MATH 3210-SUMMER 2008-ASSIGNMENT \#10

The Mean Value theorem, Rolle's theorem, L'Hopital's theorem
(1) Prove that $p(x)=x^{7}-3 x+15$ has at most three real roots (hint: if it had four roots or more, how many times would the derivative have to vanish?)
(2) Prove that for $0<x<y<\frac{\pi}{2}: \frac{1}{\cos ^{2}(x)}<\frac{\tan (y)-\tan (x)}{y-x}<\frac{1}{\cos ^{2}(y)}$. (hint: start by proving that in this domain the derivative of tan is monotonic)
(3) Prove that for all $x>0: \frac{x}{1+x^{2}}<\arctan (x)<x$ (You can use the fact that $\arctan ^{\prime}(x)=$ $\left.\frac{1}{1+x^{2}}\right)$.
(4) Prove that for all $x>0: 1+x<e^{x}<1+x e^{x}$
(5) Let $f(x)=x+\frac{1}{x+e^{x}}$ then for all $0 \leq a \leq b$ prove that: $f(b)-f(a) \leq b-a$
(6) Use L'Hopital's theorem to compute the following limits:
(a) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{2 x}$
(b) $\lim _{x \rightarrow \infty} \frac{x^{3}}{e^{x}}$
(c) $\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}}{1-\cos (x)}$
(d) $\lim _{x \rightarrow 0} \frac{1}{\sin (x)}-\frac{1}{x}$
(7) Suppose f is differentiable at 0 and $f(0)=0$. Define $h(x)=\left\{\begin{array}{ll}\frac{f(x)}{x} & x \neq 0 \\ f^{\prime}(0) & x=0\end{array}\right.$. Prove that h is differentiable at 0 and find its derivative (hint: use the fact that f has a linear approximation.)

