MATH 3210-SUMMER 2008-ASSIGNMENT \#6 PART 2

Limits of Functions

(1) using Heine's definition of $\lim _{x \rightarrow a} f(x)=L$ and what we've proven for sequences prove the following theorems:
(a) If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$ (where L, M are finite) then the function $f(x) g(x)$ has a limit at a and $\lim _{x \rightarrow a} f(x) g(x)=L \cdot M$
(b) If there is a punctured neighborhood of $a:\left(a-t_{0}, a+t_{0}\right) \backslash\{a\}$ and a number M such that for all $x \in\left(a-t_{0}, a+t_{0}\right) \backslash\{a\}:|f(x)| \leq M$ and $\lim _{x \rightarrow a} g(x)=0$ then $\lim _{x \rightarrow a} f(x) g(x)=0$
(2) Using Caucy's definition of the limit prove that the limit is unique (Hint: assume it isn't i.e. that there are $L \neq M$ such that $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} f(x)=M$ pick $\varepsilon=\frac{L-M}{3}$ and for close enough x to a two things happen... get a contradiction) Remark: We've been implicitly assuming that this is the case all along but foramlly we must prove it. We could have done the same for sequences.

