
tPTER I Linear Equations

process until you run out of variables or equations.
sider the example discussed on page 2:

x + 2’ + 3: = 39
x + 3y + 2z = 34

3x+2v+ z=26

:an solve the first equation for x:

x = 39
—

— 3:.

we substitute this equation into the other equations:

(39—2y—3z)+3v±2:=34
3(39—2v—3z)+2y± z=26

-5
— 8z = —91

= z —5,sothat—4(z —5)— 8z = —91,or

—12: = —111.

111
md that z = = 9.25. Then

12

y = z — 5 = 4.25.

Explain why this method is essentially the same as the
method discussed in this section; only the bookkeeping
is different.

46. A hermit eats only two kinds of food: brown rice and yo
gurt. The rice contains 3 grams of protein and 30 grams
of carbohydrates per serving, while the yogurt contains
12 grams of protein and 20 grams of carbohydrates.
a. If the hermit wants to take in 60 grams of protein

and 300 grams of carbohydrates per day, how many
servings of each item should he consume?

b. If the hermit wants to take in P grams of protein
and C grams of carbohydrates per day, how many
servings of each item should he consume?

47. 1 have 32 bills in my wallet, in the denominations of
US$ 1, 5, and 10, worth $100 in total. How many do I
have of each denomination?

48. Some parking meters in Milan. Italy, accept coins in the
denominations of 20, 50g. and €2. As an incentive pro
gram, the city administrators offer a big reward (a brand
new Ferrari Testarossa) to any meter maid who brings
back exactly 1,000 coins worth exactly € 1,000 from the
daily rounds. What are the odds of this reward being
claimed anytime soon?

latrices, Vectors, and Gauss—Jordan Elimination

When mathematicians in ancient China had to solve a system of simultaneous linear
equations such as4

3x+21y—3z= 0
—6x— 2y— z=62

2s— 3y+8z=32

they took all the numbers involved in this system and arranged them in a rectangular
pattern (Fang Cheng in Chinese), as follows:5

3 21 —3 0

—6 —2 —1 62

2 —3 8 32

All the information about this system is conveniently stored in this array of numbers.
The entries were represented by bamboo rods, as shown below; red and black

rods stand for positive and negative numbers, respectively. (Can you detect how this

4This example is taken from Chapter 8 of the Nine Chapters on the Mathematical Art; see page 1. Our
source is George Gheverghese Joseph, The Crest of the Peacock, Non-European Roots of Mathematics,
2nd ed.. Princeton University Press, 2000.

5Actually, the roles of rows and columns were reversed in the Chinese representation.

:an simplify:

L

x = 39—2)’ — 3z = 2.75.

I

I
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number system works?) The equations were then solved in a hands-on fashion, by
manipulating the rods. We leave it to the reader to find the solution.

I I I j I I I
T H I
ii iH Eli

Today, such a rectangular array of numbers,

3 21 —3 0
—6 —2 —1 62

2 —3 8 32

is called a matrix.6 Since this particular matrix has three rows and four columns, it
is called a 3 x 4 matrix (“three by four”).

The four columns of the matrix

//\\
3 21 —3 0

The three rows of the matrix .EE —6 —2 —1 62
2 —3 8 32

Note that the first column of this matrix corresponds to the first variable of the
system, while the first row corresponds to the first equation.

It is customary to label the entries of a 3 x 4 matrix A with double subscripts
as follows:

a11 a12 a13 a14
A = a21 a22 a23 a,4

a31 a32 a33 a34

The first subscript refers to the row, and the second to the column: The entry a11 is
located in the ith row and the jth column.

Two matrices A and B are equal if they are the same size and if corresponding
entries are equal: = b1.

If the number of rows of a matrix A equals the number of columns (A is n x ii),

then A is called a square matrix, and the entries a11, a22 a,,,, form the (main)
diagonal of A. A square matrix A is called diagonal if all its entries above and below
the main diagonal are zero; that is, a11 = 0 whenever i j. A square matrix A is
calLed upper triangular if all its entries below the main diagonal are zero; that is,
a11 = 0 whenever i exceeds j. Lower triangular matrices are defined analogously.
A matrix whose entries are all zero is called a zero matrix and is denoted by 0
(regardless of its size). Consider the matrices

A=[ ], B=[j ], =

000

23
500

D=[0 ], E= 4 0 0
321

61t appears that the term matrix was first used in this sense by the English mathematician
J. J. Sylvester, in 1850.
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The matrices B. C, D, and E are square, C is diagonal, C and D are upper triangular,
and C and E are lower triangular.

Matrices with only one column or row are of particular interest.

Examples of vectors are

a (column) vector in R4, and

1

9,
1

[1 5 5 3 7],

(x,y)

0

Figure I

(a+x, b -f-y)

tated

x(a,b)

(x,v)

a row vector with five components. Note that the in columns of an ii x in matrix are
vectors in WZ.

In previous courses in mathematics or physics, you may have thought about
vectors from a more geometric point of view. (See the Appendix for a summary of
basic facts on vectors.) Let’s establish some conventions regarding the geometric
representation of vectors.

Occasionally, it is helpful to translate (or shift) the vector in the plane (preserv
ing its direction and length), so that it will connect some point (a, b) to the point
(a + x, b + y), as shown in Figure 2.

When considering an infinite set of vectors, the arrow representation becomes

impractical. In this case, it is sensible to represent the vector i
= [x]

simply by the

point (x, y), the head of the standard arrow representation of i.

For example, the set of all vectors
=

(where x is arbitrary) can be

represented as the line y = x + 1. For a few special values of x we may still use the
arrow representation, as illustrated in Figure 3.

Vectors and vector spaces
A matrix with only one column is called a column vector, or simply a vector. The
entries of a vector are called its components. The set of all column vectors with
ii components is denoted by W’; we will refer to R” as a vector space.

A matrix with only one row is called a row vector.
In this text, the term i’ector refers to column vectors, unless otherwise stated.

The reason for our preference for column vectors will become apparent in the
next section.

Standard representation of vectors
The standard representation of a vector

-. Fx
v= I

-v

in the Cartesian coordinate plane is as an arrow (a directed line segment) from
the origin to the point (x, v), as shown in Figure 1.

The standard representation of a vector in 1R3 is defined analogously.
In this text, we will consider the standard representation of vectors, unless

stated otherwise.

Figure 2
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In this course, it will often be helpful to think about a vector numerically, as a
list of numbers, which we will usually write in a column.

In our digital age, information is often transmitted and stored as a string of
numbers (i.e., as a vector). A section of 10 seconds of music on a CD is stored as
a vector with 440,000 components. A weather photograph taken by a satellite is
transmitted to Earth as a string of numbers.

Consider the system

2x+ 8y+4z=2
2x+ 5y+ z=5
4x+l0y— z=1

Sometimes we are interested in the matrix

28 4
2 5 1,
4 10 —l

which contains the coefficients of the system, called its coefficient matrix.
By contrast, the matrix

2 8 42
2 5 15,
4 10 —l 1

which displays all the numerical information contained in the system, is called its
augmented matrix. For the sake of clarity, we will often indicate the position of the
equal signs in the equations by a dotted line:

2 8 42
2 5 15
4 10 —l 1

To solve the system, it is more efficient to perform the elimination on the aug
mented matrix rather than on the equations themselves. Conceptually, the two ap
proaches are equivalent, but working with the augmented matrix requires less writing

=x+1

=}forx=2

Figure 3
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yet is easier to read, with some practice. Instead of dividing an equation by a scalar,7
you can divide a row by a scalar. Instead of adding a multiple of an equation to
another equation, you can add a multiple of a row to another row.

As you perform elimination on the augmented matrix, you should always re
member the linear system lurking behind the matrix. To illustrate this method, we
perform the elimination both on the augmented matrix and on the linear system it
represents:

2 8 4 2 ±2 2x+ 8y+ 4z= 2 +2
2 5 1 5 2x+ 5y+ 5
4 10 —1 1 4x+ lOy— z= 1

1 4 2 1 x+ 4y+ 2z= 1
2 5 1 5 —2 (I) 2x + 5y + z = 5 —2 (I)
4 10 —1 1 —4 (I) 4x + lOv

— z = 1
_ (J)

1 4 2 1 x+ 4y+ 2z= 1
0 —3 —3 3 —3y — 3z = 3 +(—3)
0 —6 —9 —3 —6y — 9z = —3

4.
1 4 2 1 —4 (II) x + 4 + 2z = 1 —4 (II)
0 1 1 —1 y+ z=—l
0 —6 —9 —3 +6 (II) —6 — 9z = —3 +6 (II)

4,
1 0 —2 5

— 2z= 5
0 i 1 H—I v+ z=—l
0 0 —3 —9 —3z = —9

1
1 0 —2 5 +2 (III) x

— = 5 +2 (III)
0 1 1 I —1 — (III) y + z = —l — (III)
0 0 113 z=3

1 0 0111 =11
0 1 01—4 v =—4.
0 0 113 z=3

The solution is often represented as a vector:

x 11

y=-4.
z 3

Thus far we have been focusing on systems of 3 linear equations with 3 Un

knowns. Next we will develop a technique for solving systems of linear equations
of arbitrary size.

71n vector and matrix algebra, the term scalar is synonymous with (real) number.
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Here is an example of a system of three linear equations with five unknowns:

xl—x-, +4x5=2
X3 — X52

x4— x5=3

We can proceed as in the example on page 4. We solve each equation for the leading
variable:

x1 = 2 + x2 — 4X5

x3=2 +X5.

x4=3 + X5

Now we can freely choose values for the nonleading variables, x2 = t and x5 =

for example. The leading variables are then determined by these choices:

xi=2+t—4r, x3=2+r, x4=3+r.

This system has infinitely many solutions; we can write the solutions in vector form as

x1 2 +t —4r
X2 t

= 2
3

+r
X5 r

Again, you can check this answer by substituting the solutions into the original
equations, for example, x3 — x5 = (2 + r) — r = 2.

What makes this system so easy to solve? The following three properties are
responsible for the simplicity of the solution, with the second property playing a key
role:

• P1: The leading coefficient in each equation is 1. (The leading coefficient is
the coefficient of the leading variable.)

• P2: The leading variable in each equation does not appear in any of the other
equations. (For example, the leading variable x3 of the second equation appears
neither in the first nor in the third equation.)

• P3: The leading variables appear in the “natural order,” with increasing indices
as we go down the system (xj, x3, X4 as opposed to X3, x1, x4, for example).

Whenever we encounter a linear system with these three properties, we can solve
for the leading variables and then choose arbitrary values for the other, nonleading
variables, as we did above and on page 4.

Now we are ready to tackle the case of an arbitrary system of linear equations.
We will illustrate our approach by means of an example:

2x1 + 4x2 — 2x3 + 2x4 + 4x5 = 2
x1 + 2x2 — x3 + 2x4 = 4

3x1 + 6x, — 2x3 + x4 + 9x5 = 1
5x1 + 10x2 — 4x3 + 5x4 + 9x5 = 9

We wish to reduce this system to a system satisfying the three properties (P1, P2,
and P3); this reduced system will then be easy to solve.

We will proceed from equation to equation, from top to bottom. The leading
variable in the first equation is x1, with leading coefficient 2. To satisfy property P1,
we will divide this equation by 2. To satisfy property P2 for the variable x1, we will
then subtract suitable multiples of the first equation from the other three equations
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to eliminate the variable x1 from those equations. We will perform these operations
both on the system and on the augmented matrix.

Now on to the second equation, with leading variable x4 and leading coefficient
1. We could eliminate 14 from the first and third equations and then proceed to the
third equation, with leading variable 13. However, this approach would violate our
requirement P3 that the variables must be listed in the natural order, with increasing
indices as we go down the system. To satisfy this requirement, we will swap the
second equation with the third equation. (In the following summary, we will specify
when such a swap is indicated and how it is to be performed.)

Then we can eliminate 13 from the first and fourth equations.

Il + 212 — 13 + 14 + 2x5 = I +(1I) 1 2 —l 1 2 1 1 +(I1)
x3—2x4+3x5=—2 0 0 1 —2 3 —2

X4 — 2x5 = 3 0 0 0 1 —2 3
13 — = 4 —(11) 0 0 1 0 —1 4 —(II)

— x4+5x5=—l
X3 — 2x4 + 315 = —2
x4—2x5= 3
2x4—4x5= 6

o —l 5:—I
1 —2 3—2
o i —2 3
o 2 —4 6

Now we turn our attention to the third equation, with leading variable x4. We
need to eliminate x4 from the other three equations.

2x1 + 4x7 — 2x3 + 2x4 + 415 = 2 + 2 2 4 —2 2 4 : 2 ÷ 2
x + 2x2 — 13 + 2x4 = 4 1 2 —l 2 0 4

3x1 + 6x2 — 2x3 + x4 + 9x5 = 1 3 6 —2 1 9 1
5x1 + 10x2 — 413 + 5X4 + 915 = 9 5 10 —4 5 9 9

xj + 2x2 — 13 + 14 + 2x5 = 1 1 2 —l 1 2 :
x1 + 2x2 — x3 + 2x4 = 4 —(I) 1 2 —1 2 0 4 —(1)

3x1 + 6x2 — 2x3 + 14 + 9x5 = 1 —3(1) 3 6 —2 1 9 1 —3(1)
SXj + lOx2 — 413 + 5x4 + 9x5 = 9 —5(I) 5 10 —4 5 9 9 —5(1)

4
x1 + 2x2 — 13 + 14 + 2x5 = 1 1 2 —1 1 2

X4 — 2x5 = 3 0 0 0 1 —2 3
x3 — 214 + 3xs = —2 0 0 1 —2 3 —2
X3 — x5= 4 0 0 1 0 —l 4

xI —b 212 1
0
0
0

2
0
0
0

x1 + 212 — 14 + 5X5 = —l +(11I) 1 2 0 —l 5 : —l +(11I)
X3 — 2x4 315 = —2 +2(111) 0 0 1 —2 3 —2 +2(111)

14—2X5 3 0 0 0 1 —2 3
2x4 — 4x5 6 —2(111) 0 0 0 2 —4 6 —2(111)

x1 + 2x2 + 3x = 2 1 2 0 0 3 : 2
13 X5 4 001 0 —l 4
x4—2x5= 3 0 0 0 1 —2 3

0= 0 0 0 0 0 0 0



If we let x2 = r and x5 = r, then the infinitely many solutions are of the form

2 —2t —3r

X2 t

X3 = 4 +r
X4 3 +2r
X5

This process can be performed on the augmented matrix. As you do so, just
imagine the linear system lurking behind it.

In the preceding example, we reduced the augmented matrix

120
001
000
000

0 3:2
0 —1 4
1 —23
0 00
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Since there are no variables left in the fourth equation, we are done. Our system
now satisfies properties P1. P2, and P3. We can solve the equations for the leading
variables:

= 2 —
2x, — 3x5

X3=4 + X5

x4=3 +2x5

Let us summarize.

Solving a system of linear equations
We proceed from equation to equation, from top to bottom.

Suppose we get to the ith equation. Let x be the leading variable of the
system consisting of the ith and all the subsequent equations. (If no variables are
left in this system, then the process comes to an end.)

• If x1 does not appear in the ith equation, swap the ith equation with the first
equation below that does contain x.

• Suppose the coefficient of x1 in the ith equation is c; thus this equation is of
the form cx +•• .... Divide the ith equation by c.

• Eliminate x1 from all the other equations, above and below the ith, by sub
tracting suitable multiples of the ith equation from the others.

Now proceed to the next equation.
If an equation zero = nonzero emerges in this process, then the system fails

to have solutions; the system is inconsistent.
When you are through without encountering an inconsistency, solve each

equation for its leading variable. You may choose the nonleading variables freely;
the leading variables are then determined by these choices.

[2 4 —2 2 4:21

M
1 2 —1 2 04I

= 3 6 —2 1 91I
[5 10 —4 5 9 9j

to E=[

We say that the final matrix E is in reduced row-echelon form (rref).
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Reduced row-echelon form
A matrix is in reduced row-echelon form if it satisfies all of the following
conditions:

a. If a row has nonzero entries, then the first nonzero entry is a 1, called the
leading 1 (or pivot) in this row.

b. If a column contains a leading 1, then all the other entries in that column are 0.

c. If a row contains a leading I, then each row above it contains a leading 1
further to the left.

Condition c implies that rows of 0’s, if any, appear at the bottoni of the matrix.

Conditions a, b, and c defining the reduced row-echelon form correspond to the
conditions P1, P2, and P3 that we imposed on the system.

Note that the leading l’s in the matrix

C2 00 312

E=
0 0®0 —114

0 0 0 D —2j3

0 0 0 0 010

correspond to the leading variables in the reduced system,

Here we draw the staircase formed by the leading variables. This is where the name
echelon form comes from. According to Webster, an echelon is a formation “like a
series of steps.”

The operations we perform when bringing a matrix into reduced row-echelon
form are referred to as elementary row operations. Let’s review the three types of
such operations.

Types of elementary row operations

• Divide a row by a nonzero scalar.

• Subtract a multiple of a row from another row.

• Swap two rows.

Consider the following system:

— 3x2 — 5x4 = —7
3x1—12x2—2x3—27x4=—33

—2x1 + lOx2 + 2x3 + 24x4 = 29
—x1 + 6x, + x3 + 14x4 = 17
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The reduced row-echelon form for this matrix is

1 0 0 10
o i 0 20
o 0 1 30
o o 0 O 1

(We leave it to you to perform the elimination.)
Since the last row of the echelon form represents the equation 0 = I, the system

is inconsistent.

This method of solving linear systems is sometimes referred to as Gauss—Jordan
elimination, after the German mathematician Carl Friedrich Gauss (1777—1855: see
Figure 4), perhaps the greatest mathematician of modern times, and the German
engineer Wilhelm Jordan (1844—I 899). Gauss himself called the method eliminatio
vulgaris. Recall that the Chinese were using this method 2,000 years ago.

LU

2:
U
U,

LU

z
2:
LU
N.J

Figure 4 Carl Friedrich Gauss appears on an old German 10-mark note. (In fact, this is the
mirror image of a well-known portrait of Gauss.8)

How Gauss developed this method is noteworthy. On January 1, 1801, the
Sicilian astronomer Giuseppe Piazzi (1746—I 826) discovered a planet, which he
named Ceres, in honor of the patron goddess of Sicily. Today, Ceres is called a
dwarf planet, because it is only about I ,000 kilometers in diameter. Piazzi was able
to observe Ceres for 40 nights, but then he lost track of it. Gauss, however, at the
age of 24, succeeded in calculating the orbit of Ceres, even though the task seemed
hopeless on the basis of a few observations. His computations were so accurate
that the German astronomer W. Olbers (1758—1840) located the asteroid on Decem
ber 31, 1801. In the course of his computations, Gauss had to solve systems of 17
linear equations.9In dealing with this problem, Gauss also used the method of least

8Reproduced by permission of the German Bundesbank.

9For the mathematical details, see D. Teets and K. Whitehead, The Discovery olCeres: How Gauss
Became Famous.” Mathematics Magazine. 72, 2 (April 1999): 83—93.

The augmented matrix is

1 —3 0 —5 —7
3 —12 —2 —27 —33

—2 10 2 24 29’
—1 6 1 l4 17

AY5393908A5

‘ I
.‘,

L1SJ

:4

r
- -

p. -‘ ,39O8A5’
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d. [o 1 2 3 4]

24. Suppose matrix A is transformed into matrix B by means
of an elementary row operation. Is there an elementary
row operation that transforms B into A? Explain.

25. Suppose matrix A is transformed into matrix B by a se
quence of elementary row operations. Is there a sequence
of elementary row operations that transforms B into A?
Explain your answer. (See Exercise 24.)

26. Consider an ii x in matrix A. Can you transform rref(A)
into A by a sequence of elementary row operations? (See
Exercise 25.)

27. Is there a sequence of elementary row operations that
transforms

Explain.

123 100
4 5 6 into 0 1 0 ?
789 000

28. Suppose you subtract a multiple of an equation in a sys
tem from another equation in the system. Explain why
the two systems (before and after this operation) have
the same solutions.

29. Balancing a chemical reaction. Consider the chemical
reaction

a NO2 + b H20 —* c HNO2 + d HNO3,

where a, b, c, and d are unknown positive integers. The
reaction must be balanced; that is, the number of atoms
of each element must be the same before and after the
reaction. For example, because the number of oxygen
atoms must remain the same,

2a +b = 2c + 3d.

While there are many possible values for a, b, c, and d
that balance the reaction, it is customary to use the small
est possible positive integers. Balance this reaction.

30. Find the polynomial of degree 3 [a polynomial of the
form f(t) = a + bt + ct2 + d13] whose graph goes
through the points (0, 1), (1, 0), (—1,0), and (2, —15).
Sketch the graph of this cubic.

31. Find the polynomial of degree 4 whose graph goes
through the points (1, 1), (2, —1), (3, —59), (—1,5),
and (—2, —29). Graph this polynomial.

32. Cubic splines. Suppose you are in charge of the design
of a roller coaster ride. This simple ride will not make
any left or right turns; that is, the track lies in a verti
cal plane. The accompanying figure shows the ride as
viewed from the side. The points (as, b1) are given to
you, and your job is to connect the dots in a reasonably
smooth way. Let a+i > a.

2xi — 3x3

—2xi + X2 + 6X3

12. x2 — 3x3

— 2X2
2xi + X2 — 3x3

+7x5+ 7x6=0
— 6X5 — 12x6 = 0
+ X5+ 5x6=0

+X4+ X5+ X60

+8x5+ 7x6=0

Solve the linear systems in Exercises 13 through 17. You
may use technology.

3x + lly + 19z = —2

13. 7x + 23y + 39z = 10
—4x— 3y— 2z= 6

3x+ 6y+l4z=22
14. 7x+14y+30z=46

4x+ 8y+ 7z= 6

3x+5y+ 3z=25
15. 7x+9y+19z=65

—4x+5y+llz= 5

3xi + 6X2 + 9X3 + 5x4 + 25x5 = 53
16. 7xi + l4X2 + 21x3 + 9x4 + 53X5 = 105

— 8X2 — 12x3 + 5x4 — 10x5 = 11

2xj +
4xj +

17. —2xi —

X1 +
5xi —

4X2 + 3x3 + 5X4 + 6x5 = 37
8x2 + 7x3 + 5X4 + 2X5 = 74
4x2 + 3x3 + 4X4 — 5X5 = 20
2x2 + 2x3 — X4 + 2X5 = 26

10x2 + 4x3 + 6x4 + 4X5 24

18. Determine which of the matrices below are in reduced
row-echelon form:

12020
00130

01203
a. b. 0 0 0 1 4

00001

1203
C. 0 0 0 0

0012

19. Find all 4 x 1 matrices in reduced row-echelon form.

20. We say that two n x m matrices in reduced row-echelon
form are of the same type if they contain the same num
ber of leading l’s in the same positions. For example,

®2 0
d ED3 0

0 0
an

0 0D

are of the same type. How many types of 2 x 2 matrices
in reduced row-echelon form are there?

21. How many types of 3 x 2 matrices in reduced row-
echelon form are there? (See Exercise 20.)

22. How many types of 2 x 3 matrices in reduced row-
echelon form are there? (See Exercise 20.)

23. Suppose you apply Gauss—Jordan elimination to a ma
trix. Explain how you can be sure that the resulting
matrix is in reduced row-echelon form.


