MATH 3210 - SUMMER 2008-ASSIGNMENT \#9

The Derivative

(1) Use the definition of the derivative to prove: $f(x)=\sqrt{x}$ then for $x>0 f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$ and $f_{+}^{\prime}(0)$ doesn't exist - it is infinite (hint: for the second part: you must use the definition of the derivarive at zero).
(2) Let f be differentiable at a with derivative $f^{\prime}(a)$, let g be ifferentiable at a with derivative $g^{\prime}(a)$. Prove:
(a) define $k(x)=f(x)+g(x)$. Then k is differentiable at a and its derivative is: $k^{\prime}(a)=f^{\prime}(a)+g^{\prime}(a)$ (don't use arithmatics of derivatives - this is what we're trying to prove here).
(b) Suppose $g(a) \neq 0$ and define $k(x)=\frac{f(x)}{g(x)}$. Prove that k is differentiable at a and its derivative is $k^{\prime}(a)=\frac{f^{\prime}(a) g(a)-f(a) g^{\prime}(a)}{g(a)^{2}}$.
(3) Consider the function $f(x)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$
(a) Use the theorems we proved in class to show that $f(x)$ is differentiable for all $x \neq 0$.
(b) Use the definition of the derivative to show that $f(x)$ is differentiable at 0 and find $f^{\prime}(0)$.
(c) Is $f^{\prime}(x)$ continuous at 0 ?
(4) True /False (as always if it is true - prove it and if it is false find a counter example):
(a) If f is differentiable at a then there is a neighborhood $I=\left(a-t_{0}, a+t_{0}\right)$ of a such that for all $x \in I f$ is continuous at x.
(b) If f is continuous on \mathbb{R} then f is differentiable on \mathbb{R}.
(5) Consider the function $f(x)= \begin{cases}\sin (x) & \text { if } 0 \leq x \leq 2 \pi \\ -x & \text { if }-1<x<0 \\ -x^{2}+2 & \text { if }-4 \leq x \leq-1\end{cases}$
(a) Is f continuous at every point in $[-4,2 \pi]$?
(b) What are the critical points in of f in this interval?
(c) What is the minimum and the maximum of f in $[-4,2 \pi]$?

