MATH 3210 - SUMMER 2008-ASSIGNMENT \#2

Induction and \sum notation

(1) Expand the following expressions i.e. write the first 3 terms and last three terms (with dots in between) in each sum:
(a) $\sum_{i=0}^{n} i$
(b) $\sum_{i=0}^{n}(n-i)$
(c) $\sum_{i=0}^{n} 2^{i}$
(d) $\sum_{k=1}^{n+1} 2^{k-1}$
(e) $\sum_{i=0}^{n} \frac{3}{4} 2^{i}$
(f) $\sum_{j=-2}^{n-2} 3 \cdot 2^{j}$
(2) Write the following expressions in \sum form:
(a) $1+3+5+\cdots+13$
(b) $6+9+12+\cdots+24$
(c) $1+3+9+27+81$
(3) Find and prove formulas for the following expressions:
(a) $\sum_{i=0}^{n} i-\sum_{j=1}^{n+1} j=$
(b) $\sum_{i=0}^{2 n}\left(-3 i^{2}-2 i\right)-\sum_{j=n}^{2 n}\left(-3 j^{2}-2 j\right)$
(c) $\sum_{k=1}^{n} \frac{1}{k}-\sum_{k=1}^{n} \frac{1}{k+1}$
(d) $\sum_{k=1}^{n} \frac{1}{k(k+1)}$ (hint: use the previous item).
(4) Prove the following statements using induction (can you prove them in another way?)
(a) If $0<a<b$ then for all $n \in \mathbb{N}: a^{n}<b^{n}$
(b) Prove that $\sum_{i=1}^{n} 2^{i}=2^{n+1}-2$
(c) Prove that $\sum_{k=1}^{n}(7+3(k-1))=\frac{3}{2} n^{2}+\frac{11}{2} n$
(d) Prove that for any real a, q and for any integer $n: \sum_{i=0}^{n} a q^{i}=\frac{a-a q^{n+1}}{1-q}$
(5) (a) Using the formula for $\binom{n}{k}$ prove that: $\binom{n}{k}=\binom{n}{n-k}$
(b) Prove the same thing but only using the definition of $\binom{n}{k}$ (i.e. that it is the number of k-element subsets of the set $\{1, \ldots, n\})$.
(6) (a) Using the formula for $\binom{n}{k}$ prove that: $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$
(b) Prove the same thing but only using the definition of $\binom{n}{k}$ (i.e. that it is the number of k-element subsets of the set $\{1, \ldots, n\})$.
(7) Using induction prove the binomial formula (hint: if you get stuck you can use the proof in page 12 of the text but you must explain every step).

