MATH 3210 - SUMMER 2008-ASSIGNMENT \#3

Absolute value and Bounded sets.

(1) Use induction to prove that for any n real numbers: a_{1}, \ldots, a_{n} where $n \geq 2, n \in \mathbb{N}$, we have:

$$
\left|a_{1}+a_{2}+\ldots a_{n}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\ldots\left|a_{n}\right|
$$

This is called the generalized triangle inequality.
(2) (a) Which real x satisfy: $|x-2|+|x+3|>10$ (Hint: work out the following cases: $x \geq 2,-3 \geq x<2$, and $x<-3)$. Draw the set of solutions on the real line.
(b) Solve: $x+2<\left|x^{2}-4\right|$. Draw the set of solutions on the real line.
(3) Find sup / inf of the following sets, prove your assertions:
(a) $A=(-2,3)$
(b) $B=\{b \mid b \in \mathbb{Q}$ and $b<10\}$
(c) $C=\left\{\left.4-\frac{1}{n^{2}} \right\rvert\, n \in \mathbb{N}\right\}$
(d) Find just the inf of $D=\left\{\left.5+\frac{n}{2 n^{2}+3 n+1} \right\rvert\, n \in \mathbb{N}\right\}$
(4) For each part, find an example or explain why none exist:
(a) a set A such that $\inf A=0$ and $\sup A=15$
(b) a set A such that $\inf A=15$ and $\sup A=0$
(c) a set A which is bounded below and not bounded above.
(d) a set A which is bounded above and not bounded below.
(e) a set A which is bounded below and which doesn't have an infimum.
(f) a set A for which $\exists a \in A$ such that $a<3$ but 3 is not an upper bound for A.
(g) a set A such that:

- $\forall a \in A: a \leq 2$
- $\forall \varepsilon>0$ there is an $a \in A$ such that $a>2-\varepsilon$

And $2 \neq \sup A$.
(h) a set A such that:

- $\forall a \in A: a \leq 3$
- There is an $a \in A$ such that for all $\varepsilon>0: a>3-\varepsilon$
(5) Let A be bounded below. Let $B=\{2+a \mid a \in A\}$
(a) If $A=[4, \infty$) describe B (give a mathematical desciption of B either as a generalized interval or as a set with curly brackets).
(b) If $A=\{1+\sqrt{n} \mid n \in \mathbb{N}\}$, describe B.
(c) If $i=\inf A$ prove tht $i+2=\inf B$.

