belong to the arc in the upper half-plane of the circle with center
(0, a cot(πT

T0
)) and radius a csc(πT

T0
). The isotherm corresponding to T = T0

2 is the
arc of the circle

x2 +
(
y − a cot(

π

2
)
)2

=
(
a csc(

π

2
)
)2

,

or
x2 + y2 = a2.

Thus the isotherm in this case is the upper semi-circle of radius a and center at the
origin.

13. Parts (a)-(c) are clear. Part (e) fellows from a table. For (d), you can use (e)
and the fact that the total area under the graph of Py(x) and above the x-axis is√

2πP̂y(0) =
√

2πe−0 =
√

2π.
(f) If f is an integrable function and piecewise smooth, consider the Dirichlet prob-
lem with boundary values f(x). Then we know that the solution is u(x, y) =
Py ∗f(x). In particular, the solution tends to the boundary function as y → 0. But
this means that limy→0Py ∗ f(x) = f(x).

The proof of this fact is beyond the level of the text. Another way to justify
the convergence is to take Fourier transforms. We have

F(Py ∗ f)(w) = F(Py)(w) · F(f)(w) = e−y|w|F(f)(w).
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Since limy→0 e
−y|w| = 1, it follows that

lim
y→0

F(Py ∗ f)(w) = lim
y→0

e−y|w|F(f)(w) = F(f)(w).

Taking inverse Fourier transforms, we see that limy→0 Py ∗ f(x) = f(x).
The argument that we gave is not rigorous, since we did not justify that the

inverse Fourier transform of a limit of functions is the limit of the inverse Fourier
transforms.
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Solutions to Exercises 7.6

1. The even extension of f(x) is

fe(x) =
{

1 if −1 < x < 1,
0 otherwise.

The Fourier transform of fe(x) is computed in Example 1, Sec. 7.2 (with a = 1).
We have, for w ≥ 0,

Fc(f)(w) = F(fe)(w) =

√
2
π

sinw
w

.

To write f as an inverse Fourier cosine transform, we appeal to (6). We have, for
x > 0,

f(x) =

√
2
π

∫ ∞

0

Fc(f)(w) coswxdw,

or
2
π

∫ ∞

0

sinw
w

coswxdw =





1 if 0 < x < 1,
0 if x > 1,
1
2 if x = 1.

Note that at the point x = 1, a point of discontinuity of f , the inverse Fourier
transform is equal to (f(x+) + f(x−))/2.

5. The even extension of f(x) is

fe(x) =
{

cos x if −2π < x < 2π,
0 otherwise.

Let’s compute the Fourier cosine transform using definition (5), Sec. 7.6:

Fc(f)(w) = =

√
2
π

∫ 2π

0

cosx coswxdx

=

√
2
π

∫ 2π

0

1
2

[cos(w + 1)x+ cos(w − 1)x] dx

=
1
2

√
2
π

[
sin(w + 1)x

w + 1
+

sin(w − 1)x
w − 1

]∣∣∣∣
2π

0

(w 6= 1)

=
1
2

√
2
π

[
sin 2(w + 1)π

w + 1
+

sin 2(w − 1)π
w − 1

]
(w 6= 1)

=
1
2

√
2
π

[
sin 2πw
w + 1

+
sin 2πw
w − 1

]
(w 6= 1)

=

√
2
π

sin 2πw
w

w2 − 1
(w 6= 1).

Also, by l’Hospital’s rule, we have

lim
w→0

√
2
π

sin 2πw
w

w2 − 1
=

√
2π,

which is the value of the cosine transform at w = 1.
To write f as an inverse Fourier cosine transform, we appeal to (6). We have,

for x > 0,

2
π

∫ ∞

0

w

w2 − 1
sin 2πw coswxdw =

{
cosx if 0 < x < 2π,
0 if x > 2π.

For x = 2π, the integral converges to 1/2. So

2
π

∫ ∞

0

w

w2 − 1
sin 2πw cos 2πwdw =

1
2
.
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9. Applying the definition of the transform and using Exercise 17, Sec. 2.6 to
evaluate the integral,

Fs(e−2x)(w) =

√
2
π

∫ ∞

0

e−2x sinwxdx

=

√
2
π

e−2x

4 +w2
[−w coswx− 2 sinwx]

∣∣∣∣
∞

x=0

=

√
2
π

w

4 +w2
.

The inverse sine transform becomes

f(x) =
2
π

∫ ∞

0

w

4 + w2
sinwxdw.

13. We have fe(x) = 1
1+x2 . So

Fc

(
1

1 + x2

)
= F

(
1

1 + x2

)
=
√
π

2
e−w (w > 0),

by Exercise 11, Sec. 7.2.

17. We have fe(x) = cosx
1+x2 . So

Fc

(
cosx

1 + x2

)
= F

(
cos x

1 + x2

)
=
√
π

2

(
e−|w−1| + e−(w+1)

)
(w > 0),

by Exercises 11 and 20(b), Sec. 7.2.

21. From the definition of the inverse transform, we have Fcf = F−1
c f. So FcFcf =

FcF−1
c f = f . Similarly, FsFsf = FsF−1

s f = f .
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Solutions to Exercises 7.7

1. Fourier sine transform with respect to x:

d
dt
ûs(w, t) = −w2ûs(w, t) +

√
2
π
w

=0︷ ︸︸ ︷
u(0, t)

d
dt
ûs(w, t) = −w2ûs(w, t).

Solve the first-order differential equation in ûs(w, t) and get

ûs(w, t) = A(w)e−w2t.

Fourier sine transform the initial condition

ûs(w, 0) = A(w) = Fs(f(x))(w) = T0

√
2
π

1 − cos bw
w

.

Hence

ûs(w, t) =

√
2
π

1 − cos bw
w

e−w2t.

Taking inverse Fourier sine transform:

u(x, t) =
2
π

∫ ∞

0

1 − cos bw
w

e−w2t sinwxdw.

5. If you Fourier cosine the equations (1) and (2), using the Neumann type
condition

∂u

∂x
(0, t) = 0,

you will get

d
dt ûc(w, t) = c2

[
− w2ûc(w, t) −

√
2
π

=0︷ ︸︸ ︷
d

dx
u(0, t)

]

d
dt
ûc(w, t) = −c2w2ûc(w, t).

Solve the first-order differential equation in ûc(w, t) and get

ûc(w, t) = A(w)e−c2w2t.

Fourier cosine transform the initial condition

ûc(w, 0) = A(w) = Fc(f)(w).

Hence
ûs(w, t) = Fc(f)(w)e−c2w2t.

Taking inverse Fourier cosine transform:

u(x, t) =

√
2
π

∫ ∞

0

Fc(f)(w)e−c2w2t coswxdw.

9. (a) Taking the sine transform of the heat equation (1) and using u(0, t) = T0

for t > 0, we get

d

dt
ûs(w, t) = c2

[
−w2ûs(w, t) +

√
2
π
wu(0, t)

]
;
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or
d

dt
ûs(w, t) + c2ω2ûs(w, t) = c2

√
2
π
wT0.

Taking the Fourier sine transform of the boundary condition u(x, 0) = 0 for x > 0,
we get ûs(w, 0) = 0.
(b) A particular solution of the differential equation can be guessed easily: ûs(w, t) =√

2
π

T0
w . The general solution of the homogeneous differential equation:

d

dt
ûs(w, t) + c2ω2ûs(w, t) = 0

is ûs(w, t) = A(w)e−c2w2t. So the general solution of the nonhomogeneous differ-
ential equation is

ûs(w, t) = A(w)e−c2w2t

√
2
π

T0

w
.

Using ûs(w, 0) = A(w)
√

2
π

T0
w = 0, we find A(w) = −

√
2
π

T0
w . So

ûs(w t) =

√
2
π

T0

w
−
√

2
π

T0

w
e−c2w2t.

Taking inverse sine transforms, we find

u(x, t) =
2
π

∫ ∞

0

(
T0

w
− T0

w
e−c2w2t

)
sinwxdw

= T0

=sgn(x)=1︷ ︸︸ ︷
2
π

∫ ∞

0

sinwx
w

dw−2T0

π

∫ ∞

0

sinwx
w

e−c2w2t dw

= T0 −
2T0

π

∫ ∞

0

sinwx
w

e−c2w2t dw

13. Proceed as in Exercise 11 using the Fourier sine transform instead of the cosine
transform and the condition u(x 0) = 0 instead of uy(x, 0) = 0. This yields

d2

dx2 ûs(x, w) −w2ûs(x, w) +
√

2
π

=0︷ ︸︸ ︷
u(x, 0) = 0

d2

dx2 ûs(x, w) = w2ûs(x, w).

The general solution is

ûs(x, w) = A(w) coshwx+B(w) sinhwx.

Using

ûs(0, w) = 0 and ûs(1, w) = Fs(e−y) =

√
2
π

w

1 +w2
,

we get

A(w) = 0 and B(w) =

√
2
π

w

1 +w2
· 1
sinhw

.

Hence

ûs(x, w) =

√
2
π

w

1 + w2

sinhwx
sinhw

.

Taking inverse sine transforms:

u(x, y) =
2
π

∫ ∞

0

w

1 +w2

sinhwx
sinhw

sinwy dw.
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Solutions to Exercises 7.8

1. As we move from left to right at a point x0, if the graph jumps by c units, then
we must add the scaled Dirac delta function by cδx0(x). If the jump is upward, c is
positive; and if the jump is downward, c is negative. With this in mind, by looking
at the graph, we see that

f ′(x) =
1
2
δ−2(x)+

1
2
δ−1(x)−

1
2
δ1(x)−

1
2
δ2(x) =

1
2

(δ−2(x) + δ−1(x) − δ1(x) − δ2(x)) .

13. We do this problem by reversing the steps in the solutions of the previous
exercises. Since f(x) has zero derivative for x < −2 or x > 3, it is therefore
constant on these intervals. But since f(x) tends to zero as x→ ±∞, we conclude
that f(x) = 0 for x < −2 or x > 3. At x = −2, we have a jump upward by one unit,
then the function stays constant for −2 < x < −1. At x = −1, we have another
jump upward by one unit, then the function stays constant for −1 < x < −1. At
x = 1, we have another jump upward by one unit, then the function stays constant
for 1 < x < 3. At x = 3, we have a jump downward by three units, then the
function stays constant for x > 3. Summing up, we have

f(x) =





0 if x < −2,

1 if − 2 < x < −1,

2 if − 1 < x < 1,

3 if 1 < x < 3,

0 if 3 < x.

17. We use the definition (7) of the derivative of a generalized function and the
fact that the integral against a delta function δa picks up the value of the function
at a. Thus

〈φ′(x), f(x)〉 = 〈φ(x), −f ′(x)〉 = −〈φ(x), f ′(x)〉

= −〈δ0(x) − δ1(x), f ′(x)〉 = −f ′(0) + f ′(1).

21. From Exercise 7, we have φ′(x) = 1
a

(
U−2a(x)− U−a(x)

)
− 1

a

(
Ua(x)− U2a(x)

)
.

Using (9) (or arguing using jumps on the graph), we find

φ′′(x) =
1
a

(
δ−2a(x)−δ−a(x)

)
−

1
a

(
δa(x)−δ2a(x)

)
=

1
a

(
δ−2a(x)−δ−a(x)−δa(x)+δ2a(x)

)
.

25. Using the definition of φ and the definition of a derivative of a generalized
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function, and integrating by parts, we find

〈φ′(x), f(x)〉 = −〈φ(x), f ′(x)〉 = −
∫ ∞

−∞
φ(x)f ′(x) dx

= −
∫ 0

−1

2(x+ 1)f ′(x) dx−
∫ 1

0

−2(x− 1)f ′(x) dx

= −2(x+ 1)f(x)
∣∣∣
0

−1
+ 2

∫ 0

−1

f(x) dx+ 2(x− 1)f(x)
∣∣∣
1

0
− 2

∫ 1

0

f(x) dx

= −2f(0) + 2
∫ 0

−1

f(x) dx+ 2f(0) − 2
∫ 1

0

f(x) dx

= 〈2
(
U−1(x) − U0(x)

)
, f(x)〉 − 〈2

(
U0(x) − U1(x)

)
, f(x)〉.

= 〈2
(
U−1(x) − U0(x)

)
− 2
(
U0(x) − U1(x)

)
, f(x)〉.

Thus
φ′(x) = 2

(
U−1(x) − U0(x)

)
− 2
(
U0(x) − U1(x)

)
.

Reasoning similarly, we find

〈φ′′(x), f(x)〉 = −〈φ′(x), f ′(x)〉 = −
∫ ∞

−∞
φ′(x)f ′(x) dx

= −2
∫ 0

−1

f ′(x) dx+ 2
∫ 1

0

f ′(x) dx

= −2
(
f(0) − f(−1)

)
+ 2
(
f(1) − f(0)

)
= 2f(−1) − 4f(0) + 2f(1)

= 〈2δ−1 − 4δ0 + 2δ1, f(x)〉.

Thus
φ′′(x) = 2δ−1 − 4δ0 + 2δ1.

29. We use (13) and the linearity of the Fourier transform:

F
(
3δ0 − 2δ−2

)
=

1√
2π

(
3 − 2e2iw

)
.

33. Using the operational property in Theorem 3(i), Section 7.2, we find

F
(
x (U−1 − U1)

)
= i

d

dw
F
(
U−1 − U1

)

= i
d

dw

[
− i√

2πw
eiw +

i√
2πw

e−iw

]

=
−i(i)√

2π
d

dw

[
eiw − e−iw

w

]

=
1√
2π

d

dw

[
2i sinw
w

]
(Recall eiu − e−iu = 2i sinu)

=
2i√
2π

[
w cosw − sinw

w2

]

= i

√
2
π

[
w cosw − sinw

w2

]
.
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The formula is good at w = 0 if we take the limit as w → 0. You will get

F
(
x (U−1 − U1)

)
= lim

w→0
i

√
2
π

[
w cosw − sinw

w2

]
= i

√
2
π

lim
w→0

−w sinw
2w

= 0.

(Use l’Hospital’s rue.) Unlike the Fourier transform in Exercise 31, the transform
here is a nice continuous function. There is a major difference between the trans-
forms of the two exercises. In Exercise 31, the function is not integrable and its
Fourier transform exists only as a generalized function. In Exercise 33, the function
is integrable and its Fourier transform exists in the usual sense of Section 7.2. In
fact, look at the transform in Exercise 31, it is not even defined at w = 0.

An alternative way to do this problem is to realize that

φ′(x) = −δ−1 − δ1 + U−1 − U1.

So

F
(
φ′(x)

)
= F

(
− δ−1 − δ1 + U−1 − U1

)

=
1√
2π

(
−eiw − e−iw − i

eiw

w
+ i

e−iw

w

)
.

But
F
(
φ′(x)

)
= i wF

(
φ(x)

)
.

So

F
(
φ(x)

)
=

i

w
F
(
eiw + e−iw + i

eiw

w
− i

e−iw

w

)

=
i√

2πw

[
2 cosw +

i

w
(2i sinw)

]

= i

√
2
π

[
w cosw − sinw

w2

]
.

37. Write τ2(x) = x2 U0(x), then use the operational properties

F
(
τ2(x)

)
= F

(
x2 U0(x)

)

= − d2

dw2
F (U0(x))

= − −i√
2π

d2

dw2

[
1
w

]

=
2i√
2π

1
w3

= i

√
2
π

1
w3

.

41. We have

f ′(x) = −U−2(x) + 2U−1(x) − U1(x) + δ−1(x) − 2 δ2(x).

So

F (f ′(x)) = F (−U−2(x) + 2U−1(x) − U1(x) + δ−1(x) − 2 δ2(x))

= − −i√
2π

e2iw

w
+ 2

−i√
2π

eiw

w
− −i√

2π
e−iw

w
+

1√
2π
eiw − 2√

2π
e−2iw.
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Hence

F (f(x)) =
−i
w

F (f ′(x))

=
1√

2πw

[
e2iw

w
− 2

eiw

w
+
e−iw

w
− ieiw + 2ie−2iw

]
.

45. You may want to draw a graph to help you visualize the derivatives. For
f(x) = sinx if |x| < π and 0 otherwise, we have f”(x) = cos x if |x| < π and
0 otherwise. Note that since f is continuous, we do not add delta functions at
the endpoints x = ±π when computing f ′. For f ′′, the graph is discontinuous at
x = ±π and we have

f ′′(x) = −δ−π + δπ − sinx

if |x| ≤ π and 0 otherwise. Thus

f ′′(x) = −δ−π + δπ − f(x) for all x.

Taking the Fourier transform, we obtain

F (f ′′(x)) = F (−δ−π + δπ − f(x)) ;

−w2F (f(x)) = −
1√
2π
eiπw +

1√
2π
e−iπw −F (f(x)) ;

⇒ (1 +w2)F (f(x)) =
1√
2π

=2cos(πw)︷ ︸︸ ︷(
eiπw + e−iπw

)

⇒ F (f(x)) =
1√
2π

cos(πw)
1 +w2

.

49. From Example 9, we have

f ′ = δ−1 − δ1.

So from
d

dx

(
f ∗ f

)
=
df

dx
∗ f

we have
d

dx

(
f ∗ f

)
=

df

dx
∗ f =

(
δ−1 − δ1

)
∗ f ;

= δ−1 ∗ f − δ1 ∗ f ; = 1√
2π

(
f(x + 1) − f(x − 1)

)
.

Using the explicit formula for f , we find

d

dx

(
f ∗ f

)
=





1√
2π

if − 2 < x < 0,

− 1√
2π

if 0 < x < 2,

0 otherwise,

as can be verified directly from the graph of f ∗ f in Figure 18.

53. Using (20), we have

φ ∗ ψ = (δ−1 + 2δ2) ∗ (δ−1 + 2δ2)

= δ−1 ∗ δ−1 + 2δ−1 ∗ δ2 + 2δ2 ∗ δ−1 + 4δ2 ∗ δ2

=
1√
2π

[δ−2 + 4δ1 + 4δ4] .



132 Chapter 7 The Fourier Transform and its Applications

57. Following the method of Example 9, we have

d

dx
(φ ∗ ψ) =

dψ

dx
∗ φ

= (δ−1 − δ1) ∗ (U−1 − U1 + U2 − U3)

= δ−1 ∗ U−1 − δ−1 ∗ U1 + δ−1 ∗ U2 − δ−1 ∗ U3 − δ1 ∗ U−1

+δ1 ∗ U1 − δ1 ∗ U2 + δ1 ∗ U3

=
1√
2π

(U−2 − U0 + U1 − U2 − U0 + U2 − U3 + U4)

=
1√
2π

((U−2 − U0) − (U0 − U1) − (U3 − U4)) .

Integrating d
dx (φ ∗ ψ) and using the fact that φ ∗ ψ equal 0 for large |x| and that

there are no discontinuities on the graph, we find

φ ∗ ψ(x) =





1√
2π

(x+ 2) if − 2 < x < 0
1√
2π

(−x + 2) if 0 < x < 1
1√
2π

if 1 < x < 3
1√
2π

(−x + 4) if 3 < x < 4

0 otherwise

=
1√
2π

(
(x+ 2)

(
U−2 − U0

)
+ (−x+ 2)

(
U0 − U1

)

+
(
U1 − U3

)
+ (−x+ 4)

(
U3 − U4

))
.
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Solutions to Exercises 7.9

1. Proceed as in Example 1 with c = 1/2. Equation (3) becomes in this case

u(x, t) =
2√
2t
e−x2/t ∗ δ1(x)

=
1√
πt
e−(x−1)2/t,

since the effect of convolution by δ1 is to shift the function by 1 unit to the right
and multiply by 1√

2π
.

5. We use the superposition principle (see the discussion preceeding Example 4). If
φ is the solution of ut = 1

4
uxx + δ0, u(x, 0) = 0 and ψ is the solution of ut = 1

4
uxx,

u(x, 0) = U0(x), then you can check that φ+ ψ is the solution of ut = 1
4uxx + δ0,

u(x, 0) = U0(x). By Examples 1,

φ(x, t) =
2
√
t√
π
e−x2/t − 2|x|√

π
Γ
(

1
2
,
x2

t

)

and by Exercise 20, Section 7.4,

ψ(x, t) =
1
2
erf
(
x√
t

)
.

9. Apply Theorem 2 with c = 1 and f(x, t) = cos ax; then

u(x, t) =
∫ t

0

∫ ∞

−∞

1
2
√
π(t− s)

e−(x−y)2/(4(t−s)) cos(ay) dyds

=
∫ t

0

1√
2π

∫ ∞

−∞

1√
2(t− s)

e−y2/(4(t−s)) cos(a(x− y)) dyds

(Change variables x− y ↔ y)

= cos(ax)
∫ t

0

1√
2π

∫ ∞

−∞

1√
2(t− s)

e−y2/(4(t−s)) cos(ay) dyds

(Integral of odd function is 0.

= cos(ax)
∫ t

0

e−a2(t−s)ds (Fourier transform of a Guaussian.)

=
1
a2

cos(ax)
(
1 − e−a2t

)
.
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Solutions to Exercises 7.10

1. Apply Proposition 1 with f(x, s) = e−(x+s)2 , then

dU

dx
= f(x, x) +

∫ x

0

∂

∂x
f(x, s) ds

= e−4x2
−
∫ x

0

2(x+ s)e−(x+s)2 ds

= e−4x2
−
∫ 2x

x

2ve−v2
dv ((v = x+ s)

= e−4x2
+ e−v2

∣∣∣
2x

x
= 2e−4x2

− e−x2
.

5. Following Theorem 1, we first solve φt = φxx, φ(x, 0, s) = e−sx2, where s > 0
is fixed. The solution is φ(x, t, s) = e−s(2t + x2) (see the solution of Exercise 5,
Section 7.4). The the desired solution is given by

u(x, t) =
∫ t

0

φ(x, t− s, s)ds

=
∫ t

0

e−s(2(t− s) + x2)ds

= −2te−s + 2se−s + 2e−s − x2e−s
∣∣∣
t

0

= −2 + 2t+ x2 + e−t(2 − x2).

9. Following Theorem 2, we first solve φtt = φxx, φ(x, 0, s) = 0, φt(x, 0, s) =
cos(s+ x) where s > 0 is fixed. By d’Alembert’s method, the solution is

φ(x, t, s) =
1
2

∫ x+t

x−t

cos(s + y) dy =
1
2
[
sin(s + x+ t) − sin(s+ x− t)

]
.

The the desired solution is given by

u(x, t) =
∫ t

0

φ(x, t− s, s)ds

=
1
2

∫ t

0

[
sin(x+ t) − sin(x− t + 2s)

]
ds

=
1
2
[
s sin(x+ t) +

1
2

cos(x− t+ 2s)
]∣∣∣

t

0

=
1
2
[
t sin(x+ t) +

1
2

cos(x+ t) − 1
2

cos(x− t)
]
.

13. start by solving φtt = φxx, φ(x, 0, s) = 0, φt(x, 0, s) = δ0(x) where s > 0 is
fixed. By d’Alembert’s method, the solution is

φ(x, t, s) =
1
2

∫ x+t

x−t

δ0(y) dy =
1
2
[
U0(x+ t) − U0(x− t)

]
.

By Theorem 2, the solution of utt = uxx + δ0(x), u(x, 0) = 0, φt(x, 0) = 0 is given
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by

φ(x, t) =
∫ t

0

φ(x, t − s, s)ds

=
1
2

∫ t

0

[
U0(x+ t− s) − U0(x− t+ s)

]
ds

=
1
2
[
− τ (x+ t − s) − τ (x− t+ s)

]∣∣∣
t

0

= −τ (x) +
1
2
[
τ (x+ t) + τ (x− t)

]
,

where τ = τ0 is the antiderivative of U0 described in Example 2, Section 7.8,
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Solutions to Exercises 8.1

1. |11 cos 3t| ≤ 11, so (2) holds if you take M = 11 and a any positive number, say
a = 1. Note that (2) also holds with a = 0.

5. | sinh3t| = |(e3t − e−3t)/2| ≤ (e3t + e3t)/2 = e3t. So (2) holds with M = 1 and
a = 3.

9. Using linearity of the Laplace transform and results from Examples 1 and 2, we
have

L(
√
t+

1√
t
)(s) = L(t1/2) + L(t−1/2)

=
Γ(3/2)
s3/2

+
Γ(1/2)
s1/2

Now Γ(1/2) =
√
π, so Γ(3/2) = (1/2)Γ(1/2) =

√
π/2. Thus

L(
√
t+

1√
t
)(s) =

√
π

2s3/2
+
√
π

s
.

13. Use Example 3 and Theorem 4:

L(t sin 4t)(s) = − d

ds
L(sin(4t)) = − d

ds

4
s2 + 42

=
8s

(s2 + 42)2

17. We have

L(e2t sin 3t)(s) = L(sin 3t)(s − 2) =
3

(s− 2)2 + 32

3
(s− 2)2 + 9

21. We have

L((t+ 2)2 cos t)(s) = L((t2 + 4t+ 4) cos t)(s)

= L(t2 cos t)(s) + 4L(t cos t)(s) + 4L(cos t)(s)

=
d2

ds2
L(cos t)(s) − 4

d

ds
[L(cos t)(s)] + 4L(cos t)(s)

=
d2

ds2
s

s2 + 1
− 4

d

ds

[
s

s2 + 1

]
+

4s
s2 + 1

=
d

ds

−s2 + 1
(s2 + 1)2

− 4
−s2 + 1
(s2 + 1)2

+
4s

s2 + 1

=
2s(s2 − 3)
(s2 + 1)3

+ 4
s2 − 1

(s2 + 1)2
+

4s
s2 + 1

25. Since
L(t) =

1
s2

;

then

L−1

(
1
s2

)
= t
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29. Using

L
(
eattn

)
=

n!
(s − a)n+1

,

L
(
eattn

n!

)
=

1
(s − a)n+1

,

L
(
eat cos bt

)
=

s − a

(s − a)2 + b2
,

we find that

f(t) =
e3tt4

4!
+ e3t cos t.

33. Partial fractions:

2s− 1
s2 − s− 2

=
2s − 1

(s − 2)(s + 1)

=
A

s− 2
+

B

s + 1
;

2s− 1 = A(s + 1) + B(s − 2)

Take particular values of s:

s = −1 ⇒ −3 = −3B ⇒ B = 1

s = 2 ⇒ 3 = 3A ⇒ A = 1

So

F (s) = =
1

s − 2
+

1
s + 1

;

f(t) = e2t + e−t

37. Partial fractions:

1
s2 + 3s + 2)

=
A

s + 2
+

B

s + 1
;

1 = A(s + 1) +B(s + 2)

F (s) =
−1
s + 2

+
1

s + 1
;

f(t) = −e−2t + e−t

41. The change of variables τ = t−π transforms the initial value problem y′′+y =
cos t, y(π) = 0, y′(π) = 0, into

y′′ + y = cos(τ + π) = − cos τ, y(0) = 0, y′(0) = 0
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Laplace transformt the equation and use the given initial conditions:

L(y′′) + L(y) = L(− cos τ )

s2Y − sy(0) − y′(0) + Y = − s

s2 + 1

Y (s2 + 1) = = − s

s2 + 1

Y = − s

(s2 + 1)2
=

1
2
d

ds

1
s2 + 1

y = −
1
2
τ sin τ = −

1
2
(t− π) sin(t− π)

=
1
2
(t − π) sin t

45. Laplace transform the equation y′′ − y′ − 6y = et cos t and use the initial
conditions y(0) = 0, y′(0) = 1:

s2Y − sy(0) − y′(0) − sY + y(0) − 6Y =
s − 1

(s − 1)2 + 1
;

Y (s2 − s− 6) = 1 +
s− 1

(s− 1)2 + 1
;

So

Y =
1

(s − 3)(s + 2)
+

1
(s − 3)(s + 2)

s− 1
(s − 1)2 + 1

;

Y =
−1

5(s+ 2)
+

1
5(s− 3)

+
1

(s − 3)(s+ 2)
s − 1

s2 − 2s + 2

=
−1

5(s+ 2)
+

1
5(s− 3)

+
1

(s + 2)(s2 − 2s + 2)
+

2
(s − 3)(s + 2)(s2 − 2s + 2)

We now find the partial frctions decomposition of the last term on the right. Write

1
(s + 2)(s2 − 2s+ 2)

=
A

s + 2
+ +

Bs + C

s2 − 2s+ 2
;

1 = A(s2 − 2s+ 2) + (Bs + C)(s+ 2);

s = −2 ⇒ 1 = 10A ⇒ A = 1/10

constant term ⇒ 1 =
1
5

+ 2C ⇒ C = 2/5;

coefficient of s2 ⇒ 0 =
1
10

+B ⇒ B = −1/10;

1
(s + 2)(s2 − 2s+ 2)

=
1

10(s+ 2)
+ +

−s + 4
10(s2 − 2s + 2)

= Y1.
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Also

2
(s− 3)(s + 2)(s2 − 2s + 2)

=
A

s − 3
+ +

B

s + 2
+

CS +D

(s − 3)(s + 2)(s2 − 2s + 2)
;

2 = A(s + 2)(s2 − 2s+ 2) +B(s − 3)(s2 − 2s + 2)

+(CS +D)(s − 3)(s + 2);

s = −2 ⇒ B = −1/25

s = −3 ⇒ A = 2/25

constant term ⇒ 2 =
8
25

+
6
25

− 6D ⇒ D = −6/25;

coefficient of s3 ⇒ C = −1/25;

2
(s− 3)(s + 2)(s2 − 2s + 2)

=
2

25(s − 3)
− 1

25(s+ 2)
+

−s − 6
25(s2 − 2s+ 2)

= Y2;

Now

Y =
−1

5(s + 2)
+

1
5(s− 3)

+ Y1 + Y2

y = − 7
50
e−2t +

7
25
e3t − 7

50
et cos t+

1
50
et sin t.
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Solutions to Exercises 8.2

1. To compute the Laplace transform of f(t) = U0(t − 1) − t+ 1, use

L [U0(t− a)] (s) =
e−as

s
;

so

L [U0(t− 1) − t+ 1] (s) = L [U0(t− 1)]− L [t] + L [1]

=
e−s

s
− 1
s2

+
1
s
.

5. Use the identity sin t = − sin(t − π). Then

L [sin tU0(t − π)] (s) = −L [sin(t − π)U0(t− π)] (s)

= −e−πsL [sin t] (s) =
−e−πs

s2 + 1
.

9.

y = 2 (U0(t− 2) − U0(t− 3)) ;

Y = 2
e−2s

s
− e−3s

s

13.

y = (U0(t− 1) − U0(t− 4)) + (t− 5) (U0(t− 4) − U0(t − 5))

= U0(t− 1) − U0(t− 4) + (t − 5)U0(t− 5) + (t − 4)U0(t− 4) − U0(t− 4);

Y =
e−s

s
− 2

e−4s

s
+
e−4s

s2
− e−5s

s2

The following is a variation on Exercise 13.

13 bis. Find the Laplace transform of the function in the picture
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y = (U0(t− 1) − U0(t− 4)) + (5 − t) (U0(t− 4) − U0(t − 5))

= U0(t− 1) − U0(t− 4) + (t − 5)U0(t− 5) − (t − 5)U0(t− 4)

= U0(t− 1) − U0(t− 4) + (t − 5)U0(t− 5) − (t − 4)U0(t− 4) + U0(t− 4);

Y =
e−s

s
− e−4s

s
+
e−5s

s2
− e−4s

s2
+
e−4s

s

=
e−s

s
+

1
s2
(
e−5s − e−4s

)

17. Let y(t) = sin t, then Y (s) = 1
s2+1 ; so if

f(t) = U0(t − 1) sin(t− 1),

then F (s) =
e−s

s2 + 1
.

21. Let y(t) =
√
t, then Y (s) = Γ(3/2)

s3/2 , where Γ(3/2) = 1
2Γ(1/2) = π

2 . If

φ(t) =
2
π

√
t⇒ Φ(s) =

1
s3/2

;

and so if

f(t) =
2
π

√
t− 1U0(t− 1) then F (s) =

e−s

s3/2
.

25. We will compute t ∗ t in two different ways. First method: We have

t
L−→

1
s2

;

t
L−→ 1

s2
;

t ∗ t L−→ 1
s2

· 1
s2

=
1
s4

1
s4

L−1

−→ t3

6
= t ∗ t.

Alternatively,

t ∗ t =
∫ t

0

(t− τ )τ dτ

= t
1
2
τ2 − 1

3
τ3
∣∣∣
t

0
=

1
2
t3 − 1

3
t3 =

1
6
t3.

29. We have F (s) = 1
s(s2+1)

= 1
s
· 1

s2+1
, and

1
s

L−1

−→ 1;

1
s2 + 1

L−1

−→ sin t.

So

f(t) = 1 ∗ sin t =
∫ t

0

sin τ dτ = 1 − cos t.
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33. Passing the equations y′′ + y = δ0(t − 1), y(0) = 0, y′(0) = 0, through the
Laplace transform, we get:

s2Y − sy(0) − y′(0) + Y = e−s

(s2 + 1)Y = e−s

Y =
e−s

s2 + 1
.

Thus the solution is

y = L−1

(
e−s

s2 + 1

)
.

To compute this inverse transform, we observe

sin t L−→ 1
s2 + 1

;

U0(t − 1) sin(t− 1) L−→ e−s

s2 + 1
;

so y = U0(t− 1) sin(t − 1).

37. Take the Laplace transform on both sides of y′′ + 4y = U0(t − 1)et−1 and use
the initial conditions y(0) = 1, y′(0) = 0, and you will get

L (y′′ + 4y) = L
(
U0(t − 1)et−1

)

L (y′′) + L (4y) = L
(
U0(t − 1)et−1

)
;

s2Y − sy(0) − y′(0) + 4Y = e−s 1
s − 1

(s > 1)

s2Y + 4Y =
e−s

s − 1

Y (4 + s2) =
e−s

s − 1
;

Y =
e−s

(s − 1)(s2 + 4)
,

where we have used Theorem 1, Sec. 8.2. Thus the solution is the inverse Laplace
transform of

e−s

(s − 1)(s2 + 4)
.

Use partial fractions

1
(s − 1)(s2 + 4)

=
A

s − 1
+
Bs +C

s2 + 4

=
A(s2 + 4) + (s− 1)(Bs + C)

(s − 1)(s2 + 4)

1 = A(s2 + 4) + (s− 1)(Bs + C);

Set s = 1 ⇒ 1 = 5A, A =
1
5
;

Set s = 2i ⇒ 1 = (2i− 1)(B(2i) + C);

Set s = −2i ⇒ 1 = (−2i − 1)(B(−2i) + C);

⇒ B = −1
5
, C = −1

5
.
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Hence
1

(s− 1)(s2 + 4)
=

1
5

[
1

s− 1
− s+ 1
s2 + 4

]

and so
e−s

(s− 1)(s2 + 4)
=
e−s

5

[
1

s− 1
− s+ 1
s2 + 4

]

You can use the Table of Laplace transforms at the end of the book to verify the
following computations:

et L−→ 1
s − 1

sin(2t) L−→ 2
s2 + 4

;

1
2

sin(2t) L−→ 1
4 + s2

;

cos(2t) L−→ s

s2 + 4
;

1
5

[
et − 1

2
sin(2t) − cos(2t)

]
L−→ 1

5

[
1

s − 1
− s + 1
s2 + 4

]

U0(t− a)f(t − a) L−→ e−asF (s);

1
5

[
et−1 − 1

2
sin(2(t − 1)) − cos(2(t− 1))

]
U0(t− 1) L−→ e−s

5

[
1

s − 1
− s + 1
s2 + 4

]

From this we derive the solution

L−1

(
e−s

5

[
1

s − 1
− s + 1
s2 + 4

])
=

1
5

[
et−1 − 1

2
sin(2(t− 1)) − cos(2(t− 1))

]
U0(t−1).

41. Taking the Laplace transform of the equations y′′ + 4y = cos t, y(0) =
0, y′(0) = 0, we obtain

s2Y + 4Y =
s

s2 + 1

Y =
1
2

s

s2 + 1
· 2
s2 + 22

.

So
y =

1
2

cos t ∗ sin(2t).

45. T = 2, for 0 < t < 1, f(t) = t and for 1 < t < 2, f(t) = 2 − t; so, by the
previous exercise,

F (s) =
1

1 − e−2s

[∫ 1

0

te−st dt+
∫ 1

0

(2 − t)e−st dt

]

=
1

1 − e−2s

[
1
s2

−
e−s

s2
−
e−s

s
−
e−st

s
(2 − t)

∣∣∣
2

1
−

1
s

∫ 2

1

e−stdt

]

=
1

1 − e−2s

[
1
s2

− 2
e−s

s2
+
e−2s

s2

]

=
e2s

(e2s − 1)s2
[
1 − 2e−s + e−2s

]

=
(es − 1)2

(es − 1)(es + 1)s2
=

es − 1
(es + 1)s2
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49. We have

sin t =
∞∑

k=0

(−1)k t2k+1

(2k + 1)!
for all t.

So for t 6= 0, we divide by t both sides and get

sin t
t

=
∞∑

k=0

(−1)k t2k

(2k + 1)!
for all t 6= 0.

As t→ 0, the left side approaches 1. The right side is continuous, and so as t→ 0,
it approaches the value at 0, which is 1. Hence both sides of the equality approach
1 as t→ 0, and so we may take the expansion to be valid for all t. Apply the result
of the previous exercise, then

L(f(t))(s) = L

( ∞∑

k=0

(−1)k t2k

(2k + 1)!

)
(s)

=
∞∑

k=0

(−1)k(2k)!
1

s2k+1(2k + 1)!
=

∞∑

k=0

(−1)k 1
s2k+1(2k + 1)

.

Recall the expansion of the inverse tangent:

tan−1 u =
∞∑

k=0

(−1)k u
2k+1

2k + 1
|u| < 1.

So

tan−1 1
s

=
∞∑

k=0

(−1)k 1
s2k+1(2k + 1)

|s| > 1.

Comparing series, we find that, for s > 1,

L(
sin t
t

) = tan−1(
1
s
).

The formula is in fact valid valid for all s > 0. See Exercise 56.

53. We have

L
(

1
a
√
π
e−

t2

4a2

)
(s) =

1
a
√
π

∫ ∞

0

e−ste−
t2

4a2 dt

=
1

a
√
π

∫ ∞

0

e−( t
2a +as)2

+a2s2
dt

=
1

a
√
π
ea2s2

∫ ∞

0

e−( t
2a +as)2

dt

(Let T =
t

2a
+ as, dT =

1
2a
dt.)

=
1√
π
ea2s2

∫ ∞

as

e−T2
2 dT

= ea2s2 2√
π

∫ ∞

as

e−t2 dt

= ea2s2
erfc (as) .

54. Note that, for a > 0,

L (f(at)) (s) =
∫ ∞

0

e−stf(at) dt

=
1
a

∫ ∞

0

e−
s
a tf(t) dt =

1
a
L (f(t))

( s
a

)
.
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Using this and Exercise 52, we find

L (erf(at)) (s) =
1
a

1
s
a

e
s2

4a2 erfc
( s

2a

)
=

1
s
e

s2

4a2 erfc
( s

2a

)
.

57. Bessel’s equation of order 0 is

xy′′ + y′ + xy = 0.

Applying the Laplace transform, we obtain

L(xy′′) + L(y′) + L(xy) = 0;

− d

ds
L(y′′) + L(y′) − d

ds
L(y) = 0

− d

ds

[
s2Y − sy(0) − y′(0)

]
+ sY − y(0) − Y ′ = 0

[
− 2sY − s2Y ′ + sy(0)

]
+ sY − y(0) − Y ′ = 0

−Y ′(1 + s2) − sY = 0

Y ′ +
s

1 + s2
Y = 0.

An integating factor for this first order linear differential equation is

e
∫

s
1+s2 ds = e

1
2 ln(1+s2) =

√
1 + s2

After multiplyig by the integrating factor, the equation becmes

d

ds
[
√

1 + s2Y ] = 0 .

Integrating both sides, we get

√
1 + s2Y = K

or

Y =
K√

1 + s2
,

where K is a constant.
From Exercise 50, y = KJ0(t).
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Solutions to Exercises 8.3

1. The solution is the same as Example 2. Simply take T0 = 70 in that example.

5. Using the formula from Example 3, we get

u(x, t) =
∫ t

0

(t − τ )[τ − (t − x)U0(τ − x)] dτ

=
∫ t

0

(t − τ )τ dτ −
∫ t

0

(t − τ )(τ − x)(U0(τ − x) dτ

=
t

2
τ2 − 1

3
τ3
∣∣∣
t

0
−
∫ t

0

(t− τ )(τ − x)U0(τ − x) dτ

=
t3

3!
−
∫ t

0

(t− τ )(τ − x)U0(τ − x) dτ

Note that U0(τ −x) = 1 if τ > x and 0 if τ < x. So the integral is 0 if t < x (since
in this case τ ≤ t < x). If x < τ < t, then

∫ t

0

(t − τ )(τ − x)U0(τ − x) dτ

=
∫ t

x

(t− τ )(τ − x) dτ

=
∫ t

x

(tτ − tx− τ2 + τx) dτ

=
1
2
tτ2 − txτ − 1

3
τ3 +

1
2
τ2x
∣∣∣
t

x

=
1
2
t3 − t2x− 1

3
t3 +

1
2
t2x− 1

2
tx2 + tx2 +

1
3
x3 − 1

2
x3

=
1
6
t3 − 1

2
t2x+

1
2
tx2 − 1

6
x3

=
1
6
(t − x)3

Hence

u(x, t) =





1
6 t

3 if t < x

1
6 t

3 − 1
6 (t− x)3 if t > x,

or

u(x, t) =
1
6
t3 − 1

6
(t − x)3 U0(t − x).
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9. Transforming the problem, we find (see Exercise 7 for similar details)

s2U (x, s) − su(x, 0) − ut(x, 0) = Uxx(x, 0);

s2U (x, s) − 1 = Uxx(x, 0);

Uxx(x, 0) − s2U (x, s) = −1;

U (x, s) = A(s)e−sx +
1
s2

;

U (0, s) = L(sin t) =
1

1 + s2
;

⇒ A(s) +
1
s2

=
1

1 + s2

⇒ A(s) =
1

1 + s2
− 1
s2

U (x, s) =
[

1
1 + s2

− 1
s2

]
e−sx +

1
s2

u(x, t) = t− (t− x)U0(t− x) + sin(t − x)U0(t− x).

13. Verify that
u(x, t) = u1(x, t) + u2(x, t),

where u1 is a solution of

ut = uxx;

u(0, t) = 70;

u(x, 0) = 70;

and u2 is a solution of

ut = uxx;

u(0, t) = 30;

u(x, 0) = 0.

It is immediate that the solution of the first problem is u1 = 70. The solution of
the second problem is similar to Example 2:

u2(x, t) = 30 erfc
(

x

2
√
t

)
.



148 Chapter 8 The Laplace and Hankel Transforms with Applications

Solutions to Exercises 8.4

1. (a) Let z2 = x, ũ(z, t) = u(z2, t) = u(x, t). Then

2z
dz

dx
= 1 or

dz

dx
=

1
2z
.

So

∂

∂x
u(x, t) =

∂

∂x
ũ(z, t) =

∂ũ

∂z

dz

dx
=
∂ũ

∂z

1
2z

Similarly,

∂2u

∂x2
=

∂2

∂x

[
∂ũ

∂z

1
2z

]

=
d

dx

(
1
2z

)
∂ũ

∂z
+

1
2z

∂

∂x

(
∂ũ

∂z

)

=
−1
2z2

dz

dx

∂ũ

∂z
+

1
2z
∂2ũ

∂z2

dz

dx

=
−1
4z3

∂ũ

∂z
+

1
4z2

∂2ũ

∂z2

(b) Substituting what we found in (a) into (6) and using u in place of ũ to simplify
notation, we get

utt = g

[
z2

[
− 1

4z3
uz +

1
4z2

uzz

]
+

1
2z
uz

]

=
g

4

[
uzz +

1
z
uz

]

5. Using Exercise 9 of Section 4.3, we find

H0(x2N U0(a− x))(s) =
∫ ∞

0

x2N U0(a− x)J0(sx)x dx

=
∫ a

0

J0(sx)x2N+1 dx

(change variables sx ↔ x)

=
1

s2N+2

∫ as

0

x2N+1J0(x) dx

=
1

s2N+2

N∑

n=0

(−1)n2N N !
(N − n)!

x2N+1−nJn+1(x)
∣∣∣
as

0

=
1

s2N+2

N∑

n=0

(−1)n2N N !
(N − n)!

(as)2N+1−nJn+1(as)

=
N∑

n=0

(−1)n2N N !
(N − n)!

a2N+1−n

s1+n
Jn+1(as)
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9. (a) The chain starts to move from rest with an initial velocity of v(x) =
√
x.

(b) We have A ≡ 0 and

B(s) =
2

√
gs

H0(1/z)(s) =
2

√
gs2

.

So

u(x, t) =
2
√
g

∫ ∞

0

sin
(√

g

2
st

)
J0

(√
xs
) 1
s
ds.

13. Similar to Example 1.
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Solutions to Exercises 12.1

1. We have M (x, y) = xy, N (x, y) = y, My(x, y) = x, Nx(x, y) = y. The right
side of (4) is equal to ∫ 1

0

∫ 1

0

−x dx dy = −1
2
.

Starting with the side of the square on the x-axis and moving counterclockwise,
label the sides of the square by 1, 2, 3, and 4. We have

∫

C

(
M (x, y) dx +N (x, y) dy

)
=

4∑

j=1

∫

side j

(
M (x, y) dx+ N (x, y) dy

)
=

4∑

j=1

Ij.

On side 1, y = 0, hence M = N = 0 and so I1 = 0. On side 2, x = 1 and y varies
from 0 to 1; hence M = y, N = y, and dx = 0, and so

I2 =
∫ 1

0

y dy =
1
2
.

On side 3, y = 1 and x varies form 1 to 0; hence M = x, N = 1, and dy = 0, and
so

I3 =
∫ 0

1

x dx = −1
2
.

On side 4, x = 0 and y varies form 1 to 0; hence M = 0, N = y, and dx = 0, and
so

I4 =
∫ 0

1

y dy = −1
2
.

Consequently,
∫

C

(
M (x, y) dx+ N (x, y) dy

)
= 0 +

1
2
− 1

2
− 1

2
= −1

2
,

which verifies Green’s theorem in this case.

5. We have M (x, y) = 0, N (x, y) = x, My(x, y) = 0, Nx(x, y) = 1. The right side
of (6) is equal to

∫∫

D

dx dy = (area of annular region) = π − π

4
=

3π
4
.

We have
∫

Γ

(
M (x, y) dx+ N (x, y) dy

)
=
∫

C2

+
∫

C1

(
M (x, y) dx +N (x, y) dy

)
= I1 + I2.

Parametrize C1 by x = cos t, y = sin t, 0 ≤ t ≤ 2π, dx = − sin t dt, dy = cos t.
Hence

I1 =
∫ 2π

0

cos2 t dt = π.

Parametrize C2 by x = 1
2 cos t, y = 1

2 sin t, t varies from 2π to 0, dx = −1
2 sin t dt,

dy = 1
2 cos t. Hence

I2 =
1
4

∫ 0

2π

dt == −
∫ 2π

0

1
4

cos2 t dt = −π
4
.

Consequently, ∫

Γ

(
M (x, y) dx+ N (x, y) dy

)
= π − π

4
=

3π
4
,

which verifies Green’s theorem in this case.
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9. Take u(x, y) = y and v(x, y) = x. Then ∇2v = 0, ∇u = (0, 1), ∇v = (1, 0), so
∇u · ∇v = 0 and, by (9),

∫

C

y
∂x

∂n
ds =

∫

C

u
∂v

∂n
ds =

∫

Γ

0 ds = 0.

13. Same solution as in Example 1. Use Theorem 2 instead of Theorem 1.

17. We use the 2nd integral in Example 1. Let us parametrize the ellipse by
x(t) = a cos t, y(t) = b sin t, dy = b cos t dt, 0 ≤ t ≤ 2π.

Area =
∫

C

x dy =
∫ 2π

0

a cos t b sin t dt

= a b

∫ 2π

0

cos2 t dt = a b

∫ 2π

0

1 + cos(2t)
2

dt

= πab.



152 Chapter 12 Green’s Functions and Conformal Mappings

Solutions to Exercises 12.2

1. The function u(x, y) = ex cos y is harmonic for all (x, y) (check that ∇2u = 0
for all (x, y)). Applying (1) at (x0, y0) = (0, 0) with r = 1, we obtain

1 = u(0, 0) =
1
2π

∫ 2π

0

ecos t cos(sin t) dt.

5. u(x, y) = x2 − y2, uxx = 2, uyy = −2, uxx + uyy = 0 for all (x, y). Since u is
harmonic for all (x, y) it is harmonic on the given square region and continuus on
its boundary. Since the region is bounded, u attains its maximum and minimum
values on the boundary, by Corollary 1. Starting with the side of the square on the
x-axis and moving counterclockwise, label the sides of the square by 1, 2, 3, and 4.

On side 1, 0 ≤ x ≤ 1, y = 0, and u(x, y) = u(x, 0) = x2. On this side, the
maximum value is 1 and is attained at the point (1, 0), and the minimum value is
0 and is attained at the point (0, 0).

On side 2, 0 ≤ y ≤ 1, x = 1, and u(x, y) = u(1, y) = 1 + y − y2 = f(y). On
this side, f ′(y) = −2y + 1, f ′(y) = 0 ⇒ y = 1/2. Minimum value f(0) = f(1) = 1,
attained at the points (1, 0) and (1, 1). Maximum value f(1/2) = 1− 1/4 + 1/2 =
5/4, attained at the point (1, 1/2).

On side 3, 0 ≤ x ≤ 1, y = 1, and u(x, y) = u(x, 1) = x2 + x − 1 = f(x). On
this side, f ′(x) = 2x + 1, f ′(x) = 0 ⇒ x = −1/2. Extremum values occur at the
endpoints: f(0) = −1, f(1) = 1. Thus the minimum value is −1 and is attained at
the point (0, 1). Maximum value is 1 and is attained at the point (1, 1).

On side 4, 0 ≤ y ≤ 1, x = 0, and u(x, y) = u(0, y) = −y2. On this side, the
maximum value is 0 and is attained at the point (0, 0), and the minimum value is
-1 and is attained at the point (0, 1).

Consequently, the maximum value of u on the square is 5/4 and is attained at
the point (1, 1/2); and the minimum value of u on the square is −1 and is attained
at the point (0, 1) (see figure).

Plot3D x^2 y^2 x y, x, 0, 1 , y, 0, 1 , ViewPoint 2, 2, 1

0

1

0
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Solutions to Exercises 12.3

1. We have ∫

Γ

G(x, y, x0, y0) ds = 0,

because G(x, y, x0, y0) = 0 for all (x, y) on Γ (Theorem 3(ii)).

5. Let u(x, y) = x, then u is harmonic for all (x, y) and so, by Theorem 2,
∫

Γ

x
∂

∂n
G(x, y,

1
2
,

1
3
) ds = 2π

1
2

= π.

9. By Theorem 4, with f(x, y) = x2y3,

∇2

(∫∫

Ω

x2y3 G(x, y, x0, y0) dx dy
)

= 2πx2
0y

3
0 .
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Solutions to Exercises 12.4

1. The function u(r, θ) = 1 is harmonic in the unit disk and has boundary values
f(θ) = 1. Use (10) with f(θ) = 1 and you get, for all 0 ≤ r < 1,

1 =
1
2π

∫ 2π

0

1− r2

1 + r2 − 2r cos(θ − φ)
dθ.

5. For n = 1, 2, . . ., the function u(r, θ) = rn cos nθ is harmonic in the disk of
radius R > 0 and has boundary values (when r = R) f(θ) = Rn cos nθ. Use (10)
with f(θ) = Rn cosnθ and you get, for all 0 ≤ r < R,

rn cos nθ =
Rn(R2 − r2)

2π

∫ 2π

0

cos nθ
R2 + r2 − 2rR cos(θ − φ)

dθ.
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Solutions to Exercises 12.5

1. (a) (3 + 2i)(2 − i) = 6 − 3i+ 4i − 2i2 = 8 + i.
(b) (3 − i)(2 − i) = (3 − i)(2 + i) = 7 + i.
(c)

1 + i

1 − i
=

1 + i

1 − i
· 1 − i

1 − i
=

(1 + i)(1 + i)
12 + 12

= i.

5. (a) Arg (i) = π
2
. (b) |i| = 1. (c) i = ei π

2 .

9. (a) Arg (1 + i) = π
4 . (b) |1 + i| =

√
12 + 12 =

√
2. (c) 1 + i =

√
2 ei·π

4 .

In computing the values of Arg z, just remember that Arg z takes
its values in the interval (−π, π]. Consequently, Arg z is not al-
ways equal to tan−1(y/x) (see Section 12.5, (8), for the formula
that relates Arg z to tan−1(y/x)). You can use Mathematica to
evaluate Arg z and the absolute value of z. This is illustrated by
the following exercises.

17. (a) Apply Euler’s identity, e2i = cos 2 + i sin 2.
(b) Use Example 1(d): for z = x+ i y,

sin z = sinx cosh y + i cos x sinh y.

So

sin i = sin 0 cosh 1 + i cos 0 sinh 1 = i sinh 1 = i
e − e−1

2
.

(c) Use Example 1(e): for z = x+ i y,

cos z = cosx cosh y − i sinx sinh y.

So

cos i = cos 0 cosh 1 − i sin 0 sinh1 = cosh 1
e+ e−1

2
.

(It is real!)
(d) Use Example 1(f): for z = x+ i y,

Log z = ln(|z|) + i Arg z.

For z = i, |i| = 1 and Arg i = π
2 . So Log i = ln 1 + iπ

2 = iπ
2 , because ln 1 = 0.

Remember that there are many branches of the logarithm, log z,
and Log z is one of them. All other values of log z differ from Log z
by an integer multiple of 2πi. This is because the imaginary part
of the logarithm is defined by using a branch of arg z, and the
branches of arg z differ by integer multiples of 2π. (See Applied
Complex Analysis and PDE for more details on the logarithm.) In
particular, the imaginary part of Log z, which is Arg z, is in the
interval (−π, π].
You can use Mathematica to evaluate Log z and ez. This is illus-
trated by the following exercises.

21. We have (−1) · (−1) = 1 but

0 = Log 1 6= Log (−1) + Log (−1) = iπ + iπ = 2iπ.

25. (a) By definition of the cosine, we have

cos(ix) =
ei(ix) + e−i(ix)

2
=
e−x + ex

2
= cosh x.
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(b) By definition of the since, we have

sin(ix) =
ei(ix) − e−i(ix)

2i
=
e−x − ex

2i
= i

ex − e−x

2
= i sinhx.

29. (a) Note that, for z = x+ i y 6= 0,

x+ i y

x2 + y2
=

z

z · z =
1
z
.

We claim that this function is not analytic at any z. We have

u =
x

x2 + y2
, v =

y

x2 + y2
;

so

ux =
y2 − x2

(x2 + y2)2
, uy =

−2xy
(x2 + y2)2

, vx =
−2xy

(x2 + y2)2
, vy =

x2 − y2

(x2 + y2)2
.

Since the euqality ux = vy and uy = −vx imply that (x, y) = (0, 0). Hence f is
not analytic at any z = x+ i y.
(b) Note that, for z = x+ i y 6= 0,

x− i y

x2 + y2
=

z

z · z
=

1
z
,

and ths function is anaytic for all z 6= 0. Using the Cauchy-Riemann equations, we
have

u =
x

x2 + y2
, v =

−y
x2 + y2

;

so

ux =
y2 − x2

(x2 + y2)2
, uy =

−2xy
(x2 + y2)2

, vx =
2xy

(x2 + y2)2
, vy =

y2 − x2

(x2 + y2)2
.

We have ux = vy and that uy = −vx. Hence the Cauchy-Riemann equations hold.
Also, all the partial derivatives are continuous functions of (x, y) 6= (0, 0). Hence
by Theorem 1, f(z) = 1

z is analytic for all z 6= 0 and

f ′(z) = ux + ivx =
y2 − x2

(x2 + y2)2
+ i

2xy
(x2 + y2)2

=
(y + ix)2

(x2 + y2)2
=

(y + ix)2

(x2 + y2)2

=
[i(x− iy)]2

[(x+ i y)(x − i y)]2
=

i2

(x+ i y)2
=

−1
z2
.

33. We leave the verification that u is harmonic as a simple exercise. The function

u(x, y) = ex cos y

is the real part of the entire function

ez = ex cos y + i ex sin y.

So a harmonic conjugate of ex cos y is ex sin y. (By the same token, a harmonic
conjugate of ex sin y is −ex cos y.)

Let us now find the harmonic conjugate using the technique of Example 6.
Write

u(x, y) = ex cos y ux(x, y) = ex cos y uy(x, y) = −ex sin y.
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The first equation of the Cauchy-Riemann equations tells us that ux = vy. So

vy(x, y) = ex cos y.

Integrating with respect to y (treating x as a constant), we find

v(x, y) = ex sin y + c(x),

where the constant of integration c(x) is a function of x. The second equation of
the Cauchy-Riemann equations tells us that uy = −vx. So

vx(x, y) = ex sin y + c′(x);

ex sin y + c′(x) = ex sin y;

c′(x) = 0;

c(x) = C.

Hence,
v(x, y) = ex sin y +C,

which matches the previous formula up to a additive constant.

37. (a) The level curves are given by

u(x, y) =
y

x2 + y2
=

1
2C

,

where, for convenience, we have used 1/(2C) instead of the usual C for our arbitrary
constant. The equation becomes

x2 + y2 − 2Cy = 0 or x2 + (y −C)2 = C2.

Thus the level curves are circles centered at (0, C) with radius C.
(b) By Exercise 35, a harmonic conjugate of u(x, y) is

v(x, y) =
x

x2 + y2
.

Thus the orthogonal curves to the family of curves in (a) are given by the level
curves of v, or

v(x, y) =
x

x2 + y2
=

1
2C

or (x− C)2 + y = C2.

Thus the level curves are circles centered at (C, 0) with radius C.
The curves in (a) and (b) are shown in the figure. Note how we defined the

parametric equation of a circle centered at (x0, y0) with radius r > 0: x(t) =
x0 + r cos t, y(t) = y0 + r sin t, 0 ≤ t ≤ 2π.

tt1 Table Abs r Cos t , r Abs r Sin t , r, 3, 3

tt2 Table r Abs r Cos t , Abs r Sin t , r, 3, 3

ParametricPlot Evaluate tt1 , t, 0, 2 Pi , AspectRatio Automatic

ParametricPlot Evaluate tt2 , t, 0, 2 Pi , AspectRatio Automatic

Show %, %%

3 Cos t , 3 3 Sin t , 2 Cos t , 2 2 Sin t , Cos t , 1 Sin t ,

0, 0 , Cos t , 1 Sin t , 2 Cos t , 2 2 Sin t , 3 Cos t , 3 3 Sin t

3 3 Cos t , 3 Sin t , 2 2 Cos t , 2 Sin t , 1 Cos t , Sin t ,

0, 0 , 1 Cos t , Sin t , 2 2 Cos t , 2 Sin t , 3 3 Cos t , 3 Sin t
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41. If u(x, y) does not depend on y, then u is a function of x alone. We have
uy = 0 and so uyy = 0. If u is also harmonic, then uxx + uyy = 0. But uyy = 0, so
uxx = 0. Integrating with respect to x twice, we find u(x, y) = a x+ b.

45. We reason as in Example 4 and try for a solution a function of the form

u(r, θ) = a Arg z + b,

where z = x+ i y and a and b are constant to be determined. Using the boundary
conditions in Figure 18, we find

u(r
9π
10

) = 60 ⇒ a
9π
10

+ b = 60;

u(r,
3π
5

) = 0 ⇒ a
3π
5

+ b = 0;

⇒ a

(
9π
10

− 6π
10

)
= 60 or a =

200
π

;

⇒ b = −120;

⇒ u(r, θ) =
200
π

Arg z − 120.

In terms of (x, y), we can use (10) and conclude that, for y > 0,

u(x, y) =
200
π

cot−1

(
x

y

)
− 120.

49. As in Exercise 47, we think of the given problem as the sum of two simpler
subproblems. Let u1 be harmonic in the upper half-plane and equal to 100 on the
x-axis for 0 < x < 1 and 0 for all other values of x. Let u2 be harmonic in the
upper half-plane and equal to 20 on the x-axis for −1 < x < 0 and 0 for all other
values of x. Let u = u1 +u2. Then u is harmonic in the upper half-plane and equal
to 20 on the x-axis for −1 < x < 0; 100 for 0 < x < 1; and 0 otherwise. (Just add
the boundary values of u1 and u2.) Thus u1 + u2 is the solution to our problem.
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Both u1 and u2 are given by Example 5. We have

u1(x, y) =
100
π

[
cot−1

(
x− 1
y

)
− cot−1

(
x

y

)]
;

u2(x, y) =
20
π

[
cot−1

(
x

y

)
− cot−1

(
x+ 1
y

)]
;

u(x, y) = −80
π

cot−1

(
x

y

)
+

100
π

cot−1

(
x− 1
y

)
− 20

π
cot−1

(
x+ 1
y

)
.
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Solutions to Exercises 12.6

1. (a) f(z) = 1/z is analytic for all z 6= 0, by Theorem 2, Section 12.5, since it is
the quotient of two analytic functions. U (u, v) = uv is harmonic since Uuu = 0,
Uvv = 0, so Uuu + Uvv = 0.
(b) We have (this was done several times before)

f(z) =
x− i y

x2 + y2
=

x

x2 + y2
− i

y

x2 + y2
.

So
Re (f) = u(x, y) =

x

x2 + y2
and Im(f) = v(x, y) = −

y

x2 + y2
.

(c) We have

φ(x, y) = U ◦ f(z) = U
(
u(x, y), v(x, y)

)

= U

(
x

x2 + y2
,

−y
x2 + y2

)

=
−xy

(x2 + y2)2
.

You can verify directly that φ(x, y) is harmonic for all (x, y) 6= (0, 0) or, better
yet, you can apply Theorem 1.

5. (a) If z is in S, then z = a+ i, y where b ≤ y ≤ c. So

f(z) = ez = ea+i y = eaei y.

The complex number w = eaei y has modulus ea and argument y. As y varies from
b to c, the point w = eaei y traces a circular arc of radius ea, bounded by the two
rays at angles b and c.
(b) According to (a), the image of {z = 1 + i y : 0 ≤ y ≤ π/2} by the mapping ez

is the circular arc with radius e, bounded by the two rays at angles 0 and π/2. It
is thus a quarter of a circle of radius e (see figure).

Similarly, the image of {z = 1 + i y : 0 ≤ y ≤ π} by the mapping ez is the
circular arc with radius e, bounded by the two rays at angles 0 and π. It is thus a
semi-circle of radius e, centered at the origin (see figure).

The most basic step is to define the complex variable z=x+iy, where x and y real.  This is done as follows: 

Clear x, y, z, f

Algebra‘ReIm‘

x : Im x 0

y : Im y 0

z x I y

You can now define any function of z and take its real and imaginary.  For example:

f z_ E^z

Re f z

Im f z

x y

x Cos y

x Sin y
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f1 t_ Re f z . x 1, y t

f2 t_ Im f z . x 1, y t

ParametricPlot Evaluate f1 t , f2 t , t, 0, Pi 2 , AspectRatio Automatic

Cos t
Sin t

ParametricPlot Evaluate f1 t , f2 t , t, 0, Pi , AspectRatio Automatic

9. We map the region onto the upper half-plane using the mapping f(z) = z2 (see
Example 1). The transformed problem in the uv-plane is ∇2U = 0 with boundary
values on the u-axis given by U (u, 0) = 100 if 0 < u < 1 and 0 otherwise. The
solution in the uv-plane follows from Example 5, Section 12.5. We have

U (u, v) =
100
π

[
cot−1

(
u− 1
v

)
− cot−1

(u
v

)]
.

The solution in the xy-plane is φ(x, y) = U ◦ f(z). To find the formula in terms of
(x, y), we write z = x+ i y, f(z) = z2 = x2 − y2 + 2ixy = (u, v). Thus u = x2 − y2

and v = 2xy and so

φ(x, y) = U◦f(z) = U (x2−y2, 2xy) =
100
π

[
cot−1

(
x2 − y2 − 1

2xy

)
− cot−1

(
x2 − y2

2xy

)]
.

13. We map the region onto the upper half-plane using the mapping f(z) = ez

(see Example 2). The points on the x-axis, z = x, are mapped onto the positive
u-axis, since ex > 0 for all x, as follows: f(x) ≥ 1 if x ≥ 0 and 0 < f(x) < 1 if
x < 0. The points on the horizontal line z = x+ iπ are mapped onto the negative
u-axis, since ex+i π = −ex < 0, as follows: f(x + i π) = −ex ≤ −1 if x ≥ 0 and
−1 < f(x + i π) = −ex < 0 if x < 0. With these observations, we see that the
transformed problem in the uv-plane is ∇2U = 0 with boundary values on the
u-axis given by U (u, 0) = 100 if −1 < u < 1 and 0 otherwise. The solution in the
uv-plane follows from Example 5, Section 12.5. We have

U (u, v) =
100
π

[
cot−1

(
u− 1
v

)
− cot−1

(
u+ 1
v

)]
.

The solution in the xy-plane is φ(x, y) = U ◦ f(z). To find the formula in terms of
(x, y), we write z = x+ i y,

(u, v) = f(z) = ez = ex cos y + i ex sin y.

Thus u = ex cos y and v = ex sin y and so

φ(x, y) = U ◦ f(z) = U (ex cos y, ex sin y)

=
100
π

[
cot−1

(
ex cos y − 1
ex sin y

)
− cot−1

(
ex cos y + 1
ex sin y

)]
.
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17. We map the region onto the upper half-plane using the mapping f(z) = z2 (see
Example 1). The transformed problem in the uv-plane is ∇2U = 0 with boundary
values on the u-axis given by U (u, 0) = u if 0 < u < 1 and 0 otherwise. To solve the
problem in the uv-plane, we apply the Poisson integral formula ((5), Section 7.5).
We have

U (u, v) =
v

π

∫ ∞

−∞

U (s, 0)
(u− s)2 + v2

ds =
v

π

∫ 1

0

s

(u− s)2 + v2
ds.

Now use your calculus skills to compute this integral. We have

v

π

∫ 1

0

s

(u− s)2 + v2
ds =

v

π

∫ 1

0

(s − u)
(s − u)2 + v2

ds+
v

π

∫ 1

0

u

(s − u)2 + v2
ds

=
v

π

[
1
2

ln[(s − u)2 + v2]
∣∣∣
1

0
+
∫ 1−u

−u

u

t2 + v2
dt

]
(s − u = t)

=
v

2π
ln

(1 − u)2 + v2

u2 + v2
+
u

π
tan−1

(
t

v

)∣∣∣
1−u

−u

=
v

2π
ln

(1 − u)2 + v2

u2 + v2
+
u

π

[
tan−1

(
1 − u

v

)
− tan−1

(
−u
v

)]

=
v

2π
ln

(1 − u)2 + v2

u2 + v2
+
u

π

[
tan−1

(
1 − u

v

)
+ tan−1

(u
v

)]
.

The solution in the xy-plane is φ(x, y) = U ◦ f(z). To find the formula in terms of
(x, y), we write z = x+ i y, f(z) = z2 = x2 − y2 + 2ixy = (u, v). Thus u = x2 − y2

and v = 2xy and so

φ(x, y) = U (x2 − y2, 2xy)

=
xy

π
ln

(1 − (x2 − y2))2 + (2xy)2

(x2 − y2)2 + (2xy)2

+
x2 − y2

π

[
tan−1

(
1 − x2 + y2

2xy

)
+ tan−1

(
x2 − y2

2xy

)]

=
xy

π
ln

(1 − (x2 − y2))2 + (2xy)2

(x2 + y2)2

+
x2 − y2

π

[
tan−1

(
1 − x2 + y2

2xy

)
+ tan−1

(
x2 − y2

2xy

)]
.

(I verified this solution on Mathematica and it works! It is harmonic and has the
right boundary values.)

21. The mapping f(z) = Log z maps the given annular region onto the 1 × π-
rectangle in the uv-plane with vertices at (0, 0), (1, 0), (1, π), and (0, π). With the
help of the discussion in Example 4, you can verify that the transformed Dirichlet
problem on the rectangle has the following boundary conditions: U (u, 0) = 0
and U (u, π) = 0 for 0 < u < 1 (boundary values on the horizontal sides), and
U (0, v) = 100 and U (1, v) = 100 for 0 < v < π (boundary values on the vertical
sides). To simplify the notation, we rename the variables x and y instead of u
and v. Consider Figure 3, Section 3.8, and take a = 1, b = π, f1 = f2 = 0, and
f3 = f4 = 100. The desired solution is the sum of two functions u3(x, y) and
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u4(x, y), where

u4(x, y) =
∞∑

n=1

Dn sinhnx sinny;

Dn =
2

π sinhn

∫ π

0

100 sinny dy

=
−200

nπ sinhn
(cosnπ − 1) =

200
nπ sinhn

(1 − (−1)n);

u3(x, y) =
∞∑

n=1

Cn sinh[n(1− x)] sinny;

Cn =
2

π sinhn

∫ π

0

100 sinny dy

=
200

nπ sinhn
(1 − (−1)n).

Thus (back to the variables u and v)

U (u, v) = u3 + u4

=
∞∑

n=1

200
nπ sinhn

(1 − (−1)n) sinhnu sinnv

+
∞∑

n=1

200
nπ sinhn

(1 − (−1)n) sinh[n(1 − u)] sinnv

=
200
π

∞∑

n=1

sinnv
n sinhn

(1 − (−1)n)
[
sinhnu+ sinh[n(1− u)]

]

=
400
π

∞∑

n=0

sinh[(2n+ 1)u] + sinh[(2n+ 1)(1 − u)]
(2n+ 1) sinh(2n+ 1)

sin[(2n+ 1)v].

To get the solution in the xy-plane, substitute u = 1
2 ln(x2+y2) and v = cot−1

(
y
x

)
.

The solution takes on a neater form if we use polar coordinates and substitute
x2 + y2 = r2 and θ = cot−1

(
y
x

)
. Then

φ(x, y) = U (
1
2

ln(x2 + y2), cot−1
(y
x

)
) = U (ln r, θ)

=
400
π

∞∑

n=0

sinh[(2n+ 1) ln r] + sinh[(2n+ 1)(1 − ln r)]
(2n+ 1) sinh(2n+ 1)

sin[(2n+ 1)θ]

= φ(r, θ).

It is interesting to verify the boundary conditions for the solution. For example,
when r = 1, we have

φ(1, θ) =
400
π

∞∑

n=0

sinh[(2n+ 1)(1)]
(2n+ 1) sinh(2n+ 1)

sin[(2n+ 1)θ]

=
400
π

∞∑

n=0

sin[(2n+ 1)θ]
(2n+ 1)

.

This last Fourier sine series is equal to 100 if 0 < θ < π. (see, for example,
Exercise 1, Section 2.3). Thus the solution equals to 100 on the inner semi-circular



164 Chapter 12 Green’s Functions and Conformal Mappings

boundary. On the outer circular boundary, r = e, and we have

φ(e, θ) =
400
π

∞∑

n=0

sinh(2n+ 1)
(2n+ 1) sinh(2n+ 1)

sin[(2n+ 1)θ]

=
400
π

∞∑

n=0

sin[(2n+ 1)θ]
(2n+ 1)

,

which is the same series as we found previously; and thus it equals 100 for 0 < θ < π.
Now if θ = 0 or π (which corresponds to the points on the x-axis), then clearly
φ = 0. Hence φ satisfies the boundary conditions, as expected.

25 We have f(z) = z + z0 = x+ i y + x0 + i y0 = x+ x0 + i (y + y0). Thus f maps
a point (x, y) to the point (x+ x0, y + y0). Thus f is a translation by (x0, y0).

37 We have

φ+ i ψ = U ◦ f + i V ◦ f =

g︷ ︸︸ ︷
(U + i V ) ◦f.

Since V is a harmonic conjugate of U , U + i V is analytic. Thus g ◦ f is analytic,
being the composition of two analytic functions. Hence φ + i ψ is analytic and so
ψ is a harmonic conjugate of φ.
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Solutions to Exercises 12.6

1. The function φ(z) = z − 1 is a conformal mapping of Ω, one-to-one, onto the
unit disk. Apply Theorem 3; then for z = x+ i y and z0 = x0 + i y0 in Ω, we have

G(x, y, x0, y0) = ln

∣∣∣∣∣
x+ i y − 1 − x0 − i y0 + 1

1 − (x0 + i y0 − 1) (x+ i y − 1)

∣∣∣∣∣

= ln
∣∣∣∣

(x − x0) + i (y − y0)
1 − (x0 − 1 − i y0) (x− 1 + i y)

∣∣∣∣ .

=
1
2

ln
[
(x− x0)2 + (y − y0)2

]
− 1

2
ln [1 − (x0 − 1 − i y0) (x− 1 + i y)] .

=
1
2

ln
[
(x− x0)2 + (y − y0)2

]

−1
2

ln
[
(−x0x+ x0 + x− y0y)2 + (y0x+ yx0 − y0 − y)2)

]
.

5. The function φ(z) = ez maps Ω, one-to-one, onto the upper half-plane. Apply
Theorem 4; then for z = x+ i y and z0 = x0 + i y0 in Ω, we have

G(x, y, x0, y0) = ln
∣∣∣∣
ez − ez0

ez − ez0

∣∣∣∣ (Note that ez0 = ez0 .)

= ln
∣∣∣∣
ex cos y + iex sin y − ex0 cos y0 − iex0 sin y0
ex cos y + iex sin y − ex0 cos y0 + iex0 sin y0

∣∣∣∣

=
1
2

ln

∣∣∣∣∣

(
ex cos y − ex0 cos y0

)2 +
(
ex sin y − ex0 sin y0

)2
(
ex cos y − ex0 cos y0

)2 +
(
ex sin y + ex0 sin y0

)2

∣∣∣∣∣

=
1
2

ln
e2x + e2x0 − 2ex+x0

(
cos y cos y0 + sin y sin y0

)

e2x + e2x0 − 2ex+x0
(
cos y cos y0 − sin y sin y0

)

=
1
2

ln
e2x + e2x0 − 2ex+x0 cos(y − y0)
e2x + e2x0 − 2ex+x0 cos(y + y0)

.

9. We use the result of Exercise 5 and apply Theorem 2, Section 12.3. Accordingly,

u(x0, y0) =
1
2π

∫ ∞

−∞
g(x)

∂G

∂y

∣∣∣
y=π

dx.
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We have

G(x, y, x0, y0) =
1
2

ln
e2x + e2x0 − 2ex+x0 cos(y − y0)
e2x + e2x0 − 2ex+x0 cos(y + y0)

=
1
2

ln
(
e2x + e2x0 − 2ex+x0 cos(y − y0)

)

−1
2

ln
(
e2x + e2x0 − 2ex+x0 cos(y + y0)

)

∂G

∂y

∣∣∣
y=π

=
1
2

2ex+x0 sin(y − y0)
e2x + e2x0 − 2ex+x0 cos(y − y0)

∣∣∣
y=π

−1
2

2ex+x0 cos(y + y0)
e2x + e2x0 − 2ex+x0 sin(y + y0)

∣∣∣
y=π

=
ex+x0 sin y0

e2x + e2x0 − 2ex+x0 cos y0

=
sin y0

ex−x0 + ex0−x − 2 cos y0
.

Thus the Poisson integral formula in this case is

u(x0, y0) =
sin y0
2π

∫ ∞

−∞

g(x)
ex−x0 + ex0−x − 2 cos y0

dx.

Let us test this formula in a case where we know the solution. Take g(x) = 1 for
all x. Then, we know that the solution is a linear function of y (see Exercise ,
Section 12.); in fact, it is easy to verify that the solution is

u(x0, y0) =
y0
π
.

Take g(x) = 1 in the Poisson formula and ask: Do we have

y0
π

=
sin y0
2π

∫ ∞

−∞

1
ex−x0 + ex0−x − 2 cos y0

dx?

Change variables in the integral: x ↔ x− x0. Then the last equation becomes

y0
π

=
sin y0
2π

∫ ∞

−∞

1
ex + e−x − 2 cos y0

dx.

Evaluate the right side in the case y0 = π
2 . The answer should be 1/2. Then try

y0 = π/4. The answer should be 1/4. (I tried it on Mathematica. It works.) Out
of this exercise, you can get the interesting integral formula

2 y0
sin y0

=
∫ ∞

−∞

1
ex + e−x − 2 cos y0

dx (0 < y0 < π).
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Solutions to Exercises A.1
1. We solve the equation y′+y = 1 in two different ways. The first method basically
rederives formula (2) instead of just appealing to it.
Using an integrating factor. In the notation of Theorem 1, we have p(x) = 1
and q(x) = 1. An antiderivative of p(x) is thus

∫
1 · dx = x. The integrating factor

is
µ(x) = e

∫
p(x)dx = ex.

Multiplying both sides of the equation by the integrating factor, we obtain the
equivalent equation

ex[y′ + y] = ex;

d

dx
[exy] = ex,

where we have used the product rule for differentiation to set d
dx [exy] = ex[y′ + y].

Integrating both sides of the equation gets rid of the derivative on the left side, and
on the right side we obtain

∫
ex dx = ex +C. Thus,

exy = ex + C ⇒ y = 1 + Ce−x,

where the last equality follows by multiplying by e−x the previous equality. This
gives the solution y = 1 +Ce−x up to one arbitrary constant, as expected from the
solution of a first order differential equation.
Using formula (2). We have, with p(x) = 1,

∫
p(x) dx = x (note how we took

the constant of integration equal 0):

y = e−x

[
C +

∫
1 · ex dx

]
= e−x[C + ex] = 1 +Ce−x.

5. According to (2),

y = ex

[
C +

∫
sinxe−xdx

]
.

To evaluate the integral, use integration by parts twice
∫

sinxe−xdx = − sinxe−x +
∫
e−x cos x dx

= − sinxe−x + cosx(−e−x) −
∫
e−x sinx dx;

2
∫

sinxe−xdx = −e−x
(
sinx+ cosx

)

∫
sinxe−xdx = −

1
2
e−x
(
sinx+ cos x

)
.

So

y = ex

[
C − 1

2
e−x
(
sinx+ cosx

)]
= Cex − 1

2
(
sinx+ cosx

)
.

9. We use an integrating factor

e
∫

p(x)dx = e
∫

tan x dx = e− ln(cosx) =
1

cosx
= sec x.

Then

sec xy′ − sec x tanx y = sec x cosx;

d

dx
[y sec x] = 1

y sec x = x+C =

y = x cosx+C cosx.
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13. An integrating factor is e
x2
2 , so

e
x2
2 y′ + xe

x2
2 y = xe

x2
2 ⇒

d

dx

[
e

x2
2 y
]

= e
x2
2 x

⇒ ye
x2
2 =

∫
xe

x2
2 dx = e

x2
2 + C

⇒ y = 1 + Ce−
x2
2 .

We now use the initial condition:

y(0) = 0 ⇒ 0 = 1 +C

⇒ C = −1

⇒ y = 1 − e−
x2
2 .

17. An integrating factor is sec x (see Exercise 9), so

sec xy′ + y tanx sec x = tanx secx ⇒ d

dx
[y sec x] = sec x tanx

⇒ y sec x =
∫

tanx sec x dx = sec x+ C

⇒ y = 1 +C cosx.

We now use the initial condition:

y(0) = 1 ⇒ 1 = 1 +C

⇒ C = 0

⇒ y = 1.

21. (a) Clear.
(b) ex as a linear combination of the functions coshx, sinhx: ex = coshx+sinhx.
(c) Let a, b, c d be any real numbers such that ad−bc 6= 0. Let y1 = aex +be−x and
y2 = cex + de−x. Then y1 and y2 are solutions, since they are linear combinations
of two solutions. We now check that y1 and y2 are linearly independent:

W (y1, y2) =

∣∣∣∣∣
y1 y2

y′1 y′2

∣∣∣∣∣

=

∣∣∣∣∣
aex + be−x cex + de−x

aex − be−x cex − de−x

∣∣∣∣∣

= −ad+ bc− (ad− bc) = −2(ad− bc) 6= 0.

Hence y1 and y2 are linearly independent by Theorem 7.

25. The general solution is

y = c1e
x + c2e

2x + 2x+ 3.

Let’s use the initial conditions:

y(0) = 0 ⇒ c1 + c2 + 3 = 0 (∗)

y′(0) = 0 ⇒ c1 + 2c2 + 2 = 0 (∗∗)

Subtract (*) from (**) ⇒ c2 − 1 = 0; c2 = 1

Substitute into (*) ⇒ c1 + 4 = 0; c1 = −4.
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Thus, y = −4ex + e2x + 2x+ 3.

29. As in the previous exercise, here it is easier to start with the general solution

y = c1e
x−2 + c2e

2(x−2) + 2x+ 3.

From the initial conditions,

y(2) = 0 ⇒ c1 + c2 + 7 = 0 (∗)

y′(1) = 1 ⇒ c1 + 2c2 + 2 = 1 (∗∗)

Subtract (*) from (**) ⇒ c2 − 5 = 1; c2 = 6

Substitute into (*) ⇒ c1 + 13 = 0; c1 = −13.

Thus, y = −13ex−2 + 6e2(x−2) + 2x+ 3.
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Using  to solve ODE
Let us start with the simplest command that you can use to solve an ode.  It is the DSolve command.  We illustrate by 
examples the different applications of this command.  The simplest case is to solve y' = y 

DSolve y ’ x y x , y x , x

y x x C 1

The answer is y= C ex  as you expect.  Note how Mathematica denoted the constant by C[1].  The enxt example is a 2nd 
order ode

DSolve y ’’ x y x , y x , x

y x x C 1 x C 2

Here we need two arbitrary constants C[1] and C[2].  Let's do an intial value problem.

Solving an Initial Value Problem
Here is how you would solve y'' = y, y(0)=0, y'(0)= 1

DSolve y ’’ x y x , y 0 0, y ’ 0 1 , y x , x

y x
1
2

x 1 2 x

As you see, the initial value problem has a unique solution (there are no arbitrary constants in the answer.
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Plotting the Solution
First we need to learn to extract the solution from the output.  Here is how it is done.  First, solve the problem and call the 
output solution:

solution DSolve y ’’ x y x , y 0 0, y ’ 0 1 , y x , x

y x
1
2

x 1 2 x

Extract the solution y(x) as follows:

y x_ y x . solution 1

1
2

x 1 2 x

Now you can plot the solution:

Plot y x , x, 0, 2

0.5 1 1.5 2

0.5
1

1.5
2

2.5
3

3.5

Note the intial conditions on the graph:  y(0)=0 and y'(0)=1.  To confirm that y'(0)=1  (the slope of the graph at x=0 is 1), 
plot the tangent line (line with slope 1)      
  

Plot y x , x , x, 0, 2

0.5 1 1.5 2

0.5
1

1.5
2

2.5
3

3.5
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The Wronskian
The Wronskian is a determinat, so we can compute it using the Det command.  Here is an illustration.

Clear y

sol1 DSolve y ’’ x y x 0, y x , x

y x C 1 Cos x C 2 Sin x

Two solutions of the differential equation are obtained different values to the constants c1 and c2.  For

Clear y1, y2

y1 x_ c1 Cos x ;

y2 x_ c2 Sin x ;

Their Wronskian is

w x_ Det y1 x , y2 x , y1 ’ x , y2 ’ x

c1 c2 Cos x 2 c1 c2 Sin x 2

Let's simplify using the trig identity cos^2 x + sin^2 x =1

Simplify w x

c1 c2

The Wronskian is nonzero if c1\= 0 and c2 \= 0.  Let us try a different problem with a nonhomogeneous

Clear y

sol2 DSolve y ’’ x y x 1, y x , x

y x 1 C 1 Cos x C 2 Sin x

Two solutions of the differential equation are obtained different values to the constants c1 and c2.  For

Clear y1, y2

y1 x_ 1 Cos x ;

y2 x_ 1 Sin x ;

These solutions are clearly linearly independent (one is not a multiple of the other).  Their Wronskian is

Clear w

w x_ Det y1 x , y2 x , y1 ’ x , y2 ’ x

Cos x Cos x 2 Sin x Sin x 2

Let's simplify using the trig identity cos^2 x + sin^2 x =1

Simplify w x

1 Cos x Sin x

Let's plot w(x):
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Plot w x , x, 0, 2 Pi

1 2 3 4 5 6

0.5

1

1.5

2

The Wronskian does vanish at some values of x without being identically 0.  Does this contradict Theorem 7 of Appendix 
A.1?



A174 Appendix A Ordinary Differential Equations: Review of Concepts and Methods

Solutions to Exercises A.2
1.

Equation: y′′ − 4 y′ + 3 y = 0;

Characteristic equation: λ2 − 4λ + 3 = 0

(λ− 1)(λ− 3) = 0;

Characteristic roots: λ1 = 1; λ2 = 3

General solution: y = c1e
x + c2e

3x

5
Equation: y′′ + 2 y′ + y = 0;

Characteristic equation: λ2 + 2λ + 1 = 0

(λ + 1)2 = 0;

Characteristic roots: λ1 = −1 (double root)

General solution: y = c1e
−x + c2x e

−x

9.
Equation: y′′ + y = 0;

Characteristic equation: λ2 + 1 = 0

Characteristic roots: λ1 = i λ2 = −i;

Case III: α = 0, β = 1;

General solution: y = c1 cos x+ c2 sinx

13.

Equation: y′′ + 4 y′ + 5 y = 0;

Characteristic equation: λ2 + 4λ + 5 = 0;

Characteristic roots: λ =
−4 ±

√
16 − 20
2

= −2 ± i;

λ1 = −2 + i, λ2 = −2 − i;

Case III: α = −2, β = 1;

General solution: y = c1e
−2x cos x+ c2e

−2x sinx

17.

Equation: y′′′ − 2 y′′ + y′ = 0;

Characteristic equation: λ3 − 2λ2 + λ = 0

λ(λ − 1)2 = 0;

Characteristic roots: λ1 = 0; λ2 = 1 (double root)

General solution: y = c1 + c2 e
x + c3 x e

x

21.
Equation: y′′′ − 3 y′′ + 3y′ − y = 0;

Characteristic equation: λ3 − 3λ2 + 3λ− 1 = 0

(λ− 1)3 = 0;

Characteristic roots: λ1 = 1 (multiplicity 3);

General solution: y = c1 e
x + c2 x e

x + c3 x
2ex
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25.

Equation: y′′ − 4 y′ + 3 y = e2x;

Homogeneous equation: y′′ − 4 y′ + 3 y = 0;

Characteristic equation: λ2 − 4λ + 3 = 0

(λ − 1)(λ − 3) = 0;

Characteristic roots: λ1 = 1, λ2 = 3;

Solution of homogeneous equation: yh = c1 e
x + c2 e

3x.

To find a particular solution, we apply the method of undetermined coefficients.
Accordingly, we try

yp = Ae2x;

y′p = 2Ae2x;

y′′p = 4Ae2x.

Plug into the equation y′′ − 4 y′ + 3 y = e2x:

4Ae2x − 4(2Ae2x) + 3Ae2x = e2x

−Ae2x = e2x;

A = −1.

Hence yp = −e2x and so the general solution

yg = c1 e
x + c2 e

3x − e2x.

29.

Equation: y′′ − 4 y′ + 3 y = x e−x;

Homogeneous equation: y′′ − 4 y′ + 3 y = 0;

Characteristic equation: λ2 − 4λ+ 3 = 0

(λ − 1)(λ − 3) = 0;

Characteristic roots: λ1 = 1, λ2 = 3;

Solution of homogeneous equation: yh = c1 e
x + c2 e

3x.

To find a particular solution, we apply the method of undetermined coefficients.
Accordingly, we try

yp = (Ax +B)e−x;

y′p = e−x(Ax−B + A);

y′′p = e−x(Ax−B − 2A).

Plug into the equation y′′ − 4 y′ + 3 y = e−x:

e−x(Ax −B − 2A) − 4e−x(Ax− B +A) + 3(Ax+ B)e−x = e−x

8A = 1;

−6A + 8B = 0.
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Hence
A = 1/8, B = 3/32; yp = (

x

8
+

3
32

)e−x;

and so the general solution

yg = c1 e
x + c2 e

3x + (
x

8
+

3
32

)e−x.

33.

Equation: y′′ + y = 1
2 + 1

2 cos 2x;

Homogeneous equation: y′′ + y = 0;

Characteristic equation: λ2 + 1 = 0

Characteristic roots: λ1 = −i, λ2 = i;

Solution of homogeneous equation: yh = c1 cos x+ c2 sinx.

To find a particular solution, we apply the method of undetermined coefficients.
We also use our experience and simplify the solution by trying

yp =
1
2

+A cos 2x;

y′p = −2A sin 2x;

y′′p = −4A cos 2x.

Plug into the equation y′′ + y = 1
2 + 1

2 cos 2x:

−3A cos 2x+
1
2

=
1
2

+
1
2

cos 2x;

−3A =
1
2
;

A = −1
6
.

Hence
yp = −1

6
cos 2x+

1
2
;

and so the general solution

yg = c1 cos 2x+ c2 sin 2x− 1
6

cos 2x+
1
2
.

37.

Equation: y′′ − y′ − 2 y = x2 − 4;

Homogeneous equation: y′′ − y′ − 2 y = 0;

Characteristic equation: λ2 − λ− 2 = 0

Characteristic roots: λ1 = −1, λ2 = 2;

Solution of homogeneous equation: yh = c1 e
−x + c2 e

2x.

For a particular solution, try

yp = Ax2 + B x+ C;

y′p = 2Ax+B;

y′′p = 2A.
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Plug into the equation y′′ − y′ − 2 y = x2 − 4:

2A− 2Ax− B − 2Ax2 − 2B x− 2C = x2 − 4;

−2A = 1;

A = −1
2
;

−2A− 2B = 0 ⇒ 1 − 2B = 0;

B =
1
2
;

2A− 2C − B = 4 ⇒ −1
2
− 1

2
− 2C = 4

C =
5
4
.

Hence
yp = −1

2
x2 +

1
2
x+

5
4
;

and so the general solution

yg = c1 e
−x + c2 e

2x − 1
2
x2 +

1
2
x+

5
4
.

41. 2 y′ − y = e2x.

Equation: 2 y′ − y = e2x;

Homogeneous equation: 2 y′ − y = 0;

Characteristic equation: 2λ− 1 = 0

Characteristic root: λ1 =
1
2
;

Solution of homogeneous equation: yh = c1 e
x/2.

For a particular solution, try

yp = Ae2x;

y′p = 2Ae2x;

Plug into the equation 2y′ − y = e2x:

4Ae2x −Ae2x = e2x;

3A = 1 ⇒ A =
1
3
.

Hence
yp =

1
3
e2x;

and so the general solution

yg = c1e
x/2 +

1
3
e2x.

45. Write the equation in the form

y′′ − 4 y′ + 3 y = e2x sinhx

= e2x 1
2
(
ex − e−x

)

=
1
2
(
e3x − ex

)
.
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From Exercise 25, yh = c1e
x + c2e

3x. For a particular solution try

yp = Axe3x +Bxex.

49. y′′ − 3 y′ + 2 y = 3x4ex + x e−2x cos 3x. Characteristic equation

λ2 − 3λ+ 2 = 0 ⇒ λ1 = 1, λ2 = 2.

So yh = c1e
x + c2e

2x. For a particular solution, try

yp = x(Ax4+Bx3 +Cx2+Dx+E)ex +(Gx+H) e−2x cos 3x+(Kx+L) e−2x sin 3x.

53. y′′ − 2 y′ + y = 6x− ex. Characteristic equation

λ2 − 2λ+ 1 = 0 ⇒ λ1 = 1(double root).

So yh = c1e
x + c2xe

x. For a particular solution, try

yp = Ax+ B +Cx2ex.

57. y′′ + 4y = cosωx. We have

yh = c1 cos 2x+ c2 sin 2x.

If ω 6= ±2, a particular solution of

y′′ + 4y = cos ωx

is yp = A cosωx. So y′′p = −Aω2 cosωx. Plugging into the equation, we find

A cos ωx(4 − ω2) = cos ωx;

A(4 − ω2) = 1;

A =
1

4 − ω2
.

Note that 4 − ω2 6= 0, because ω 6= ±2. So the general solution in this case is of
the form

yg = c1 cos 2x+ c2 sin 2x+
cos ωx
4 − ω2

.

If ω = ±2, then we modify the particular solution and use yp = x
(
A cosωx +

B sinωx
)
. Then

y′p =
(
A cosωx +B sinωx

)
+ xω

(
−A sinωx+ B cos ωx

)
,

y′′p = xω2
(
−A cos ωx− B sinωx

)
+ 2ω

(
− A sinωx+B cosωx

)
.

Plug into the left side of the equation

xω2
(
−A cos ωx−B sinωx

)
+2ω

(
−A sinωx+B cos ωx

)
+4x

(
A cos ωx+B sinωx

)
.

Using ω2 = 4, this becomes

2ω
(
− A sinωx+ B cos ωx

)
.

This should equal cos ωx. So A = 0 and 2ωB = 1 or B = 1/(2ω).

yg = c1 cos 2x+ c2 sin 2x+
1

2ω
x sinωx (ω = ±2).

Note that if ω = 2 or ω = −2, the solution is

yg = c1 cos 2x+ c2 sin 2x+
1
4
x sin 2x.
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61. To solve y′′ − 4 y = 0, y(0) = 0, y′(0) = 3, start with the general solution

y(x) = c1 cosh 2x+ c2 sinh 2x.

Then

y(0) = 0 ⇒ c1 cosh 0 + c2 sinh 0 = 0

⇒ c1 = 0; so y(x) = c2 sinh 2x.

y′(0) = 3 ⇒ 2c2 cosh 0 = 3

⇒ c2 =
3
2

⇒ y(x) =
3
2

sinh 2x.

65. To solve y′′ − 5 y′ + 6 y = ex, y(0) = 0, y′(0) = 0, use the general solution
from Exercise 27 (modify it slightly):

y = c1 e
2x + c2 e

3x +
1
2
ex.

Then

y(0) = 0 ⇒ c1 + c2 = −1
2
;

y′(0) = 0 ⇒ 2c1 + 3c2 = −1
2

⇒ c2 =
1
2
; c1 = −1

⇒ y(x) = − e2x +
1
2
e3x +

1
2
ex.

69. Because of the initial conditions, it is more convenient to take

y = c1 cos[2(x− π

2
)] + c2 sin[2(x− π

2
)]

as a general solution of y′′ + 4y = 0. For a particular solution of y′′ + 4y = cos 2x,
we try

y = Ax sin 2x, y′ = A sin 2x+ 2Ax cos 2x, y′′ = 4A cos 2x− 4Ax sin 2x.

Plug into the equation,

4A cos 2x = cos 2x ⇒ A =
1
4
.

So the general solution is

y = c1 cos[2(x− π

2
)] + c2 sin[2(x− π

2
)] +

1
4
x sin 2x.

Using the initial conditions

y(π/2) = 1 ⇒ c1 = 1

y′(π/2) = 0 ⇒ 2c2 +
π

4
cosπ = 0

⇒ c2 =
π

8
;
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and so
y = cos[2(x− π

2
)] +

π

8
sin[2(x− π

2
)] +

1
4
x sin 2x.

using the addition formulas for the cosine and sine, we can write

cos[2(x− π

2
)] = − cos 2x and sin[2(x− π

2
)] = − sin 2x,

and so

y = − cos 2x− π

8
sin 2x+

1
4
x sin 2x = − cos 2x+

(
− π

8
+

1
4
x
)
sin 2x.

73. An antiderivative of g(x) = ea x cos bx is a solution of the differential equation

y′ = ea x cos bx.

We assume throughout this exercise that a 6= 0 and b 6= 0. For these special
cases the integral is clear. To solve the differential equation we used the method of
undetermined coefficients. The solution of homogeneous equation y′ = 0 is y = C.
To find a particular solution of y′ = eax cos bx we try

y = eax(A cos bx+B sin bx)

y′ = aeax(A cos bx+B sin bx) + eax(−bA sin bx+ bB cos bx)

= eax(Aa + bB) cos bx+ eax(aB − bA) sin bx.

Plugging into the equation, we find

eax(Aa+ bB) cos bx+ eax(aB − bA) sin bx = eax cos bx

Aa+ bB = 1, aB − bA = 0 ⇒ A =
a

a2 + b2
, B =

b

a2 + b2
;

so ∫
eax cos bx dx =

eax

a2 + b2
(
a cos x+ b sin bx

)
+C.
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Solutions to Exercises A.3

1. We apply the reduction of order formula and take all constants of integration
equal to 0.

y′′ + 2 y′ − 3 y = 0, y1 = ex;

p(x) = 2,
∫
p(x) dx = 2x, e−

∫
p(x) dx = e−2x;

y2 = y1

∫
e−

∫
p(x) dx

y2
1

dx = ex

∫
e−2x

e2x
dx

= ex

∫
e−4x dx = ex

[
−1

4
e−4x

]
= −1

4
e−3x.

Thus the general solution is

y = c1e
x + c2e

−3x.

5. y′′ + 4 y = 0, y1 = cos 2x.

y′′ + 4 y = 0, y1 = cos 2x;

p(x) = 0,
∫
p(x) dx = 0, e−

∫
p(x) dx = 1;

y2 = y1

∫
e−

∫
p(x) dx

y2
1

dx = cos 2x
∫

1
cos2 2x

dx

= cos 2x
∫

sec2 2x dx

= cos 2x
[
1
2

tan 2x
]

=
1
2

sin 2x.

Thus the general solution is

y = c1 cos 2x+ c2 sin 2x.

9. Put the equation in standard form:

(1 − x2)y′′ − 2xy′ + 2y = 0, y1 = x;

y′′ − 2x
1 − x2

y′ +
2

1 − x2
y = 0, p(x) = − 2x

1 − x2
;

∫
p(x) dx =

∫
− 2x

1 − x2
dx = ln(1 − x2)

e−
∫

p(x)dx = e− ln(1−x2) =
1

1 − x2
;

y2 = x

∫
1

(1 − x2)x2
dx.
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To evaluate the last integral, we use the partial fractions decomposition

1
(1 − x2)x2

=
1

(1 − x)(1 + x)x2

=
A

(1 − x)
+

B

(1 − x)
+
C

x
+
D

x2
;

=
A(1 + x)x2 +B(1 − x)x2 +C(1 − x2)x+D(1 − x2)

(1 − x)(1 + x)x2

1 = A(1 + x)x2 +B(1 − x)x2 +C(1 − x2)x+D(1 − x2).

Take x = 0 ⇒ D = 1.

Take x = 1 ⇒ 1 = 2A, A =
1
2
.

Take x = −1 ⇒ 1 = 2B, B =
1
2
.

Checking the coefficient of x3, we find C = 0. Thus

1
(1 − x2)x2

=
1

2(1 − x)
+

1
2(1 + x)

+ +
1
x2

∫
1

(1 − x2)x2
dx = −1

2
ln(1 − x) +

1
2

ln(1 + x) − 1
x

=
1
2

ln
(

1 + x

1 − x

)
− 1
x
.

So

y2 = x

[
1
2

ln
(

1 + x

1 − x

)
− 1
x

]
=
x

2
ln
(

1 + x

1 − x

)
− 1.

Hence the general solution

y = c1 x+ c2

[
x

2
ln
(

1 + x

1 − x

)
− 1
]
.

13. Put the equation in standard form:

x2y′′ + xy′ + y = 0, y1 = cos(lnx);

y′′ +
1
x
y′ +

1
x2
y = 0, p(x) =

1
x

;

∫
p(x) dx =

∫
1
x
dx = lnx

e−
∫

p(x) dx = e− ln x =
1
x

;

y2 = cos(lnx)
∫

1
x cos2(lnx)

dx

= cos(lnx)
∫

1
cos2 u

du (u = lnx, du =
1
x
dx)

= cos u tanu = sinu = sin(lnu).

Hence the general solution

y = c1 cos(lnx) + c2 sin(lnu).
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17. Put the equation in standard form:

x y′′ + 2 (1 − x)y′ + (x− 2) y = 0, y1 = ex;

y′′ +
2(1− x)

x
y′ +

x− 2
x

y = 0, p(x) =
2
x
− 2;

∫
p(x) dx = 2 lnx− 2x

e−
∫

p(x)dx = e−2 ln x+2x =
e2x

x2
;

y2 = ex

∫
e2x

x2e2x
dx

= ex

∫
1
x2

dx = −e
x

x
.

Hence the general solution

y = c1e
x + c2

ex

x
.

21. y′′ − 4y′ + 3 y = e−x.

λ2 − 4λ + 3 = 0 ⇒ (λ − 1)(λ− 3) = 0

⇒ λ = 1 or λ = 3.

Linearly independent solutions of the homogeneous equation:

y1 = ex and y2 = e3x.

Wronskian:

W (x) =

∣∣∣∣∣
ex e3x

ex 3e3x

∣∣∣∣∣ = 3e4x − e4x = 2e4x.

We now apply the variation of parameters formula with

g(x) = e−x;

yp = y1

∫ −y2g(x)
W (x)

dx+ y2

∫
y1g(x)
W (x)

dx

= ex

∫
−e3xe−x

2e4x
dx+ e3x

∫
exe−x

2e4x
dx

= −e
x

2

∫
e−2x dx+

e3x

2

∫
e−4x dx

=
ex

4
e−2x − e3x

8
e−4x =

e−x

4
− e−x

8

=
e−x

8
.

Thus the general solution is

y = c1e
x + c2e

3x +
e−x

8
.

25. y′′ + y = sec x.
Two linearly independent solutions of the homogeneous equation are:

y1 = cosx and y2 = sinx.
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Wronskian:

W (x) =

∣∣∣∣∣
cosx sinx

− sinx cosx

∣∣∣∣∣ = 1.

We now apply the variation of parameters formula with

g(x) = sec x =
1

cos x
;

yp = y1

∫
−y2g(x)
W (x)

dx+ y2

∫
y1g(x)
W (x)

dx

= − cos x
∫

sinx
cosx

dx+ sinx
∫

dx

= cos x · ln (| cosx|) + x sinx.

Thus the general solution is

y = c1 cos x+ c2 sinx+ cos x · ln (| cosx|) + x sinx.

29. x2y′′ + 3xy′ + y =
√
x. The homogeneous equation is an Euler equation. The

indicial equation is
r2 + 2r + 1 = 0 ⇒ (r + 1)2 = 0.

We have one double indicial root r = −1. Hence the solutions of the homogenous
equation

y1 = x−1 and y2 = x−1 lnx.

Wronskian:

W (x) =

∣∣∣∣∣

1
x

1
x lnx

−1
x2

1−ln x
x2

∣∣∣∣∣ =
1 − lnx
x3

+
lnx
x3

=
1
x3
.

We now apply the variation of parameters formula with

g(x) =
√
x

x2
= x−

3
2 ;

yp = y1

∫
−y2g(x)
W (x)

dx+ y2

∫
y1g(x)
W (x)

dx

= −1
x

∫
lnx
x
x3x−

3
2 dx+

lnx
x

∫
1
x
x3x−

3
2 dx

= −1
x

∫ u︷︸︸︷
lnx

dv︷ ︸︸ ︷√
xdx+

lnx
x

∫
x

1
2 dx

= −1
x

[
2
3
x3/2 lnx−

∫
2
3
x3/2 1

x
dx

]
+

lnx
x

2
3
x3/2

=
1
x

2
3

2
3
x3/2 =

4
9
x1/2.

Thus the general solution is

y = c1x
−1 + c2x

−1 lnx+
4
9
x1/2.

33. x2y′′ + 3xy′ + y = 0. See Exercise 29.

37. x2y′′ + 7xy′ + 13 y = 0. Euler equation with α = 7, β = 13, indicial equation
r2 + 6 r + 13 = 0; indicial roots:

r = −3 ±
√
−4; r1 = −3 − 2i, r2 = −3 + 2i.
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Hence the general solution

y = x−3 [c1 cos(2 lnx) + c2 sin(2 lnx)] .

41. We have

y2 = y1

∫
e−

∫
p(x) dx

y2
1

dx.

Using the product rule for differentiation

y′2 = y′1

∫
e−

∫
p(x)dx

y2
1

dx+ y1
e−

∫
p(x) dx

y2
1

= y′1

∫
e−

∫
p(x)dx

y2
1

dx+
e−

∫
p(x) dx

y1
.

So

W (y1, y2) =

∣∣∣∣∣∣

y1 y1
∫

e−
∫

p(x) dx

y2
1

dx

y′1 y′1
∫

e−
∫

p(x) dx

y2
1

dx+ e−
∫

p(x) dx

y1

∣∣∣∣∣∣

= y1y
′
1

∫
e−

∫
p(x) dx

y2
1

dx+ e−
∫

p(x)dx − y′1y1

∫
e−

∫
p(x) dx

y2
1

dx

= e−
∫

p(x)dx > 0.

This also follows from Abel’s formula, (4), Section A.1.

45. (a) From Abel’s formula (Theorem 2, Section A.1), the Wronskian is

y1y
′
2 − y′1y2 = Ce−∫ p(x) dx,

where y1 and y2 are any two solution of (2).
(b) Given y1, set C = 1 in (a)

y1y
′
2 − y′1y2 = e−∫ p(x)dx.

This is a first-order differential equation in y2 that we rewrite as

y′2 −
y′1
y1
y2 = e−∫ p(x) dx.

The integrating factor is

e
∫
− y′

1
y1

dx = e− ln y1 =
1
y1
.

Multiply by the integrating factor:

y′2
y1

− y′1
y2
1

y2 =
1
y1
e−∫ p(x) dx

or
d

dx

[
y2
y1

]
=

1
y1
e−∫ p(x) dx

Integrating both sides, we get

y2
y1

=
∫ [

1
y1
e−∫ p(x)dx

]
dx;

y2 = y1

∫ [
1
y1
e−∫ p(x) dx

]
dx,
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which implies (3).

49. 3 y′′ + 13 y′ + 10 y = sinx, y1 = e−x.
As in the previous exercise, let

y1 = e−x, y = ve−x, y′ = v′e−x − ve−x, y′′ = v′′e−x − 2v′e−x + ve−x.

Then

3 y′′ + 13 y′ + 10 y = sinx ⇒ 3(v′′e−x − 2v′e−x + ve−x)

+13(v′e−x − ve−x) + 10ve−x = sinx

⇒ 3v′′ + 7v′ = ex sinx

⇒ v′′ +
7
3
v′ =

1
3
ex sinx.

We now solve the first order o.d.e. in v′:

e7x/3v′′ +
7
3
e7x/3v′ = e7x/31

3
ex sinx

d

dx

[
e7x/3v′

]
=

1
3
e10x/3 sinx

e7x/3v′ =
1
3

∫
1
3
e10x/3 sinx dx

=
1
3

e10x/3

(10
3 )2 + 1

(
10
3

sinx− cos) + C

v′ =
ex

109
(10 sinx− 9

3
cos) + C.

(We used the table of integrals to evaluate the preceding integral. We will use it
again below.) Integrating once more,

v =
10
109

∫
ex sinx dx− 9

327

∫
ex cosx dx

=
10
109

ex

2
(sinx− cos x) − 9

327
ex

2
(cos x+ sinx) + C

y = vy1 =
10
218

(sinx− cos x) − 9
654

(cosx+ sinx) + Ce−x

= − 13
218

cos x+
7

218
sinx+Ce−x.
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Solutions to Exercises A.4

1. Using the ratio test, we have that the series

∞∑

m=0

xm

5m+ 1

converges whenever the limit

lim
m→∞

∣∣∣∣∣
xm+1

5(m+ 1) + 1

/
xm

5m + 1

∣∣∣∣∣ = lim
m→∞

(
5m+ 1
5m+ 6

)
|x| = |x|

is less than 1. That is, |x| < 1. Thus, the interval of convergence is |x| < 1 or
(−1, 1). Since the series is centered at 0, the radius of convergence is 1.

5. Using the ratio test, we have that the series

∞∑

m=1

mm xm

m!

converges whenever the following limit is < 1:

lim
m→∞

∣∣∣∣∣
(m+ 1)m+1 xm+1

(m+ 1)!

/
mm xm

m!

∣∣∣∣∣ = lim
m→∞

(m + 1)m(m + 1)
(m + 1)!

·
m!

mm xm
· |x|

= |x| lim
m→∞

(
m+ 1
m

)m

= e|x|.

We have used the limit

lim
m→∞

(
m + 1
m

)m

= lim
m→∞

(
1 +

1
m

)m

= e

(see the remark at the end of the solution). From |x|e < 1 we get |x| < 1/e. Hence
the interval of convergence is (−1/e, 1/e). It is centered at 0 and has radius 1/e.

One way to show

lim
m→∞

(
m + 1
m

)m

= e

is to show that the natural logarithm of the limit is 1:

ln
(
m+ 1
m

)m

= m ln
(
m+ 1
m

)
= m [ln(m + 1) − lnm] .

By the mean value theorem (applied to the function f(x) = lnx on the interval
[m, m + 1]), there is a real number cm in [m, m + 1] such that

ln(m + 1) − lnm = f ′(cm) =
1
cm

Note that
1

m + 1
≤ 1
cm

≤ 1
m
.

So
m

m+ 1
≤ m [ln(m+ 1) − lnm] ≤ 1.

As m → ∞, m
m+1

→ 1, and so by the sandwich theorem,

m [ln(m + 1) − lnm] → 1.

Taking the exponential, we derive the desired limit.
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9. Using the ratio test, we have that the series

∞∑

m=1

[10(x+ 1)]2m

(m!)2

converges whenever the following limit is < 1:

lim
m→∞

∣∣∣∣∣
[10(x+ 1)]2(m+1)

((m + 1)!)2

/
[10(x+ 1)]2m

(m!)2

∣∣∣∣∣ = 102|x+ 1|2 lim
m→∞

(m!)2

((m + 1)!)2

= 102|x+ 1|2 lim
m→∞

(m!)2

(m + 1)2(m!)2

= 102|x+ 1|2 lim
m→∞

1
(m + 1)2

= 0.

Thus the series converges for all x, R = ∞.

13. We use the geometric series. For |x| < 1,

3 − x

1 + x
= −1 + x

1 + x
+

4
1 + x

= −1 +
4

1 − (−x)

= −1 + 4
∞∑

n=0

(−1)nxn.

17. Use the Taylor series

ex =
∞∑

n=0

xn

n!
−∞ < x < ∞.

Then

eu2
=

∞∑

n=0

u2n

n!
−∞ < u < ∞.

Hence, for all x,

e3x2+1 = e · e(
√

3x)2

= e

∞∑

n=0

(
√

3x)2n

n!

= e

∞∑

n=0

3nx2n

n!
.

21.We have
1

2 + 3x
=

1
2(1 − (−3x

2 ))
=

1
2(1 − u)

,

where u = −3x
2 . So

1
2 + 3x

=
1
2

∞∑

n=0

un =
1
2

∞∑

n=0

(
−3x

2

)n

=
∞∑

n=0

(−1)n 3n

2n+1
xn.

The series converges if |u| < 1; that is |x| < 2
3
.
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25. Let a be any real number 6= 0, then

1
x

=
1

a− a+ x

=
1
a
· 1
1 −

(
a−x

a

)

=
1
a

∞∑

n=0

(
a − x

a

)n

=
1
a

∞∑

n=0

(−1)n (x− a)n

an
.

The series converges if

∣∣∣∣
a− x

a

∣∣∣∣ < 1 or |a− x| < |a|.

29. Recall that changing m to m − 1 in the terms of the series requires shifting
the index of summation up by 1. This is what we will do in the second series:

∞∑

m=1

xm

m
− 2

∞∑

m=0

mxm+1 =
∞∑

m=1

xm

m
− 2

∞∑

m=1

(m − 1)xm

=
∞∑

m=1

xm

[
1
m

− 2(m − 1)
]

=
∞∑

m=1

−2m2 + 2m+ 1
m

xm.

33. Let

y =
∞∑

m=0

amx
m y′ =

∞∑

m=1

mamx
m−1.

Then

y′ + y =
∞∑

m=1

mamx
m−1 +

∞∑

m=0

amx
m

=
∞∑

m=0

(m + 1)am+1x
m +

∞∑

m=0

amx
m

=
∞∑

m=0

[(m+ 1)am+1 + am]xm

37. Let

y =
∞∑

m=0

amx
m y′ =

∞∑

m=1

mamx
m−1 y′′ =

∞∑

m=2

m(m − 1)amx
m−2.
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Then

x2y′′ + y = x2
∞∑

m=2

m(m − 1)amx
m−2 +

∞∑

m=0

amx
m

=
∞∑

m=2

m(m − 1)amx
m +

∞∑

m=0

amx
m

=
∞∑

m=2

m(m − 1)amx
m + a0 + a1x+

∞∑

m=2

amx
m

= a0 + a1x+
∞∑

m=2

[m(m − 1)am + am]xm

= a0 + a1x+
∞∑

m=2

(m2 −m+ 1)amx
m.
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Solutions to Exercises A.5

1. For the differential equation y′ + 2xy = 0, p(x) = 1 is its own power series
expansion about a = 0. So a = 0 is an ordinary point. To solve, let Let

y =
∞∑

m=0

amx
m y′ =

∞∑

m=1

mamx
m−1.

Then

y′ + 2xy =
∞∑

m=1

mamx
m−1 + 2x

∞∑

m=0

amx
m

=
∞∑

m=1

mamx
m−1 +

∞∑

m=0

2amx
m+1

=
∞∑

m=0

(m + 1)am+1x
m +

∞∑

m=1

2am−1x
m

= a1 +
∞∑

m=1

[(m+ 1)am+1 + 2am−1]xm.

So y′ + 2xy = 0 implies that

a1 +
∞∑

m=1

[(m + 1)am+1 + 2am−1]xm = 0;

a1 = 0

(m+ 1)am+1 + 2am−1 = 0

am+1 = − 2
m + 1

am−1.

From the recurrence relation,

a1 = a3 = a5 = · · · = a2k+1 = · · · = 0;

a0 is arbitrary;

a2 = −2
2
a0 = −a0,

a4 = −2
4
a2 =

1
2!
a0,

a6 = −2
6
a4 = − 1

3!
a0,

a8 = −2
8
a6 =

1
4!
a0,

...

a2k =
(−1)k

k!
a0.

So

y = a0

∞∑

k=0

(−1)k

k!
x2k = a0

∞∑

k=0

(−x2)k

k!
= a0e

−x2
.
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5. For the differential equation y′′−y = 0, p(x) = 0 is its own power series expansion
about a = 0. So a = 0 is an ordinary point. To solve, let

y =
∞∑

m=0

amx
m y′ =

∞∑

m=1

mamx
m−1 y′′ =

∞∑

m=2

m(m − 1)amx
m−2.

Then

y′′ − y =
∞∑

m=2

m(m − 1)amx
m−2 −

∞∑

m=0

amx
m

=
∞∑

m=0

(m + 2)(m + 1)am+2x
m −

∞∑

m=0

amx
m

=
∞∑

m=0

[(m + 2)(m+ 1)am+2 − am]xm.

So y′′ − y = 0 implies that

(m + 2)(m + 1)am+2 − am = 0 ⇒ am+2 =
am

(m + 2)(m + 1)
for all m ≥ 0.

So a0 and a1 are arbitrary;

a2 =
a0

2
,

a4 =
a2

4 · 3 =
a0

4!
,

a6 =
a4

6 · 5 =
a0

6!
,

...

a2n =
a0

(2n)!
.

.

Similarly,
a2n+1 =

a1

(2n+ 1)!
,

and so

y = a0

∞∑

n=0

1
(2n)!

x2n + a1

∞∑

n=0

1
(2n+ 1)!

x2n+1 = a0 coshx+ a1 sinhx.

9. For the differential equation y′′+2x y′ +y = 0, p(x) = 2x is its own power series
expansion about a = 0. So a = 0 is an ordinary point. To solve, let

y =
∞∑

m=0

amx
m y′ =

∞∑

m=1

mamx
m−1 y′′ =

∞∑

m=2

m(m − 1)amx
m−2.

Then

y′′ + 2x y′ + y =
∞∑

m=2

m(m − 1)amx
m−2 +

∞∑

m=1

2mamx
m +

∞∑

m=0

amx
m

=
∞∑

m=0

(m+ 2)(m + 1)am+2x
m +

∞∑

m=0

2mamx
m +

∞∑

m=0

amx
m

=
∞∑

m=0

[(m + 2)(m + 1)am+2 + (2m+ 1)am]xm.
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So y′′ + 2x y′ + y = 0 implies that

(m + 2)(m + 1)am+2 + (2m+ 1)am = 0

⇒ am+2 = − (2m + 1)
(m + 2)(m + 1)

am for all m ≥ 0.

So a0 and a1 are arbitrary;

a2 = −1
2
a0,

a4 = − 5
4 · 3

a2 =
5
4!
a0,

a6 = − 9
6 · 5

5
4!
a0 =

−9 · 5
6!

a0,

...

a3 = − 3
3 · 2a1

a5 = − 7
5 · 4a3 =

7 · 3
5!

a1

a7 = −11 · 7 · 3
7!

a1

...

So

y = a0

(
1 − 1

2
x2 +

5
4!
x4 − 9 · 5

6!
x6 + · · ·

)

+a1

(
x−

3
3!
x3 +

7 · 3
5!

x5 −
11 · 7 · 3

7!
x7 + · · ·

)
.

13. To solve (1 − x2)y′′ − 2xy′ + 2y = 0, y(0) = 0, y′(0) = 3, follow the steps in
Example 5 and you will arrive at the recurrence relation

am+2 =
m(m + 1) − 2

(m+ 2)(m + 1)
am =

(m + 2)(m − 1)
(m + 2)(m + 1)

am =
m − 1
m + 1

am, m ≥ 0.

The initial conditions give you a0 = 0 and a1 = 3. So a2 = a4 = · · · = 0 and, from
the recurrence relation with m = 1,

a3 =
(1 − 1
1 + 1

a0 = 0.

So a5 = a7 = · · · = 0 and hence y = 3x is the solution.

17. Put the equation (1 − x2)y′′ − 2xy′ + 2y = 0 in the form

y′′ − 2x
1 − x2

+
2

1 − x2
y = 0.
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Apply the reduction of order formula with y1 = x and p(x) = − 2x
1−x2 . Then

e−
∫

p(x) dx = e
∫ 2x

1−x2 dx

= e− ln(1−x2) =
1

1 − x2

y2 = y1

∫
e−

∫
p(x)dx

y2
1

dx

= x

∫
1

x2(1 − x2)
dx

Use a partial fractions decomposition

1
x2(1 − x2)

=
A

x
+
B

x2
+

C

1 − x
+

D

1 + x

=
1
x2

+
1

2(1 − x)
+

1
2(1 + x)

So

y2 = x

∫ (
1
x2

+
1

2(1 − x)
+

1
2(1 + x)

)
dx

= x

[
(−1
x
− 1

2
ln(1 − x) +

1
2

ln(1 + x)
]

= −1 +
x

2
ln
(

1 + x

1 − x

)
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The following notebook illustrates how we can use Mathematica to solve a
differential equations with poser series.

The solution is y and we will solve for the first 10 coefficients.

Let's define a partial sum of the Taylor series solution (degree 3) and set y[0]=1: 

In[82]:= seriessol Series y x , x, 0, 3 . y 0 1

Out[82]= 1 y 0 x
1
2
y 0 x2

1
6
y 3 0 x3 O x 4

 Next we set equations based on the given differential equation y'+y=0.  

In[83]:= leftside D seriessol, x seriessol

rightside 0

equat LogicalExpand leftside rightside

Out[83]= 1 y 0 y 0 y 0 x
y 0
2

1
2
y 3 0 x2 O x 3

Out[84]= 0

Out[85]= 1 y 0 0 && y 0 y 0 0 &&
y 0
2

1
2
y 3 0 0

This gives you a set of equations in the coefficients that Mathematica can solve

In[86]:= seriescoeff Solve equat

Out[86]= y 0 1, y 0 1, y 3 0 1

Next, we substitute these coefficients in the series solution.  This can be done as follows

In[87]:= seriessol . seriescoeff 1

Out[87]= 1 x
x2

2
x3

6
O x 4

To get a partial sum without the Big O, use 

In[88]:= Normal seriessol . seriescoeff 1

Out[88]= 1 x
x2

2
x3

6
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With the previous example in hand, we can solve Exercises 19-22 using Math-
ematica by repeating and modifying the commands. Here is an illustration with
Exercise 19. We suppress some outcomes to save space.

19. y′′ − y′ + 2y = ex, y(0) = 0, y′(0) = 1.

In[70]:= Clear y, seriessol, n, partsol

n 10

seriessol Series y x , x, 0, n . y 0 0, y ’ 0 1

leftside D seriessol, x, 2 D seriessol, x, 1 2 seriessol;

rightside Series E^x, x, 0, n ;

equat LogicalExpand leftside rightside ;

seriescoeff Solve equat ;

partsol Normal seriessol . seriescoeff 1 ;

Out[71]= 10

Out[72]= x
1
2
y 0 x2

1
6
y 3 0 x3

1
24

y 4 0 x4
1
120

y 5 0 x5

1
720

y 6 0 x6
y 7 0 x7

5040
y 8 0 x8

40320
y 9 0 x9

362880
y 10 0 x10

3628800
O x 11

The equation can be solved using analytical methods (undetermined coefficients).  The exact solution is

sol DSolve y ’’ x y ’ x 2 y x E^x, y 0 0, y ’ 0 1 , y x , x ;

In[46]:= sss sol 1, 1, 2

1
14

x 2 7 Cos
7 x
2

7 x 2 Cos
7 x
2

2

3 7 Sin
7 x
2

7 x 2 Sin
7 x
2

2

Let's compare with the partial sum that we found earlier

In[67]:= Plot sss, partsol , x, 2, 2

-2 -1 1 2

0.5

1

1.5

2

Out[67]= Graphics

We have a nice match on the interval [-2, 2]
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Solutions to Exercises A.6
1. For the equation y′′ + (1 − x2)y′ + xy = 0, p(x) = 1− x2 and q(x) = x are both
analytic at a = 0. So a = 0 is a ordinary point.

5. For the equation x2y′′ + (1 − ex)y′ + xy = 0,

p(x) =
1 − ex

x2
, x p(x) =

1 − ex

x
;

q(x) =
1
x
, x2q(x) = x.

p(x) and q(x) are not analytic at 0. So a = 0 is a singular point. Since xp(x) and
x2q(x) are analytic at a = 0, the point a = 0 is a regular singular point. To see
that xp(x) is analytic at 0, derive its Taylor series as follows: for all x,

ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·

1 − ex = −x− x2

2!
− x3

3!
+ · · ·

= x

(
−1 − x

2!
− x2

3!
+ · · ·

)

1 − ex

x
= −1 − x

2!
− x2

3!
+ · · · .

Since 1−ex

x has a Taylor series expansion about 0 (valid for all x), it is analytic at
0.

9. For the equation 4x2 y′′ − 14x y′ + (20 − x) y = 0,

p(x) = − 7
2x
, x p(x) = −7

2
, p0 = −7

2
;

q(x) =
20 − x

4x2
, x2q(x) = 5 − x

4
, q0 = 5.

p(x) and q(x) are not analytic at 0. So a = 0 is a singular point. Since xp(x) and
x2q(x) are analytic at a = 0, the point a = 0 is a regular singular point. Indicial
equation

r(r − 1) − 7
2
r + 5 = 0 ⇒ 2r2 − 9r + 10 = 0, (r − 2)(2r − 5) = 0

= r1 =
5
2

r2 = 2.

Since r1 − r2 = 1
2 is not an integer, we are in Case I. The solutions are of the form

y1 =
∞∑

m=0

amx
m+2 and y2 =

∞∑

m=0

bmx
m+ 5

2 ,

with a0 6= 0 and b0 6= 0. Let us determine y1. We use y instead of y to simplify the
notation. We have

y =
∞∑

m=0

amx
m+2; y′ =

∞∑

m=0

(m + 2)amx
m+1; y′′ =

∞∑

m=0

(m+ 2)(m + 1)amx
m.
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Then

4x2y′′ − 14x y′ + (20 − x)y

=
∞∑

m=0

4(m+ 2)(m + 1)amx
m+2 − 14

∞∑

m=1

(m + 2)amx
m+2 + (20 − x)

∞∑

m=0

amx
m+2

=
∞∑

m=0

[4(m+ 1) − 14](m+ 2)amx
m+2 + 20

∞∑

m=0

amx
m+2 −

∞∑

m=0

amx
m+3

=
∞∑

m=0

[(4m− 10)(m + 2) + 20]amx
m+2 −

∞∑

m=0

amx
m+3

=
∞∑

m=0

[4m2 − 2m]amx
m+2 −

∞∑

m=1

am−1x
m+2

=
∞∑

m=1

[4m2 − 2m]am − am−1]xm+2

This gives the recurrence relation: For all m ≥ 0,

am =
am−1

4m2 − 2m
=

am−1

2m(2m − 1)
.

Since a0 is arbitrary, take a0 = 1. Then

a1 =
1
2
;

a2 =
1

2(12)
=

1
4!

;

a3 =
1
4!

1
6 · 5 =

1
6!

;

...

y1 = a0x
2

[
1 +

1
2!
x+

1
4!
x2 +

1
6!
x3 + · · ·

]

We now turn to the second solution:

y =
∞∑

m=0

bmx
m+ 5

2 ; y′ =
∞∑

m=0

(m+
5
2
)bmxm+ 3

2 ; y′′ =
∞∑

m=0

(m+
5
2
)(m+

3
2
)bmxm+ 1

2 .

So

4x2 y′′ − 14x y′ + (20 − x) y

=
∞∑

m=0

[
4(m +

5
2
)(m +

3
2
) − 14(m +

5
2
)
]
bmx

m+ 5
2 + (20 − x)

∞∑

m=0

bmx
m+ 5

2

=
∞∑

m=0

[
4(m +

5
2
)(m +

3
2
) − 14(m +

5
2
) + 20

]
bmx

m+ 5
2 −

∞∑

m=0

bmx
m+ 7

2

=
∞∑

m=0

[
4m2 + 2m

]
bmx

m+ 5
2 −

∞∑

m=1

bm−1x
m+ 5

2

=
∞∑

m=1

[
(4m2 + 2m)bm − bm−1

]
xm+ 5

2
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This gives b0 arbitrary and the recurrence relation: For all m ≥ 1,

bm =
bm−1

2m(2m+ 1)
.

Since b0 is arbitrary, take b0 = 1. Then

b1 =
1
3!

;

b2 =
1
3!

1
4 · 5 =

1
5!

;

b3 =
1
5!

1
6 · 7 =

1
7!

;

...

y2 = b0x
5/2

[
1 +

1
3!
x+

1
5!
x2 +

1
7!
x3 + · · ·

]

13. For the equation x y′′ + (1 − x) y′ + y = 0,

p(x) =
1 − x

x
, x p(x) = 1 − x, p0 = 1;

q(x) =
1
x
, x2q(x) = x, q0 = 0.

p(x) and q(x) are not analytic at 0. So a = 0 is a singular point. Since xp(x) and
x2q(x) are analytic at a = 0, the point a = 0 is a regular singular point. Indicial
equation

r(r − 1) + r = 0 ⇒ r = 0 (double root).

We are in Case II. The solutions are of the form

y1 =
∞∑

m=0

amx
m and y2 = y1 lnx+

∞∑

m=0

bmx
m,

with a0 6= 0. Let us determine y1. We use y instead of y to simplify the notation.
We have

y =
∞∑

m=0

amx
m; y′ =

∞∑

m=0

mamx
m−1; y′′ =

∞∑

m=0

m(m − 1)amx
m−2.
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Plug into x y′′ + (1 − x) y′ + y = 0:

∞∑

m=1

m(m − 1)amx
m−1 +

∞∑

m=1

mamx
m−1

−
∞∑

m=1

mamx
m +

∞∑

m=0

amx
m = 0

∞∑

m=0

(m + 1)mam+1x
m +

∞∑

m=0

(m + 1)am+1x
m

−
∞∑

m=1

mamx
m +

∞∑

m=0

amx
m = 0

∞∑

m=1

(m + 1)mam+1x
m + a1 +

∞∑

m=1

(m + 1)am+1x
m

−
∞∑

m=1

mamx
m + a0 +

∞∑

m=1

amx
m = 0

a0 + a1 +
∞∑

m=1

[(m + 1)mam+1 + (m + 1)am+1 −mam + am]xm = 0

a0 + a1 +
∞∑

m=1

[
(m + 1)2am+1 + (1 −m)am

]
xm = 0

This gives a0 + a1 = 0 and the recurrence relation: For all m ≥ 1,

am+1 = − 1 −m

(m + 1)2
am.

Take a0 = 1. Then a1 = −1 and a2 = a3 = · · · = 0. So y1 = 1 − x. We now turn
to the second solution: (use y1 = 1 − x, y′1 = −1, y′′1 = 0)

y = y1 lnx+
∞∑

m=0

bmx
m;

y′ = y′1 lnx+
y1
x

+
∞∑

m=0

mbmx
m−1;

y′′ = y′′1 lnx+
2
x
y′1 − 1

x2
y1 +

∞∑

m=0

m(m − 1)bmxm−2.
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Plug into xy′′ + (1 − x) y′ + y = 0:

xy′′1 lnx+ 2y′1 −
1
x
y1 +

∞∑

m=0

m(m − 1)bmxm−1

+(1 − x)y′1 lnx+
y1
x

(1 − x) + (1 − x)
∞∑

m=0

mbmx
m−1 + y1 lnx+

∞∑

m=0

bmx
m = 0

−2 − 1
x

(1 − x) +
∞∑

m=1

m(m − 1)bmxm−1

+
(1 − x)2

x
+

∞∑

m=0

mbmx
m−1 −

∞∑

m=0

mbmx
m +

∞∑

m=0

bmx
m = 0

−3 + x+
∞∑

m=0

[(m + 1)mbm+1 + (m+ 1)bm+1 −mbm + bm]xm = 0

−3 + x+
∞∑

m=0

[(m+ 1)2bm+1 + (1 −m)bm]xm = 0

For the constant term, we get b1 + b0 − 3 = 0. Take b0 = 0. Then b1 = 3. For the
term in x, we get

1 + 2b2 + 2b2 − b1 + b1 = 0 ⇒ b2 = −1
4
.

For all m ≥ 3,

bm+1 =
m − 1

(m + 1)2
bm.

Then

b3 =
1
9
(−1

4
) = − 1

36
;

b4 =
2
16

(− 1
36

) = − 1
288

;

...

y2 = −3x− 1
4
x2 − 1

36
x3 + · · ·

17. For the equation x2y′′ + 4x y′ + (2 − x2) y = 0,

p(x) =
4
x
, x p(x) = 4, p0 = 4;

q(x) =
2 − x2

x2
, x2q(x) = 2 − x2, q0 = 2.

p(x) and q(x) are not analytic at 0. So a = 0 is a singular point. Since xp(x) and
x2q(x) are analytic at a = 0, the point a = 0 is a regular singular point. Indicial
equation

r(r − 1) + 4r + 2 = 0 ⇒ r3 + 3r + 2 = 0

⇒ r1 = −2 r2 = −1.
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We are in Case III. The solutions are of the form

y1 =
∞∑

m=0

amx
m−1 and y2 = ky1 lnx+

∞∑

m=0

bmx
m−2,

with a0 6= 0, b0 6= 0. Let us determine y1. We use y instead of y to simplify the
notation. We have

y =
∞∑

m=0

amx
m−1; y′ =

∞∑

m=0

(m − 1)amx
m−2; y′′ =

∞∑

m=0

(m − 1)(m − 2)amx
m−3.

Plug into x2y′′ + 4x y′ + (2 − x2) y = 0:

∞∑

m=0

(m − 1)(m− 2)amx
m−1 +

∞∑

m=0

4(m − 1)amx
m−1

∞∑

m=0

2amx
m−1 −

∞∑

m=0

amx
m+1 = 0

(−1)(−2)a0x
−1 +

∞∑

m=2

(m − 1)(m − 2)amx
m−1

+4(−1)a0x
−1 +

∞∑

m=2

4(m − 1)amx
m−1

2a0x
−1 + 2a1 +

∞∑

m=2

2amx
m−1 −

∞∑

m=2

am−2x
m−1 = 0

2a1 +
∞∑

m=2

[(m− 1)(m − 2)am + 4(m− 1)am2am − am−2]xm−1 = 0

2a1 +
∞∑

m=2

[(m2 +m)am − am−2]xm−1 = 0

This gives the recurrence relation: For all m ≥ 1,

am = −
1

m2 +m
am−2.

Take a0 = 1 and a1 = 0. Then a3 = a5 = · · · = 0 and

a2 = −1
6

= − 1
3!

a4 = − 1
42 + 4

a2 =
1
20

1
6

=
1
5!

a6 = − 1
62 + 6

1
5!

= − 1
7 · 6

1
5!

=
1
7!

...

y1 = a0x
−1

(
1 − 1

3!
x2 +

1
5!
x4 − 1

7!
x6 + · · ·

)
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We now turn to the second solution:

y = ky1 lnx+
∞∑

m=0

bmx
m−2;

y′ = ky′1 lnx+ k
y1
x

+
∞∑

m=0

(m − 2)bmxm−3;

y′′ = ky′′1 lnx+
2k
x
y′1 − k

x2
y1 +

∞∑

m=0

(m − 2)(m − 3)bmxm−4.

Plug into xy′′ + (1 − x) y′ + y = 0:

2kxy′1 + ky′′1x
2 lnx− ky1 +

∞∑

m=0

(m − 2)(m − 3)bmxm−2+

4ky′1x lnx+ 4ky1 +
∞∑

m=0

4(m − 2)bmxm−2

+(2 − x2)ky′1 lnx+ (2 − x2)
∞∑

m=0

bmx
m−2 = 0

2kxy′1 + 3ky1 +
∞∑

m=0

[(m+ 2)2 − (m + 2)bm+2 + bm]xm = 0

(m + 2)2 − (m+ 2)bm+2 + bm = 0

Take k = 0 and for all m ≥ 0,

bm+2 = − bm
(m + 2)(m + 1)

.

Take b0 = 1 and b1 = 0. (Note that by setting b1 = 1 and b0 = 0, you will get y1.)
Then

b2 = −1
2
;

b4 =
1
4!

;

...

y2 = b0x
−2

(
1 − 1

2
x2 +

1
4!
x4 − · · ·

)
.


