MATH 3210 - SUMMER 2008-ASSIGNMENT \#4

Limits of Sequences

(1) Using the definition of convergence of a sequence, prove the following: (don't forget the three steps of proof...)

1) $\lim _{n \rightarrow \infty} \frac{500}{n}=0$
2) $\lim _{n \rightarrow \infty} \frac{2 n-15}{5 n+1}=\frac{2}{5}$
3) $\lim _{n \rightarrow \infty} \frac{3 n^{2}+2 n}{n^{2}-n+15}=3$
4) $\lim _{n \rightarrow \infty} \sqrt{2 n+5}-\sqrt{2 n}=0$
5) $\lim _{n \rightarrow \infty} \frac{\sqrt{n^{2}+1}}{n^{2}}=0$
6) $\lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0$
7) $\lim _{n \rightarrow \infty} \frac{n+\sin \left(\frac{\pi}{2} n\right)}{2 n+5}=\frac{1}{2}$
8) $\lim _{n \rightarrow \infty} \frac{2^{n}}{n!}=0$
9) $\lim _{n \rightarrow \infty} \frac{2 n+5}{n+1} \neq 1$
10) $\lim _{n \rightarrow \infty} \frac{1-2 n}{3 n-13} \neq \frac{2}{3}$

Hint for \#8: First prove by induction that for $n>5: \frac{2^{n}}{n!} \leq \frac{1}{n}$
(2) Prove that the sequence $a_{n}=\cos \left(\frac{\pi}{2} n\right)$ diverges.
(3) Which of the following conditions is equivalent to the definition of $\lim _{n \rightarrow \infty} a_{n}=L$? If it is equivalent prove it. If the condition is not equivalent find an example of a sequence which satisfies the condition but doesn't converge, or a sequence which converges but doesn't satisfy the condition.
(a) For all $\varepsilon>0$ there is an $N(\varepsilon) \in \mathbb{N}$ such that for all $n>N(\varepsilon):\left|a_{n}-L\right|<2 \varepsilon$
(b) For all $\varepsilon>0$ there is an $N(\varepsilon) \in \mathbb{N}$ such that for all $n>N(\varepsilon): a_{n}-L<\varepsilon$
(c) For all $\varepsilon>0$ there is an $N(\varepsilon) \in \mathbb{N}$ such that for all $n>N(\varepsilon):\left|a_{n}-L\right| \leq \varepsilon$
(d) There is an ε for which there is an $N(\varepsilon) \in \mathbb{N}$ such that for all $n>N(\varepsilon)$: $\left|a_{n}-L\right|<\varepsilon$
(e) For all $\varepsilon>0$ there is an $N(\varepsilon) \in \mathbb{N}$ such that for all $n>N(\varepsilon)$: $\left|a_{n}\right|-L<\varepsilon$

