MATH 1090 - SUMMER 2007 - ASSIGNMENT \#9

Systems of linear equations

(1) Find the corresponding matrices to the following systems of linear equations:

$$
\begin{aligned}
& A\left\{\begin{array} { l l }
{ 2 x - 3 y = 2 0 } \\
{ x + y = 1 2 }
\end{array} \quad B \left\{\begin{array}{ll}
5 x & =15 \\
-4 x+6 y+z & =23
\end{array}\right.\right. \\
& C\left\{\begin{array} { l l }
{ 3 x - y + 2 z = } & { 0 } \\
{ 5 x 2 (z - y) - 3 = } & { y }
\end{array} \quad D \left\{\begin{array}{ll}
-y+2 x & =5 \\
x & =2+x
\end{array}\right.\right.
\end{aligned}
$$

(2) Find the systems of equations which correspond to the following matrices:

$$
\begin{array}{ll}
A=\left(\begin{array}{ll|l}
5 & 4 & 11 \\
2 & 3 & 12
\end{array}\right) & B=\left(\begin{array}{ll|l}
0 & -2 & 3 \\
1 & 0 & 4
\end{array}\right) \\
C=\left(\begin{array}{lll|l}
-1 & 0 & 2 & 5 \\
3 & 2 & 3 & 22 \\
1 & 0 & 0 & 31
\end{array}\right) & D=\left(\begin{array}{lll|l}
1 & 0 & 0 & -12 \\
0 & 0 & 1 & \frac{2}{5} \\
0 & 0 & 0 & 0
\end{array}\right)
\end{array}
$$

(3) Solve the following systems of linear equations using matrix reduction. Remember that sometimes it pays to reoreder the equations, and to divide or multiply an equation by a number.

$$
\begin{aligned}
& A\left\{\begin{array} { l }
{ x + 2 y = 8 } \\
{ 2 x + y = 7 }
\end{array} \quad B \left\{\begin{array}{l}
x+2 y=2 \\
2 x+3 y=1
\end{array}\right.\right. \\
& C\left\{\begin{array} { l }
{ x + 2 y = 1 0 } \\
{ 5 x - 6 y = 1 8 }
\end{array} \quad D \left\{\begin{array}{l}
4 x-6 y=10 \\
x+3 y=1
\end{array}\right.\right. \\
& E\left\{\begin{array} { l }
{ 4 x + 2 y = - 5 } \\
{ 2 x - 3 y = 1 }
\end{array} \quad F \left\{\begin{array}{l}
2 x-y=5 \\
3 x-2 y=2
\end{array}\right.\right.
\end{aligned}
$$

(4) Solve the following systems using matrix reduction:

$$
\begin{aligned}
& A\left\{\begin{array}{l}
x+2 z=1 \\
y+z=1 \\
3 x+z=3
\end{array}\right. \\
& C \begin{cases}x+y+4 z=1 \\
-x+2 y-z=8 \\
2 x+3 z & =2\end{cases} \\
& \begin{array}{l}
x-2 y+2 z=3 \\
2 x+3 y-z=5 \\
3 x-y+z=4
\end{array}
\end{aligned}
$$

