Thompson’s group

Yael Algom Kfir

February 5, 2006

1 Definition

Definition: Let \(F \) be the set of functions \(f \) on the unit interval \([0, 1]\) such that:

1. \(f \) is piecewise linear and continuous.
2. \(f(0) = 0 \) and \(f(1) = 1 \)
3. If \(0 < x_1 < x_2 < \ldots < x_m < 1 \) are the points of non-differentiability the \(x_i = \frac{k}{l} \) for some \(k, l \in \mathbb{N} \).
4. If \(x \neq x_i \forall i \) then \(f \) is differentiable at \(x \) and \(f'(x) = 2^j \) for some \(j \in \mathbb{Z} \).

It is straightforward to check that \(F \) forms a subgroup of \(\text{Homeo}[0, 1] \).

Consider:

\[
A(x) = \begin{cases}
\frac{x}{2} & 0 \leq x \leq \frac{1}{2} \\
x - \frac{1}{4} & \frac{1}{2} < x < \frac{3}{4} \\
2x - 1 & \frac{3}{4} \leq x \leq 1
\end{cases}
\]

\[
B(x) = \begin{cases}
x & 0 \leq x \leq \frac{1}{2} \\
\frac{x}{2} + \frac{1}{4} & \frac{1}{2} < x < \frac{3}{4} \\
x - \frac{1}{8} & \frac{3}{4} < x < \frac{7}{8} \\
2x - 1 & \frac{7}{8} \leq x \leq 1
\end{cases}
\]

\(A, B \in F \). We will show that \(A, B \) generate \(F \).

2 Tree diagrams

We can completely describe any \(f \in F \) by specifying \(x_1 < x_2 < \ldots < x_m \) and \(f(x_1) < f(x_2) < \ldots < f(x_m) \). For example: \(A : (0, \frac{1}{2}, \frac{3}{4}, 1) \rightarrow (0, \frac{1}{4}, \frac{1}{2}, 1) \) and
$B : (0, \frac{1}{2}, \frac{3}{4}, \frac{7}{8}, 1) \rightarrow (0, \frac{1}{2}, \frac{3}{4}, \frac{7}{8}, 1)$. We can code this information using binary tree diagrams (D, R) where D is the domain tree and R is the range tree of the diagram. For example, for A we have:

![Diagram of A](image)

Omitting the labelling, the tree diagram for B is:

![Diagram of B](image)

Observe that $f \in \mathcal{F}$ corresponds to infinitely many pairs of dihedral sequences. Indeed, if $f : (0, y_1, \ldots, y_n, 1) \rightarrow (0, f(y_1), \ldots, f(y_n), 1)$ fully determines f and $y_i < a < y_{i+1}$ then $f : (\ldots y_i, a, y_{i+1} \ldots) \rightarrow (\ldots f(y_i), f(a), f(y_{i+1}) \ldots)$ also fully determines the same f. The tree diagram corresponding to the latter sequences will differ from the first tree diagram (D, R) by attaching a wedge to the i^{th} leaf of the D and one to the i^{th} leaf of R.

A tree diagram (D, R) is reduced if the following condition holds: whenever the i^{th} and $i + 1^{st}$ leaves in D are brothers the i^{th} and $i + 1^{st}$ leaves in R are not.

3 Composition of tree diagrams

We can compose two tree diagrams (D_1, R_1) and (D_2, R_2) whenever $D_2 = R_1$ to obtain (D_1, R_2). But what do we do if $R_1 \neq D_2$? What if we want to compose the tree diagram corresponding to A with the one corresponding to B? We can always find tree diagrams, (D_1, R_1) for A and (D_2, R_2) such that $D_2 = R_1$. But these diagrams will not in general be reduced. The procedure is as follows: Let
(D_A, R_A) (resp. (D_B, R_B)) be the reduced tree diagram for A (resp. B). Now, add subtrees of \(D_B\) to both \(D_A\) and \(R_A\) and add subtrees of \(R_A\) to \(D_B\) and \(R_B\) until we get \(R_1 = D_2\).

![Tree Diagram](image)

Computing \(A^{-1}BA\) and \(A^{-2}BA^2\) we get:

![Tree Diagram](image)

We can now guess what the tree diagram for \(X_n := A^{-n}BA^n\) will look like. For simplicity of notation define \(X_0 := A\) and \(X_1 := B\). We will also denote the domain tree of \(X_n\) by \(T_n\).

4 Normal Forms

Definition: Suppose T is a binary tree with \(n\) leaves. Its \(i^{th}\) exponent is the length of the longest path of left edges that doesn’t touch the right side of the tree.

Lemma: If \((D, T_n)\) is a reduced tree diagram. And \(a_1, a_2, \ldots, a_n\) are the exponents of \(D\) then \((D, T_n)\) corresponds to \(X_n^{-a_n} \cdots X_1^{-a_1} X_0^{-a_0} \in \mathcal{F}\).

The lemma is proved by induction but we can follow the argument by working out the example below:

![Tree Diagram](image)

Definition: Every non-trivial element of \(\mathcal{F}\) can be expressed in a unique normal
form:
\[X_0^{b_0} X_1^{b_1} \cdots X_n^{b_n} X_n^{-a_n} \cdots X_1^{-a_1} X_0^{-a_0} \quad (1) \]

where \(n, a_0, \ldots, a_n, b_n, \ldots, b_n \) are nonnegative integers such that: exactly one of \(a_n, b_n \) is nonzero, and if \(a_k, b_k > 0 \) then \(a_{k+1} > 0 \) or \(b_{k+1} > 0 \). Furthermore, every such normal form function is non-trivial.

Indeed, if \((D, R)\) is the reduced tree diagram corresponding to \(f \) and \(a_1, \ldots, a_n, b_1, \ldots, b_n \) are the exponents of \(D, R \) respectively then \(f \)'s normal form is identical to the one in expression (1). The restrictions on the \(a_i \)s and \(b_i \)s are equivalent to \((D, R)\) being reduced.

Corollary: \(F \) is generated by \(A, B \).

Corollary: There is a linear-time solution to the word problem in \(F \).

5 Some properties of \(F \)

1. \(F \) is torsion free of type \(FP_\infty \), i.e. \(F \) has no finite projective resolution but has an infinite resolution \(P \) such that \(P_n \) is finitely generated for every \(n \).

2. \(F \) acts freely properly discontinuously by isometries on a CAT(0) cube complex

3. The group \(T \) is the set of orientation preserving piecewise linear homeomorphisms of the unit circle, which are non-differentiable on finitely many diadic rationals and whose derivatives are powers of 2. This is an infinite simple group, finitely presented, and of type \(FP_\infty \).

6 Amenability

Definition: A group \(G \) is called amenable if there is a function \(\mu : P(G) \to [0, 1] \) such that:

1. \(\mu(gA) = \mu(A) \) for all \(g \in G \) and subsets \(A \) of \(G \)

2. \(\mu(G) = 1 \)

3. \(\mu(A \cup B) = \mu(A) + \mu(B) \) if \(A \) and \(B \) are disjoint subsets of \(G \).
The class of amenable groups is denoted AG. Clearly, finite groups are amenable.

In 1929, Von Neumann made the connection between Banach-Tarski paradoxes and non-amenability of isometry groups. He proved that all abelian groups are amenable and that the class of amenable groups is closed under quotients, subgroups, group extensions and direct unions. Define EG to be the smallest class of groups containing all finite groups and all abelian groups which is closed under the operations described above. EG is called the class of elementary amenable groups.

Lemma: $F_2 = \langle a, b \rangle$ is not amenable.

Proof: Suppose μ is a measure on G. Since G is infinite and $\mu(G) = 1$ then $\mu\{a\} = 0$ for every $a \in G$. In particular $\mu\{1\} = 0$. For each $g \in \{a, b, a^{-1}, b^{-1}\}$ define $A_g := \{h \in G | h \text{ has a reduced representative beginning with } g\}$. $\mu(A_a) = \mu(a^{-1}A_a) = \mu(\{1\} \cup A_a \cup A_b \cup A_{b^{-1}}) = \mu(\{1\}) + \mu(\{1\}) + \mu(A_a) = \mu(A_a) + \mu(A_b) + \mu(A_{b^{-1}}) = \mu(A_a) + \mu(A_b) + \mu(A_{b^{-1}})$. Hence $\mu(A_a) + \mu(A_b) + \mu(A_{b^{-1}}) = 0$ which implies $\mu(A_a) = \mu(A_b) = \mu(A_{b^{-1}}) = 0$. Similarly, $\mu(A_a) = \mu(A_{a^{-1}}) = 0$. But this contradicts:

$$G = \{1\} \cup A_a \cup A_{a^{-1}} \cup A_b \cup A_{b^{-1}}$$

Let NF denote the class of groups that do not contain F_2 as a subgroup. We get:

$$EG \subseteq AG \subseteq NF$$

Olshanskii and later Gromov gave examples of inequality of the latter inclusion. Grigorchuk gave an example of inequality for the first inclusion. All examples are not finitely generated. $\mathcal{F} \in NF \setminus EG$. If $\mathcal{F} \in AG$ it is the first finitely presented example of inequality of the second inclusion and if $\mathcal{F} \notin AG$ it is the first finitely presented counterexample of the first inclusion.

Open Question: Is \mathcal{F} amenable?