MATH 3210 - SUMMER 2008 - ASSIGNMENT #6 PART 2

LIMITS OF FUNCTIONS

- (1) using Heine's definition of $\lim_{x\to a} f(x) = L$ and what we've proven for sequences prove the following theorems:
 - (a) If lim f(x) = L and lim g(x) = M (where L, M are finite) then the function f(x)g(x) has a limit at a and lim f(x)g(x) = L ⋅ M
 (b) If there is a punctured neighborhood of a: (a t₀, a + t₀) \ {a} and a number
 - (b) If there is a punctured neighborhood of a: $(a t_0, a + t_0) \setminus \{a\}$ and a number M such that for all $x \in (a t_0, a + t_0) \setminus \{a\}$: $|f(x)| \leq M$ and $\lim_{x \to a} g(x) = 0$ then $\lim_{x \to a} f(x)g(x) = 0$
- (2) Using Caucy's definition of the limit prove that the limit is unique (Hint: assume it isn't i.e. that there are $L \neq M$ such that $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} f(x) = M$ pick $\varepsilon = \frac{L-M}{3}$ and for close enough x to a two things happen... get a contradiction) Remark: We've been implicitly assuming that this is the case all along but forally we must prove it. We could have done the same for sequences.