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Abstract. We show that arithmetic subgroups of semisimple groups
of relative Q-type An, Bn, Cn, Dn, E6, or E7 have an exponential
lower bound to their isoperimetric inequality in the dimension that
is 1 less than the real rank of the semisimple group.

Let G be a connected, semisimple, Q-group that is almost simple
over Q. Let X be the symmetric space of noncompact type associated
with G(R) and let XZ be a contractible subspace of X that is a finite
Hausdorff distance from some G(Z)-orbit in X; Raghunathan proved
that such a space exists [Ra 1]. We denote the R-rank of G by rkRG.

Given a homology n-cycle Y⊆XZ we let vX(Y ) be the infimum of
the volumes of all (n + 1)-chains B⊆X such that ∂B = Y . Similarly,
we let vZ(Y ) be the infimum of the volumes of all (n+1)-chains B⊆XZ
such that ∂B = Y . We define the ratio

Rn(Y ) =
vZ(Y )

vX(Y )

and we let Rn(G(Z)) : R>0 → R≥1 be the function

Rn(G(Z))(L) = sup{Rn(Y ) | vol(Y ) ≤ L }

These functions measure a contrast between the geometries of G(Z)
and X.

Clearly if G is Q-anisotropic (or equivalently, if G(Z) is cocompact
in G(R)) then we may take XZ = X so that Rn(G(Z)) = 1 for all n.

The case is different when G is Q-isotropic, or equivalently, if G(Z)
is non-cocompact in G(R).

Leuzinger-Pittet conjectured that RrkRG−1(G(Z)) is bounded below
by an exponential when G is Q-isotropic [L-P]. The conjecture in
the case rkRG = 1 is equivalent to the well-known observation that
the word metric for non-cocompact lattices in rank one real simple
Lie groups is exponentially distorted in its corresponding symmetric
space. Prior to [L-P], the conjecture was evidenced by other authors in
some cases. It was proved by Epstein-Thurston when G(Z) = SLk(Z)
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[Ep et al.], by Pittet when G(Z) = SL2(O) and O is a ring of integers
in a totally real number field [Pi], by Hattori when G(Z) = SLk(O)
and O is a ring of integers in a totally real number field [Ha 1], and by
Leuzinger-Pittet when rkRG = 2 [L-P].

This paper contributes to the verification of the Leuzinger-Pittet
conjecture by proving

Theorem 1. Let G be as in the introductory paragraph and assume
that G is Q-isotropic. Furthermore, suppose the Q-relative root system
of G is of type An, Bn, Cn, Dn, E6, or E7. Then there exist constants
C > 0 and L0 > 0 such that

R rkRG−1(G(Z))(L) ≥ eCL

for any L > L0.

0.1. Example. Let O be the ring of integers in a number field K,
and let G = RK/QSLk where RK/Q is the restriction of scalars func-
tor. Then G(Z) = SLk(O), G is Q-isotropic, G has a Q-relative root
system of type Ak−1, and rkRG = (k−1)S where S is the number of in-
equivalent archimedean valuations onK. Therefore, R(k−1)S−1(SLk(O))
is bounded below by an exponential.

0.2. Non-nonpositive curvature of arithmetic groups. If G(Z)
satisfied a reasonable notion of nonpositive curvature (including CAT(0)
or combable, for example), we would expect polynomial bounds on
isoperimetric inequalities for G(Z). Thus, not only does Theorem 1
provide a measure of the difference between G(Z) and X, it also ex-
hibits non-nonpositive curvature tendencies for G(Z) when G is Q-
isotropic and rkRG > 1.

0.3. Type restriction. Our proof of Theorem 1 excludes the remain-
ing types – G2, F4, E8, and BCn – because groups of these types do
not contain proper parabolic subgroups whose unipotent radicals are
abelian. Our techniques require an abelian unipotent radical of a max-
imal Q-parabolic subgroup of G to construct cycles in XZ.

0.4. Related results. It is an open question whether Rn(G(Z)) is
bounded above by a constant when n < rkRG− 1. When n = 0, it is;
this is a theorem of Lubotzky-Mozes-Raghunathan [L-M-R].

Druţu showed that if the Q-relative root system of G is of type A1

or BC1, then for any ε > 0, G(Z) has a Dehn function that is bounded
above by L2+ε for L sufficiently large [Dr].

Young proved that SLk(Z) has a quadratic Dehn function if k ≥ 5.
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Gromov proved that all of the functions Rn(G(Z)) are bounded
above by an exponential function, and Leuzinger later provided a more
detailed proof of this fact (5.A7 [Gr] and Corollary 5.4 [Le]).

1. Choice of parabolic

For G as in Theorem 1, let T ≤ G be a maximal Q-split torus in G.
We let ΦQ be the roots of G with respect to T. Choose an ordering on
ΦQ. We denote the corresponding sets of simple and positive roots by
∆Q and Φ+

Q respectively.
If I⊆∆Q, we let [I]⊆ΦQ be the set of roots that are linear combina-

tions of elements in I, and we let ΦQ(I)+ = Φ+
Q − [I].

For each α ∈ ΦQ, we let Uα ≤ G be the root subgroup associated
with α. For J⊆ΦQ, we let UJ =

∏
α∈J Uα.

We define TI = ∩α∈IKer(α)◦ where the superscript ◦ denotes the
connected component of the identity, and we label the centralizer of
TI in G by ZG(TI).

1.1. Maximal parabolics with abelian unipotent radicals. For
any α0 ∈ ∆Q, we let Pα0 be the maximal proper parabolic subgroup of
G given by UΦQ(∆Q−α0)+ZG(T∆Q−α0

). The unipotent radical of Pα0 is

UΦQ(∆Q−α0)+ .

Lemma 2. There is some α0 ∈ ∆Q such that UΦQ(∆Q−α0)+ is abelian.

Proof. Suppose ∆Q = {α1, α2, ..., αk}. The set of positive roots Φ+
Q

contains a “highest root”
∑

i niαi for positive integers ni such that if∑
imiαi ∈ Φ+

Q, then mi ≤ ni ([Bou], VI 1 8).
Given that ΦQ is a root system of type An, Bn, Cn, Dn, E6, or E7,

there is some α0 ∈ {α1, α2, ..., αk} such that n0 = 1; consult the list of
root systems in the appendix of [Bou].

Since any
∑

imiαi ∈ ΦQ(∆Q − α0)+ has m0 > 0, it follows that
any

∑
imiαi ∈ ΦQ(∆Q − α0)+ has m0 = 1, and thus the sum of two

elements in ΦQ(∆Q − α0)+ is not a root.
Therefore, given τ1, τ2 ∈ ΦQ(∆Q − α0)+, we have

[Uτ1 ,Uτ2 ]⊆Uτ1+τ2 = 1

�

In what remains, we let P = Pα0 , we let UP be the real points of
UΦQ(∆Q−α0)+ . Thus, we can rephrase Lemma 2 as

Lemma 3. UP is abelian.



4 KEVIN WORTMAN

1.2. A contracting ray. Recall that T∆Q−α0 ≤ ZG(T∆Q−α0
) ≤ P

is a 1-dimensional Q-split torus. Choose a+ ∈ T∆Q−α0(R) such that
α0(a+) > 1 and such that the distance in T∆Q−α0(R) between 1 and
a+ equals 1.

We denote the Lie algebra of UP by u.

Lemma 4. There is some s > 0 such that for any v ∈ u

Ad(at+)v = estv

Proof. Recall that

u =
∏

β∈ΦQ(∆Q−α0)+

uβ

where

uβ = { v ∈ u | Ad(x)v = β(x)v for all x ∈ T }
If β ∈ ΦQ(∆Q − α0)+, then β = α0 +

∑
αi∈∆Q−α0

niαi. Since a+ ∈
∩αi∈∆Q−α0Ker(αi)

◦, we have β(a+) = α0(a+) and thus for v ∈ u, it
follows that Ad(a+)v = α0(a+)v.

Let s = log
(
α0(a+)

)
.

�

2. A horoball in the symmetric space, disjoint from XZ

Lemma 5. There is a maximal Q-torus A ≤ G such that the maximal
Q-split torus of A is T∆Q−α0 and such that A contains a maximal
R-split torus of G.

Proof. See Proposition 3.3 in [B-W] where K = Q, H = G, T1 =
T∆Q−α0 , S = {v}, and Kv = R. �

Let Q be a minimal parabolic that contains A and is contained in
P. We let ΦR be the roots of G with respect to the maximal R-split
subtorus of A, ∆R be the collection of simple roots given by Q, and
Φ+

R be the corresponding positive roots.

2.1. Alternate descriptions of the symmetric space. Let G =
G(R) and let A ≤ G be the R-points of the maximal R-split subtorus
of A. Recall that A(R) = AB for some compact group B ≤ A(R).

Choose a maximal compact subgroup K ≤ G that contains B. Then
G/K is a symmetric space that G acts on by isometries. We name this
symmetric space X.

Let UQ be the group of real points of the unipotent radical of Q. By
the Iwasawa decomposition, UQA acts simply transitively on X and we
identify X with UQA. In this description of X, A is a flat.
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2.2. Integral translations in a flat. By the Dirichlet unit theorem
(see e.g. Cor. 1 in Section 4.5 of [P-R]), A(Z) contains a finite index
free abelian subgroup of rank rkR(G) − 1 = dim(A) − 1. Thus, if AZ
is the convex hull in X of the A(Z)-orbit of the point 1 ∈ UQA = X,
then AZ is a codimension-1 Euclidean subspace of the flat A, and A(Z)
acts cocompactly on AZ. We may assume AZ⊆XZ.

2.3. Horoballs. Notice that {at+}t>0 defines a unit-speed geodesic ray
that limits to a point in A∞ which we denote a∞+ . We let bat+ : UQA→ R
be the Busemann function corresponding to the geodesic ray {at+}t>0.
That is,

bat+(x) = lim
t→∞

[d(x, at+)− t]

We let A0 ≤ A be the codimension-1 subspace of A consisting of
those a ∈ A for which bat+(a) = 0. Thus, A0 is orthogonal to aR+.

Lemma 6. For T ∈ R, (bat+)−1(−T ) = UQA0a
T
+.

Proof. We first show that for u ∈ UQ and x ∈ X, bat+(x) = buat+(x)

Where buat+ is the Busemann function for the ray {uat+}t>0 .

Notice that UQ = UPUa where Ua ≤ ZG(T∆Q−α0
)(R) is a unipotent

group whose elements commute with a+.
If u ∈ UP , then Lemma 4 implies

d(at+, ua
t
+) = d(1, a−t+ uat+)→ 0

Therefore,

bat+(x) = lim
t→∞

[d(x, at+)− t] = lim
t→∞

[d(x, uat+)− t] = buat+(x)

The quotient map of a Lie group by a normal subgroup is distance
nonincreasing. Because UP is normal in UQA, and because aR+ is normal
in UaA, the following composition is distance nonincreasing

UQA→ UaA→ UaA0

We denote the geodesic between points z, w ∈ X by z, w. Orthogo-
nality of A0 and aR+ and the conclusion of the above paragraph show
that for any u ∈ Ua, 1, u is orthogonal to aR+ at 1 and to uaR+ at u and

thus that at+, ua
t
+ is orthogonal to aR+ at at+ and to uaR+ at uat+. Fur-

thermore, the length of at+, ua
t
+ is independent of t since u commutes

with at+.

Notice that the angle between at+, x and at+, 1 limits to 0 as t→∞.

Similarly, the angle between uat+, x and uat+, u limits to 0. Hence, the
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triangle in X with vertices at+, uat+, and x approaches a triangle with
angles π

2
, π

2
, and 0. That is

d(x, at+)− d(x, uat+)→ 0

Consequently, for u ∈ Ua we have

bat+(x) = lim
t→∞

[d(x, at+)− t] = lim
t→∞

[d(x, uat+)− t] = buat+(x)

Therefore, for u ∈ UQ, bat+(u−1x) = buat+(x) = bat+(x), and it follows

that UQ(bat+)−1(−T ) = (bat+)−1(−T ). The lemma is a combination of

this last fact together with A0a
T
+⊆(bat+)−1(−T ).

�

Lemma 7. For some T > 0, XZ⊆UQA0a
(−∞,T ]
+ .

Proof. If u ∈ UP ∩ G(Z), then Lemma 4 implies a−n+ uan+ → 1. By
Theorem 1.12 of [Ra 2], {at+}t>0 is not contained in any compact subset
of G(Z)\G(R).

Theorem A of [Ha 2] states that XZ⊆(bat+)−1[−T,∞) for some T > 0,

and (bat+)−1[−T,∞) = UQA0a
(−∞,T ]
+ by Lemma 6.

�

2.4. Projecting onto a horosphere. Let π : UQA0a
R
+ → UQA0 be

the obvious projection of X onto the horosphere (bat+)−1(0).

Lemma 8. There is some M > 0 such that for any x1, x2 ∈ XZ, we
have d(x1, x2) +M ≥ d(π(x1), π(x2)).

Proof. Recall that UQ = UPUa where elements of Ua ≤ P, and elements
of A0, commute with a+. Similar to Lemma 4, we have that for any
t > 0 and any v in the Lie algebra of UQA that

||Ad(a−t+ )v|| ≤ ||v||

Let T be as in Lemma 7 and define πT : UQA0a
(−∞,T ]
+ → UQA0a

T
+ by

πT = RaT+
◦ π where RaT+

is right multiplication by aT+.

We claim that πT is distance nonincreasing. To see this, first let v
be a tangent vector to X at the point at+ for some t ≤ T . With || · ||x
as the norm at x, and f∗ as the differential of f , we have

||(πT )∗v||πT (at+) = ||(RaT−t
+

)∗v||aT+
= ||(Lat−T

+
)∗(RaT−t

+
)∗v||at+

= ||Ad(at−T+ )v||at+
≤ ||v||at+
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Left-translations by UQA0 show that for any x ∈ UQA0a
(−∞,T ]
+ , and

any v ∈ TxX,

||(πT )∗v||πT (x) ≤ ||v||x

For any path c : [0, 1] → UQA0a
(−∞,T ]
+ , apply πT to those seg-

ments contained in UQA0a
(−∞,T ]
+ to define a path between πT (c(0)) and

πT (c(1)). This new path will have its length bounded above by the
length of c as is easily verified from the inequality on norms of vectors
from above. This confirms our claim that πT is distance nonincreasing.

To confirm the lemma, notice that similarly, the mapRa−T
+

: UQA0a
T
+ →

UQA0 translates all point in X a distance of

d(x,Ra−T
+

(x)) = d(1, a−T+ )

Therefore,

d(Ra−T
+

(x1), Ra−T
+

(x2)) ≤ d(x1, x2) + 2d(1, a−T+ )

The lemma follows as π = Ra−T
+
◦ πT . �

3. Choice of a cell in XZ

We want to construct a cycle Y⊆XZ. In this section we begin by
constructing a cell F⊆A0 that will be used in the construction of Y .

Lemma 9. A0⊆XZ.

Proof. Both A0 and the convex hull of AZ are codimension 1 subspaces

of A. Since AZ⊆XZ⊆UQA0a
(−∞,T )
+ we have that AZ⊆A0a

(−∞,T )
+ . There-

fore AZ and A0 are parallel hyperplanes. Since the both contain 1, they
are equal.

�

LetX∞ be the spherical Tits building forX = UQA, and letA∞⊆X∞
be the apartment given by A. Let Π∞⊆X∞ be the simplex given
by P and let Π∞−⊆X∞ be the simplex opposite of Π∞ in A∞, or
equivalently, Π∞− is the simplex given by the parabolic group P− =
UΦQ(∆Q−α0)−ZG(T∆Q−α0

).

Denote the star of Π∞− in A∞ by Σ⊆A∞. Note that Σ is homeomor-
phic to a rkR(G)− 1 ball. We denote the codimension 1 faces of Σ as
Σ1, ...,Σn.
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3.1. A∞0 and Σ are disjoint. Let Ψ ⊆ ΦR be such that UΨ = Ru(P−).
Given b ∈ A0 we define the following sets of roots:

C(b) = { β ∈ Ψ | β(b) > 1 }

Z(b) = { β ∈ Ψ | β(b) = 1 }

E(b) = { β ∈ Ψ | β(b) < 1 }

Thus, if UC(b) are the real points of UC(b) etc., then Ru(P−)(R) =
UC(b)UZ(b)UE(b).

Lemma 10. There is a sequence γn ∈ Ru(P−)(Z) − 1 such that
d(γn, UC(b))→ 0.

Proof. There is a Q-isomorphism of the variety Ru(P−) with affine
space that maps UC(b) onto an affine subspace. Therefore, the problem
reduces to showing that the distance between Zn − 1 and a line in
Rn that passes through the origin is bounded above by any positive
number, and this is well known.

�

Lemma 11. A∞0 ∩ Σ = ∅

Proof. Suppose A∞0 ∩ Σ 6= ∅. Then there is some b ∈ A0 such that
b∞ ∈ Σ where b∞ = limt→∞ b

t.
If C⊆Σ is a chamber, then Π∞−⊆C. Hence, the minimal R-parabolic

subgroup corresponding to C contains Ru(P−) and thus elements of
Ru(P−)(R) fix C pointwise. That is, elements of Ru(P−)(R) fix Σ
pointwise, so they fix b∞.

Let u ∈ Ru(P−)(R). Then ub∞ = b∞, so d(ubt, bt) is bounded,
so {b−tubt}t>0 is bounded. It follows that β(b−1) ≤ 1 for all β ∈ Ψ,
or equivalently that β(b) ≥ 1. Hence, E(b) = ∅ and Ru(P−)(R) =
UC(b)UZ(b).

Now we use Lemma 10. For any n ∈ N, there exists γn ∈ Ru(P−)(Z)−
1 with d(γn, UC(b)) < 1/n. Let γn = cnzn where cn ∈ UC(b), and
zn ∈ UZ(b). Notice that zn → 1, bzn = znb, and that b−tcnb

t → 1 as
t→∞.

Choose tn > 0 such that d(b−tncnb
tn , 1) < 1/n. Then

b−tnγnb
tn = (b−tncnb

tn)zn → 1

By Theorem 1.12 of [Ra 2], {b−t}t>0 is not contained in any compact
subset of G(Z)\G(R), which contradicts that b−t ∈ A0⊆XZ (Lemma 9).

�
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3.2. L > 0 and choice of cell in A0. At this point, we fix L > 0
to be sufficiently large. We will use this fixed L for our proof of the
Theorem 1.

There is a unique great sphere in A∞ that contains Σi, and any great
sphere defines two hemispheres in A∞, each of which corresponds to at
least one root in ΦR. The hemisphere containing the simplex associated
with Q corresponds to a positive root βi ∈ Φ+

R whose kernel Wi⊆A has
a visual image in A∞ that is the great sphere containing Σi.

We let F be the component of A0 − ∪iaL+Wi that contains 1.

Lemma 12. F is compact Euclidean polyhedron with volume O(LrkRG−1).

Proof. The visual cone of Σ in A based at aL+ is a connected component
of A− ∪iaL+Wi.

The lemma follows if Σ and a∞+ are contained in distinct components
of A∞ − A∞0 , and if a−∞+ = limt→∞ a

−t
+ ∈ Σ. That is indeed the case:

α(a+) > 1 for all α ∈ ΦQ(∆Q − α0)+ so P = UΦQ(∆Q−α0)+ZG(T∆Q−α0
)

fixes a∞+ . Hence, a∞+ ∈ Π∞. The antipodal map on A∞ stabilizes A∞0 ,
transposes a∞+ and a−∞+ , and maps Π∞ onto Π∞−⊆Σ.

�

We denote the face of F given by aL+Wi ∩ F as Fi, so that the topo-
logical boundary of F equals ∪ni=1Fi.

4. Other cells in XZ and their homological boundaries

We denote the real points of the root group U(βi) as Ui, and 〈Ui〉i is
the group generated by the Ui for i ∈ {1, 2, ..., n}.

Lemma 13. For each i ∈ {1, 2, ..., n}, Ui ≤ UP , and thus 〈Ui〉i ≤ UP
is abelian.

Proof. Since βi ∈ Φ+
R , we have Ui ≤ UQ = UPUa. Either Ui ≤ UP or

Ui ≤ Ua ≤ ZG(T∆Q−α0).
Because ZG(T∆Q−α0) is contained in both P and P−, the latter case

implies that Ui fixes the antipodal cells Π∞ and Π∞− . The fixed point
set of Ui is a hemisphere in A∞ with boundary equal to W∞

i . Thus, Π∞

and Π∞− are contained in W∞
i , which contradicts that Σi = Σ ∩W∞

i

does not contain Π∞− .
Having ruled out the latter case, Ui ≤ UP and the lemma follows

from Lemma 3.
�

4.1. A space for making cycles in XZ.

Lemma 14. 〈Ui〉iF⊆XZ.
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Proof. Because Ru(P) is unipotent, Ru(P)(Z) is a cocompact lattice
in UP . We choose a compact fundamental domain D⊆UP for the
Ru(P)(Z)-action.

There is also a compact set C⊆A0 = AZ such that A(Z)C = AZ =
A0. As DC is compact, we may assume that G(Z)DC⊆XZ.

Recall that A is contained in P, so A normalizes Ru(P). Hence,

〈Ui〉iA0⊆UPA(Z)C

⊆A(Z)UPC

⊆A(Z)Ru(P)(Z)DC

⊆G(Z)DC

⊆XZ

�

4.2. Description of cells used to build our cycle. Given i ∈
{1, ..., n}, let fi be a point in Fi that minimizes the distance to 1 ∈ A,
and let ui ∈ Ui be such that d(uifi, fi) = 1. Since Fi⊆aL+Wi, any
f ∈ Fi can be expressed as f = wfi for some w ∈ Ker(βi). It follows
that Ad(w) acts trivially on the Lie algebra of Ui, that ui commutes
with w, and that

d(uif, f) = d(uiwfi, wfi) = d(wuifi, wfi) = d(uifi, fi) = 1

Setting ui = {uti}1
t=0, the space uiFi is a metric direct product of volume

O(Ldim(Fi)).
For I ⊆ {1, ..., n}, let let FI = ∩i∈IFi with F∅ = F . And let uI =∏
i∈I ui and uI =

∏
i∈I ui with u∅ = u∅ = 1.

Similar to the case when |I| = 1, uIFI is a metric direct product of
volume O(Ldim(FI)).

4.3. Homological boundaries of the cells. We endow each interval
ui = [0, ui] with the standard orientation on the closed interval, and we
orient each uI with the product orientation, where the product is taken
over ascending order in N. Given m ∈ I, we let sI(m) be the ordinal of
m assigned by the order on I induced by N. Notice that the standard
formula for the homological boundary of a cube then becomes

∂(uI) =
∑
m∈I

(−1)sI(m)
(
uI−m − umuI−m

)
We assign an orientation to F , and then assign the orientation to

each Fi such that

∂(F ) =
n∑
i=1

Fi
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In what follows, if we are given a set I⊆{1, ..., n} with an ordering
(which may differ from the standard order on N), and if m ∈ {1, ..., n}
with m /∈ I, then the set I∪m is ordered such that the original order on
I is preserved and m is the “greatest” element of I ∪m. For example,
{1, 7, 5} ∪ 3 = {1, 7, 5, 3}.

If m ∈ I, for some ordered set I⊆{1, ..., n}, then we endow I − m
with the order restricted from I.

For an ordered I and m ∈ I, let rI(m) = 1 if an even number of
transpositions are required to transform the order on I to the order on
(I −m) ∪m. Let rI(m) = −1 otherwise.

Given an ordering on a set I⊆{1, ..., n}, an orientation on FI , and
some m ∈ {1, ..., n} with m /∈ I, we define the orientation of FI∪m to
be such that FI∪m, and not −FI∪m, is the oriented cell that appears as
a summand in ∂(FI). Therefore

∂(FI) =
∑
m/∈I

FI∪m

In what follows, whenever we write the exact symbols FI or FI′ – but
not necessarily the symbol FI∪m – the order on I or I ′ will be the order
from N. Thus, the orientation on FI and FI′ can be unambiguously
determined from the above paragraph.

It’s easy to check that if I is ordered by the standard order on N and
m ∈ I, then (−1)sI(m)rI(m) = (−1)|I| and thus

−(−1)sI(m) = (−1)|I|−1rI(m)

Suppose w0 is an outward normal vector for FI∪m with respect to
FI , and w1, ...wk is a collection of vectors tangent to FI∪m such that
{w0, w1, ..., wk} defines the orientation for FI . Then {w1, ..., wk} defines
the orientation for FI∪m. If {v1, ..., v|I|} is an ordered basis for the
tangent space of uI that induces the standard orientation on uI , then
|I| transpositions are required to arrange the ordered basis

{w0, v1, ..., v|I|, w1, ..., wk}
into the ordered basis

{v1, ..., v|I|, w0, w1, ..., wk}

That is, the orientation on uIFI∪m defined above is a (−1)|I|-multiple
of the orientation on uIFI∪m assigned by ∂(uIFI).

It follows from this fact and our above formulas for ∂(uI) and ∂(FI)
that

∂(uIFI) =
∑
m∈I

(−1)sI(m)
(
uI−m − umuI−m

)
FI + (−1)|I|

∑
m/∈I

uIFI∪m
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5. A cycle in XZ

Let

Y =
∑

K,I⊆{1,...,n}
K∩I=∅

(−1)|K|uKuIFI

Lemma 15. Y is a cycle that is contained in XZ and has volume
O(LrkRG−1).

Proof. Each cell of Y is contained in XZ by Lemma 14 and has volume
O(Lk) for k ≤ rkRG− 1, so we have to check that ∂Y = 0.

From our formula for ∂(uIFI) we have that

∂Y =
∑

K,I⊆{1,...,n}
K∩I=∅

(−1)|K|uK

[∑
m∈I

(−1)sI(m)
(
uI−m − umuI−m

)
FI

+ (−1)|I|
∑
m/∈I

uIFI∪m

]
=

∑
K,I⊆{1,...,n}
K∩I=∅

∑
m∈I

(−1)sI(m)(−1)|K|uK
(
uI−m − umuI−m

)
FI

+
∑

K,I⊆{1,...,n}
K∩I=∅

(−1)|I|
∑
m/∈I

(−1)|K|uKuIFI∪m

For K, I⊆{1, ..., n} with K ∩ I = ∅ we have

∑
m/∈I

(−1)|K|uKuIFI∪m

=
∑

m/∈I∪K

(−1)|K|uKuIFI∪m

+
∑
m∈K

(−1)|K|uKuIFI∪m

=
∑

m/∈I∪K

(−1)|K|uKu(I∪m)−mFI∪m

+
∑
m∈K

(−1)|K|uK−mumu(I∪m)−mFI∪m

There is a natural bijection between triples (I,K,m) where K∩I = ∅
and m /∈ I ∪K, and triples (I ′, K ′,m) where K ′ ∩ I ′ = ∅ and m ∈ I ′.
To realize the bijection, let K ′ = K = K −m and I ′ = I ∪m.



ISOPERIMETRIC INEQUALITIES FOR ARITHMETIC GROUPS 13

There is also a bijection between triples (I,K,m) where K ∩ I = ∅
and m ∈ K, and triples (I ′, K ′,m) where K ′∩ I ′ = ∅ and m ∈ I ′. This
bijection is also realized by setting K ′ = K −m and I ′ = I ∪m.

Therefore, if we let K ′ = K − m and I ′ = I ∪ m then the above
equation gives

∑
K,I⊆{1,...,n}
K∩I=∅

(−1)|I|
∑
m/∈I

(−1)|K|uKuIFI∪m

=
∑

K′,I′⊆{1,...,n}
K′∩I′=∅

(−1)|I
′|−1
[∑
m∈I′

(−1)|K
′|rI′(m)uK′uI′−mFI′

+
∑
m∈I′

(−1)|K
′∪m|rI′(m)uK′umuI′−mFI′

]
=

∑
K′,I′⊆{1,...,n}
K′∩I′=∅

(−1)|I
′|−1
[∑
m∈I′

(−1)|K
′|rI′(m)uK′uI′−mFI′

−
∑
m∈I′

(−1)|K
′|rI′(m)uK′umuI′−mFI′

]
=

∑
K,I⊆{1,...,n}
K∩I=∅

(−1)|I|−1
[∑
m∈I

(−1)|K|rI(m)uKuI−mFI

−
∑
m∈I

(−1)|K|rI(m)uKumuI−mFI

]
=

∑
K,I⊆{1,...,n}
K∩I=∅

(−1)|I|−1
∑
m∈I

(−1)|K|rI(m)uK
(
uI−m − umuI−m

)
FI

=
∑

K,I⊆{1,...,n}
K∩I=∅

∑
m∈I

(−1)|I|−1rI(m)(−1)|K|uK
(
uI−m − umuI−m

)
FI

= −
∑

K,I⊆{1,...,n}
K∩I=∅

∑
m∈I

(−1)sI(m)(−1)|K|uK
(
uI−m − umuI−m

)
FI

Substituting the preceding equation into our equation for ∂Y proves

∂Y = 0

�



14 KEVIN WORTMAN

6. Fillings of Y

There exists polynomially efficient fillings for Y in the symmetric
space X.

Lemma 16. There exists a chain Z with volume O(LrkRG) and ∂Z =
Y .

Proof. As Y⊆uIF , it follows from Lemma 4 that there is some T =
O(L) such that aT+Y is contained in an ε-neighborhood of aT+F , which
is isometric to F . Thus, there is a filling, Z0, of aT+Y of volume
O(LrkRG−1).

Let Z = Z0 ∪t∈{1,T} aT+Y .
�

6.1. Fillings of Y in XZ. In contrast to Lemma 16, the fillings of Y
that are contained in XZ have volumes bounded below by an exponen-
tial in L. A fact that we will prove after a couple of helpful lemmas.

For f ∈ F , define di(f) to be the distance in the flat A between f
and aL+Wi.

Lemma 17. There are si > 1 and s0 > 0 such that the cube uIf with
the path metric is isometric to

∏
i∈I [0, e

sidi(f)+s0 ].

Proof. It suffices to prove that uif is isometric to [0, esidi(f)+s0 ].
Choose bi ∈ A such that d(bi, 1) = d(f, aL+Wi) = di(f) and such that

there exists some wi ∈ Wi with f = bia
L
+wi. Notice that Wi separates

bi from aL+ in A. Since Ui ≤ UP , Lemma 4 shows that βi(a
L
+) > 1. It

follows that βi(bi) < 1.
With dΩ as the path metric of a subspace Ω⊆X,

dUif (uif, f) = dUif (uibia
L
+wi, bia

L
+wi)

As Wi is the kernel of βi, wi commutes with ui implying

dUif (uif, f) = dw−1
i Uif

(uibia
L
+, bia

L
+)

= dUi
(a−L+ b−1

i uibia
L
+, 1)

On the Lie algebra of Ui, Ad(a−L+ b−1
i ) scales by βi(a

−L
+ )βi(bi)

−1.
�

In the above lemma we may let f = 1 and let I be the singleton i.
It can easily be seen that di(1) = O(L) which leaves us

Lemma 18. There is some C > 0 such that dUi
(ui, 1) ≥ eCL+s0 for

any i.

We conclude our proof of Theorem 1 with the following
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Lemma 19. Suppose there is a chain B⊆XZ such that ∂B = Y . Then
the volume of B is bounded below by eC0L for some C0 > 0.

Proof. Suppose B has volume λ. By Lemma 8, π(B)⊆UQA0 has volume
O(λ).

Recall that Y⊆UQA0, so ∂π(B) = Y .
After perturbing π(B), we may assume that π(B) is transverse to

UQ, and that the 1-manifold π(B)∩UQ has length proportional to the
volume of π(B). Since

∂(π(B) ∩ UQ) = ∂π(B) ∩ UQ = Y ∩ UQ = {uI}I⊆{1,...,n}

there is an I⊆{1, ..., n} and a path ρ : [0, 1] → π(B) ∩ UQ such that
ρ(0) = 1 and ρ(1) = uI with length(ρ) = O(λ).

Choose i ∈ I. UQ is nilpotent, so the distortion of the projection
q : UQ → Ui is at most polynomial. Therefore, q ◦ ρ is a path in Ui
between 1 and ui with length(q ◦ ρ) = O(λk) for some k ∈ N.

The preceding lemma showed eCL+s0 ≤ length(q ◦ ρ). Therefore,

λ ≥ κe
C
k
L for some κ > 0.

�

Combining Lemmas 16 and 19 yields Theorem 1.
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