MATH 3210 - SUMMER 2008 - ASSIGNMENT #1

Sets

- (1) Detrmine wheter each statement is true or false, if it is false, explain why.
 - (a) $\{2, 4, 0, 6\} = \{2, 4, 6\}$
 - (b) $3 \in \{\{3\}\}$
 - (c) $\{2,3\} \in \{1,2,3\}$
 - (d) $\{2,3\} \subseteq \{1,2,3\}$
 - (e) Every even number m can be written as m = 2k for some integer k.
 - (f) Every odd number n can be written as n = 2k + 1 for some integer k.
 - (g) $6 \in \{3k | k \text{ is an integer }\}$
 - (h) $-6 \in \{3k | k \text{ is an integer }\}$
 - (i) $0 \in \{3k | k \text{ is an integer }\}$
 - (j) $6 \in \{5k | k \text{ is an integer }\}$
 - (k) $\{3k|k \text{ is an integer }\} \subseteq \{6k|k \text{ is an integer }\}$
 - (1) $\{6k|k \text{ is an integer }\} \subseteq \{3k|k \text{ is an integer }\}$
- (2) Prove that $\sqrt[3]{7}$ is irrational. What about $\sqrt[3]{12}$? $\sqrt{4} = 2$ is rational, if we try to follow the same logic as for $\sqrt{2}$ when does the contradiction fail?
- (3) (a) Show that for any r > 0 there is a natural number n such that $r < \sqrt{2}n$. (hint: Can set n = [r] i.e. r rounded up, but why?)
 - (b) Prove that for any 0 < s there is a natural number n such that $\frac{1}{\sqrt{2n}} < s$
 - (c) Prove that for any two numbers x < y there are natural numbers n,m such that $x < \frac{m}{\sqrt{2n}} < y$
 - (d) Is a number of the form $\frac{m}{\sqrt{2n}}$ (where n, m are natural) rational or irrational prove your claim.