MATH 3210 - SUMMER 2008 - ASSIGNMENT #7

LIMITS, MONOTONIC FUNCTIONS, AND CONTINUOUS FUNCTIONS

(1) Using theorems proven in class find the limits below (and prove them not by definition but appealing to the theorems that we proved).

1)
$$\lim_{x \to 0} \frac{\tan(x)}{x}$$

2)
$$\lim_{x \to 0} \frac{\sin(-x)}{x}$$

3)
$$\lim_{x \to 0} \frac{\sin(6x)}{x}$$

4)
$$\lim_{x \to \infty} \left(1 + \frac{1}{5x}\right)^x$$

5)
$$\lim_{x \to -\infty} \left(1 - \frac{1}{x}\right)^x$$

- (2) Check if the following functions are monotonic:
 - (a) $f : \mathbb{R} \to \mathbb{R}, f(x) = x^2$ (b) $g : [0, \infty) \to \mathbb{R}, f(x) = \frac{1}{(x+1)^2}$
- (3) What is $\sup_{I} f$ for the following functions? In each case is it a maximum?

(a)
$$f: [0,1] \to \mathbb{R}, f(x) = -8x^2 + 6x - 1$$

(b) $f: (0,1) \to \mathbb{R}, f(x) = 2x$
(c) $D: [0,1] \to \mathbb{R}, D(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ -1 & \text{if } x \notin \mathbb{Q} \end{cases}$
(d) $f: (0,1) \to \mathbb{R}, f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \\ -x & \text{if } x \notin \mathbb{Q} \end{cases}$

- (4) For each function f(x) and point a check if f is continuous at a and if not find the type of discontinuity:
 - (a) $f: [0,1] \to \mathbb{R}, f(x) = \frac{x}{x+1}$ at a = 0(b) $f: [-1,1] \to \mathbb{R}, f(x) = \frac{\sin(x)}{x}$ at a = 0(c) $f: (-2,2) \to \mathbb{R}, f(x) = \sin(\frac{1}{x})$ at a = 0(d) $f: \mathbb{R} \to \mathbb{R}, f(x) = [x]$ at a = 3

(e)
$$f: (-2,2) \to \mathbb{R}, f(x) = x \sin(\frac{1}{x})$$
 at $a = 0$
(f) $f: (-2,2) \to \mathbb{R}, f(x) = x \sin(\frac{1}{x})$ at $a = \frac{1}{2}$
(g) $f: (2,\infty) \to \mathbb{R}, f(x) = \frac{x}{[x]}$ at $a = 3$
(h) $f: (2,\infty) \to \mathbb{R}, f(x) = \frac{x}{[x]}$ at $a = 3.5$

(5) $f : \mathbb{R} \to \mathbb{R}, f(x) = 1$ for all $x. g : \mathbb{R} \to \mathbb{R}, g(x) = \begin{cases} x & x \neq 1 \\ 3 & x = 1 \end{cases}$ find $L = \lim_{x \to 5} g(f(x)),$ $a = \lim_{x \to 5} f(x)$ and $L' = \lim_{x \to a} g(x).$ Does $L \neq L'$ contradict the theorem proven in class?