MATH 3210-SUMMER 2008-ASSIGNMENT \#11

TAYLOR'S THEOREM

(1) Compute the linear approximation of $\sqrt[3]{10}$. Estimate the error using Lagrange's formula for the remainder.
(2) In this exercise we compute Taylor's polynomial at 0 of degree n for $f(x)=\frac{1}{1-x}$ and the remainder formula.
(a) Find $f^{\prime}(x), f^{\prime \prime}(x)$ and $f^{(3)}(x)$
(b) Prove by induction that $f^{(n)}(x)=n!(1-x)^{-(n+1)}$
(c) Find $a_{k}=\frac{f^{(k)}(0)}{k!}$ for $0 \leq k \leq n$. These are the coefficients in the Taylor polynomial.
(d) Find $T_{n}(x)$.
(e) Find $R_{n}(x)$ using the formula $1+x+x^{2}+\cdots+x^{n}=\frac{1-x^{n+1}}{1-x}$
(3) In this exercise we compute Taylor's polynomial at 0 of degree n for $f(x)=\ln (1+x)$ and the remainder formula.
(a) Find $f^{\prime}(x), f^{\prime \prime}(x)$ and $f^{(3)}(x)$ for $x>-1$ (i.e. those x where $\ln (x+1)$ is defined).
(b) Prove by induction that $f^{(n)}(x)=(-1)^{n-1} \frac{(n-1) \text { ! }}{(1+x)^{n}}$
(c) Find $f^{(k)}(0)$ for $0 \leq k \leq n$, and the coefficients of the Taylor polynomial $a_{k}=$ $\frac{f^{(k)}(0)}{k!}$
(d) Find $T_{n}(x)$.
(e) Find $R_{n}(x)$ using Lagrange's formula for the remainder. Show that if $\left|R_{n}(x)\right|<$ $\frac{|x|^{n+1}}{n+1}$
(f) Let $x=\frac{1}{2}$. Estimate $R_{n}\left(\frac{1}{2}\right)$. Show that $\lim _{n \rightarrow \infty} R_{n}\left(\frac{1}{2}\right)=0$. For which x s could you use the same argument?
Remark: Part $3 f$ shows that if we consider the series S that we get by taking the limit: $\lim _{n \rightarrow \infty} T_{n}\left(\frac{1}{2}\right)$ i.e.:

$$
S=f(0)+f^{\prime}(0) \frac{1}{2}+\frac{f^{\prime \prime}(0)}{2!} \frac{1}{2^{2}}+\cdots+\frac{f^{(n)}(0)}{n!} \frac{1}{2^{n}}+\ldots
$$

Then $S=f\left(\frac{1}{2}\right)=\ln \left(\frac{3}{2}\right)$.
This is false for points $x_{0}>1$ not only is it not true that $\lim _{n \rightarrow \infty} T_{n}\left(x_{0}\right) \neq \ln \left(1+x_{0}\right)$ but the limit doesn't even exist!
(4) Using your work in problem 3 find $\ln (1.1)$ within an error of 0.001 (first find the degree of the Taylor polynomial such that the remainder is smaller than 0.001).

