MATH 3210-SUMMER 2008-ASSIGNMENT \#10

Solution

Exercise. Prove that for $0<x<y<\frac{\pi}{2}$: $\frac{1}{\cos ^{2}(x)}<\frac{\tan (y)-\tan (x)}{y-x}<\frac{1}{\cos ^{2}(y)}$. (hint: start by proving that in this domain the derivative of \tan is monotonic)

Proof. $f(x)=\tan (x)$ is differentiable in ($0, \frac{\pi}{2}$). For $0<x<y<\frac{\pi}{2}$, f is differentiable on $[x, y]$. By the mean value theorem there is a point $c \in(x, y)$ such that

$$
\frac{\tan (y)-\tan (x)}{y-x}=\tan ^{\prime}(c)
$$

We proved in class that $\tan ^{\prime}(c)=\frac{1}{\cos ^{2}(c)}$ Now:

$$
\begin{aligned}
& x<c<y \Rightarrow \\
& (\star) \quad \cos (x)>\cos (c)>\cos (y) \Rightarrow \\
& (\star \star) \quad(\cos (x))^{2}>(\cos (c))^{2}>(\cos (y))^{2} \Longrightarrow \\
& \frac{1}{(\cos (x))^{2}}<\frac{1}{(\cos (c))^{2}}<\frac{1}{(\cos (y))^{2}} \\
& \frac{1}{(\cos (x))^{2}}<\tan ^{\prime}(c)<\frac{1}{(\cos (y))^{2}} \\
& \frac{1}{(\cos (x))^{2}}<\frac{\tan (y)-\tan (x)}{y-x}<\frac{1}{(\cos (y))^{2}}
\end{aligned}
$$

\star - since cos is monotonically decreasing in this interval $\star \star$ - since all the numbers involved are positive

