MATH 3210 - SUMMER 2008-ASSIGNMENT \#7

LIMITS, MONOTONIC FUNCTIONS, AND CONTINUOUS FUNCTIONS
(1) Using theorems proven in class find the limits below (and prove them not by definition but appealing to the theorems that we proved).

1) $\lim _{x \rightarrow 0} \frac{\tan (x)}{x}$
2) $\lim _{x \rightarrow 0} \frac{\sin (-x)}{x}$
3) $\lim _{x \rightarrow 0} \frac{\sin (6 x)}{x}$
4) $\lim _{x \rightarrow \infty}\left(1+\frac{1}{5 x}\right)^{x}$
5) $\lim _{x \rightarrow-\infty}\left(1-\frac{1}{x}\right)^{x}$
(2) Check if the following functions are monotonic:
(a) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{2}$
(b) $g:[0, \infty) \rightarrow \mathbb{R}, f(x)=\frac{1}{(x+1)^{2}}$
(3) What is $\sup _{I} f$ for the following functions? In each case is it a maximum?
(a) $f:[0,1] \rightarrow \mathbb{R}, f(x)=-8 x^{2}+6 x-1$
(b) $f:(0,1) \rightarrow \mathbb{R}, f(x)=2 x$
(c) $D:[0,1] \rightarrow \mathbb{R}, D(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ -1 & \text { if } x \notin \mathbb{Q}\end{cases}$
(d) $f:(0,1) \rightarrow \mathbb{R}, f(x)= \begin{cases}x & \text { if } x \in \mathbb{Q} \\ -x & \text { if } x \notin \mathbb{Q}\end{cases}$
(4) For each function $f(x)$ and point a check if f is continuous at a and if not - find the type of discontinuity:
(a) $f:[0,1] \rightarrow \mathbb{R}, f(x)=\frac{x}{x+1}$ at $a=0$
(b) $f:[-1,1] \rightarrow \mathbb{R}, f(x)=\frac{\sin (x)}{x}$ at $a=0$
(c) $f:(-2,2) \rightarrow \mathbb{R}, f(x)=\sin \left(\frac{1}{x}\right)$ at $a=0$
(d) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=[x]$ at $a=3$
(e) $f:(-2,2) \rightarrow \mathbb{R}, f(x)=x \sin \left(\frac{1}{x}\right)$ at $a=0$
(f) $f:(-2,2) \rightarrow \mathbb{R}, f(x)=x \sin \left(\frac{1}{x}\right)$ at $a=\frac{1}{2}$
(g) $f:(2, \infty) \rightarrow \mathbb{R}, f(x)=\frac{x}{[x]}$ at $a=3$
(h) $f:(2, \infty) \rightarrow \mathbb{R}, f(x)=\frac{x}{[x]}$ at $a=3.5$
(5) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=1$ for all $x . g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=\left\{\begin{array}{ll}x & x \neq 1 \\ 3 & x=1\end{array}\right.$ find $L=\lim _{x \rightarrow 5} g(f(x))$, $a=\lim _{x \rightarrow 5} f(x)$ and $L^{\prime}=\lim _{x \rightarrow a} g(x)$. Does $L \neq L^{\prime}$ contradict the theorem proven in class?
