MATH 3210 - SUMMER 2008 - ASSIGNMENT #4

LIMITS OF SEQUENCES

 Using the definition of convergence of a sequence, prove the following: (don't forget the three steps of proof...)

1)
$$\lim_{n \to \infty} \frac{500}{n} = 0$$
 2) $\lim_{n \to \infty} \frac{2n - 15}{5n + 1} = \frac{2}{5}$

3)
$$\lim_{n \to \infty} \frac{3n^2 + 2n}{n^2 - n + 15} = 3$$
 4) $\lim_{n \to \infty} \sqrt{2n + 5} - \sqrt{2n} = 0$

5)
$$\lim_{n \to \infty} \frac{\sqrt{n^2 + 1}}{n^2} = 0$$
 6) $\lim_{n \to \infty} \frac{1}{2^n} = 0$

7)
$$\lim_{n \to \infty} \frac{n + \sin(\frac{\pi}{2}n)}{2n + 5} = \frac{1}{2}$$
 8) $\lim_{n \to \infty} \frac{2^n}{n!} = 0$

9)
$$\lim_{n \to \infty} \frac{2n+5}{n+1} \neq 1$$
 10) $\lim_{n \to \infty} \frac{1-2n}{3n-13} \neq \frac{2}{3}$

Hint for #8: First prove by induction that for n > 5: $\frac{2^n}{n!} \le \frac{1}{n}$ (2) Prove that the sequence $a_n = \cos(\frac{\pi}{2}n)$ diverges.

- (3) Which of the following conditions is equivalent to the definition of $\lim_{n\to\infty} a_n = L$? If it is equivalent prove it. If the condition is not equivalent find an example of a sequence which satisfies the condition but doesn't converge, or a sequence which converges but doesn't satisfy the condition.
 - (a) For all $\varepsilon > 0$ there is an $N(\varepsilon) \in \mathbb{N}$ such that for all $n > N(\varepsilon)$: $|a_n L| < 2\varepsilon$

- (b) For all $\varepsilon > 0$ there is an $N(\varepsilon) \in \mathbb{N}$ such that for all $n > N(\varepsilon)$: $a_n L < \varepsilon$
- (c) For all $\varepsilon > 0$ there is an $N(\varepsilon) \in \mathbb{N}$ such that for all $n > N(\varepsilon)$: $|a_n L| \le \varepsilon$
- (d) There is an ε for which there is an $N(\varepsilon) \in \mathbb{N}$ such that for all $n > N(\varepsilon)$: $|a_n - L| < \varepsilon$
- (e) For all $\varepsilon > 0$ there is an $N(\varepsilon) \in \mathbb{N}$ such that for all $n > N(\varepsilon)$: $|a_n| L < \varepsilon$