MATH 3210 - PARTIAL SOLUTION TO ASSIGNMENT #1

- 3. a) Show that for any r > 0 there is a natural number n such that $r < \sqrt{2}n$. (hint: Can set n = [r] i.e. r rounded up, but why?) Proof: The archimedean property applied to r gives us a natural n such that r < n. $1 < \sqrt{2}$ thus $r = 1 \cdot r < \sqrt{2} \cdot r < \sqrt{2}n$.
 - b) Prove that for any 0 < s there is a natural number n such that $\frac{1}{\sqrt{2n}} < s$ Proof: Apply the 3(a) to $r = \frac{1}{s}$. We get an integer n such that $\frac{1}{s} < \sqrt{2n}$ thus $s > \frac{1}{\sqrt{2n}}$.
 - c) Prove that for any two numbers x < y there are natural numbers n,m such that $x < \tfrac{m}{\sqrt{2n}} < y$

Proof: Here there's a small typo. Either assume that 0 < x < y or that n, m can be chosen to be integers (not naturals). We will do the latter i.e. we prove: For all x < y there are integers n, m such that $x < \frac{m}{\sqrt{2n}} < y$.

Apply the 3(b) to $s = \frac{y-x}{2}$ (since y > x this is a positive number) to get a natural n such that $s > \frac{1}{\sqrt{2n}}$. Thus $\frac{y-x}{2} > \frac{1}{\sqrt{2n}}$. Therefore $\sqrt{2ny} - \sqrt{2nx} > 2$. Since the gap between $\sqrt{2ny}$ and $\sqrt{2nx}$ is larger than 2 there is an integer m strictly between them (here is were we cannot always choose a natural m since y, x might be negative). Thus $\sqrt{2nx} < m < \sqrt{2ny}$. Dividing by $\sqrt{2n}$ we get $x < \frac{m}{\sqrt{2n}} < y$.

Note: if you had chosen s = y - x you get a gap greater than 1 between $\sqrt{2ny}$ and $\sqrt{2nx}$ but this is not enough to conclude that there is an integer strictly between them because a priori one of them could be the integer itself. And then one of the strict inequalities in $\sqrt{2nx} < m < \sqrt{2ny}$ would be wrong. If you follow this route you must explain why $\sqrt{2nx}, \sqrt{2ny}$ are nessecrily not integers.

d) Is a number of the form $\frac{m}{\sqrt{2n}}$ (where n, m are natural) rational or irrational - prove your claim.

 $\frac{m}{\sqrt{2n}}$ is irrational. Assume it were rational. Then there are integers a, b such that $\frac{m}{\sqrt{2n}} = \frac{a}{b}$ but then $\sqrt{2} = \frac{mb}{na}$ would be rational. Contradicting the theorem we proved in class that $\sqrt{2}$ is irrational.