MATH 3210 - SUMMER 2008-ASSIGNMENT \#1

SEtS

(1) Detrmine wheter each statement is true or false, if it is false, explain why.
(a) $\{2,4,0,6\}=\{2,4,6\}$
(b) $3 \in\{\{3\}\}$
(c) $\{2,3\} \in\{1,2,3\}$
(d) $\{2,3\} \subseteq\{1,2,3\}$
(e) Every even number m can be written as $m=2 k$ for some integer k.
(f) Every odd number n can be written as $n=2 k+1$ for some integer k.
(g) $6 \in\{3 k \mid k$ is an integer $\}$
(h) $-6 \in\{3 k \mid k$ is an integer $\}$
(i) $0 \in\{3 k \mid k$ is an integer $\}$
(j) $6 \in\{5 k \mid k$ is an integer $\}$
(k) $\{3 k \mid k$ is an integer $\} \subseteq\{6 k \mid k$ is an integer $\}$
(l) $\{6 k \mid k$ is an integer $\} \subseteq\{3 k \mid k$ is an integer $\}$
(2) Prove that $\sqrt[3]{7}$ is irrational. What about $\sqrt[3]{12}$? $\sqrt{4}=2$ is rational, if we try to follow the same logic as for $\sqrt{2}$ when does the contradiction fail?
(3) (a) Show that for any $r>0$ there is a natural number n such that $r<\sqrt{2} n$. (hint: Can set $n=[r]$ i.e. r rounded up, but why?)
(b) Prove that for any $0<s$ there is a natural number n such that $\frac{1}{\sqrt{2} n}<s$
(c) Prove that for any two numbers $x<y$ there are natural numbers n, m such that $x<\frac{m}{\sqrt{2} n}<y$
(d) Is a number of the form $\frac{m}{\sqrt{2} n}$ (where n, m are natural) rational or irrational prove your claim.

