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PROBLEM 1

We will solve an initial value problem of the ODE

y” + 4y = .x sin 2x.

(a) Find the general solution y, for the homogeneous equation y” +
4y = 0.. Check, using Wronskian, that your solutiois are linearly
independent.

(b) Find a particular solution for the original nonhomogeneous equa- ( )
tion.

(c) Write down the general solution for the nonhomogeneous equa- (()
tion.

(d) Solve the initial value problem for the above ODE with initial
conditions y(O) 4 and y’(O) = 2.
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PROBLEM 2

Solve the following ODE via power series method.

y’ + y x +
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c (a) Explain that 0 is an ordinary (regular) point. That is, the power
series method applies to this ODE.

(b) Write down the recurrence relation for the coefficients.
ç (c) Since this is an ODE of order 1, how many arbitrary constants

are there in the general solution?
‘ (d) Compute the first 4 coefficients in terms of the arbitrary con
stant(s).
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PROBLEM 3

Solve the following equation by the method of the characteristic curves.

6u 0u
8x 0y

Verify your solution (by plugging it back to the PDE.)
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