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An observation: Tautological equations hold

for any geometric Gromov–Witten theory.

Question 1. How about non-geometric GW

theory? e.g. abstract Frobenius manifolds and

its higher genus counterparts.

Question 2. Is this enough to determine the

tautological equations (in cohomology theory)?

Conjecture. Yes to both questions!

Outline of the talk

1. Review of the geometric GW theory.

2. Givental’s axiomatic GW theory.

3. Invariance of tautological equations – par-

tial answer to Question 1.

4. Using invariance to derive tautological equa-

tions – partial answer to Question 2.
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1. Geometric GW theory

GW theory studies the tautological intersec-

tion theory on Mg,n(X, β), the moduli spaces

of stable maps from curves C of genus g with

n marked points to a smooth projective vari-

ety X. The intersection numbers, or Gromov–

Witten invariants (where γi ∈ H∗(X))

GWg,n,β,γ,k :=
∫

[Mg,n(X,β)]vir

n
∏

i=1

ev∗i (γi)ψ
ki
i

ψi: Define the cotangent bundles Li at a mod-

uli point (i.e. a map) to be T ∗
xi
C. ψi := c1(Li).

Notations:

1. H := H∗(X, C ), assumed of rank N .

2. {φµ} be an (orthonormal) basis of H w.r.t. the

Poincaré pairing (such that φ1 = 1).

3. H = ⊕∞
0 H = infinite dim complex v.s. with

basis {φµψk}.
4. {tµk}, µ = 1, . . . , N , k = 0, . . . ,∞, be the

dual coordinates of the basis {φµψk}.
Observation: At each marked point, the in-

sertion is H-valued.
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Let t :=
∑

k,µ t
µ
kφµψ

k denote a general element
in the vector space H.
Fg(t) =

∑

n,β
1
n!GWn,β the generating function

of all genus g GW invariants.

Tautological equations: Suppose that there
is an equation E = 0 of the cohomology/Chow
classes in Mg,n, moduli space of stable curves.
Since there is a morphism

Mg,n(X, β) →Mg,n

by forgetting the map,

One can pull-back E = 0 to Mg,n(X, β).

If E = 0 is an equation of tautological classes,
it is called an tautological equation. — With-
out going into the details, tautological classes
“basically” includes ψ-classes and boundary classes
coming from gluing:

Mg1,n1+1 ×Mg2,n2+1 →Mg1+g2,n1+n2

Mg,n+2 →Mg+1,n.

Conclusion: Tautological equations hold for
all geometric GW theory.
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2. Givental–Gromov–Witten theory

Symplectic loop space. (abstract setting)
1. H = a cpx v.s. of dim N with a distin-
guished element φ1 = 1.
2. (·, ·) be a C -bilinear metric on H.
gµν := (φµ, φν), gµν is the inverse matrix.
3. H := H[z−1, z], a C -v.s. of H-valued Lau-
rent polynomials in 1/z. (Note: Various com-
pletions of this spaces will be used.)
4. H + := H[z], H − := z−1H[z−1].
5. The symplectic form Ω on H :

Ω(f, g) =
1

2πi

∮

(f(−z), g(z)) dz.

There is a natural polarization H = H +⊕H − by
the Lagrangian subspaces, which also provides
a symplectic identification of (H ,Ω) with the
cotangent bundle T ∗H +.

Note: The parallel between H + and H is evi-
dent, and is in fact given by the affine coordi-
nate transformation

t
µ
k = q

µ
k + δµ1δk1.
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An H-valued Laurent formal series can be writ-

ten in this basis as

. . .+p
µ
1φµ

1

(−z)2
+p

µ
0φµ

1

(−z)
+q

µ
0φµ+q

µ
1φµz+. . . .

In fact, {pµk , q
µ
k}
N,∞
µ=1,k=0 are the Darboux coor-

dinates compatible with this polarization

Ω =
∑

dp
µ
k ∧ dqµk .

Definition of g = 0 axiomatic theory. ∗ Let
F0(q) be a function on H +. The pair (H , F0(q))
is called a g = 0 axiomatic theory if F0 sat-

isfies 3 sets of tautological equations: string

equation, dilaton equation, topological recur-

sion relations (TRR).

Twisted loop groups.

L(2)GL(H) = End(H)-valued formal Laurent

polynomials/series M(z) in the indeterminate

z−1 preserving the symplectic structure

Ω(Mf,Mg) = Ω(f, g), ∀f, g ∈ H .
∗It can be shown that this is equivalent to the definition
of abstract formal Frobenius manifolds.
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Semisimple theories.

A theory is called semisimple if the “quantum

product” on the subspace H is diagonalizable.

Roughly, it says that triple derivative of F(q),

when restricted to the finite dimensional sub-

space qk = 0, k ≥ 1 (∼= H), are diagonalizable

in two of the indices. That is, the matrices

(Aα)µν :=
∂3F0(q)|qk>0=0

∂qα0∂q
µ
0∂q

ν
0

are diagonalizable ∀α.

Theorem 1 [Givental]

1. The twisted loop group acts on the space

of all g = 0 axiomatic theories.

2. The semisimple g = 0 theories form a “ho-

mogeneous space” of the twisted loop group.

That is, the action is transitive.

Question: What is the simplest semisimple

g = 0 theory of rank N?

Answer: Let H = C N , with gµν = δµν and

(Aα)µν = diag(1,1, . . . ,1). That is, the geo-

metric GW theory of X = N points. (Call this

theory Npt.)
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Since any element in the loop group can be

written as a product of the upper triangular

part R(z), a polynomial in z, and the lower tri-

angular part S(z), a polynomial in z−1 [Birkhoff

decomposition]. One has

Corollary 1 Any g = 0 semisimple theory can

be obtained as SR(Npt).

Question: What about higher genus?

This will bring us to the quantization. With-

out going to the details, it is a process of as-

sociating a quadratic differential operator Â to

an element A of the Lie algebra of the twisted

loop group. A group element eA can be quan-

tized as eÂ. More precisely,
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A(z) ∈ Lie algebra(loop group)

→P(A)(p, q) :=
1

2
Ω
(

A(p.q), (p, q)
)

= a quadratic polynomial on (p, q) ∈ H
→Â := P(A)(f) with p 7→

√~ ∂
∂q

, q 7→ 1√~q;
pq 7→ q

∂

∂q

Example. A(z) = z−1 and N = 1.

P(z−1) = −q
2
0

2
−

∞
∑

m=0

qm+1pm.

(z−1)̂ = −q
2
0

2~ −
∞
∑

m=0

qm+1
∂

∂qm
,

Definition

τNpt(q1, . . . , qN) := e
∑∞
g=0

∑N
i=1 F

pt
g (qi)

.

Let T = SR(Npt) be a semisimple g = 0 theory.

τT (q) := ŜR̂τNpt =: e
∑∞
g=0Gg(q).
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Conjecture. [Givental] If abstract T = GWg=0(X)

for a smooth projective variety X, then

τT (q)

(

= e
∑∞
g=0Gg(q)

)

= e
∑∞
g=0 F

X
g (q)

Comments. Givental’s formulaic model usu-

ally enjoys properties complementary to the

geometric model. For example, almost imme-

diately

geometric model ⇒ tautological equations

Givental’s model ⇒ Virasoro constraints.

However, it is in no way obvious when they are

exchanged.

Question 1. (revisited) Does Gg satisfies tau-

tological equations?
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3. Invariance of tautological equations

Theorem 2 1. [Givental–L.] Yes for g = 1

(TRR and Getzler’s equation).

2. [L.] G2 satisfies g = 2 tautological equa-

tions of Mumford, Getzler and BP.

Corollary 2 Virasoro conjecture for semisim-

ple GW theories and Witten’s (generalized)

conjecture for spin curves hold up to genus

2.

Remarks. 1. The uniqueness theorems proved

by Dubrovin–Zhang and Liu: Gg and Fg are

uniquely determined by tautological equations

for semisimple theories.

2. The non-geometric theories for spin curves

∼ miniversal deformations of AN singualrity.

3. Witten’s (generalized) conjecture for spin

curves: the τ-functions of GW-type invariants

constructed from spin curves satisfy the Gelfand–

Dickey hierarchies. This is a generalization of

the Kontsevich’s theorem.

10



4. Using invariance to derive

tautological equations

Example Getzler’s g = 1 equation.

Theorem 3 [Givental-L.] Getzler’s equation is

the only codimension 2 equation in M1,4 which

is invariant under quantized twisted loop group

action (assuming genus one TRR and genus

zero equations).

Furthermore, invariance, i.e. requiring equa-

tion to hold for any axiomatic GW theory, de-

termines the coefficients of Getzler’s equation

up to scaling.

1. In g = 1, TRR ⇒ ψ-classes can be written

as boundary classes.

2. There are 9 codimension 2 boundary strata

in M1,4.
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Pictures
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3. Write the boundary classes in terms of GW

invariants.

G(q) :=
∑

µ,ν,S4 permutation

c1〈v1, v2, ∂µ〉0〈v3, v4, ∂ν〉0〈∂µ, ∂ν〉1
+c2〈v1, v2, ∂µ〉0〈v3, ∂µ, ∂ν〉0〈v4, ∂ν〉1
+c3〈v1, v2, ∂µ〉0〈v3, v4, ∂µ, ∂ν〉0〈∂ν〉1
+c4〈v1, v2, v3, ∂µ〉0〈v4, ∂µ, ∂ν〉0〈∂ν〉1
+c5〈v1, v2, v3, ∂µ〉0〈v4, ∂µ, ∂ν, ∂ν〉0
+c6〈v1, v2, v3, v4, ∂µ〉0〈∂µ, ∂ν, ∂ν〉0
+c7〈v1, v2, ∂µ, ∂ν〉0〈v3, v4, ∂µ, ∂ν〉0
+c8〈v1, v2, ∂µ〉0〈v3, v4, ∂µ, ∂ν, ∂ν〉0
+c9〈v1, ∂µ, ∂ν〉0〈v2, v3, v4, ∂µ, ∂ν〉0 = 0.

Convention: {φµ} orthonormal basis. Sum-

mation over repeated indices.
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4. Invariance under e(r1z)̂ ⇒

0 =
dG

dǫ
=

∑

S4,i,j,µ,ν,...

(r1)ij

(

2c1〈v1, v2, ∂j〉〈v3, v4, ∂µ〉〈∂i, ∂µ, ∂ν〉〈∂ν〉1
− c1〈v1, v2, ∂µ〉〈v3, v4, ∂ν〉〈∂i, ∂ν, ∂µ〉〈∂j〉1
+ c2〈v1, v2, ∂µ〉〈v3, ∂j, ∂µ〉〈∂i, v4, ∂ν〉〈∂ν〉1
− c2〈v1, v2, ∂µ〉〈v3, ∂µ, ∂ν〉〈∂i, v4, ∂ν〉〈∂j〉1
+ c3〈v1, v2, ∂j〉〈v3, v4, ∂i1, ∂ν〉〈∂ν〉1
+ c3〈v1, v2, ∂µ〉〈v3, v4, ∂i1, ∂ν〉〈∂j〉1
− c3〈v1, v2, ∂µ〉〈v3, v4, ∂i〉〈∂j, ∂µ, ∂ν〉〈∂ν〉1
− 2c3〈v1, v2, ∂µ〉〈v3, ∂i, ∂µ〉〈v4, ∂j, ∂ν〉〈∂ν〉1
+ c4〈v1, v2, v3, ∂i1〉〈v4, ∂j, ∂ν〉〈∂ν〉1

− 3c4〈v1, v2, ∂i〉〈v3, ∂j, ∂µ〉〈v4, ∂µ, ∂ν〉〈∂ν〉1





+ genus-zero-only terms.

((r1)ij arbitrary)
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5. At g = 1: Collect terms of the same type

and set the coefficients to 0.

It is easy to see that the terms containing 〈∂j〉1
gives the condition (after applying genus zero

TRR)

−c1 − c2 + c3 = 0.

The terms containing 〈v∗, v∗∗, ∂j〉〈∂ν〉1 gives the

equation

2c1 − 3c4 = 0.

The terms containing 〈v∗, v∗∗, ∂ν〉〈∂ν〉1 gives the

equation

c2 − 2c3 + c4 = 0.
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6. For the terms involving genus zero invari-

ants only, the only relations are WDVV, af-

ter stripping off all descendents by genus zero

TRR.

(a) Those terms containing a factor 〈v∗, v∗∗, v∗∗∗, ∂i〉
give the equation

∑

(r1)ij〈v1, v2, v3, ∂i〉


c5〈v4, ∂j1, ∂
ν, ∂ν〉

− 4c6〈v4, ∂j, ∂µ〉〈∂µ, ∂ν, ∂ν〉

− c9〈v4, ∂µ, ∂ν〉〈∂j, ∂µ, ∂ν〉


 = 0,

which gives condition

c5 − 4c6 − c9 = 0.
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(b) Those terms containing a factor 〈v∗, v∗∗, ∂i〉
give the equation

∑

(r1)ij〈v1, v2, ∂i〉




1

12
c1〈v3, v4, ∂ν〉〈∂j, ∂µ, ∂µ, ∂ν〉

− 3c5〈v3, ∂j, ∂ν〉〈v4, ∂µ, ∂µ, ∂ν〉
− 6c6〈v3, v4, ∂j, ∂ν〉〈∂µ, ∂µ, ∂ν〉
− 2c7〈v3, v4, ∂µ, ∂ν〉〈∂j, ∂µ, ∂ν〉
+ c8〈v3, v4, ∂j1, ∂

ν, ∂ν〉
+ c8〈v3, v4, ∂µ〉〈∂j, ∂µ, ∂ν, ∂ν〉

− 3c9〈v3, ∂µ, ∂ν〉〈v4, ∂j, ∂µ, ∂ν〉




=
∑

(r1)ij〈v1, v2, ∂i〉




(3

2
c5 − 6c6 − 3

2
c9
)

∂j
(

〈v3, ∂µ, ∂ν〉〈v4, ∂µ, ∂ν〉
)

(

− 3c5 − 2c7 − c8
)

〈v3, v4, ∂µ, ∂ν〉〈∂j, ∂µ, ∂ν〉
)

( 1

12
c1 − 3c5 + 6c6 = 0

)

〈v3, v4, ∂µ, ∂ν〉〈∂j, ∂µ, ∂ν〉




=0.
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The above equation gives two conditions

−3c5 − 2c7 + 2c8 = 0.

1

12
c1 − 3c5 + 6c6 = 0.

(c) The remaining terms, after genus zero TRR,

contain no descendents. Therefore the only re-

lations are WDVV’s and their derivatives. How-

ever, WDVV’s and their derivatives don’t change

the summation of the coefficients, therefore

the summation has to vanish. This gives an-

other equation

−1

2
c1 − 11

24
c2 − 11

24
c3 − 11

24
c4 + 3c6 − 3c8 = 0.

(d) Combining the above equations, one can

express all coefficients in terms of c3 and c9:

c1 = −3c3, c2 = 4c3, c4 = −2c3, c5 = −1

6
c3 − c9,

c6 = − 1

24
c3 − 1

2
c9, c7 =

1

4
c3 + c9, c8 = −1

2
c9
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(e) Summarizing, we have

−c3(Getzler’s equation) + c9(T).

where T is a sum of rational GW invariants. It

is not very difficult to see that WDVV implies

that T = 0. This completes the proof.

Remark. 1. The same technique can be ap-

plied to g = 2 Mumford, Getzler and BP. (Par-

tially checked.)

2. The set of all (axiomatic) invariants sat-

isfying Graber–Vakil’s is also invariant under

twisted loop group action.

Conjecture. One can find many (all?) tauto-

logical equations by the invariance technique.

One should start with codimension 3 equation

in M3,1. (Instead of 9 terms, there are about

100 terms....)
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