MATH 3210-SUMMER 2008-ASSIGNMENT \#5

Theorems about converging sequences

(1) Let $a=\lim _{n \rightarrow \infty} a_{n}$ and $b=\lim _{n \rightarrow \infty} b_{n}$ prove that $\lim _{n \rightarrow \infty} a_{n} \cdot b_{n}=a \cdot b$ (Hint: when you do the calculation step first add and subtract $a_{n} \cdot b$)
(2) Prove that if $\lim _{n \rightarrow \infty} a_{n}=0$ and b_{n} is bounded then $\lim _{n \rightarrow \infty} a_{n} \cdot b_{n}=0$
(3) If $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b$ and $a<b$ then there is an $N \in \mathbb{N}$ such that for all $n>N: a_{n}<b_{n}$.
(4) a. Find an example of sequences $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ such that $\lim _{n \rightarrow \infty} a_{n}=a$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ diverges but $a_{n} \cdot b_{n}$ converges.
b. Suppose $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ are sequences such that $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges and $\left\{a_{n}+b_{n}\right\}_{n=1}^{\infty}$ converges. Does $\left\{b_{n}\right\}_{n=1}^{\infty}$ necessarily converge? If so prove it, otherwise give an example of such sequences where $\left\{b_{n}\right\}_{n=1}^{\infty}$ diverges.
(5) Show that $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$ (Hint: Use the inequality of the means for $\sqrt{n}, \sqrt{n}, 1, \ldots, 1$)
(6) Prove that the following sequence converges, and find its limit: $a_{1}=0$ and $a_{n+1}=$ $\frac{a_{n}+1}{2}$.
(7) Prove that the following sequence converges, and find its limit: $a_{1}=1$ and $a_{n+1}=$ $\sqrt{a_{n}+2}$.
(8) Prove that $\lim _{n \rightarrow \infty} \frac{n^{3}}{4 n^{2}+3 n+15}=\infty$
(9) a. Prove that if $\lim _{n \rightarrow \infty} a_{n}=\infty$ then $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=0$
b. Find a sequence a_{n} such that $\lim _{n \rightarrow \infty} a_{n}=0$ but $\lim _{n \rightarrow \infty} \frac{1}{a_{n}} \neq 0$

