MATH 1090 SECTION 2 - SUMMER 2007 - PRACTICE MIDTERM

You have two hours to complete this test. Show all your work. Calculators are NOT allowed.

Each of the following 8 questions is worth 15 points. Together, they are worth a total of 120 points. The maximum grade is 100 points. You may do part of a problem to get partial credit.

Student Number:

(1) Solve: $\frac{4}{x-3}+\frac{2}{3}=\frac{6}{5}-\frac{12}{15-5 x}$

Solution:

$$
\frac{4}{x-3}+\frac{2}{3}=\frac{6}{5}-\frac{12}{15-5 x}
$$

$$
\begin{equation*}
\frac{4}{x-3}+\frac{12}{15-5 x}=\frac{6}{5}-\frac{2}{3} \tag{1}
\end{equation*}
$$

Lets simplify the left hand side:

$$
\frac{4}{x-3}+\frac{12}{15-5 x}=\frac{4}{x-3}+\frac{12}{5(3-x)}
$$

Now $(3-x)=-(x-3)$ so:

$$
\frac{4}{x-3}-\frac{12}{5(x-3)}=\frac{20}{5(x-3)}-\frac{12}{5(x-3)}=\frac{12}{5(x-3)}=\frac{8}{5(x-3)}
$$

Now we'll work on the right hand side of equation 1 :

$$
\frac{6}{5}-\frac{2}{3}=\frac{18}{15}-\frac{10}{15}=\frac{8}{15}
$$

So equation 1 becomes:

$$
\begin{array}{r}
\frac{8}{5(x-3)}=\frac{8}{15} \\
\frac{1}{5(x-3)}=\frac{1}{15} \\
\frac{1}{x-3}=\frac{1}{3} \\
3=x-3 \\
x=6
\end{array}
$$

You can easily check this solution by plugging in to the original equation.
(2) Solve: $\frac{1}{2} x^{2}-\frac{2}{3} x+\frac{2}{5}=0$

Solution:

$$
x_{1,2}=\frac{-\left(\frac{2}{3}\right) \pm \sqrt{\left(-\frac{2}{3}\right)^{2}-4\left(\frac{1}{2}\right)\left(\frac{2}{5}\right)}}{2 \frac{1}{2}}=\frac{-\left(\frac{2}{3}\right) \pm \sqrt{\frac{4}{9}-\frac{8}{10}}}{1}
$$

But since $\frac{4}{9}<\frac{8}{10}$ the expression inside the square root is negative, so there's no solution to this equation.
(3) (a) Find the slope-intercept equation of the line which passes through $(2,9)$ and is parallel to $y=2 x+1$.

Solution: The slope intercept form is: $y=a x+b$. Since this line is parallel to $y=2 x+1$, then $a=2$. It passes through $(2,9)$ so $9=2 \cdot 2+b$. Thus $b=5$ and the equation is $y=2 x+5$.
(b) Find the line perpendicular to the line in (3a) and which passes through (5, 2).

Solution: This new line has the form $y=c x+d$ and is perpendicular to $y=2 x+5$. Hence $c=-\frac{1}{2}$. Since it passes through $(5,2)$ we get $2=-\frac{1}{2} 5+d$ hence $d=4 \frac{1}{2}$, and the equation is: $y=-\frac{1}{2} x+4 \frac{1}{2}$.
(4) The cost per unit depends on the number of units which are manufactured. Suppose it costs $\$ 150$ to manufacture 300 units and $\$ 160$ to manufacture 400 units.
(a) Find the cost per unit in each case.

Solution:

$\$ 150$ to manufacture 300 units \Rightarrow the cost per unit is $\frac{150}{300}=0.5$ dollars per unit. $\$ 160$ to manufacture 400 units \Rightarrow the cost per unit is $\frac{160}{400}=\frac{4}{10}=0.4$ dollars per unit.
(b) Suppose the cost per unit is a linear function of the number of units manufactured. Find the slope - intercept form of this function.

Solution:

If $x=300$ units then $y=0.5$ is the cost per unit.

If $x=400$ units then $y=0.4$ is the cost per unit.
So the graph of this linear function is a line which passes through $(300,0.5)$ and $(400,0.4)$. The equation corresponding to this line is:

$$
a=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{0.4-0.5}{400-300}=\frac{-0.1}{100}=-0.001
$$

We get b by solving:

$$
\begin{aligned}
& 0.5=-0.001 \cdot 300+b \\
& 0.5=-0.3+b \\
& b=0.8
\end{aligned}
$$

So the equation is: $y=-0.001 \cdot x+0.8$ and this is also the cost per unit as a function of the number of units.
(c) Find the cost per unit when 350 units are manufactured.

Solution: Set $x=350$ then $y=-0.001 \cdot 350+0.8=-0.35+0.8=0.45$ dollars per unit.
(5) A gas station uses the following demand function: $p=8-0.2 x$ Where x is the number of (thousands of) gallons sold per day and p is the price per gallon (in dollars). Find the number of gallons to sell to get a maximum revenue. Find the optimal price per gallon and the maximum revenue.

Solution:

Let R denote the revenue. Then

$$
R=\text { price } \cdot \text { units }=(8-0.2 \cdot x) x=-0.2 x^{2}+8 x
$$

This parabola opens downward, so the vertex is a maximum for the revenue function. The coordinates of the vertex:

$$
x_{v}=\frac{-b}{2 a}=\frac{-8}{2 \cdot(-0.2)}=\frac{-8}{-0.4}=20
$$

The maximum revenue will be attained when 20 thousands of gallons are sold. The maximum revenue will be:

$$
R_{v}=R\left(x_{v}\right)=(8-0.2 \cdot 20) \cdot 20=(8-4) \cdot 20=4 \cdot 20=80
$$

That is 80 thousands of dollars or $\$ 80,000$. The price per gallon will be

$$
P=8-0.2 \cdot x_{v}=8-0.2 \cdot 20=8-4=4
$$

dollars per gallon.
(6) A company's margin of profit is: $\frac{\text { net income }}{\text { net sales }}$
(a) A home business for quilts sold 400 quilts last year at a price of $\$ 13$ a unit. If z denotes last year's net income, express last year's margin of profit in terms of z.

Solution: Net sales amounts to price times units sold, so:

$$
M_{l}=\frac{z}{400 \cdot 13}
$$

(b) This year, the price increased by $\$ 2$ and still 400 quilts were sold. The net income grew by $\$ 100$. Express this year's margin of profit in terms of z. (Hint: First write this year's income in terms of z).

Solution: This year's net income is $z+100$
This year's price per unit is $13+2=15$
The number of units sold is 400 . Therefore:

$$
M_{t}=\frac{z+100}{400 \cdot 15}
$$

(c) Suppose this year's margin of profit was 4% higher than last year's. Use (6a) and (6b) to expresses this.

Solution:

$$
\begin{aligned}
& M_{t}=M_{l}+0.04 \cdot M_{l}=1.04 \cdot M_{l} \\
& \frac{z+100}{400 \cdot 15}=1.04 \cdot \frac{z}{400 \cdot 13}
\end{aligned}
$$

(d) What was last year's net profit? What was this year's net profit?

Solution: Notice that $1.04=\frac{104}{100}=\frac{26}{25}$. Now we solve:

$$
\begin{aligned}
& \frac{z+100}{400 \cdot 15}=1.04 \cdot \frac{z}{400 \cdot 13} \\
& \frac{z+100}{400 \cdot 15}=\frac{26}{25} \cdot \frac{z}{400 \cdot 13} \\
& \frac{z+100}{400 \cdot 15}=\frac{2}{25} \cdot \frac{z}{400} \\
& \frac{z+100}{15}=\frac{2}{25} \cdot z \\
& \frac{z+100}{3}=\frac{2 z}{5} \\
& 5(z+100)=6 z \\
& 5 z+500=6 z \\
& 500=z
\end{aligned}
$$

Las year's net profit was 500 dollars, and this year's was 600 dollars.
(7) Let $f(x)=2 x^{2}+2 x-4$.
(a) Does it open up or down?

Solution: $a>0$ so it opens up.
(b) Find the vertex and write the equation of the axis of symmetry.

Solution: The vertex: $x_{v}=\frac{-b}{2 a}=\frac{-2}{4}=-\frac{1}{2}$
$y_{v}=2\left(-\frac{1}{2}\right)^{2}+2\left(-\frac{1}{2}\right)-4=\frac{2}{4}-1-4=-4 \frac{1}{2}=\frac{-9}{2}$
The equation of the axis of symmetry is: $x=x_{v}=-\frac{1}{2}$
(c) Find the y-intercept. Find the x-intercepts if they exist.

x-intercept: Set $y=0$ and solve:

$$
\begin{gathered}
x_{1,2}=\frac{-2 \pm \sqrt{2^{2}-4 \cdot(2) \cdot(-4)}}{2 \cdot 2}=\frac{-2 \pm \sqrt{4+32}}{4}= \\
\frac{-2 \pm \sqrt{36}}{4}=\frac{-2 \pm 6}{4}=1 \text { or }-2
\end{gathered}
$$

So the intersection points of the graph with the x axis are: $(-2,0)$ and $(1,0)$.
(d) Graph $f(x)$

Solution:

(e) What's the domain of definition of the function $h(x)=\sqrt{-f(x)}=\sqrt{-2 x^{2}-2 x+4}$.

Sketch your answer on the real line.

Solution: The graph of $-f(x)$ looks like:

because it is the reflection through the x-axis of the graph of $f . y$ is positive only when x is between the two intersection points of the graph with the x axis. So $-f(x)$ is positive only between -2 and 1 . So the domain of definition is $[-2,1]$ (f) Find the vertex of $g(x)=x^{2}-9 x+20$.

Solution: The vertex of g is: $x_{v}=\frac{-(-9)}{2 \cdot 1}=\frac{9}{2}$
$y_{v}=\left(\frac{9}{2}\right)^{2}-9 \cdot\left(\frac{9}{2}\right)+20=\frac{81}{4}-\frac{81}{2}+\frac{80}{4}=\frac{81-162+80}{4}=-\frac{1}{4}$
(g) How would you need to translate (shift) f's graph so that it's vertex would overlap g 's vertex. What is the function of this new graph?

Solution: f 's vertex is at $\left(-\frac{1}{2},-\frac{9}{2}\right)$ and g 's vertex is at $\left(\frac{9}{2},-\frac{1}{4}\right)$. So we need to shift f by 5 to the right and $-\frac{1}{4}-\left(-\frac{9}{2}\right)=\frac{17}{4}$ up to make them coincide. To shift f by 5 to the right get:

$$
f_{1}(x)=2(x-5)^{2}+2(x-5)-4
$$

To shift f_{1} up by $\frac{17}{4}$ get:

$$
f_{2}(x)=\underbrace{2(x-5)^{2}+2(x-5)-4}_{f_{1}(x)}+\frac{17}{4}
$$

(8) Let $f(x)=\frac{1}{x^{2}}$ and $g(x)=2 x^{2}+3 x+5$.
(a) What are the functions $h(x)=g \circ f(x)=g(f(x))$ and $k(x)=f \circ g(x)=f(g(x))$ do not simplify your answer. Is $h(1)=k(1)$?

Solution:

$$
h(x)=g(f(x))=g\left(\frac{1}{x^{2}}\right)=2\left(\frac{1}{x^{2}}\right)^{2}+3\left(\frac{1}{x^{2}}\right)+5
$$

and $h(1)=2 \frac{1}{1^{2}}+3 \frac{1}{1^{2}}+5=10$

$$
k(x)=f(g(x))=f\left(2 x^{2}+3 x+5\right)=\frac{1}{\left(2 x^{2}+3 x+5\right)^{2}}
$$

and $k(1)=\frac{1}{\left(2 \cdot 1^{2}+3 \cdot 1+5\right)^{2}}=\frac{1}{10}$ so $h(1) \neq k(1)$
(b) What is $f(x+h)$? What is the difference quotient? $D_{1}(x, h)=\frac{f(x+h)-f(x)}{h}$? do not simplify your answer.

Solution: $f(x+h)=\frac{1}{(x+h)^{2}}$ and

$$
D_{1}(x, h)=\frac{f(x+h)-f(x)}{h}=\frac{\frac{1}{(x+h)^{2}}-\frac{1}{x^{2}}}{h}
$$

(c) What is $g(x+h)$? What is the difference quotient? $D_{2}(x, h)=\frac{g(x+h)-g(x)}{h}$?

Simplify your answers.
Solution: $g(x+h)=2(x+h)^{2}+3(x+h)+5=2\left(x^{2}+2 x h+h^{2}\right)+3(x+h)+5=$ $2 x^{2}+3 x+5+2 x h+h^{2}$ and

$$
\begin{aligned}
& D_{g}(x, h)=\frac{g(x+h)-g(x)}{h}=\frac{2 x^{2}+3 x+5+2 x h+h^{2}-\left(2 x^{2}+3 x+5\right)}{h}=\frac{2 x h+h^{2}}{h}= \\
& \frac{h(2 x+h)}{h}=2 x+h
\end{aligned}
$$

