MATH 1090 - SUMMER 2007 - ASSIGNMENT \#6

Exponential and Logarithmic Functions

(1) Evaluate the functions $f(x)=2^{x}$ and $g(x)=\left(\frac{1}{2}\right)^{x}$ at the points

$$
x=-4,-3,-2,-1,0,1,2,3,4
$$

and draw their graphs. Warning: the graphs of g and f are very different.
(2) Without using a calculator, just the rules for exponents (page 177 in book) calculate the following: $4^{\frac{3}{2}}, 0.125^{\frac{2}{3}}, 1.5^{0}, 3^{-1}$.
(3) Find the compounded amount and the interest in the following cases:
(a) principal $=\$ 1000$, after one year, at $\mathrm{APR}=6 \%$ compounded annually.
(b) principal $=\$ 1000$, after 5 years, at $\mathrm{APR}=6 \%$ compounded annually.
(c) principal $=\$ 1000$, after one year, at $\mathrm{APR}=6 \%$ compounded quarterly.
(d) principal $=\$ 1000$, after 5 years, at at $\mathrm{APR}=6 \%$ compounded quarterly.
(4) Without a calculator, using the rules for logarithms calculate:

$$
\begin{aligned}
& \log _{2}(2), \log _{2}(1), \log _{1.44}(1), \log _{2}\left(\frac{1}{2}\right) \\
& \log _{3.5}\left(\frac{1}{3.5}\right), \log _{2}\left(\frac{1}{4}\right), \log _{2}(32), \log _{10}(0.0001)
\end{aligned}
$$

(5) Using the rules for logarithms simplify the following expressions so that they contain only $\log _{2}(3)$ and $\log _{2}(5): \log _{2}(\sqrt[4]{3}), \log _{2}(15), \log _{2}(9), \log _{2}\left(\frac{1}{3}\right), \log _{2}\left(\frac{5}{3}\right), \log _{3}(5)$
(6) Use the conversion formula to calculate the following expressions using the log button in your calculator: $\log _{1.04}(1.87), \log _{1.1}(0.9), \log _{3} 7, \log _{\frac{9}{2}}\left(\frac{3}{4}\right)$
(7) Simplify the following expressions, write them in terms of $\log (x), \log (x+1), \log (x+2)$:
(a) $\log \left[\left(\frac{x}{x+1}\right)^{3}\right]$
(b) $\log \left[\frac{\sqrt{x}}{(x+1)^{2}(x+2)^{3}}\right]$
(8) Do the opposite of what you did in 7 to combine these expressions into a single logarithm:
(a) $\log _{5}(x+3)-\log _{5}(x-15)$
(b) $2 \log (x)-\frac{1}{2} \log (x-2)$
(9) Solve these equations using logarithms:
(a) $(27)^{2 x+1}=\frac{1}{3}$
(b) $5\left(3^{x}-6\right)=10$
(10) Use the compound interest formula to solve the following problems:
(a) Suppose a principal of $\$ 1000$ was invested at an annual rate of 10% compounded annually. How long will it take for the compounded amount to be $\$ 2000$?
(b) Same as 10a only with $P=\$ 3000$ and $S=\$ 6,000$
(c) Same as 10a only with $P=\$ 500$ and $S=\$ 1,000$
(d) Same as 10a only with principal P and compounded amount $S=2 P$

