MATH 3210 - SUMMER 2008 - ASSIGNMENT #5

Theorems about converging sequences

- (1) Let $a = \lim_{n \to \infty} a_n$ and $b = \lim_{n \to \infty} b_n$ prove that $\lim_{n \to \infty} a_n \cdot b_n = a \cdot b$ (Hint: when you do the calculation step first add and subtract $a_n \cdot b$)
- (2) Prove that if $\lim_{n \to \infty} a_n = 0$ and b_n is bounded then $\lim_{n \to \infty} a_n \cdot b_n = 0$
- (3) If $\lim_{n \to \infty} a_n = a$ and $\lim_{n \to \infty} b_n = b$ and a < b then there is an $N \in \mathbb{N}$ such that for all n > N: $a_n < b_n$.
- (4) a. Find an example of sequences $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ such that $\lim_{n \to \infty} a_n = a$ and $\{b_n\}_{n=1}^{\infty}$ diverges but $a_n \cdot b_n$ converges.
 - b. Suppose $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ are sequences such that $\{a_n\}_{n=1}^{\infty}$ converges and $\{a_n + b_n\}_{n=1}^{\infty}$ converges. Does $\{b_n\}_{n=1}^{\infty}$ necessarily converge? If so prove it, otherwise give an example of such sequences where $\{b_n\}_{n=1}^{\infty}$ diverges.
- (5) Show that $\lim_{n\to\infty} \sqrt[n]{n} = 1$ (Hint: Use the inequality of the means for $\sqrt{n}, \sqrt{n}, 1, \dots, 1$)
- (6) Prove that the following sequence converges, and find its limit: $a_1 = 0$ and $a_{n+1} = \frac{a_n+1}{2}$.
- (7) Prove that the following sequence converges, and find its limit: $a_1 = 1$ and $a_{n+1} = \sqrt{a_n + 2}$.

(8) Prove that
$$\lim_{n \to \infty} \frac{n^3}{4n^2 + 3n + 15} = \infty$$

(9) a. Prove that if
$$\lim_{n \to \infty} a_n = \infty$$
 then $\lim_{n \to \infty} \frac{1}{a_n} = 0$
b. Find a sequence a_n such that $\lim_{n \to \infty} a_n = 0$ but $\lim_{n \to \infty} \frac{1}{a_n} \neq 0$