Rational Homotopy of the Homotopy Fixed Point Sets of Lie Group Actions

Xiugui Liu

2018 Workshop on Algebraic and Geometric Topology
School of Mathematics
Southwest Jiaotong University
July 29, 2018
1. Background and Our main results
 - Background
 - Our main results

2. Preliminaries
 - Some facts in rational homotopy theory
 - Sullivan models
 - The space of sections
 - Sullivan models of the space of sections

3. Proofs of our main results
 - $S^1 \times S^3$ actions on the rational n-sphere S^n_Q
 - S^1 actions on elliptic spaces
 - The inclusion $k : M^{S^1} \hookrightarrow M^{hS^1}$
An action of a group G on a space M gives rise to two natural spaces:

- the fixed point set M^G,
- the homotopy fixed point set M^{hG}.

Recall that the homotopy fixed point set of a given G-action on X is defined as the space $\text{map}^G(EG, X)$ of equivariant maps from the universal G-space EG into X. In fact, the space

$$\text{map}^G(EG, X) = \text{map}(EG, M)^G,$$

the fixed point set of the group G-action on $\text{map}(EG, M)$, where the action is given by $(g \cdot f)(x) = gf(g^{-1}x)$, for $\forall g \in G$, $f \in \text{map}(EG, M)$, $x \in EG$.
An action of a group G on a space M gives rise to two natural spaces:

- the fixed point set M^G,
- the homotopy fixed point set M^{hG}.

Recall that the homotopy fixed point set of a given G-action on X is defined as the space $\text{map}^G(EG, X)$ of equivariant maps from the universal G-space EG into X. In fact, the space

$$\text{map}^G(EG, X) = \text{map}(EG, M)^G,$$

the fixed point set of the group G-action on $\text{map}(EG, M)$, where the action is given by $(g \cdot f)(x) = gf(g^{-1}x)$, for $\forall g \in G$, $f \in \text{map}(EG, M)$, $x \in EG$.
An action of a group G on a space M gives rise to two natural spaces:

- the fixed point set M^G,
- the homotopy fixed point set M^{hG}.

Recall that the homotopy fixed point set of a given G-action on X is defined as the space $\text{map}^G(EG, X)$ of equivariant maps from the universal G-space EG into X. In fact, the space

$$\text{map}^G(EG, X) = \text{map}(EG, M)^G,$$

the fixed point set of the group G-action on $\text{map}(EG, M)$, where the action is given by $(g \cdot f)(x) = gf(g^{-1}x)$, for $\forall g \in G$, $f \in \text{map}(EG, M)$, $x \in EG$.

An action of a group G on a space M gives rise to two natural spaces:

1. the fixed point set M^G,
2. the homotopy fixed point set M^{hG}.

Recall that the homotopy fixed point set of a given G-action on X is defined as the space $\text{map}^G(EG, X)$ of equivariant maps from the universal G-space EG into X. In fact, the space

$$\text{map}^G(EG, X) = \text{map}(EG, M)^G,$$

the fixed point set of the group G-action on $\text{map}(EG, M)$, where the action is given by $(g \cdot f)(x) = gf(g^{-1}x)$, for $\forall g \in G$, $f \in \text{map}(EG, M)$, $x \in EG$.
Some known results on the generalized Sullivan conjecture

The trivial map $\eta : EG \to \{\ast\}$ induces a natural map

$$k : M^G = \text{map}^G(\ast, M) \longrightarrow M^{hG} = \text{map}^G(EG, M).$$

The generalized Sullivan conjecture

When G is a finite p-group, and M is a G-CW-complex, then the p-completion of the natural mapping k,

$$k_p^\wedge : (M^G)^{\wedge}_p \to (M^{hG})^{\wedge}_p$$

is a homotopy equivalence.

- Miller (Ann. of Math., 1984) achieved the first major breakthrough and is given credit for solving the Sullivan conjecture. This was published in 1984 and one version reads: $k : M^G \to M^{hG}$ is a weak homotopy equivalence, where G is a finite group and trivially acts on a finite CW-complex M. Note in this case

$$M^{hG} = \text{map}(BG, M).$$
Some known results on the generalized Sullivan conjecture

The trivial map $\eta : EG \to \{\ast\}$ induces a natural map

$$k : M^G = \text{map}^G(\ast, M) \longrightarrow M^{hG} = \text{map}^G(EG, M).$$

The generalized Sullivan conjecture

When G is a finite p-group, and M is a G-CW-complex, then the p-completion of the natural mapping k,

$$k^\wedge_p : (M^G)^\wedge_p \to (M^{hG})^\wedge_p$$

is a homotopy equivalence.

- Miller (Ann. of Math., 1984) achieved the first major breakthrough and is given credit for solving the Sullivan conjecture. This was published in 1984 and one version reads: $k : M^G \to M^{hG}$ is a weak homotopy equivalence, where G is a finite group and trivially action on a finite CW-complex M. Note in this case

$$M^{hG} = \text{map}(BG, M).$$
For a finite group G, the homotopy fixed point set has been considered by Goyo (Thesis, University of Toronto, 1989). In this case, the action of G can be extended to an action on the rationalization $M_\mathbb{Q}$. Goyo proved that the graded rational homotopy group of the fixed point set, $\pi_\ast (M^{hG})_\mathbb{Q}$, is isomorphic to the invariant subgroup $(\pi_\ast (M_\mathbb{Q}))^G$ of the induced action of G on $\pi_\ast (M)$. Moreover,

$$\text{cat}(M^{hG})_\mathbb{Q} \leq \text{cat}(M_\mathbb{Q}),$$

where $\text{cat}X$ denotes the Lusternik-Schnirelmann category of the space X.

Urtzi Buijs et al (Proc. Lond. Math. Soc., 2015) studied the rational homotopy of M^{hG} for a compact Lie group with particular emphasis when G is the circle. They also show that if M is elliptic, that is, it has finite dimensional rational homotopy and cohomology, then each path component of M^{hG} is also elliptic.
Our main results

Recently, we determined the rational homotopy types of the homotopy fixed point sets of Lie groups S^3 and $S^1 \times S^3$ actions on S^n_Q and $\mathbb{C}P^n_Q$. Moreover, we obtained some useful results on the inclusion k.

Theorem (Hao, Liu, Sun; 2016)

Given an S^3-action on the rational n-sphere S^n_Q.

When n is odd, $S^n_Q hS^3$ has the rational homotopy type of products of odd dimensional spheres, precisely, we have

$$S^n_Q hS^3 \simeq Q S^a \times S^{a+4} \times \cdots \times S^n,$$

where

$$a = \begin{cases}
1, & n = 4k + 1, \\
3, & n = 4k + 3.
\end{cases}$$
Our main results

Theorem (continued)

- When $n = 4k$, $S^n_Q^{hS^3}$ is either path connected, and of the rational homotopy type of $S^3 \times K_k$, where K_k has the minimal Sullivan model $(\Lambda((x_s)_{1 \leq s \leq k}, (y_r)_{2 \leq r \leq 2k}), d)$ with $|x_s| = 4s$, $|y_r| = 4r - 1$, $dx_s = 0$ ($1 \leq s \leq k$), $dy_r = \sum_{s+t=r} x_s x_t$ ($2 \leq r \leq 2k$), or else, it has 2 components, each of them has the rational homotopy type of $S^{4k+3} \times S^{4k+7} \times \ldots \times S^{8k-1}$.

- When $n = 4k + 2$, $S^n_Q^{hS^3}$ is path connected, and of the rational homotopy type of $S^3 \times S^7 \times T_k$, where T_k has the minimal Sullivan model $(\Lambda((x_s)_{1 \leq s \leq k}, (y_r)_{3 \leq r \leq 2k+1}), d)$ with $|x_s| = 4s + 2$, $|y_r| = 4r - 1$, $dx_s = 0$ ($1 \leq s \leq k$), $dy_r = \sum_{s+t=r-1} x_s x_t$ ($3 \leq r \leq 2k + 1$).
Our main results

Theorem (Hao, Liu, Sun; 2016)

Given an S^3-action in the rational complex projective space $\mathbb{C}P^n_{\mathbb{Q}}$.

When n is odd, $\mathbb{C}P^n_{\mathbb{Q}}^{hS^3}$ is path connected, and has the rational homotopy type of one of the following spaces:

- $\mathbb{C}P^1 \times S^7 \times S^{11} \times \ldots \times S^{2n+1}$,
- $S^3 \times \mathbb{C}P^3 \times S^{11} \times \ldots \times S^{2n+1}$,
- $S^3 \times S^7 \times \mathbb{C}P^5 \times \ldots \times S^{2n+1}$,
- \ldots,
- $S^3 \times S^7 \times \ldots \times S^{2n-3} \times \mathbb{C}P^n$.
Our main results

Theorem (continued)

Given an S^3-action in the rational complex projective space $\mathbb{C}P^n_Q$.

- When n is even, $\mathbb{C}P^n_Q^{hS^3}$ is path connected, and has the rational homotopy type of one of the following spaces:

$$\ast \times S^5 \times S^9 \times \cdots \times S^{2n+1},$$

$$S^1 \times \mathbb{C}P^2 \times S^9 \times \cdots \times S^{2n+1},$$

$$S^1 \times S^5 \times \mathbb{C}P^4 \times \cdots \times S^{2n+1},$$

$$\cdots,$$

$$S^1 \times S^5 \times \cdots \times S^{2n-3} \times \mathbb{C}P^n.$$
Our main results

Xie and Liu considered the case that $G = S^1 \times S^3$ and showed the rational homotopy types of $S^1 \times S^3$ actions on S^n_Q and $\mathbb{C}P^n_Q$.

Theorem (Xie, Liu; 2018)

Given an $S^1 \times S^3$-action on the rational n-sphere S^n_Q.

- When n is odd, $S^n_Q^{nh} S^1 \times S^3$ is path connected and has the rational homotopy type of
 \[S^1 \times S^3 \times \cdots \times S^n \times S^1 \times S^5 \times \cdots \times S^{n-4}, \]
 or
 \[S^1 \times S^3 \times \cdots \times S^n \times S^3 \times S^7 \times \cdots \times S^{n-4}. \]
When n is even, $S^{n+1}_Q \times S^3$ is either path connected and has the rational homotopy type of

$$S^1 \times SO(n+2)/U\left(\frac{n+2}{2}\right) \times |\Lambda((x_t)_{1 \leq t \leq k}, (y_l)_{1 \leq l \leq 2k}, d)|,$$

where $|x_t| = 4t$, $|y_l| = 4l - 1$; $dx_t = 0$, $dy_1 = 0$, $l > 1$,

$dy_l = \sum_{s+t=l} x_s x_t$, or

$$S^1 \times SO(n+2)/U\left(\frac{n+2}{2}\right) \times |\Lambda((x_t)_{1 \leq t \leq k}, (y_l)_{1 \leq l \leq 2k}, d)|,$$

where $dx_t = 0$, $dy_1 = y_2 = 0$, $l > 2$, $dy_l = \sum_{s+t=l-1} (x_s x_t)$, or else,

it has two components, each of them has the same rational homotopy type of $S^1 \times SO(n+2)/U\left(\frac{n+2}{2}\right) \times S^{4k+3} \times S^{4k+7} \times \ldots \times S^{8k-1}$, or $S^{n+1} \times S^{n+3} \times \ldots \times S^{2n-1} \times |\Lambda((x_t)_{1 \leq t \leq k}, (y_l)_{1 \leq l \leq 2k}, d)|$, where

$|x_t| = 4t$, $|y_l| = 4l - 1$; $dx_t = 0$, $dy_1 = 0$, $l > 1$, $dy_l = \sum_{s+t=l} x_s x_t$.
Our main results

Theorem (X. Sang and X. Liu, 2018)

Given an $S^1 \times S^3$-action on the complex projective space $CP^n_{\mathbb{Q}}^{h}(S^1 \times S^3)$. When n is odd, $CP^n_{\mathbb{Q}}^{h}(S^1 \times S^3)$ either path connected and has the rational homotopy type of one of the following spaces:

\[S^1 \times S^3 \times \ldots \times S^{2n-1} \times \mathbb{C}P^1 \times S^7 \times \ldots \times S^{4k+3}, \]

\[\ldots, \]

\[S^1 \times S^3 \times \ldots \times S^{2n-1} \times S^3 \times \ldots \times S^{4k-4i-1} \times \mathbb{C}P^{2k+1-2i} \times \]

\[S^{4k-4i+3} \times \ldots \times S^{4k+3}, \]

\[\ldots, \]

\[S^1 \times S^3 \times \ldots \times S^{2n-1} \times S^3 \times S^7 \times \ldots \times S^{4k-1} \times \mathbb{C}P^n, \]
or else, it has at most \(n + 1 \) components, each of them has the same rational homotopy type of one of the following spaces:

\[
\mathbb{C}P^0 \times S^3 \times S^5 \times \ldots \times S^{2n+1} \times S^3 \times S^7 \times \ldots S^{4k-1},
\]

\[
\ldots ,
\]

\[
S^1 \times S^3 \times \ldots \times S^{2i-3} \times \mathbb{C}P^{i-1} \times S^{2i+1} \times \ldots \times S^{2n+1} \times S^3 \times S^7 \times \ldots S^{4k-1},
\]

\[
\ldots ,
\]

\[
S^1 \times S^3 \times \ldots \times S^{2n-1} \times \mathbb{C}P^n \times S^3 \times S^7 \times \ldots S^{4k-1}.
\]
Our main results

Theorem (continued)

- When n is even, $\mathbb{C}P^n S^1 \times S^3$ is either path connected and has the same rational homotopy type of one of the following spaces:

\[
S^1 \times S^3 \times \cdots \times S^{2n-1} \times \mathbb{C}P^0 \times S^5 \times S^9 \times \cdots \times S^{2n+1}, \\
S^1 \times S^3 \times \cdots \times S^{2n-1} \times S^1 \times \mathbb{C}P^2 \times S^9 \times \cdots \times S^{2n+1}, \\
\vdots, \\
S^1 \times S^3 \times \cdots \times S^{2n-1} \times S^1 \times S^5 \times \cdots \times S^{2n-3} \times \mathbb{C}P^n,
\]
Theorem (S. Xie and X. Liu, 2018)

or else, it has at most $n + 1$ components and each of them has the same rational homotopy type of the following spaces:

$$S^3 \times S^5 \times \ldots \times S^{2n+1} \times S^1 \times S^5 \times \ldots \times S^{2n-3},$$

$$\ldots,$$

$$S^1 \times S^3 \times \ldots \times S^{2i-3} \times \mathbb{C}P^{i-1} \times S^{2i+1} \times \ldots \times S^{2n+1} \times S^1 \times S^5 \times \ldots \times S^{2n-3},$$

$$S^1 \times S^3 \times \ldots \times S^{2n-1} \times \mathbb{C}P^n \times S^1 \times S^5 \times \ldots \times S^{2n-3}.$$
Recall that a space M is (rationally) elliptic if both $H^*(M; \mathbb{Q})$ and $\pi_*(M) \otimes \mathbb{Q}$ are finite dimensional vector spaces over \mathbb{Q}.

Theorem (Hao, Liu and Sun, 2016)

For an S^1-space M which is a nilpotent finite complex, the following conditions are equivalent:

- M is elliptic.
- Each component of $M_{Q}^{hS^1}$ is elliptic.
- One of the components of $M_{Q}^{hS^1}$ is elliptic.

Remark

The theorem holds also for $G = S^3$. The proof is similar.
Our main results

Theorem (Hao, Liu, Sun; 2016)

For an S^1-complex M which is simply connected with

$$\dim \pi_*(M) \otimes \mathbb{Q} < \infty.$$

Then

$$k : M^S_1 \mathbb{Q} \hookrightarrow M^hS_1 \mathbb{Q}$$

is a rational homotopy equivalence if and only if M is rational homotopy equivalent to a product of CP^∞.

Xiugui Liu (Nankai University)
If f is a continuous map between simply connected topological spaces then $H_\ast(f; \mathbb{Q})$ is an isomorphism if and only if $\pi_\ast(f) \otimes \mathbb{Q}$ is an isomorphism. In this case f is a rational homotopy equivalence.

Two spaces X and Y have the same rational homotopy type if they are connected by a chain of rational homotopy equivalences in alternating directions, in which case we write

$$X \sim_{\mathbb{Q}} Y.$$

A simply connected space is rational if its homotopy groups (or, equivalently, its integral homology groups) are rational vector spaces.
For each simply connected space X there is a relative CW complex (X_Q, X), unique up to homotopy type rel X such that X_Q is a rational space and

$$X \to X_Q$$

is a rational homotopy equivalence. We call such an X_Q a \textit{rationalization} of X. The rationalizations X_Q of a simply connected space all have the same weak homotopy type and that the weak homotopy type of X_Q depends only on the weak homotopy type of X. The weak homotopy type of X_Q is the \textit{rational homotopy type} of X. If X is a CW complex then so is X_Q.

If $g : X \to Y$ is any continuous map into a simply connected rational space Y then g extends (uniquely up to homotopy rel X) to a map $$g_Q : X_Q \to Y.$$
A Sullivan algebra is a commutative cochain algebra of the form $(\Lambda V, d)$, where

- $V = \{ V^p \}_{p \geq 1}$ and ΛV denotes the free graded commutative algebra on V;
- $V = \bigcup_{i=0}^{\infty} V(i)$, where $V(0) \subset V(1) \subset \cdots$ is an increasing sequence of graded subspaces such that $d|_{V(0)} = 0$, $d : V(i) \to \Lambda V(i-1)$, $i \geq 1$.

ΛV denotes the free graded commutative algebra on V. $\bigcup_{i=0}^{\infty} V(i)$ denotes the union of all subspaces $V(i)$, where $V(0) \subset V(1) \subset \cdots$ forms an increasing sequence of graded subspaces. $d|_{V(0)} = 0$ means that the derivative d acts trivially on the subspace $V(0)$. The derivative d maps elements of $V(i)$ to the graded subspaces of ΛV shifted down by one, i.e., $d : V(i) \to \Lambda V(i-1)$ for $i \geq 1$.
A cochain algebra ΛV that is not a Sullivan algebra

Example

Consider the cochain algebra $(A, d) = (\Lambda(v_1, v_2, v_3), d)$, $|v_i| = 1$, with $dv_1 = v_2 v_3$, $dv_2 = v_3 v_1$ and $dv_3 = v_1 v_2$. Here (A, d) is not a Sullivan algebra. If it were, it would have to have cocycle of degree 1. The cocycles 1 and $v_1 v_2 v_3$ represents a basis for $H(A)$, and so it has a minimal model

$$m : (\Lambda(w), 0) \to (\Lambda V, d),$$

where $|w| = 3$, $m(w) = v_1 v_2 v_3$.

Xiugui Liu (Nankai University)
A Sullivan model for a commutative cochain algebra \((A, d)\) is a quasi-isomorphism

\[m : (\Lambda V, d) \xrightarrow{\sim} (A, d) \]

from a Sullivan algebra \((\Lambda V, d)\).

Sullivan (Publ. I. H. E. S., 1977) defined a functor \(A_{PL}(-)\) from topological spaces to commutative differential graded algebras over \(\mathbb{Q}\). The functor

\[X \mapsto A_{PL}(X; \mathbb{Q}) \]

serves as the fundamental bridge which we use to transfer problems from topology to algebra.
A Sullivan model for a commutative cochain algebra \((A, d)\) is a quasi-isomorphism

\[m : (\Lambda V, d) \xrightarrow{\simeq} (A, d) \]

from a Sullivan algebra \((\Lambda V, d)\).

Sullivan (Publ. I. H. E. S., 1977) defined a functor \(A_{PL}(____)\) from topological spaces to commutative differential graded algebras over \(\mathbb{Q}\). The functor

\[X \mapsto A_{PL}(X; \mathbb{Q}) \]

serves as the fundamental bridge which we use to transfer problems from topology to algebra.
If X is a path connected topological space then a Sullivan model for $A_{PL}(X)$,

$$m : (\Lambda V, d) \xrightarrow{\sim} A_{PL}(X),$$

is called a Sullivan model for X.

A Sullivan algebra (or model), $(\Lambda V, d)$ is called minimal if

$$\text{Im} d \subset \Lambda^+ V \cdot \Lambda^+ V.$$

A nilpotent space X of finite type admits a Sullivan minimal model $(\Lambda V, d)$.
If X is a path connected topological space then a Sullivan model for $A_{PL}(X)$,

$$m : (\Lambda V, d) \overset{\sim}{\longrightarrow} A_{PL}(X),$$

is called a Sullivan model for X.

Definition

A Sullivan algebra (or model), $(\Lambda V, d)$ is called minimal if

$$\text{Im} d \subset \Lambda^+ V \cdot \Lambda^+ V.$$

A nilpotent space X of finite type admits a Sullivan minimal model $(\Lambda V, d)$.
The minimal model of X, $(\Lambda V, d)$, contains algebraic versions of every invariant of the rational homotopy type of X. For instance, we have

$$H^*(X; \mathbb{Q}) \cong H^*(\Lambda V, d),$$

$$\pi_q(X) \otimes \mathbb{Q} \cong \text{Hom}_{\mathbb{Z}}(V^q, \mathbb{Q}).$$
Example (The Sullivan model \((\Lambda V, d)\) of spheres \(S^k\))

When \(k\) is odd, \((\Lambda V, d) = (\Lambda(e), 0), |e| = k\).

When \(k\) is even, \((\Lambda V, d) = (\Lambda(e, e'), de' = e^2), |e'| = 2k - 1\).

For compact matrix Lie groups \(SO(n), SU(n)\) and \(Q(n)\) defined by

\[
SO(n) = \{A|A^t = A^{-1} \text{ and } \det A = 1\} \subset M(n; \mathbb{R}),
\]

\[
SU(n) = \{A|\bar{A}^t = A^{-1} \text{ and } \det A = 1\} \subset M(n; \mathbb{C}),
\]

\[
Q(n) = \{A|\bar{A}^t = A^{-1}\} \subset M(n; \mathbb{H}),
\]

where \(\mathbb{R}, \mathbb{C},\) and \(\mathbb{H}\) are the reals, complex numbers and quaternions, we have the following
Sullivan model

Example (The Sullivan model \((\Lambda V, d)\) of spheres \(S^k\))

When \(k\) is odd, \((\Lambda V, d) = (\Lambda(e), 0), |e| = k\).

When \(k\) is even, \((\Lambda V, d) = (\Lambda(e, e'), de' = e^2), |e'| = 2k - 1\).

For compact matrix Lie groups \(SO(n)\), \(SU(n)\) and \(Q(n)\) defined by

\[
SO(n) = \{ A | A^t = A^{-1} \text{ and } \det A = 1 \} \subset M(n; \mathbb{R}),
\]
\[
SU(n) = \{ A | \bar{A}^t = A^{-1} \text{ and } \det A = 1 \} \subset M(n; \mathbb{C}),
\]
\[
Q(n) = \{ A | \bar{A}^t = A^{-1} \} \subset M(n; \mathbb{H}),
\]

where \(\mathbb{R}\), \(\mathbb{C}\), and \(\mathbb{H}\) are the reals, complex numbers and quaternions, we have the following
Example (The Sullivan models of Matrix Lie groups)

\[\text{SO}(2n + 1) : \Lambda(x_1, \cdots, x_n), \quad |x_i| = 4i - 1. \]
\[\text{SO}(2n) : \Lambda(x_1, \cdots, x_{n-1}, x'_n), \quad |x_i| = 4i - 1, \quad |x'_n| = 2n - 1. \]
\[\text{SU}(n) : \Lambda(x_2, \cdots, x_n), \quad |x_i| = 2i - 1. \]
\[Q(n) : \Lambda(x_1, \cdots, x_n), \quad |x_i| = 4i - 1. \]
Sullivan model

Example (The Sullivan models of BG)

Let G denote a compact connected Lie group, or more generally a path connected topological group of the homotopy type of a finite CW-complex. Then the minimal Sullivan model of G is an exterior algebra $$(\Lambda P, 0)$$ where P is an oddly graded finite dimensional space. Hence, the minimal Sullivan model of BG is $$(\Lambda Q, 0)$$ with $Q^r = P^{r-1}$. [see page 217, RHT]
Suppose $m_X : (\Lambda V, d) \to A_{PL}(X)$ and $m_Y : (\Lambda W, d) \to A_{PL}(Y)$ are Sullivan models for path connected topological spaces X and Y, and the rational homology of the one of these spaces has finite type. Then

$$m_X \cdot m_Y : (\Lambda V, d) \otimes (\Lambda W, d) \to A_{PL}(X \times Y)$$

is a Sullivan model for $X \times Y$. Observe that if $(\Lambda V, d)$ and $(\Lambda W, d)$ are minimal models then so is their tensor product.
Recall that a space is a nilpotent space if X is a connected CW complex with $\pi_1(X)$ nilpotent and acting nilpotently on the higher homotopy groups of X.

A fibration $X \rightarrow E \rightarrow B$ of nilpotent spaces with B simply connected corresponds to a Koszul-Sullivan extension (KS-extension). This is a sequence of DG algebras

$$(\Lambda W, \delta) \rightarrow (\Lambda W \otimes \Lambda V, D) \rightarrow (\Lambda V, d),$$

in which $(\Lambda W, \delta)$ and $(\Lambda V, d)$ are minimal models for B and X, respectively. Furthermore, the DG algebra $(\Lambda W \otimes \Lambda V, D)$ is a model for E but need not be minimal; the differential here satisfies $D(w) = \delta(w)$ for $w \in W$ while $D(v) - d(v) \in \Lambda^+ W \otimes \Lambda V$ for $v \in V$.
As most of our work rely on the identification of the homotopy fixed point set of a given action with the space of sections of the associated Borel fibration, we make a quick overview of the result we use concerning the rational homotopy type of the space of sections of a fibration. To do so fix a nilpotent fibration,

\[F \longrightarrow E \longrightarrow B, \]

that is, a fibration of path connected, nilpotent spaces in which the action of \(\pi_1(B) \) in the homotopy groups of the fibre is also nilpotent. By \(\text{sec} \, p \) we denoted the space of continuous sections of \(p \). If \(\sigma \) is such a section, \(\text{sec}_\sigma \, p \) denotes the path component of \(\text{sec} \, p \) containing \(\sigma \). In the pointed category these are \(\text{sec}^* \, p \) and \(\text{sec}_\sigma^* \, p \).
Recall that the space $\text{map}(X, Y)$ (respectively $\text{map}^*(X, Y)$) of continuous maps (respectively pointed continuous maps) is simply the space of sections (respectively pointed sections) of the trivial fibration

$$Y \longrightarrow X \times Y \longrightarrow X.$$

If B is a finite CW-complex and F, E are CW-complexes of finite type, then Hilton, Mislin and Roitberg (Trans. Amer. Math. Soc., 1977) showed $\text{sec } p$ has the homotopy type of a CW-complex of finite type and each of its path component is nilpotent. In this case, it can be deduced that $\text{sec } p_Q$ has the weak homotopy type of $(\text{sec } p)_Q$,

$$\text{sec } p_Q \simeq_w (\text{sec } p)_Q.$$
However, *this is not, in general, a homotopy equivalence* as $\text{sec } p_{\mathbb{Q}}$ may fail to be of the homotopy type of a CW-complex. Smrekar (arXiv:0708.2838v1, 2007) showed that: If $\dim B = n$ and $\pi_{\geq n}(F)$ is torsion for some $n \geq 1$, then $\text{sec } p_{\mathbb{Q}}$ is of the homotopy type of a CW-complex and therefore,

$$\text{sec } p_{\mathbb{Q}} \simeq (\text{sec } p)_{\mathbb{Q}}.$$

Furthermore, whenever B is finite dimensional and $\pi_{\dim B} F = 0$, $\text{sec } p$ is a rational space of the weak homotopy type of $\text{sec } p_{\mathbb{Q}}$.
The space of sections

We now turn to the case in which B is not a finite CW-complex. In this case, and for any $n > 1$, we denote by

$$F \rightarrow E_n \overset{p_n}{\rightarrow} B^{(n)}$$

the pullback fibration of the inclusion $B^{(n)} \hookrightarrow B$ of the n-skeleton over p,

\[
\begin{array}{ccc}
F & \rightarrow & F \\
\downarrow & & \downarrow \\
E_n & \rightarrow & E \\
\downarrow p_n & & \downarrow p \\
B^{(n)} & \hookrightarrow & B.
\end{array}
\]
The space of sections

Observe that, if $\sigma \in \sec p$, the map

$$B^{(n)} \hookrightarrow B \xrightarrow{\sigma} E$$

induces a section $\sigma_n \in \sec p_n$. This process defines fibrations,

$$\cdots \rightarrow \sec p_n \rightarrow \sec p_{n-1} \rightarrow \cdots \rightarrow \sec p_2 \rightarrow \sec p_1.$$

The same applies to each path component and to the pointed case. It is immediate that,

$$\sec p = \lim_{\leftarrow} \sec p_n,$$

$$\sec_\sigma p = \lim_{\leftarrow} \sec_{\sigma_n} p_n,$$

$$\sec^* p = \lim_{\leftarrow} \sec^*_{\sigma_n} p_n.$$
The space of sections

If F is a rational space with $\pi_{\geq N} F = 0$, then $\sec p$ is a rational nilpotent space of the homotopy type of a CW-complex. Moreover,

$$\sec p \simeq \sec p_N \simeq (\sec p_N)_Q \simeq \sec p_{NQ}.$$

From now on, and unless explicitly stated otherwise, G will denote a compact connected Lie group, or more generally a path connected topological group of the homotopy type of a finite CW-complex. In the same way, by a topological G-space M we mean a nilpotent G-space of the homotopy type of a CW-complex of finite type.
For such a G-space on M, we have the corresponding Borel fibration

$$\xi : M \to M_{hG} \to BG.$$

Recall that $M_{hG} = M \times EG/G$ and $\xi[x, m] = p(x)$ with $p : EG \to BG$ the Milnor’s universal G-bundle. It is a classical fact that the homotopy fixed point set

$$M^{hG} = \text{map}^G(EG, M)$$

is homotopy equivalent to the space of sections of this fibration $\text{sec}(\xi)$.
We first consider the base of

\[F \to E \overset{p}{\to} B, \]

to be a finite complex. Fix a model of this fibration

\[(A, d) \to (A \otimes \Lambda V, D) \to (\Lambda V, d), \tag{1} \]

in which \(A \) is finite dimensional and denote by

\[(A^\#, \; \delta) = (\text{Hom}(A, \mathbb{Q}), \; d^\#) \]

the differential graded coalgebra dual of \(A \) with the grading

\[A^\# = B_n^\# = \text{Hom}(A^n, \mathbb{Q}). \]

Consider the free commutative \(\mathbb{Z} \)-graded algebra

\[\Lambda(A \otimes \Lambda V \otimes A^\#) \]

endowed with the differential induced by \(D \) and \(\delta \).
We first consider the base of

\[F \to E \xrightarrow{p} B, \]

to be a finite complex. Fix a model of this fibration

\[(A, \ d) \to (A \otimes \Lambda V, \ D) \to (\Lambda V, \ d), \]

in which \(A \) is finite dimensional and denote by

\[(A^\#, \ \delta) = (\text{Hom}(A, \ Q), \ d^\#) \]

the differential graded coalgebra dual of \(A \) with the grading

\[A^\#_{-n} = B^n_\# = \text{Hom}(A^n, \ Q). \]

Consider the free commutative \(\mathbb{Z} \)-graded algebra

\[\Lambda(A \otimes \Lambda V \otimes A^\#) \]

endowed with the differential induced by \(D \) and \(\delta \).
Let J be the differential ideal generated by $1 \otimes 1 - 1$ and the elements

$$v_1 v_2 \otimes \beta - \sum_j (-1)^{|v_2||\beta'_j|}(v_1 \otimes \beta'_j)(v_2 \otimes \beta''_j),$$

$$b \otimes \alpha \otimes \beta - \sum_j (-1)^{|\beta_j|(|\alpha|+1)} \beta'_j(b)\alpha \otimes \beta''_j,$$

with $v_1, v_2 \in V$, $\alpha \in \Lambda V$, $b \in A$, $\beta \in A^\#$, $\Delta \beta = \sum_j \beta'_j \otimes \beta''_j$. The map induced by the inclusion $V \hookrightarrow A \otimes \Lambda V$,

$$\rho : \Lambda(V \otimes A^\#) \xrightarrow{\sim} \Lambda(A \otimes \Lambda V \otimes A^\#)/J$$

is an isomorphism of graded algebras.
Let J be the differential ideal generated by $1 \otimes 1 - 1$ and the elements

$$ v_1 v_2 \otimes \beta - \sum_j (-1)^{|v_2||\beta_j'|} (v_1 \otimes \beta_j')(v_2 \otimes \beta_j''), $$

$$ b \otimes \alpha \otimes \beta - \sum_j (-1)^{|\beta_j|(|\alpha|+1)} \beta_j'(b) \alpha \otimes \beta_j'' ,$$

with $v_1, v_2 \in V$, $\alpha \in \Lambda V$, $b \in A$, $\beta \in A^\#$, $\Delta \beta = \sum_j \beta_j' \otimes \beta_j''$. The map induced by the inclusion $V \hookrightarrow A \otimes \Lambda V$,

$$ \rho : \Lambda(V \otimes A^\#) \xrightarrow{\sim} \Lambda(A \otimes \Lambda V \otimes A^\#)/J $$

is an isomorphism of graded algebras.
Sullivan models of the space of sections

It is easy to see that

$$\tilde{d} = \rho^{-1} d\rho$$

defines a differential in $\Lambda(V \otimes A^\#)$, which makes ρ an isomorphism of differential graded algebras. Let I denote the differential ideal generated by $(V \otimes A^\#)^{\leq 0}$ and $\tilde{d}(V \otimes A^\#)^0$. Then the quotient $\Lambda(V \otimes A^\#)/I$ is a model of $\text{sec}_\sigma(p)$.

As for the sections spaces $\text{sec} p$, we have the following

$(\Lambda(V \otimes A^\#), \tilde{d})$ is a model of $\text{sec} p$.
We now make no finiteness assumptions on the base of \(p \). Recall that, if \(A \) is a CDGA model of the space \(X \), then the inclusion \(X^{(n)} \hookrightarrow X \) of the \(n \)-skeleton is modeled by the projection

\[
A \rightarrow A_n = A/I,
\]

where \(I = A^{\geq n+1} \oplus C^n \) and \(C^n \) is a complement of the cocycles of \(A^n \).

Then if \((A, d) \rightarrow (A \otimes \Lambda V, D) \rightarrow (\Lambda V, d)\) denotes again a model of \(p \), then sequence

\[
A_n \rightarrow (A_n \otimes \Lambda V, D') \rightarrow (\Lambda V, d),
\]

in which

\[
(A_n \otimes \Lambda V, D') = A_n \otimes_A (A \otimes \Lambda V, D),
\]

is a model of the pullback filtration

\[
F \rightarrow E_n \overset{p_n}{\rightarrow} B^{(n)}.
\]
Hence, at the sight of all of the above, we have

Theorem (U. Buijs, ect, 2015)*

If $\pi \geq N(F) = 0$, then $(\Lambda(V \otimes A^\#_N), \tilde{d})$ is a model of sec p.
$S^1 \times S^3$ actions on the rational n-sphere S^n_Q

Theorem

Given an $S^1 \times S^3$-action on the rational n-sphere S^n_Q,

- When n is odd, $S^n_Q^{nh}S^1 \times S^3$ is path connected and
 $S^n_Q^{nh}S^1 \times S^3 \sim_Q \text{map}(\mathbb{C}P^{2k+1} \times \mathbb{H}P^k, S^n) \sim_Q S^1 \times S^3 \times \cdots \times S^n \times S^a \times S^5 \times \cdots \times S^{n-4}$. \\
a = \begin{cases}
1, & n = 4k + 1, \\
3, & n = 4k + 3.
\end{cases}

- When n is even, $M^n_Q^{h}S^1 \times S^3$ may be path connected and
 $S^n_Q^{nh}S^1 \times SO(n + 2)/U(n+2) \times |\Lambda((x_t)_{1 \leq t \leq k}, (y_l)_{1 \leq l \leq 2k}, d)|$, \\
where $| |$ is the spatial realization functor.
Outline of proof For convenience, let $G = S^1 \times S^3$. For the G-space S^n_Q, we have the corresponding Borel fibration

$$
\xi : S^n_Q \to (S^n_Q)_{hS^1 \times S^3} \to \mathbb{C}P^\infty \times \mathbb{H}P^\infty,
$$

and

$$
S^{nhG}_Q \simeq \text{sec } \xi.
$$

The model of the corresponding Borel fibration above is

$$(A, 0) \to (A \otimes \Lambda V, D) \to (\Lambda V, d),$$

where $(\Lambda V, d) = (\Lambda(a), 0)$, $(A, 0) = (\Lambda(x, y), 0)$, $|a| = n$, $2|x| = |y| = 4$.
Outline of proof For convenience, let \(G = S^1 \times S^3 \). For the \(G \)-space \(S^n_Q \), we have the corresponding Borel fibration

\[
\xi : S^n_Q \rightarrow (S^n_Q)_{hS^1 \times S^3} \rightarrow \mathbb{C}P^\infty \times \mathbb{H}P^\infty,
\]

and

\[S^{nhG}_Q \simeq \sec \xi. \]

The model of the corresponding Borel fibration above is

\[(A, 0) \rightarrow (A \otimes \Lambda V, D) \rightarrow (\Lambda V, d),\]

where \((\Lambda V, d) = (\Lambda(a), 0), (A, 0) = (\Lambda(x, y), 0), \ |a| = n, 2|x| = |y| = 4.\]
$S^1 \times S^3$ actions on the rational n-sphere S^n_Q

(1) n is odd. In this case, $\pi_{\geq n+1}(S^n_Q) = 0$, and

$$S^n_{QhG} \cong \sec \xi \cong \sec \xi_{n+1} \cong \sec \xi_{n+1Q}.$$

Consider the model of ξ_{n+1},

$$(A^{n+1}, 0) \rightarrow (A^{n+1} \otimes \Lambda a, D) \rightarrow (\Lambda a, 0).$$
(1) n is odd. In this case, $\pi_{\geq n+1}(S^n) = 0$, and

$$S^n_{\mathbb{Q}} \simeq \sec \xi \simeq \sec \xi_{n+1} \simeq \sec \xi_{n+1\mathbb{Q}}.$$

Consider the model of ξ_{n+1},

$$\xi_{n+1} \rightarrow (A^{n+1} \otimes \Lambda a, D) \rightarrow (\Lambda a, 0).$$
(1.1) \(n = 4k + 1 \). In this case, \(|a|\) is odd. Note that \(\xi_{n+1} \) is modeled by the trivial algebraic fibration

\[
(A^{n+1}, 0) \to (A^{n+1} \otimes \Lambda a, 0) \to (\Lambda a, 0),
\]

and

\[
\sec \xi_{n+1} \cong \text{map}(\mathbb{CP}^{2k+1} \times \mathbb{HP}^k, S^n)_{\mathbb{Q}}.
\]

A direct computation shows that the minimal model for the mapping space is

\[
(\Lambda(a \otimes 1, a \otimes x^\#, \cdots, a \otimes (x^{2k})^\#, a \otimes y^\#, \cdots, a \otimes (y^k)^\#), 0).
\]

We observe that this is also the minimal model for the product

\[
S^1 \times S^3 \times \cdots \times S^n \times S^1 \times S^5 \times \cdots \times S^{n-4}.
\]
\((1.2) \ n = 4k + 3. \) In a similar way,

\[
\sec \xi_{n+1} \cong \text{map}(\mathbb{C}P^{2k+1} \times \mathbb{H}P^k, S^n)_Q
\]

and it has the same rational homotopy type with

\[
S^1 \times S^3 \times \ldots \times S^n \times S^3 \times S^7 \times \ldots \times S^{n-4}.
\]

(2) \(n \) is even. In this case,

\[
\pi_{\geq 2n}(S^n_Q) = 0,
\]

then

\[
S^n_{QhG} \cong \sec \xi \cong \sec \xi_{2n}.
\]
(1.2) $n = 4k + 3$. In a similar way,

$$\text{sec} \xi_{n+1} \simeq \text{map}(\mathbb{C}P^{2k+1} \times \mathbb{H}P^k, S^n)_{\mathbb{Q}}$$

and it has the same rational homotopy type with

$$S^1 \times S^3 \times \cdots \times S^n \times S^3 \times S^7 \times \cdots \times S^{n-4}.$$

(2) n is even. In this case,

$$\pi_{\geq 2n}(S^n_{\mathbb{Q}}) = 0,$$

then

$$S^n_{\mathbb{Q}hG} \simeq \text{sec} \xi \simeq \text{sec} \xi_{2n}.$$
(2.1) If $n = 4k$, the model of the corresponding Borel fibration is

$$(A^{2n}, 0) \to (A^{2n} \otimes \Lambda(e, e'), D) \to (\Lambda(e, e'), de' = e),$$

where $A^{2n} = \Lambda(x, y)/(x^{4k+1}, y^{2k+1})$, $|x| = 2$, $|y| = 4$, $De = 0$, $De' = e^2 + \lambda y^{\frac{n}{4}} e + \mu x^{\frac{n}{2}} e + \sum_{i,j,k} \tau_{i,j,k} x^i y^j e$.

We only consider the case that $\lambda = \mu = 0$, and the other cases are omitted. It is easy to show that in this case

$$S_{Q}^{nhS^1 \times S^3} \cong \text{map}(\mathbb{C}P^{2k+1} \times \mathbb{H}P^{k}, S^n).$$

The model for $S_{Q}^{nhS^1 \times S^3}$ is

$$(\Lambda(e \otimes 1, e \otimes x^\#), \cdots, e \otimes (x^{2k-1})^\#, e \otimes y^\#, \cdots, e \otimes (y^{k-1})^\#, e' \otimes 1, e' \otimes x^\#), \cdots, e' \otimes (x^{4k-1})^\#, e' \otimes y^\#, \cdots, e' \otimes (y^{2k})^\#), \tilde{d}).$$
(2.1) If \(n = 4k \), the model of the corresponding Borel fibration is

\[
(A^{2n}, 0) \to (A^{2n} \otimes \Lambda(e, e'), D) \to (\Lambda(e, e'), de' = e),
\]

where \(A^{2n} = \Lambda(x, y)/(x^{4k+1}, y^{2k+1}) \), \(|x| = 2\), \(|y| = 4\), \(De = 0\), \(De' = e^2 + \lambda y^n e + \mu x^n e + \sum_{i,j,k} \tau_i x^j y^k e \).

We only consider the case that \(\lambda = \mu = 0 \), and the other cases are omitted. It is easy to show that in this case

\[
S_Q^{nhS^1 \times S^3} \sim \text{map}(\mathbb{C}P^{2k+1} \times \mathbb{H}P^k, S^n).
\]

The model for \(S_Q^{nhS^1 \times S^3} \) is

\[
(\Lambda(e \otimes 1, e \otimes x^\#), \cdots, e \otimes (x^{2k-1})^\#, e \otimes y^\#, \cdots, e \otimes (y^{k-1})^\#, e' \otimes 1, e' \otimes x^\#, \cdots, e' \otimes (x^{4k-1})^\#, e' \otimes y^\#, \cdots, e' \otimes (y^{2k})^\#), \tilde{d}).
\]
A direct computation shows the model for \(\sec \xi_{2n} \) is
\[
\Lambda((\omega_s)_{1 \leq s \leq 2k}, (\mu_r)_{1 \leq r \leq 4k}, (x_t)_{1 \leq t \leq k}, (y_l)_{1 \leq l \leq 2k}, d),
\]
where
\[
|\omega_s| = 2s, \quad |\mu_r| = 2r - 1, \quad |x_t| = 4t, \quad |y_l| = 4l - 1; \quad d\omega_s = 0, \quad d\mu_1 = 0, \quad d\mu_r = \sum_{s+t=r} \omega_s \omega_t \quad (r > 1), \quad dx_t = 0, \quad dy_1 = 0, \quad dy_l = \sum_{s+t=l} x_s x_t \quad (l > 1).
\]
We know this is the model for
\[
S^1 \times SO(n + 2)/U(n + 2) \times | \otimes \Lambda((x_t)_{1 \leq t \leq k}, (y_l)_{1 \leq l \leq 2k}, d)|,
\]
where \(| |\) is the spatial realization functor.

(2.2) The proof of the case that \(n = 4k + 2 \) is similar, and omitted.
From now on, and unless explicitly stated otherwise, G will denote a compact connected Lie group, or more generally a path connected topological group of the homotopy type of a finite CW-complex. In the same way, by a topological G-space we mean a nilpotent G-space of a CW-complex of finite type.

Even though the action of G on such a space X induces an action in the rationalization $X_\mathbb{Q}$, the homotopy fixed point set of the resulting action $(X_\mathbb{Q})^{hG}$ may fail to be nilpotent ([Lannes, Lecture Note Series, 1987]). Besides, $(X_\mathbb{Q})^{hG}$ may not have the homotopy type of a CW-complex.
We then start by setting a sufficiently general context in which the homotopy fixed point set of G-actions in rational nilpotent spaces has the homotopy type of a nilpotent CW-complex. Identifying X^{hG} with the space $\text{sec} \xi$ of sections of the Borel fibration

$$X \rightarrow X_{hG} \xrightarrow{\xi} BG,$$

we see that, if $\pi_n X$ is torsion for a certain $n > 1$, in particular if X is elliptic, then $(X_{\mathbb{Q}})^{hG}$ is a rational nilpotent complex of the homotopy type of a CW-complex.
Recall that

Theorem (U. Buijs, ect. 2014)

If M is a Postnikov piece, that is $\pi_{>N}(M\mathcal{Q}) = 0$ for some N, then

- M^{hG} has the homotopy type of a nilpotent CW-complex of finite type.
- $(M^{hG})_\mathcal{Q} \cong (M\mathcal{Q})^{hG}$.
Remark

If the G-space X is not a Postnikov piece, the homotopy fixed point set X^hG may not be of the homotoy type of a CW-complex and thus, $(X^hG)_Q$ makes no sense from the classical point of view. However, if $\pi_{> N}X$ is torsion for some N, in particular if X is rationally elliptic, X_Q is a Postnikov piece and by (i) of the above theorem, the homotopy fixed point set of the rational action $(X_Q)^hG$ is a nilpotent space of the homotopy type of a CW-complex. Moreover, $(X_Q)^hG$ is also a rational space for which,

$$(X_Q)^hG \cong \text{sec } \eta \sim \text{sec } \eta_N \cong \text{sec } \eta_{NQ},$$

where η is the Borel fibration $X_Q \to (X_Q)^hG \xrightarrow{\eta} BG$ of the associated rational G-action on X_Q.

S^1 actions on elliptic spaces
From now on we will consider G-actions on rationalizations $X_{\mathbb{Q}}$ of elliptic spaces (which are not necessarily arising from actions in X). In view of the remark above, as there is no possible confusion, we will denote $(X_{\mathbb{Q}})^{hG}$ simply by $X_{\mathbb{Q}}^{hG}$.

Let X be an elliptic space for which $X_{\mathbb{Q}}$ is a G-space. Then, each path component of the homotopy fixed point set $X_{\mathbb{Q}}^{hG}$ is also elliptic.
Example

For an S^1-action on $M = K(\mathbb{Z}, n) \times K(\mathbb{Z}, n+1)$, such that the model of it’s Borel fibration is

$$\eta_n : (\Lambda x, 0) \mapsto (\Lambda x \otimes \Lambda(z, y), D) \to (\Lambda(z, y), d),$$

where $|x| = 2, |z| = n, |y| = n+1, D(z) = 0, \text{ and } D(y) = xz$. For $n = 2k$, there is only one retraction σ: $\sigma(z) = \sigma(y) = 0$. Thus $\text{sec}(\eta_{2k})$ is path connected. A model of $\text{sec}(\eta_{2k})$ is

$$(\Lambda((z_i)_{1 \leq i \leq k}, (y_j)_{1 \leq j \leq k+1}), d),$$

where $|z_i| = 2i, |y_j| = 2j - 1$ and $d(y_i) = z_i$. Since the minimal model of $\text{sec}(\eta_{2k})$ is $(\Lambda y_{k+1}, 0)$, $\text{sec}(\eta_{2k}) \simeq^\mathbb{Q} S^{2k+1}$ is an elliptic space. However, M is not an elliptic space.
S^1 actions on elliptic spaces

Theorem (Hao, Liu and Sun, 2016)

For an S^1-space M which is a nilpotent finite complex, the following conditions are equivalent:

- M is elliptic.
- Each component of $M_{Q}^{hS^1}$ is elliptic.
- One of the components of $M_{Q}^{hS^1}$ is elliptic.

In fact, the theorem above holds also for $G = S^3$. The proof is similar.
Outline of proof

Recall that a space M is said to be elliptic if both $H^*(M, \mathbb{Q})$ and $\pi_*(M) \otimes \mathbb{Q}$ are finite dimensional vector spaces. Let $(\Lambda V, d)$ is the minimal Sullivan model for M. Then we have

$$\pi_q(M) \otimes \mathbb{Q} = \text{Hom}(V^q, \mathbb{Q}),$$

$$\pi_*(M^{hS^1}) \otimes \mathbb{Q} = \pi_*(\text{sec}_\sigma \xi) \otimes \mathbb{Q}.$$

For such an S^1-space M we have the corresponding Borel fibration

$$\xi : M \rightarrow M^{hS^1} \xrightarrow{p} BS^1.$$

Recall that $M^{hS^1} = ES^1 \times_{S^1} M$ and $p[x, m] = \bar{p}(x)$ with $\bar{p} : ES^1 \rightarrow BS^1$ the universal S^1-bundle. Here, $ES^1 = S^\infty$ and $BS^1 = \mathbb{C}P^\infty$.
Note that the model of the Borel fibration above is

$$(\Lambda x, 0) \to (\Lambda x \otimes \Lambda V, D) \to (\Lambda V, d)$$

for which a given section σ is modeled by the projection

$$\pi : (\Lambda x \otimes \Lambda V, D) \to (\Lambda x, 0), \pi(V) = 0.$$

Moreover, if A_n denotes the quotient algebra $\Lambda x/(x^{n+1})$, then a model for the

$$\xi_n : M \to M_{hG}(n) \xrightarrow{p_n} \mathbb{C}P^n$$

is given by $(A_n \otimes \Lambda V, d)$, and a model for Γ^n is given by $(\Lambda (V \otimes A_n^\#)/I, D)$.
We now show a description of the rational homotopy Lie algebra of \(\sec_\sigma(p) \) which can be derives from this model [Urtzi. Buijs, ect. 2006]. Let \(A \) denotes \(\Lambda x \). Consider the graded vector space

\[
\mathcal{L}(A \otimes \Lambda V, A) = \{ A-\text{linear map } f : A \otimes \Lambda V \to A, \ f(1) = 0, \ f(\Lambda^{\geq 2} V) = 0 \}.
\]

Define a differential as usual \(\delta \) on \(\mathcal{L}(A \otimes \Lambda V, A) \) by

\[
\delta(f) = d \circ f - (-1)^n f \circ D.
\]

We restrict to positive elements by considering the subcomplex

\[
\mathcal{L}(A \otimes \Lambda V, A)_q = \begin{cases}
\mathcal{L}(A \otimes \Lambda V, A)_q, & \text{for } q > 1, \\
\mathcal{Z} \mathcal{L}(A \otimes \Lambda V, A)_1, & \text{for } q = 1.
\end{cases}
\]
We will show there exists a graded Lie algebra structure on $s^{-1}H_\ast(\mathcal{L}(A \otimes \Lambda V, A), D)$ as follows.

Decompose the differential D on $A \otimes \Lambda V$ in the form

$$D = D_1 + D_2 + \cdots,$$

and write $D_2(v) = \sum_i b_i v'_i v''_i$. We define a linear map $\{,\}$ of degree 1

$$\mathcal{L}(A \otimes \Lambda V, A) \otimes \mathcal{L}(A \otimes \Lambda V, A) \to \mathcal{L}(A \otimes \Lambda V, A)$$

by

$$\{\varphi, \psi\}(v) = \sum_i b_i((-1)^{||\varphi||+||\psi||+1 \sum_i b_i((-1)^{||v'_i||\psi|||\varphi(v'_i)\psi(v''_i)} + (-1)^{||v''_i||(|\psi|+||v'_i|)\varphi(v''_i)\psi(v'_i)})$$
We obtain a graded Lie algebra structure on $s^{-1}H_*(\mathcal{L}(A \otimes \Lambda V, A), D)$ by

$$[s^{-1}\varphi, s^{-1}\psi] = (-1)^{|\psi|} s^{-1}\{\varphi, \psi\},$$

with respect to which we have:

Theorem (Urtzi. Buijs, ect. 2006)

As graded lie algebras,

$$s^{-1}H_*(\mathcal{L}(A \otimes \Lambda V, A), D) \cong \pi_*(\Omega \sec_\sigma \xi) \otimes \mathbb{Q}$$

Recall that the Lie bracket $[,]$ in $\pi_*(\Omega \sec_\sigma \xi)$ is given by

$$[\alpha, \beta] = (-1)^{|\alpha|+1} \partial_*([\partial_*^{-1}\alpha, \partial_*^{-1}\beta]_W), \quad \alpha, \beta \in \pi_*(\Omega \sec_\sigma \xi),$$

where $\partial_* : \pi_*(\sec_\sigma \xi) \xrightarrow{\sim} \pi_{*-1}(\Omega \sec_\sigma \xi)$, the connecting homomorphism for the path space fibration, is an isomorphism.
In order to compare $\dim \pi_\ast (M) \otimes \mathbb{Q}$ with $\dim \pi_\ast (M^{hG}) \otimes \mathbb{Q}$, we only need to compare $\dim H^\ast (\mathcal{L}(A \otimes \wedge V, A), D)$ with $\dim \text{Hom}(V, \mathbb{Q})$. We can show that the vector space V can be decomposed as a direct sum $W \oplus K \oplus S$, where

- $W \oplus K = \ker D_1$ and
- K and S have the same dimension, admitting bases $\{v_i\}_{i \in I}$, $\{s_i\}_{i \in I}$, for any $i \in I$, there exists $n_i \geq 1$ such that $D_1(s_i) = x^{n_i} v_i$ (for S^1-action and S^3-action this is right).
Applying this decomposition, we can show the following result:

Theorem

For a S^k-space, $k = 1, 3$, we have

$$\dim \pi_{\leq N+k}(\sec \sigma, \xi) \geq \frac{1}{2} \dim \pi_{\leq N}(M_Q), \ N \geq 1.$$

Note. The theorem couldn’t hold for $S^1 \times S^3$.

S^1 actions on elliptic spaces
Then we can show

Theorem (Hao, Liu and Sun, 2016)

For an S^1-space M which is a nilpotent finite complex, the following conditions are equivalent:

- M is elliptic.
- Each component of $M_{\mathbb{Q}}^{hS^1}$ is elliptic.
- One of the components of $M_{\mathbb{Q}}^{hS^1}$ is elliptic.
The inclusion \(k : M^{S^1} \hookrightarrow M^{hS^1} \)

The rest of the paper is devoted to showing:

Theorem

For an \(S^1 \)-complex \(M \) which is simply connected with

\[
\dim \pi_\ast(M) \otimes \mathbb{Q} < \infty.
\]

Then the inclusion

\[
k : M^{S^1} \hookrightarrow M^{hS^1}
\]

is a rational homotopy equivalence if and only if \(M \) is rational homotopy equivalent to a product of \(CP^\infty \).
Let M be an S^1-space and $M^G \neq \emptyset$. The equivariant map $M^{S^1} \hookrightarrow M$ induces a map of between the corresponding Borel fibrations,

\[\begin{array}{ccc}
M^{S^1} & \longrightarrow & M \\
\downarrow & & \downarrow \\
\mathbb{C}P^\infty \times M^{S^1} & \longrightarrow & M_{hS^1} \\
\eta & & \xi \\
\downarrow & & \downarrow \\
\mathbb{C}P^\infty & & .
\end{array} \]
The inclusion $k : M^{S^1} \hookrightarrow M^{hS^1}$

Then, the fundamental inclusion from the fixed point set into the homotopy fixed point set is identified with

$$k : M^{S^1} \hookrightarrow \text{map}(\mathbb{C}P^\infty, M^{S^1}) \xrightarrow{\gamma_*} \text{Sec}(\xi) \simeq M^{hS^1},$$

where $M^{S^1} \hookrightarrow \text{map}(\mathbb{C}P^\infty, M^{S^1})$ and $\gamma_* : \text{sec}\eta \to \text{sec}\xi$ are induced by $BG \to \ast$ and γ respectively.
The inclusion $k : M^{S^1} \hookrightarrow M^{hS^1}$

If there exists some N such that $\pi_{\geq N}(M_Q) = 0$ and $\pi_{\geq N}(M^{S^1}_Q) = 0$, then the map k is identified with the corresponding

$$M^{S^1} \hookrightarrow \text{map}((\mathbb{C}P^{\infty})^{(N)}, M^{S^1}) \rightarrow \text{Sec}(\xi_N) \cong M^{hS^1},$$

obtained by truncating in the diagram (2):

$$
\begin{array}{ccc}
M^{S^1} & \rightarrow & M \\
\downarrow & & \downarrow \\
F_N & \rightarrow & E_N
\end{array}
\gamma_N

\left(\begin{array}{c}
\eta_N \\
(\mathbb{C}P^{\infty})^{(N)}.
\end{array}\right)
\xi_N
$$
Now let

$$\begin{align*}
(A, 0) & \longrightarrow (A \otimes V, D) \longrightarrow (\Lambda V, d) \\
& \downarrow \psi \downarrow \phi \\
& (A, 0) \otimes (\Lambda Z, d) \longrightarrow (\Lambda Z, d)
\end{align*}$$

be a model of the above diagram, where \((A, 0) = (\Lambda x/(\Lambda x) >^N, 0)\), \((\Lambda V, d)\) and \((\Lambda Z, d)\) are minimal Sullivan models of \(M\) and \(M^{S^1}\), respectively.
Then we have the following

Theorem (U. Buijs, ect. 2009)

The composition

\[
(\Lambda(V \otimes A^\#), \tilde{d}) \xrightarrow{\phi} (\Lambda(Z \otimes A^\#), \tilde{d}) \xrightarrow{\gamma} (\Lambda Z, d)
\]

is a model of \(k : M^{S_1}_Q \hookrightarrow M^{hS_1}_Q \). The morphisms above are defined by

\[
\phi(v \otimes \alpha) = \rho^{-1}[\psi(v) \otimes \alpha], \quad v \otimes \alpha \in V \otimes A^#,
\]

\[
\gamma(z \otimes \alpha) = \begin{cases}
 z & \alpha = 1, \\
 0 & \alpha \neq 1,
\end{cases}
\quad z \otimes \alpha \in Z \otimes A^#.
\]
The inclusion $k : M^{S^1} \hookrightarrow M^{hS^1}$

Then we will give some information about ψ. First, let $(\Lambda x \otimes \Lambda V, D)$ be a model of the fibration ξ, we can decompose the differential D in $A \otimes \Lambda V$ into

$$D = \sum_{i \leq 1} D_i, \quad D_i(V) \subset \Lambda x \otimes \Lambda^i V.$$

Proposition (U. Buijs, ect, 2009)

The vector space V can be decomposed into a direct sum $W \oplus K \oplus S$, where

- $W \oplus K = \ker D_1$;
- K and S have the same dimension admitting bases $\{v_i\}_{i \in I}$, $\{s_i\}_{i \in I}$, and for any $i \in I$, there exists $n_i \geq 1$ such that $D_1(s_i) = x^{n_i} v_i$.

Xiugui Liu (Nankai University)
The inclusion $k : M^{S^1} \hookrightarrow M^{hS^1}$

From the lemma above, we can easily get the following

Lemma

- $\dim W = \dim Z$.
- There are $\{w_j\}_{j \in J}$, $\{z_j\}_{j \in J}$ which are homogenous basis of W and Z respectively, and non negative integers $\{m_j\}_{j \in J}$ such that

 $$\psi(w_j) = x^{m_j} z_j + \Gamma_j, \quad \Gamma_j \in R \otimes \Lambda^{\geq 2} Z, \quad j \in J,$$

 and

 $$\psi(s_i) \in R \otimes \Lambda^{\geq 2} Z, \quad \psi(v_i) \in R \otimes \Lambda^{\geq 2} Z, \quad s_i \in S, \quad v_i \in K, \quad i \in I.$$
The inclusion \(k : M^{S^1} \hookrightarrow M^{hS^1} \)

Then we make use of the model of \(k \) is

\[
\alpha : (\Lambda(V \otimes A^\#), \tilde{d}) \to (\Lambda(Z \otimes A^\#), \tilde{d}) \to (\Lambda Z, d)
\]

to obtain the following

Theorem (Hao, Liu and Sun, 2016)

For an \(S^1 \)-complex \(M \) which is simply connected with

\[
\dim \pi_\ast(M) \otimes \mathbb{Q} < \infty.
\]

Then the inclusion

\[
k : M^{S^1} \hookrightarrow M^{hS^1}
\]

is a rational homotopy equivalence if and only if \(M \) is rational homotopy equivalent to a product of \(\mathbb{CP}^\infty \).
Thank you!