
MATH 3210 - SUMMER 2008 - ASSIGNMENT #4

Limits of Sequences

(1) Using the definition of convergence of a sequence, prove the following: (don’t forget

the three steps of proof...)
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Hint for #8: First prove by induction that for n > 5: 2n

n!
≤ 1

n

(2) Prove that the sequence an = cos(π
2
n) diverges.

(3) Which of the following conditions is equivalent to the definition of lim
n→∞

an = L? If it

is equivalent prove it. If the condition is not equivalent find an example of a sequence

which satisfies the condition but doesn’t converge, or a sequence which converges but

doesn’t satisfy the condition.

(a) For all ε > 0 there is an N(ε) ∈ N such that for all n > N(ε): |an − L| < 2ε
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(b) For all ε > 0 there is an N(ε) ∈ N such that for all n > N(ε): an − L < ε

(c) For all ε > 0 there is an N(ε) ∈ N such that for all n > N(ε): |an − L| ≤ ε

(d) There is an ε for which there is an N(ε) ∈ N such that for all n > N(ε):

|an − L| < ε

(e) For all ε > 0 there is an N(ε) ∈ N such that for all n > N(ε): |an| − L < ε
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