MATH 3210 - SUMMER 2008 - ASSIGNMENT #10

Solution

Exercise. Prove that for $0 < x < y < \frac{\pi}{2}$: $\frac{1}{\cos^2(x)} < \frac{\tan(y) - \tan(x)}{y - x} < \frac{1}{\cos^2(y)}$. (hint: start by proving that in this domain the derivative of tan is monotonic)

Proof. $f(x) = \tan(x)$ is differentiable in $(0, \frac{\pi}{2})$. For $0 < x < y < \frac{\pi}{2}$, f is differentiable on [x, y]. By the mean value theorem there is a point $c \in (x, y)$ such that

$$\frac{\tan(y) - \tan(x)}{y - x} = \tan'(c)$$

We proved in class that $\tan'(c) = \frac{1}{\cos^2(c)}$ Now:

$$\begin{array}{ll} x < c < y \Rightarrow \\ (\star) & \cos(x) > \cos(c) > \cos(y) \Rightarrow \\ (\star\star) & (\cos(x))^2 > (\cos(c))^2 > (\cos(y))^2 \implies \\ \frac{1}{(\cos(x))^2} < \frac{1}{(\cos(c))^2} < \frac{1}{(\cos(y))^2} \\ \frac{1}{(\cos(x))^2} < \tan'(c) < \frac{1}{(\cos(y))^2} \\ \frac{1}{(\cos(x))^2} < \frac{\tan(y) - \tan(x)}{y - x} < \frac{1}{(\cos(y))^2} \end{array}$$

* - since cos is monotonically decreasing in this interval
** - since all the numbers involved are positive