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Abstract. We prove the classification of joinings for maximal
horospherical subgroups acting on homogeneous spaces without
any restriction on the characteristic. Using the linearization tech-
nique we deduce a special case of Raghunathan’s orbit closure con-
jecture. In the appendix quasi-isometries of higher rank lattices in
semisimple algebraic groups over fields of positive charateristic are
characterized.

1. Introduction

1.1. Statements of the main results. Let K be a global field and
let G be a connected, simply connected, almost simple group defined
over K. Let S be a finite set of places of K. We let G =

∏
ν∈S G(Kν).

Furthermore we will denote Gν = G(Kν). Recall that an arithmetic
lattice compatible with the K-group G is a lattice commensurable with
the subgroup of G consisting of all matrices (in a particular representa-
tion as a linear group) with entries in the ring of S-integers. Now fix Γ1

and Γ2 two irreducible arithmetic lattices of G once and for all and let
H = G×G, and let G1 and G2 be the associated K-groups which we
assume give rise to the same G. We denote by ∆(G) = {(g, g) : g ∈ G}
the diagonally embedded G in H, more generally for any automorphism
τ of G we will use the notation τ∆ = (1 × τ)(∆). For i = 1, 2 let πi
denote the projection onto the i-th factor. Let Xi = G/Γi for i = 1, 2
and let X = X1 × X2 = H/Γ1 × Γ2. We will use πi to denote the
projection from X onto Xi as well. Let ν ∈ S be an arbitrary place
and fix a minimal parabolic subgroup Pν of G defined over Kν further
let P = Pν(Kν). Let Uν = Uν(Kν) where Uν is the unipotent radical of
Pν .
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A joining µ (for the Uν-actions on X1 and X2) is a probability mea-
sure on X that is invariant under (u, u) for u ∈ Uν and satisfies that
the push-forward (πi)∗(µ) under the projections gives the Haar measure
mXi for i = 1, 2.

Theorem 1.1. If µ is an ergodic joining for the action of Uν on X1

and X2 then one of the following holds

(i) µ is the Haar measure m on X, or
(ii) µ is the τ∆(G)-invariant measure on some closed orbit of τ∆(G)

in X, furthermore the automorphism τ is the inner automor-
phism induced by an element z ∈ ZG(Uν).

Furthermore, in the latter case µ is the Haar measure of the closed orbit
(g1, g2)F0Γ1×Γ2, where (g1, g2) ∈ G×G is any point of the support of
µ, F0 = τ0∆(G) consists of the KS-points of a subgroup F0 of G1 ×G2

defined over K, and finally τ0 is some inner automorphism.

We remind the reader that the above is a special case of Ratner’s clas-
sification theorem for measures invariant under unipotent subgroups
if G is a Lie group [R92] or if G is a product of algebraic groups
[R95, MT94] of characteristic zero. However, for positive characteristic
there is no general classification known. The case of positive charac-
teristic horospherical subgroups has been studied by the second named
author [M08]. The first named author has obtained in joint work with
Ghosh [EG] a classification of measures invariant under semisimple1

subgroups in sufficiently big positive characteristic. We note that in
the first paper the acting group is quite large inside the ambient space
and there is a rather restrictive assumption on the characteristic in the
second paper. The current work does not make any restrictions on the
characteristic and is still a case where the acting group is somewhat
small in comparison to the ambient space. However, our assumptions
still put us in the situation where there is no need to use restriction of
scalars which in the general case one will not be able to avoid. Roughly
speaking the main difficulty for a general measure classification is to
find a bound on the degree of the field extension used in the restrictions
of scalar.

Using the well-known linearization technique we obtain from the
above a special case of Raghunathan’s orbit closure classification, which
in the case of Lie groups is known in maximal generality due to Ratner’s
orbit closure theorem [R91].

1Quite likely one can use the proof in [MT94] for any unipotent subgroup in
large enough positive characteristic, but the proof in [EG] relies on a much simpler
argument which requires the assumption that the acting group is semisimple.
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Theorem 1.2. Let the notations and conventions be as above then
every orbit of ∆(G) in G×G/Γ1 × Γ2 is either closed or dense.

It is easy to show that the above give also an immediate dichotomy
for the product Γ1Γ2 of two lattices. Either Γ1Γ2 consists of finitely
many Γ2-cosets (i.e. Γ1Γ2/Γ2 is a finite subset of G/Γ2) or Γ1Γ2 is
dense in G. In the appendix, authored by Kevin Wortman, this is used
as one missing ingredient for the classification of the quasi-isometries
of higher rank lattices in semisimple algebraic groups over fields of
positive charateristic, e.g. for PGL3(Fp[t]). We refer to the appendix
for the definitions and for further comments regarding the history of
this problem.

2. Preliminary and notations

2.1. KS-algebraic groups. Let K be a global function field of char-
acteristic p. Let S be a finite set of places for any ν ∈ S we let Kν

denote the completion of K with respect to ν and let $ν be a uni-
formizer for Kν fixed once and for all. We let KS =

∏
ν∈SKν . We

endow KS with the norm | · | = maxν∈S | · |ν where | · |ν is a norm on
Kν for each ν ∈ S. A KS algebraic group A (resp. variety B) is the for-
mal product of

∏
ν∈S Aν of Kν algebraic groups (resp.

∏
ν∈S Bν of Kν

algebraic varieties). As is clear from the definition of KS-varieties the
usual notations from elementary algebraic geometry theory e.g. regu-
lar maps, rational maps, rational point etc. are defined componentwise,
and we will take this as to be understood and use these notions with-
out further remarks. As usual there are two topologies on B(KS) the
Hausdorff topology and the Zariski topology. When we refer to the
Zariski topology we will make this clear. Hence if in some topological
statement we do not give reference to the particular topology used,
then the one which is being considered is the Hausdorff topology.

Let A be a KS-algebraic group and B a KS-algebraic subgroup. And
let A = A(KS) and B = B(KS). For any g ∈ A normalizing B we set

W+
B (g) = {x ∈ B | gnxg−n → e as n→ −∞}

W−
B (g) = {x ∈ B | gnxg−n → e as n→ +∞}

ZB(g) = {x ∈ B | gxg−1 = x}
If g ∈ B and it is clear from the context we sometimes omit the sub-
script B above. Similarly if g ∈ B we let Pg (resp. P−g ) be the set of
x ∈ B such that {gnxg−n}n<0 (resp. {gnxg−n}n>0) is contained in a
compact subset of G and define Mg = Pg ∩ P−g . Note that W±

B (g), Mg

and ZB(g) are the groups of KS-points of KS-algebraic subgroups
W±B(g), M and ZB(g) respectively.
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Let G be semi-simple connected defined over KS and let G = G(KS).
Let g ∈ G be an element such that Adg (Ad is the adjoint representa-
tion of the algebraic group on its Lie algebra) has at least one eigen-
value of absolute value 6= 1. One has W−(g) · Mg ·W+(g) is Zariski
open in G and the natural map of the product W−(g) ×Mg ×W+(g)
to W−(g) ·Mg ·W+(g) is a KS isomorphism of varieties. In particular

D(g) = W−(g)MgW
+(g) = (W−(g) ·Mg ·W+(g))(KS)

is an open neighborhood of the identity. These are well-known facts
that one could find for example in [B91, chapter V].

We say an element e 6= s ∈ A(KS) is of class A if g = (gν)ν∈S is diag-
onalizable over KS and for all ν ∈ S the component gν has eigenvalues
which are integer powers of the uniformizer $ν of Kν . We will need
slight generalization of this notion which we define. An element s ∈ G
is said to be from class A′ if s = s′ γ where s′ 6= e is an element of class
A and γ commutes with s′ and generates a compact subgroup in G.
Note that if s = s′ γ is an element from class A′ then it is clear from
the definitions that W±(s) = W±(s′) and we also have Z(s′) = Ms.

With these notations if g = s ∈ G is an element from class A then
one has Ms = Z(s) and we have W−(s)Z(s)W+(s) is a Zariski open
dense subset of G which contains the identity.

2.2. Ergodic measures on algebraic varieties. Let A be a KS-
algebraic group acting KS-rationally on a KS-algebraic variety M. Let
B be a subgroup of A = A(KS) generated by one parameter KS-split
unipotent algebraic subgroups and elements from class A. The follow-
ing is proved in [MT94] (which in return relies almost directly on the
behavior of algebraic orbits [BZ76]).

Lemma 2.1. (cf. [MT94, Lemma 3.1]) Let µ be an A-invariant Borel
probability measure on M = M(KS). Then µ is concentrated on the
set of A-fixed points in M. In particular if µ is A-ergodic then µ is
concentrated at one point.

2.3. Homogeneous measures. Let A be a locally compact second
countable group and let Λ be a discrete subgroup of A. Let µ be a
Borel probability measure on A/Λ. Let Σ be the closed subgroup of all
elements of A which preserve µ. The measure µ is called homogeneous if
there exists x ∈ A/Λ such that Σx is closed and µ is unique Σ-invariant
measure on Σx.

Lemma 2.2. (cf. [MT94, Lemma 10.1]) Let A be a locally compact
second countable group and Λ a discrete subgroup of A. If B is a normal
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unimodular subgroup of A and µ is a B-invariant B-ergodic measure
on A/Λ then µ is homogeneous and actually Σ = BΛ.

3. Polynomial like behaviour and the basic lemma

Let µ be a probability measure on X which is invariant and ergodic
under the action of some unipotent KS-algebraic subgroup of H. The
idea is to use polynomial like behaviour of the action of unipotent
groups on X to show that if certain “natural obstructions” do not
occur then one can construct new elements which leave µ invariant as
well. The idea of using polynomial like behaviour of unipotent groups
to construct new invariants goes back to earlier works, e.g. Margulis’
celebrated proof of Oppenheim’s conjecture [Mar86] using topological
arguments and Ratner’s seminal work on the proof of measure rigidity
conjecture [R90a, R90b, R91]. We keep the language of [MT94] as it
is the most suitable one in our situation.

3.1. Construction of quasi-regular maps. Following [MT94, Sec-
tion 5] we want to construct quasi-regular maps. This is essential in
our construction of extra invariance for µ. We first recall the definition
of a quasi-regular map. We give the definition in the case of a local
field, which we will need later, the S-arithmetic version is a simple
modification.

Definition 3.1. (cf. [MT94, Definition 5.3]) Let ω be any place in S.

(i) Let E be a Kω-algebraic group, W a Kω-algebraic subgroup
of E(Kω) and M a Kω-algebraic variety. A Kω-rational map
f : M(Kω) → E(Kω) is called W-quasiregular if the map from
M(Kω) to V given by x 7→ ρ(f(x))p is Kω-regular for every
Kω-rational representation ρ : E → GL(V) and every point
p ∈ V(Kω) such that ρ(W)p = p.

(ii) If E = E(Kω) and W ⊂ E is a Kω-split unipotent subgroup
then a map φ : W → E is called strongly W-quasiregular if
there exist
(a) a sequence gn ∈ E such that gn → e.
(b) a sequence {αn :W →W} of Kω-regular maps of bounded

degree.
(c) a sequence {βn :W →W} of Kω-rational maps of bounded

degree.
(d) a Zariski open nonempty subset X ⊂ W
such that φ(u) = limn→∞ αn(u)gnβn(u) and the convergence is
uniform on the compact subsets of X
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We note that if φ is strongly W-quasiregular then it indeed is W-
quasiregular. To see this, let ρ : E → GL(W ) be a Kω-rational rep-
resentation and let w ∈ W be a W-fixed vector. For any u ∈ X we
have

ρ(φ(u))w = lim
n→∞

ρ(αn(u)gn)w.

Identify W with an affine space, as we may, thanks to the fact W is
split. The sequence {ψn : W → W, u 7→ ρ(αn(u)gn)w} is a sequence
of polynomial maps of bounded degree and also the family is uniformly
bounded on compact sets of X so it converges to a polynomial map
with coefficients in Kω. This says φ is W-quasiregular.

Let us go back to the setting of Theorem 1.1, in particular we have
H = G × G. We want to construct quasi-regular maps for certain
unipotent groups. Let us fix some notations here, for t ∈ Gν a diagonal
element of class A, let U = ∆(W+(t)). The element s = (t, t) ∈ H is
of class A and we have U ⊂ W+(t) ×W+(t) = W+(s), furthermore
L = W−(s)Z(s)(W+(t) × {e}) is a rational cross-section for U which
is invariant under conjugation by s.

We fix relatively compact neighbourhoods B+ and B− of e in W+(s)
and W−(s) respectively with the property that B+ ⊂ sB+s−1 and
B− ⊂ s−1B−s. We define a filtration in W+(s) and W−(s) this is done
by setting B+

n = snB+s−n and B−n = s−nB−sn respectively. For any
integer n we set Un = B+

n ∩ U . Define `± : W±(s)→ Z ∪ {−∞}, by

(i) `+(x) = k iff x ∈ B+
k \B+

k−1 and `+(e) = −∞,
(ii) `−(x) = k iff x ∈ B−k \B−k−1 and `−(e) = −∞.

As the definition suggests these functions measure the “size” of ele-
ments in W±(s) with respect to the action of s.

Let {gn} be a sequence in LU \NH(U) with gn → e. Now as L is a

rational cross-section for U in H we get rational morphisms φ̃n : U → L
and ωn : U → U such that ugn = φ̃n(u)ωn(u) holds for all u in a Zariski
open dense subset of U .
We now want to linearize the U -action, this is done with the aid of
a theorem of Chevalley. Let ρ : H → GL(V ) be a KS-representation
such that

U = {x ∈ H| ρ(x)v = v}
for some v ∈ V. According to this description we have

ρ(NH(U))v = {x ∈ Hv| ρ(U)x = x}.

Let B(v) ⊂ V be a bounded neighborhood of v such that

ρ(H)v ∩ B(v) = ρ(H)v ∩ B(v).
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As gn /∈ NH(U), there is a sequence of integers {b(n)} with b(n)→∞
and that ρ(Ub(n)+1gn)v 6⊂ B(v) and ρ(Ukgn)v ⊂ B(v) for all k ≤ b(n).
Define Kν-regular isomorphisms αn : U → U as follows: for every u ∈ U

λn(u) = snus−n and set αn = λb(n)

The Kν-rational maps φn’s are then defined by φn = φ̃n◦αn : U → L.
Using these we define

φ′n = ρL ◦ φn : U → V

where ρL is the restriction to L of the orbit map h 7→ ρ(h)v. Notice that
by construction of b(n) we have φ′n(B0) ⊂ B(v) but φ′n(B1) 6⊂ B(v).

As φ′n(u) = ρ(αn(u)gn)v we see that φ′n : U → V is a Kν-regular
map. If we use the fact that U is split we may identify U with the
affine space of the same dimension via a polynomial map. This says we
can interpret {φ′n} as a set of Kν-polynomial maps of bounded degree.
Using the definition of φ′n we have {φ′n} is uniformly bounded family of
polynomials of bounded degree, thus passing to a subsequence, which
we will still write as φ′n, we may assume there is a Kν-regular map
φ′ : U → V such that

φ′(u) = lim
n→∞

φ′n(u) for every u ∈ U . (1)

Note that φ′(e) = v as gn → e and that φ′ is non-constant since
φ′(B1) 6⊂ B(v)◦.

As L is a rational cross-section for H/U we have that L gets mapped
onto a Zariski open dense subset M of the Zarsiki closure of ρ(H)v
and that v ∈M. So we can define a Kν-rational map φ : U → L by

φ = ρ−1
L ◦ φ

′

The construction above gives φ(e) = e and that φ is non-constant.
We now show that the map φ constructed above is strongly U -

quasiregular. Note that by the above construction we have for u ∈
φ′−1(M) that

φ(u) = lim
n→∞

φn(u)

and the convergence above is uniform on the compact subsets of φ′−1(M)
(as (1) is uniform on compact subsets and ρ−1

L is continuous on compact
subsets of M). We have

φn(u) = αn(u)gnβn(u) where βn(u) = ωn(αn(u))−1

The above says for u ∈ φ′−1(M) we can write

φ(u) = lim
n→∞

αn(u)gnβn(u),

as we wished to show.
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3.2. Properties of φ. We now recall, without proofs, some important
properties of the map φ constructed above. The proofs can be found
in [MT94, section 6]. It is worth mentioning that in [MT94] the charac-
teristic is assumed to be zero. However, careful analysis of the proofs of
the properties we need here, shows that the proofs go through without
major difficulties.

The following is a technical condition on the sequence {gn} which
is needed in the proof of Basic Lemma below, it is Definition 6.6
in [MT94].

Definition 3.2. A sequence {gn} is said to satisfy the condition (∗)
with respect to s if there exists a compact subset C of H such that for
all n ∈ N we have s−b(n)gns

b(n) ∈ C.

Let us fix some further notations, denote V = W+(t) × {e} ⊂
W+(s) and the corresponding counter parts U− = ∆(W−(t)) and
V− = W−(t)× {e}, which are subgroups of W−(s). Note that

D = U−V−Z(s)VU = W−(s)Z(s)W+(s)

is a Zariski open dense subset of H and for any g ∈ D we have a unique
decomposition

g = w−(g)z(g)w+(g) = u−(g)v−(g)z(g)v(g)u(g) (2)

where u−(g) ∈ U−, v−(g) ∈ V−, z(g) ∈ Z(g), u(g) ∈ U , v(g) ∈
V , w−(g) = u−(g)v−(g) and w+(g) = v(g)u(g).

Note that for every w± ∈ W±(s) we have

`±(skw±s−k) = `±(w±(g))± k
Recall that U is normalized by s by our definitions. Also, as we are

working with semisimple groups, our definitions imply that NH(U) ∩
W−(s) = {e}. This in turn implies the following.

Proposition 3.3. (cf. [MT94, Proposition 6.7]) Let s and U be as
above then the following hold

(i) any sequence {gn} satisfies condition (∗) with respect to s.
(ii) if the sequence `−(v−(gn))− `−(u−(gn)) is bounded from below,

then φ(U) ⊂ W+(s).

The following provides us with some important properties of the map
φ. These will be used in various part in the proof of Theorem 1.1. The
proof in [MT94] applies without change and will not be repeated here.

Proposition 3.4. (cf. [MT94, 6.1 and 6.3])

(1) φ maps U into NH(U), furthermore there is no compact subset
C of H such that Im(φ) ⊂ CU .
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(2) If φ maps U into a Kν-torus then there is s = φ(u) an element of
class A′, such that (i) s does not centralize U , (ii) α(s ,M) ≥ 1
for every Kν-algebraic subgroup M of H, which is normalized
by the group generated by Im(φ) and U . (Here α(s ,M) denotes
the modulus of the conjugation action of s on M .)

As before we have s = (t, t) and U = ∆(W+(t)). Now let µ be a
U -invariant probability measure on X and let µ =

∫
Y
µydσ(y) be an

ergodic decomposition for µ. For µ-a.e. x ∈ X we set y(x) to be the
corresponding point from (Y, σ). We also fix once and for all, the left
invariant Haar measure θ on U note that as U is unipotent θ is also the
right invariant Haar measure on U .

Definition 3.5. A sequence of measurable non-null sets An ⊂ U is
called an averaging net for the action of U on (X,µ) if the following
analogue of the Birkhoff pointwise ergodic theorem holds. For any
continuous compactly supported function f on X and for almost all
x ∈ X one has

lim
n→∞

1

µ(An)

∫
An

f(ux)dθ(u) =

∫
X

f(h)dµy(x)(h).

Lemma 3.6. (cf. [MT94, section 7.2]) Let A ⊂ U be relatively compact
and non-null. Let An = λn(A). Then {An} is an averaging net for the
U action on (X,µ).

We note that if we choose A to be a compact subgroup with A ⊂
sAs−1, then this lemma follows from the decreasing Martingale theo-
rem.

Definition 3.7. Ω ⊂ X is said to be a set of uniform convergence
relative to {An} if for every ε > 0 and every continuous compactly
supported function f on X one can find a positive number N(ε, f)
such that for every x ∈ Ω and n > N(ε, f) one has∣∣∣∣ 1

µ(An)

∫
An

f(ux)dθ(u)−
∫
X

f(h)dµy(x)(h)

∣∣∣∣ < ε.

It is an easy consequence of Egoroff’s theorem and second countablity
of the spaces under consideration and is proved in [MT94, section 7.3]
that for any ε > 0 one can find a measurable set Ω with µ(Ω) > 1− ε
which is a set of uniform convergence relative to {An = λn(A)} for
every relatively compact non-null subset A of U .

The following is the main point of the construction of the quasi-
regular maps and provides us with the extra invariance that we were
after in this section.
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Basic Lemma. (cf. [MT94, Basic Lemma 7.5])
Let Ω be a set of uniform convergence relative to averaging nets {An =
λn(A)} corresponding to arbitrary relatively compact non-null subset
A ⊂ U . Let {xn} be a sequence in Ω with xn → x ∈ Ω. Let {gn} ⊂
H \ NH(U) be a sequence which satisfies condition (∗) with respect
to s. Assume further that gnxn ∈ Ω for every n. Now if φ is the U-
quasiregular map corresponding to {gn} constructed above then the er-
godic component µy(x) is invariant under Im(φ).

Remark 3.8. In this section we carried out the construction for ele-
ments from class A, however one sees from the construction that this
could be done following exact the same lines when s is an element from
class A′. We will use this without further notice.

4. Joining classification for the action of Uν

Recall that a joining for the action of U = Uν on Xi is an U -invariant
probability measure on X which satisfies the property

πi∗(µ) = mi for i = 1, 2

In this section we use the construction and the properties from the
previous section and complete the proof of Theorem 1.1. Let the nota-
tions and conventions be as before in particular U = Uν is a maximal
unipotent subgroup of Gν . We let U = ∆(U). As in the statement of
Theorem 1.1 let µ be an ergodic joining for the action of U on Xi.

Remark 4.1. Observe that if µ is a joining for the action of U on
Xi’s then almost every ergodic component is a joining as well. To see
this let µ =

∫
Y
µy dσ(y) be an ergodic decomposition of µ. Now as

πi∗µ =
∫
Y
πi∗µydσ(y) and since πi(U) acts ergodically on Xi we get for

σ-a.e µy is a joining for U .

Note that our subgroup U here fits into the general frame work of Sec-
tion 3. That is there is a diagonal element t ∈ Gν such that U = W+(t)
and U = ∆(U). Set s = (t, t). We let L = W−(s)Z(s)(U × {e})
be a rational cross-section for U in H, as before. Note that indeed
Pν = NGν (U) is the minimal parabolic subgroup in the introduction.
Furthermore we remark that in this setting one has the following de-
scription

NH(U) = ∆(Pν)(ZG(U)× ZG(U)). (3)

To see this note that NG(U) = P and so an element (g1, g2) ∈ NH(U)
must satisfy g1, g2 ∈ P . In fact, from (g1, g1)−1(g1, g2) = (e, g−1

1 g2) ∈
NH(U) we get that g−1

1 g2 ∈ ZG(U) which gives the claim.
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To state the next lemma we need to fix some further notations. Let
T be a maximal torus of G defined over Kν , which normalizes U. Let B
be a Borel subgroup of G (defined over K the algebraic closure of K)
containing T and so that U consists of positive roots with respect to the
ordering induced by B. Let S be maximal Kν-split subtorus of T and
let S = S(Kν). Let Φ be the root system corresponding to T above and
let νΦ be the relative root system corresponding to S. Let γ ∈ νΦ be
a dominant root with respect to νΦ. Let Uγ be the unique connected
unipotent subgroup defined and split over Kν , normalized by ZG(S)
corresponding to the relative root γ. This is Z(U(γ)) if γ is a multiple
relative root, in the notation of [B91]. Note that Uγ is Kν-isomorphic
to an affine space. And we let U−γ be the corresponding object with
respect to −γ. We chose γ to be dominant root in νΦ. Thus we may
invoke results from [BT65, Sect. 3] on properties of groups generated by
roots corresponding to quasi-closed (terminology as in loc. cit.) subsets
of νΦ. We obtain that the algebraic group Gγ = 〈Uγ,U−γ〉 generated
by Uγ and U−γ is defined over Kν and has Kν-rank equal one. We let
Uγ = Uγ(Kν), U−γ = U−γ(Kν) and Gγ = Gγ(Kν)

Now fix a cross-section, U ′−γ, for U−γ in W−(t) defined over Kν and
invariant under conjugation by S, such cross-section exists, see for ex-
ample in [BS68]. If g ∈ W−(t) we write g = gγg

′ where gγ ∈ U−γ and
g′ ∈ U ′−γ is in the fixed cross-section.

We equip Gν with a right invariant metric, dr( , ) (which near e we
define via the matrix norm Mat`(Kν) ⊃ Gν by averaging over a “good”
compact open subgroup of Gν). Denote |g| = dr(e, g). Now as γ is the
highest root and since t was chosen to be regular i.e. α(t) 6= 1 for all
α ∈ νΦ, we may find a > 1 depending on νΦ and t with the following
property for any κn → 0: If {hn} is a bounded sequence in Gν which
satisfies

κan < |w−(hn)γ| < κn and |w−(hn)| < κn
then `−(w−(hn)γ) − `−(w−(hn)′) tends to +∞ as n tends to infinity.
Recall that the function `− measures the expansion factor of the action
of s−1 on W−(s). So this assertion is the fact that −γ is expanded the
most! Let us fix κn = 1

n
.

Lemma 4.2. There exists some 0 < ε < 1 with the following prop-
erty for any Ω which satisfies µ(Ω) > 1 − ε. There exists a sequence
{gn} such that (i) d(gn, e) < κn → 0 (ii) gnΩ ∩ Ω 6= ∅ (iii) If gn =
(g1,n, g2,n) and g2,n = w−(g2,n)z(g2,n)w+(g2,n) and we write w−(g2,n) =
w−(g2,n)γw

−(g2,n)′ as above, then for all large enough n

|g1,n| < κ
a−1

2 dim G
n , κan < |w−(g2,n)γ| < κn and |w−(g2,n)′| < κn



12 MANFRED EINSIEDLER AND AMIR MOHAMMADI

This lemma is one of the places where we make use of the assumption
that µ is a joining.

Proof. For each n ∈ N we need to find gn which satisfies the (i), (ii),

(iii) above.
For now we fix n and to further simplify notations we write κ = κn

and η = κ
a−1

2 dim G
n . We induce a metric on X with the aid of a right

invariant metric on Gω for all ω ∈ S. Fix Ki two relatively compact
open subsets of Xi respectively such that Ω ⊂ K1 ×K2. Recall that µ
is a joining thus we have π2∗(µ) = m2. If Ω2 = π2(Ω) then we have Ω2

is a relatively compact set and m2(Ω2) > 1− ε. Taking n large enough
we may assume that the ball of radius η around each point in Ki is
the injective image of the corresponding ball in G. Let Ω2 =

⋃
iBi be

a disjoint union of balls of radius κ. Further let

π−1
2 (Bi) ∩ (K1 ×K2) =

⋃
j∈J(i)

Rj
i ×Bi (4)

be a disjoint union, where each Rj
i is contained in a ball of radius 2η

in K1. Note that the number #J(i) of such sets Rj
i that are needed, is

bounded by c1 η
− dim G, where c1 is a constant depending on Ω.

Using (4) and the fact that in a non-archimedean metric space any
point of a ball is the center we see that for all xji ∈ R

j
i × Bi we have

Bi = BG
κ (π2(xji )).

Define the set

Nκ = {g ∈ BG
κ (e) | g = w−(g)γw

−(g)′z(g)w+(g) and w−(g)γ ∈ BG
κa(e)}.

Now assume the opposite to the lemma that is

for all xji ∈ (Rj
i ×Bi)∩Ω one has (Rj

i ×Bi)∩Ω ⊆ π−1
2 (Nκπ2(xji )∩Bi).

This in turn will give

π−1
2 (Bi) ∩ Ω =

⋃
j

(Rj
i ×Bi) ∩ Ω ⊆ π−1

2 (
⋃
j

Nκπ2(xji ) ∩Bi ).

It follows from the definition of Nκ that m2(Nκ) ≤ c2κ
aκdim G−1 =

c2κ
a−1m2(Bi) for some constant c2 that only depends on the Haar mea-

sure m2. Hence we get

m2(
⋃
j

Nκπ2(xji ) ∩Bi ) ≤ (#J)c2κ
a−1m2(Bi)

We now have

Ω =
⋃
i

⋃
j

(Rj
i ×Bi) ∩ Ω ⊆

⋃
i

π−1
2 (
⋃
j

NκY π2(xji ) ∩Bi ).
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As the balls Bi were chosen to be disjoint this gives

1− ε < µ(Ω) ≤
∑
i

µ(π−1
2 (
⋃
j

Nκπ2(xji ) ∩Bi )) ≤ cη− dim Gκa−1

Our choice of η and κ now says for small enough η and κ, i.e. for large
enough n, the right hand side of the above inequality is less than 1− ε.
This contradiction finishes the proof. �

The next proposition provides us with the main ingredient to apply
entropy arguments, i.e. it will provide us an element of class A′ which
leaves the measure invariant and does not contract U . In order to
prove this proposition we apply the construction recalled in Section 3
corresponding to the above constructed displacements.

Proposition 4.3. Let U and µ be as above then µ = m1×m2 (in which
case the statements below hold trivially also) or

(i) there exists s = (zt , t) ∈ H an element of class A′, where z ∈
ZGν (U) and t ∈ ZGν (t) such that µ is s-invariant, and

(ii) U ⊂ ZH(s)W+(s).

Proof. Let {gn} be a sequence which satisfies the claims in Lemma 4.2.
We construct the quasi-regular map φ : U → L as in Section 3 cor-
responding to this sequence {gn}. Property (iii) in Lemma 4.2 gives
{gn} ⊂ H \ NH(U). An application of the Basic Lemma says that µ
is invariant under Im(φ). Recall that by Proposition 3.4 we are also
guaranteed that Im(φ) ⊂ NH(U). Let us denote φ = (φ1, φ2) as φ is
non-constant at least one of φi’s are non-constant. There are two cases
to consider

Case 1: There exists i such that φi is constant. In this case we
claim that µ = m1 ×m2 is the Haar measure on X.

Proof of the claim: We give the proof in the case φ2 is constant, the
proof in the other case is identical. As φ(e) = e we get φ2(u) = e for all
u ∈ U so we have φ(u) = (φ1(u), e) and as φ is unbounded quasi-regular
we have φ1 is unbounded quasi-regular.

Recall that X = G/Γ1 ×G/Γ2 = X1 ×X2. Define the σ-algebra

Ξ = {X1 × ξ | ξ is a Borel set in X2}.
We let µΞ

x denote the conditional measures, these are probability mea-
sures on [x]Ξ = X1 × {π2(x)} and one has

µ =

∫
X

µΞ
x dµ (5)

Since φ = (φ1, e) every A ∈ Ξ is invariant under Im(φ). This implies
together with φ(u) preserving µ that all the conditional measures µΞ

x
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are invariant under Im(φ). Applying the push forward map π1∗ to (5)
we get

π1∗(µ) =

∫
X

π1∗(µ
Ξ
x ) dµ.

But µ is a joining for the action of U, so we have π1∗(µ) = m1 which
using the above says that

m1 =

∫
X

π1∗(µ
Ξ
x ) dµ.

We now recall that

(i) φ = (φ1, e) is unbounded quasi-regular map.
(ii) π1∗(µ

Ξ
x ) is Im(φ)-invariant for all x ∈ X

(iii) Γ1 is an irreducible lattice in G and G is simply connected so
m1 is ergodic under any unbounded subgroup of G.

putting all these together says µ-a.e. µΞ
x = m1 × δπ2(x) so we have

µ = m1×π2∗(µ) appealing to π2∗(µ) = m2 gives that µ = m1×m2 and
the claim is proved.

Case 2: φ1 and φ2 are both non-constant. In this case we will use
the particular structure of the sequence gn in Lemma 4.2 to prove the
existence of s as in the statement of the proposition.

Recall that φ = (φ1, φ2) : U → L ∩NH(U), where

L = W−(s)ZH(s)(U × {e})

is the cross-section we chose in Section 3. Also recall from (3) that
NH(U) = ∆(P )(ZG(U)× ZG(U)) so that together we have

L ∩NH(U) =[W−(s)ZH(s)(U × {e})] ∩ [∆(P )(ZG(U)× ZG(U))]

=[ZH(s)(U × {e})] ∩ [∆(P )(ZG(U)× ZG(U))].

This says φ2(u) ∈ ZG(t)∩Gν and that φ1(u) = φ2(u)φZ1 (u) on a Zariski
open dense subset of U , where φZ1 (u) ∈ ZGν (U).

We show that there exists u0 such that the element t = φ2(u0) is
from class A′ and satisfies U ⊂ ZG(t)W+(t).

We first take a more careful look at the construction of φ. Recall
that we have

φ(u) = lim
n→∞

φn(u) = lim
n→∞

αn(u)gnβn(u), (6)

where αn : U → U is a regular map and βn : U → U is a rational map.
More precisely αn(u) = sb(n)us−b(n) where the sequence b(n) consists
of renormalization constants that are defined in Section 3. We now
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concentrate our attention at φ2. Taking the second component of (6)
we get

φ2(u) = lim
n→∞

φ2,n(u) = lim
n→∞

tb(n)u · (t−b(n)g2,nt
b(n)) · t−b(n)β2,n(u), (7)

where we are ensured that the term (t−b(n)g2,nt
b(n)) remains bounded

as gn satisfies condition (∗). Since Im(φ2) ⊂ ZGν (t) we may further
simplify (7) and get

φ2(u) = lim
n→∞

φ2,n(u) = lim
n→∞

tb(n)z(u · (t−b(n)g2,nt
b(n)))t−b(n)

= lim
n→∞

z(u · (t−b(n)g2,nt
b(n)))

Here z(·) is as in (2) in Section 3. Passing to a subsequence we may
assume by condition (∗) that t−b(n)g2,nt

b(n) → h ∈ W−(t). Since by the
assumption in case 2 the maps φi for i = 1, 2 are non-constant we are
guaranteed that h 6= e. We will next get more information about h.

Recall now that we chose the sequence {gn} so that it satisfies the
property (iii) in Lemma 4.2. In particular by the remark proceeding
loc. cit. we have; `−(w−(g2,n)γ)−`−(w−(g2,n)′) tends to +∞ as n tends
to infinity. This and the fact that t−b(n)g2,nt

b(n) → h ∈ W−(t) give
h = hγ ∈ U−γ, where the notation is as in Lemma 4.2.

We now consider φ2(uγ(y)) where y ∈ Kk
ν . Using the arguments and

the observations2 above we have for any y ∈ Kk
ν that

φ2(uγ(y)) = z(uγ(y)h). (8)

As before we denote by Gγ the algebraic group generated by Uγ and
U−γ which is the group of Kν-points of an algebraic group whose Kν-
rank is one. Observe that φ2 is a U -quasiregular map. Since under our
assumption it is not constant it will be unbounded in G/U. Now due
to the formula in (8) we can find some y such that t = φ2(uγ(y)) is of
class A′.

As γ is the highest root we get that U ⊂ ZG(t)W+(t). Now consider
h = φZ1 (uγ(y)) (after possibly changing y slightly to make this expres-
sion well defined). By the above h ∈ CG(U). Since CG(U)/CU(U)
is finite (equal to the image of the center of G) and Uγ is connected,
we get that h ∈ CU(U). Notice that CU(U) is just an affine space
and CU(U) splits under the action of t into two subspaces, namely
CU(U) ∩ CU(t) and a t -invariant complement. Using this we may find
some h′ ∈ CU(U) ∩ CU(t) and z ∈ CU(U) with th = ztz−1h′ where
h′ and ztz−1 commute. Now after raising to a suitable power of the

2As e is in the domain of all rational functions considered the same is true for an
open neighborhood of e, which in turn shows that the rational functions considered
are also defined on an Zariski-open dense subset of Uγ .
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characteristic of the field, i.e. the order of h′, we have that s = (zt , t)
leaves µ invariant as required. �

Let us fix some further notations, as before µ is an ergodic joining
for the action of U . For our fixed place ν ∈ S we define for any
automorphisms τ of τH(ν) the subgroup

τH(ν) = (τ∆(Gν))
∏
ω 6=ν

(Gω ×Gω).

For future references we also define for z ∈ G the subgroups z∆(Gν) =
(z,e)∆(Gν) and zH(ν) = τH(ν), where τ is the inner automorphism
defined by (z, e).

Assume t is an element of class A′ and z ∈ ZGν (U) such that s =
(zt , t) leaves the measure µ invariant. Note that s ∈ NH(U) and U ⊂
MsW

+(s). We let U+
s = W+(s) ∩ U . Define

F(s) = {g ∈ H | U+
s g ⊆ W−(s)MsU+

s }
which in fact is a subgroup of H. Let τ be the inner automorphism
induced by (z, e) where z ∈ ZGν (U) is as in definition of the element s .
As τH(ν) is a group containing U+

s and contained in W−(s)MsU+
s , we

clearly have τH(ν) ⊆ F(s). Moreover, due to the maximality of τH(ν)
in H, it is easy to see that F(s) = τH(ν). Define U−s = F(s) ∩W−(s).
Note that s normalizes both U+

s and U−s .
We again make use of the description of s and the description of

NH(U) in H and notice that one has U+
s = ∆(W+

G (t)) and U−s =
z∆(W−

G (t)). As in Section 3 we let V±s be the cross-section for U±s in
W±(s) respectively, as defined in loc. cit. The functions `± there will
be needed here too.

Remark 4.4. Note that if µ is invariant under (x1n, x2n) ∈ W+(s)
where x1nx

−1
2n →∞ in G, then µ = m1×m2. This follows if one argues

as in case 1 of Proposition 4.3. (This says if µ 6= m1 × m2 then U+

has maximum dimension in the class of split Kν-algebraic subgroups
of W+(s) which leave µ invariant.)

The following is closely related to [MT94, Proposition 8.3].

Proposition 4.5. Let the notations and conventions be as above. Then
at least one of the following two cases holds:

(i) µ = m1 ×m2.
(ii) For every ε > 0 there exists a compact subset Ωε of X with

µ(Ωε) > 1 − ε such that if {gn} ∈ H \ NH(U+
s ) is a sequence

with gn → e and gnΩε ∩ Ωε 6= ∅ for every n, then the sequence
{`−(v−(gn))− `−(u−(gn))} tends to −∞.
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Proof. There is nothing to prove if (i) above holds, so assume µ 6=
m1×m2. Define R = 〈s ,U ∩Ms〉, the group generated by s and U ∩Ms .
Note that µ is R-ergodic thanks to generalized Mautner lemma [Mar71,
Lemma 3]. We fix an ergodic decomposition µ =

∫
Y
µydσ of µ for U+

s .
As before for any x ∈ X we let y(x) denote the corresponding point
in (Y, σ). As R normalizes U+

s we have some R-action on Y, which in
fact is a factor, i.e. µy(gx) = µgy(x) for every g ∈ R. Note also that for
σ-almost every y we have πi∗µy = mi. This is to say for µ almost every
x ∈ X the measure µy(x) is an ergodic joining for W+(t) on X.

We say (†) holds for x ∈ X if there exist (x1n, x2n) ∈ W+(s), n ∈ N
where x1nx

−1
2n →∞ in G, and µy(x) is invariant under {(x1n, x2n)}.

We claim the set of x ∈ X for which (†) holds is a null set. To see
the claim note that Remark 4.4 says that if (†) holds for some x ∈ X
then µy(x) = m1 ×m2, so we have

Υ = {x ∈ X | (†) holds for x} = {x ∈ X | µy(x) = m1 ×m2}

As a result Υ is a measurable set and is invariant under the action of R.
However µ is R ergodic so either µ = m1 ×m2 which we are assuming
not to be the case or the set Υ is a null set as we wished to show.

This says we may find a compact set of uniform convergence Ωε ⊂
X \ Υ for U+

s , with µ(Ωε) > 1 − ε. Now assume {gn} ∈ H \ NH(U+
s ),

such that gn → e and gnΩε ∩ Ωε 6= ∅ but {`−(v−(gn)) − `−(n−(gn))}
is bounded from below. We let xn ∈ Ωε such that gnxn ∈ Ωε and
xn → x ∈ Ωε. One then constructs the quasi regular map φ corre-
sponding to this sequence {gn} and s . The basic lemma says µy(x) is
invariant under Im(φ). The construction of φ and our assumption on
{gn} thanks to Proposition 3.3 says that Im(φ) ⊂ W+(zt)×{e}. How-
ever Proposition 3.4 gives Im(φ) is not in CU+

s for any compact set
C of H. All these put together using Remark 4.4 contradict the fact
x ∈ X \Υ. This finishes the proof of the proposition. �

Corollary 4.6. (cf. [MT94, Corollary 8.4])
Let the notations be as in the Proposition 4.5 and that µ 6= m1 ×m2.
Then there exists a subset Ψ in X with µ(Ψ) = 1 such that W−(s)x ∩
Ψ ⊂ U−s x, for every x ∈ Ψ.

Proof. The proof follows the same lines as in the proof of [MT94,
Cor. 8.4] thanks to Proposition 4.5 above. �

The following is an important application of entropy arguments which
was proved in [MT94, Sect. 9]. Let us point out again that [MT94] as-
sumes the characteristic to be zero, however this assumption is not
needed here as one would imagine thanks to the geometric nature of
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entropy arguments. Here we have X is as before and σ is any proba-
bility measure on X.

Theorem 4.7. (cf. [MT94, Thm. 9.7])
Assume s is an element from class A′ which acts ergodically on the
measure space (X, σ). Let V be a KS subgroup of W−(s) normalized by
s . Put α = α(s−1, V ).

(i) If σ is V -invariant, then h(s, σ) ≥ log2 α.
(ii) Assume that there exists a subset Ψ ⊂ X with σ(Ψ) = 1 such

that for every x ∈ Ψ we have W−(s)x ∩ Ψ ⊂ V −x. Then
h(s , σ) ≤ log2(α) and the equality holds if and only if σ is V -
invariant.

After these preparations we now have all the ingredients required to
finish the proof of the classification of joinings.

Proof of Theorem 1.1. We again assume µ 6= m1 ×m2.

Step 1: µ is invariant under U−s .
Thanks to Corollary 4.6 there exists a full measure subset Ψ ⊂ X

such that W−(s)x ∩Ψ ⊂ U−s x for every x ∈ Ψ. Let µ =
∫
Y
µydσ be an

ergodic decomposition of µ into 〈s〉-ergodic components. Now thanks
to Mautner’s lemma [Mar71, Lemma 3] every µy is U+

s -invariant. Also
µy(Ψ) = 1 for σ almost every y. Let y ∈ Y be such a point. As
h(s , µy) = h(s−1, µy) Theorem 4.7 above gives

log2 α(s ,U+
s ) ≤ h(s , µy) ≤ log2 α(s−1,U−s )

However α(s−1,U−s ) = α(s ,U−s )−1. Note also that

α(s ,F(s)) = α(s ,U+
s )α(s ,U+

s ) = 1

Which gives
h(s , µy) = log2 α(s−1,U−s )

Now Theorem 4.7 (ii) gives µy is U−s -invariant for any such y. As this
was a full measure set with respect to σ, we get µ is invariant under
U−s .

Step 2: µ is invariant under τ∆(Gν) for some τ as in the Theo-
rem 1.1.

This follows from the description of U+
s and U−s given above, let us

recall that our earlier observations said U+
s = ∆(W+(t)) and U−s =

(z,e)∆(W−(t)). Now step 1 above says µ is invariant under U−s and
by our assumption we have the invariance under U+

s so µ is invariant
under 〈U+

s ,U−s 〉 = (z,e)∆(Gν), where the latter follows as we assumed
that Gν is connected, simply connected, almost simple (see for exam-
ple [Mar90b, Theorem 2.3.1]).
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Step 3: Completion of the proof of Theorem 1.1.
Assume first that for some x ∈ X we have µ(zH(ν)x) > 0. As this

set is U invariant and µ is U -ergodic, we then have µ((z,e)H(ν)x) = 1.
Note that this is not necessarily a closed subset of X. Now let (z,e)H(ν)x
denote the stabilizer of x in (z,e)H(ν), this is a discrete subgroup of
(z,e)H(ν) and we may view µ as a measure on (z,e)H(ν)/(z,e)H(ν)x.
The measure µ is (z,e)∆(Gν)-invariant and ergodic and (z,e)∆(Gν) is
a normal subgroup of zH(ν). Therefore, Lemma 2.2 guarantees that

µ is the Σ = (z,e)∆(Gν)(z,e)H(ν)x-invariant measure on a closed Σ-
orbit on (z,e)H(ν)/(z,e)H(ν)x. However, this also implies that µ is the
Σ-invariant measure on a closed Σ-orbit on X. We now study the
structure of Σ in more details. Let us write x = g1Γ1 × g2Γ2 and let
Σ0 = (g1, g2)−1Σ(g1, g2). We showed that the orbit of Σ0 from (e, e) is
closed and has a Σ0-invariant probability measure on it. Hence

Λ = Σ0 ∩Γ1×Γ2 = {(γ1, γ2) ∈ Γ1×Γ2 | γ1 = g2g
−1
1 zγ2z

−1g1g
−1
2 } (9)

is a lattice in Σ0. Let A and B be the Zariski closure of Λ and Σ0

respectively. Clearly A ⊆ B. Let A = A(KS) and B = B(KS). We
claim that A = B. This is a version of Borel density theorem. Let us
recall the proof in here. We consider the natural map

ι : (g−1
1 z,g−1

2 )H(ν)/(g−1
1 z,g−1

2 )H(ν)x → (g−1
1 z,g−1

2 )H(ν)/A

Let µ1 be the push-forward of µ. Now µ1 is U -ergodic on a KS-variety
so by lemma 2.1 we have this measure is concentrated on a single point
which is to say Σ ⊆ A. The claim is proved.

Recall now that Γi’s are arithmetic, more precisely after passing to a
finite index subgroup Γi’s are the S-integer points of algebraic groups
defined over the global field. Also recall that

Σ0 = (g−1
1ν z,g

−1
2ν )∆(Gν)(g−1

1 z,g−1
2 )H(ν)x

So pν(A) = pν(B) = (g−1
1ν z,g

−1
2ν )∆(Gν) where pν is the projection onto the

ν-component of H. We utilize (9) above and have pν(∆(Γ1∩ g2g
−1
1 zΓ2))

is Zariski dense in (g−1
1ν z,g

−1
2ν )∆(Gν). But this says Γ1 and g2g

−1
1 zΓ2 give

the same global structure to Gν . Hence Γ1 and g2g
−1
1 zΓ2 have the same

global structure. Thus Λ is commensurable to (g−1
1 z,g−1

2 )∆(Γ2). Now
since G is simply connected and Gν is not compact it follows from
strong approximation Theorem (see for example [Mar90b, chapter 2,

section 6]) that Σ0 = (g−1
1 z,g−1

2 )∆(G) = B = A, which gives the second
possible conclusion of the theorem.

Hence we may assume µ(zH(ν)x) = 0 for every x ∈ X. Let U− =
(z,e)∆(U−) where U− denotes the maximal unipotent subgroup of Gν
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opposite to U. Note that µ is invariant and ergodic for z∆(Gν) as a
result it is invariant and ergodic for both U and U−. Let Ωε be a
compact set of uniform convergence for the action of both U and U−,
which satisfies µ(Ωε) > 1− ε for some “small” ε > 0. Let

M = (Gν × {e})×
∏
ω 6=ν

(Gω ×Gω)

Note that M is a cross-section for z∆(Gν) in H. Since µ(zH(ν)x) = 0
we may argue as in [MT94, Lemma 3.3] and find a sequence {hn} ⊂
M \

(∏
ω 6=ν(Gω ×Gω)

)
such that hn → e and hnΩε ∩ Ωε 6= ∅. We

play the same old game again and construct the U -quasiregular map
φ with respect to hn. Our measure µ is invariant under Im(φ) by the
basic lemma. We are obviously in case (ii) of Proposition 3.3 so by loc.
cit. Im(φ) ⊂ W+(s). This says in any case we have Im(φ) ⊂ U × {e}.
The desired unboundedness of Im(φ) is guaranteed by Proposition 3.4.
Then Remark 4.4 gives µ = m1 ×m2. Theorem 1.1 is proved. �

5. Linearization

In this section we state and prove the linearization technique for the
positive characteristic case. We do this more generally than needed in
this paper with the hope that it will be useful in the future.

Let K be a global field of positive characteristic and let S be a finite
set of places of K. As usual KS =

∏
ν∈SKν and O(K) = OS the ring

of S-integers. Let G be a K-group and let

G =
∏
ν∈S

G(Kν)

Let Γ be an arithmetic lattice in G commensurable to G(OS). If k is a
local field and A ⊂ kd we let |A| denote the Haar measure of A.

The following simple lemma is a consequence of the Lagrange inter-
polation and is an important property of polynomials over a local field.
We refer to [KM98], [KT05], [Gh05] for a discussion of polynomial like
behavior. Let k denote the algebraic closure of a field k.

Lemma 5.1. Let k be a local field and p ∈ k[x1, · · · , xd] be a polynomial
of degree not greater than l. Then there exists C = Cd,l independent
of p, such that for any ball B ⊂ kd one has.∣∣{x ∈ B| ‖p(x)‖ < ε · sup

x∈B
‖p(x)‖

}∣∣ ≤ C ε
1
dl |B|.

Let us fix a few notations to be used in this section without further
remarks. We let U be a KS-split unipotent subgroup of G and let θ
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be the left invariant Haar measure on U, which of course is right in-
variant as well. We let T ⊂ S be the set of places ω ∈ S for which
Uω 6= {e}. Throughout this section we assume there is a polynomial
parametrization u :

∏
ν∈T K

dν
ν → U, which satisfies u(0) = e. Further-

more u∗λ = θ, where λ is the Lebesgue measure on
∏

ν∈T K
dν
ν . We let

B be an open ball around the origin in Kd
S fixed once and for all. We

assume U ⊂ W+(s) for some element s ∈ G from class A.

Definition 5.2. A sequence of regular maps λn : U → U is called a
sequence of admissible expanding maps iff there exists U0 such that (i)
p : U → U0 a regular isomorphism (as KS-varieties) with p(e) = e, and
(ii) sU0s

−1 = U0 and we have λn(u) = p−1(snp(u)s−n).

We make one further assumption, (this is not an essential assumption
and is satisfies in most reasonable cases), assume that there exists a
sequence of admissible expanding maps, λn : U → U. This being the
case we let Bn = λn(u(B)).

The following states a quantitative non-divergence theorem for the
action of unipotent groups on G/Γ. By now the theorem has a long
history. G. A. Margulis first proved some non-quantitative version of
this which he used in the proof of arithmeticity of non-uniform lattices.
The ideas developed by Margulis were applied by S. G. Dani to prove
the first quantitative version. The study did not stop there indeed
later in 90’s D. Kleinbock and G. A. Margulis [KM98] pushed the idea
further and gave more precise quantifiers which was used in theory of
diophantine approximation. The S-arithmetic version in zero charac-
teristic was proved in [KT05] and the result in positive characteristic
was obtained in [Gh05].

Theorem 5.3. Let G be a KS-algebraic group and let Γ be an arith-
metic lattice in G. Let U be the KS-points of a unipotent KS-split sub-
group of G. We assume u :

∏
ν∈T K

dν
ν → U is a polynomial diffeomor-

phism onto U, such that u(0) = e. Let K ⊂ G/Γ be a compact subset
and ε > 0, then there exists a compact set L ⊂ G such that K ⊂ LΓ/Γ
and for any x ∈ K and B(r) ⊂

∏
ν∈SK

dν
ν , any ball around the origin,

we have

|{t ∈ B(r)|r(t)x ∈ LΓ/Γ}| ≥ (1− ε)|B(r)|

Proof. Thanks to arithmeticity of Γ we may reduce the problem to the
case where G = SLn(KS) and Γ = SLn(OS). The result now follows
from [KT05, Thm. 6.3] and [Gh05, Thm. 4.3], using Lemma 5.1 and
the fact that 0 ∈ B(r). �

We have the following, which is essentially in [To00, Prop. 4.2].
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Proposition 5.4. Let ν be a place of K and let M be a Zariski closed
subset in Km

ν . Then for any compact subset A of M, and any ε > 0
and integers d,D there exists a compact subset B in M such that the
following holds; Given a neighbourhood Q0 of B in Km

ν , there exists a
neighbourhood Q of A in Km

ν such that for any unipotent subgroup U of
GLm(Kν), with u : Kd

ν → U is a polynomial diffeomorphism from Kd
ν

onto U of polynomial degree ≤ D and with u(0) = e, any a ∈ Km
ν \Q0

and any B(r) ⊂ Kd
ν a neighbourhood of the origin, we have

|{t ∈ B(r)|u(t)a ∈ Q}| ≤ ε|{t ∈ B(r)|u(t)a ∈ Q0}|

Proof. The proof is identical to that of [To00, Prop. 4.2] or [DM93,
Prop. 4.2] using Lemma 5.1. (In [DM93] the variety could be defined
by a single real polynomial by taking the sum of the squares, but this
is not essential as the proof there shows.) �

We now move to the proof of linearization. Let us, following [DM93]
and [To00] fix the following notations and definitions. Define

F =

{
F | F is a connected K-closed subgroup of G ,

F has no rational characters

}
We will refer to these subgroups as subgroups from class F . For a
proper subgroup F of class F we let F = F(KS). Let U be a split
unipotent subgroup of G as before and let

X(F,U) = {g ∈ G | Ug ⊂ gF}
As it is clear from the definition X(F,U) is a KS-closed subset of G.
We let

S(U) =
⋃

F∈F ,F 6=G

X(F,U)/Γ and G(U) = G/Γ \ S(U)

Following [DM93] points in S(U) are called singular and points in G(U)
are called generic points with respect to U. Note that these are a priori
different from measure theoretic generic points, however any measure
theoretic generic point is generic in this new sense as well.

The following is the main result of this section. This was proved
in [DM93] in the real case for one parameter subgroups. Later it was
obtained in the S-arithmetic setting see [MT94, To00]. For an account
of this for the case not dealing only with one parameter groups we refer
to [Sh94] and also [EMS96].

Theorem 5.5. Let G, Γ be as in the statement of Theorem 5.3. Let ε >
0 and let K ⊂ X = G\Γ be a compact subset. Furthermore, let F be a
subgroup from G of class F and assume C =

∏
ν∈S Cν ⊂

∏
ν∈S G(Kν) is

a compact subset of X(F,U). Then we can find a maybe larger compact
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subset D =
∏

ν∈S Dν ⊃
∏

ν∈S Cν of X(F,U) with Dω = Cω for ω ∈
S \ T such that the following holds; For any neighbourhood Φ of D in
G there exists a neighbourhood Ψ of C such that if x ∈ K\(ΦΓ/Γ) then
for any n ∈ N

1

θ(B)
θ
({

t ∈ B| λn(u(t))x ∈ ΨΓ/Γ
})

< ε

Let us note that this theorem is the reason why a classification of U -
invariant measures (Dani’s measure conjecture) implies a classification
of U -orbit closures (Raghunathan’s conjecture). More precisely, if it is
known that a U -invariant and ergodic measure must be the Haar mea-
sure of an orbit of the form gFΓ/Γ for some g ∈ X(F,U) and F ∈ F ,
then by Theorem 5.5 any x ∈ G(U) is measure-theoretic generic for the
Haar measure mX on X = G/Γ and so has dense orbit. (While those
points x ∈ S(U) are generic for a smaller dimensional Haar measure).
Of course, in zero characteristic the measure classification is known due
to [R92, R95] resp. [MT94].

The rest of this section is devoted to the proof of Theorem 5.5, the
proof will follow the argument in [DM93], as it did in [To00], after
setting up everything correctly there are not many difficulties arising
in the body of the proof. We will however present the proof for the
sake of completeness.

We may, as we will, reduce to the case T = {ν} is a singleton.
This is a simple induction argument, for details see [To00, Lemma 4.3].
After this, we may do one more reduction which will be helpful: As we
are in positive characteristic there is an open and compact subgroup
M ⊂

∏
ω∈S\{ν}Gω. As Gν × M ⊂ G is open and Γ is a lattice, we

have that G/Γ is a finite union of Gν ×M -orbits Gν ×M(e, hi)Γ with
i = 1, . . . , `. Each of these orbits is U -invariant and the statement of
the Theorem 5.5 for G/Γ is equivalent to the statement for each of the
Gν × M -orbits. Therefore, we may assume that G′ = Gν × M and
that Γ′ ⊂ G′ is such that πν(Γ

′) is commensurable with πν({γ ∈ Γ :
πS\{ν}(γ) ∈ M}). However, we may moreover assume that the set C
is a product Cν ×M in which case the proposition is equivalent to its
statement for Cν and the quotient Gν/πν(Γ

′) ' M\G′/Γ′. Here πν(Γ)
is commensurable with G(Oν) — we note that for every place ν there
is indeed a corresponding subring O{ν} ⊂ K. In other words, the case
of S = {ν} implies the general case. Hence we may and will assume
S = {ν} and don’t have to write the subscripts in the remainder of the
section.

Let NG(F) be the normalizer of F in G. This is a K-closed subset
of G. We will construct a finite K-rational representation ρ of G on a
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K-vector space W and a vector w0 ∈ W such that NG(F) = {g ∈ G :
ρ(g)w0 ∈ Kw0} just as in Chevalley’s theorem. However, as we wish
to obtain additional information we record this in the following.

Lemma 5.6. There is a representation ρ : G → GL(W) which is
rational over K, a K-rational character χ defined on NG(F), and a
vector w0 ∈ W = W(K) such that:

(i) NG(F) = {g ∈ G : ρ(g)w0 ∈ Kw0} = {g ∈ G : ρ(g)w0 =
χ(g)w0}

(ii) The orbit ρ(Γ)w0 is discrete and closed.
(iii) Let η : G→ W be the orbit map i.e. η(g) = ρ(g)w0 for g ∈ G.

Then

η−1(η(X(F,U))) = X(F,U) (10)

where η(X(F,U)) is the Zariski closure of X(F,U) in W .

Proof. Note that as G is defined over K the right and left regular
representation of G on K[G] is defined over K. Let us first recall that
as F is K-closed there exists a purely inseparable extension E of K such
that F is defined over E (see for example in [B91]). Now F is defined
over E so we can find {h1, · · · , hk} which are E-rational generators of
the ideal J0 defining F. Let q be a power of the Frobenius map which
sends E to K. For all 1 ≤ i ≤ k we let fi = hqi . Now let J = I ·K[G]
where I is the ideal generated by {fi}’s in K[G]. Also let us define the
representation ρ′(g) on K[G] by (ρ′(g)h)(x) = h(g−1xg).

Let α : E[G] → E[G] ⊗ E[G] be the co-morphism and let α(hi) =∑
j βj⊗γj and α(γj) =

∑
` θj`⊗ηj`. We have ρ′(g)hi(x) = hi(g

−1xg) =∑
j

∑
` β

q
j (g
−1)ηqj`(g)θqj`(x). So there is a finite dimensional subspace

of K[G] containing all of ρ′(g)fi’s. Let V be the intersection of all
these dimensional subspaces. We define the K-rational representation
ρV (g)f = ρ′(g)f for f ∈ V .

Let I = V ∩ J . Note that I has a K-basis of functions in K[G]
consisting of elements that are q-th power of functions in E[G]. We

define the linear space W =
∧dim I V as the wedge power of V with the

power equal to the dimension of I, and define w0 as the wedge product
of a basis of I. The representation ρ of G on W is the one induced
by ρV on V . With these definitions we claim that NG(F) = {g ∈ G :
ρ(w0) ∈ Kνw0} = {g ∈ G : ρV (g)I = I}, which will establish (i) above.
Let g ∈ G be such that ρV (g)I = I however the zero set of I and J0 are
the same hence the action of g preserves the zero set of J0 which is F
hence g ∈ NG(F). For the other direction let f ∈ I ⊂ J then it is clear
from our definition of ρV that ρV (g)f =

∑
i ci`

q
i where `q ∈ I and ci
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are constants. This establishes (i) above. Note that as Γ is arithmetic
and w0 is K-rational (ii) is immediate.

Now let η : G → W be the orbit map η(g) = ρ(g)w0 for g ∈ G.
Finally let X = {g ∈ G| Ug ⊂ gF}. This is a KS-closed subset of G and
we have X(KS) = X(F,U). We want to establish (iii) above. To see
this, notice first that g−1ug ∈ F iff the kernel of the evaluation map at
g−1ug contains I which in turn happens iff the kernel of the evaluation
map at u contains ρV (g)(I). This condition is actually a polynomial
relation for the coefficients of ρ(g)w0. Therefore, for every u ∈ U there
exists a polynomial p on W such that g−1ug ∈ F iff p vanishes on
ρ(g)w0. Varying u ∈ U we get that there is a K-closed variety Y ⊂ W
such that g−1Ug ⊂ F iff η(g) ∈ Y. This proves the claim. �

Furthermore, we define the subgroup L = {g ∈ G : ρ(w0) = w0} of
NG(F), L = L(KS), ΓL = Γ ∩ L, and ΓF = Γ ∩NG(F ).

We now prove the following simple but important proposition.

Proposition 5.7. The following map is a proper map;

ϑ : G/ΓL → G/Γ×W where ϑ(gΓL) = (gΓ, ρ(g)w0).

Proof. The proof is straight forward. Let {gnΓL} be a sequence inG/ΓL
such that ϑ(gnΓL) converges, we need to show that {gnΓL} converges as
well. From the definition and our assumption we have (gnΓ, ρ(gn)w0)→
(gΓ, v) ∈ G/Γ ×W . This says we can write gn = xnγn where γn ∈ Γ
and xn → g. Now recall that ρ(gn)w0 = ρ(xnγn)w0 → v so we have
{ρ(γn)w0} converges to ρ(g−1)v. However arithmeticity gives that Γw0

is discrete in W so for large enough n one has ρ(γn)w0 = ρ(γ)w0. By
definition of ΓL this gives gnΓL → gγΓL, as we wanted to show. �

Let A be a subset of G, a point x ∈ A is called a point of (F,Γ)-
self-intersection for A if there exists γ ∈ Γ \ ΓF such that xγ ∈ A.
This notion was first used in [DM93] also it was used in the same
way in [To00]. Note that for a compact set A the set of (F,Γ)-self-
intersections is closed. The following are versions of [DM93, Prop. 3.3]
resp. [DM93, Cor. 3.5] and [To00, Prop. 4.9].

Proposition 5.8. For any F ∈ F we have that the self-intersections of
X(F,U) are contained in the union of X(F ′, U) for subgroups F′ ∈ F
of smaller dimension. In fact, for every g, gγ ∈ X(F,U) with γ /∈ ΓF
the subgroup F′ ∈ F with g ∈ X(F ′, U) can be chosen to depend only
on F and γ.

Proof. Let γ ∈ Γ\ΓF . Then F∩γFγ−1 is a K-subgroup of F of strictly
smaller dimension as F is connected and γ /∈ ΓF . Let F′ ⊂ (F∩γFγ−1)◦

be the common kernel of all K-characters of (F∩γFγ−1)◦. Then F′ ∈ F .
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Now suppose g, gγ ∈ X(F,U), then g−1Ug ⊂ F and g−1Ug ⊂ γFγ−1

by definition of X(F,U). As U is a connected unipotent subgroup we
have g−1Ug ⊂ F ′. Hence g ∈ X(F ′, U) again by definition. �

Proposition 5.9. Let D ⊂ G be a compact subset of G and let Y be
the set of all (F,Γ)-self-intersection points in D. Then for any compact
subset D′ of D \Y there exists an open neighborhood Ω of D′ in G such
that Ω does not contain any point of (F,Γ)-self-intersection.

Proof. Assume the contrary so there exists a decreasing sequence Ωn

of open neighborhoods of D′ such that
⋂
n Ωn = D′ and that for any

natural number n there are elements gn, g
′
n ∈ Ωn where gn = g′nγn and

γn 6∈ ΓF . Passing to a subsequence if necessary we assume {gn} and
{g′n} converge. This gives γn converges, thus for large enough n we
have γn = γ /∈ ΓF . Now if gn → g, then we have g, gγ ∈ D′. This says
g ∈ Y , which contradicts the fact g ∈ D′. �

Proof of Theorem 5.5. Let the notations and assumptions be as in the
statement of Theorem 5.5. The proof will be by induction on the dimF.
Note that there is nothing to prove when dimF = 0. Recall that we
assume S = {ν}, i.e. that G = Gν .

So suppose C ⊂ X(F,U) is compact. We may suppose C ⊂ K.
We apply Proposition 5.4 to the compact subset A = ρ(C)w0 ⊂ M =

ρ(X(Fν , U))w0, which defines for us a compact subset B ⊂ M . We
may assume A ⊂ B. Also use Theorem 5.3 to find a compact subset L
of G with the properties K ⊂ LΓ/Γ and that for any x ∈ K

1

θ(B)
θ({t ∈ B|λn(u(t))x ∈ LΓ/Γ}) ≥ 1− ε. (11)

From Proposition 5.7 and (10) it follows that there exists a compact
subset D0 ⊂ X(F,U) such that

ϑ−1(LΓ/Γ×B) = D0ΓL/ΓL and D0L ∩ LΓ ⊂ D0ΓL.

We may suppose D0 ⊃ C. As the set Y of all (F,Γ)-self-intersections
of D0 may be non-empty (and we need to control these later) we will
define D only after discussing Y .

As D0 ⊂ X(F,U) we know by Proposition 5.8 that Y belongs to
the union of the X(F ′, U) for subgroups F′ ∈ F of strictly smaller di-
mension. Moreover, as D0 is compact and Γ is discrete, there are only
finitely many γ ∈ Γ with D0 ∩D0γ 6= ∅. Therefore, again by Proposi-
tion 5.8 we have Y ⊂

⋃`
i=1X(F ′i , U) for finitely many F′1, . . . ,F′` ∈ F .

For each i we define Ci = D0 ∩X(F ′i , U) and apply the inductive hy-
pothesis to obtain the compact subsets Di ⊂ X(F ′i , U) satisfying the
conclusion of the theorem with ε replaced by ε

`
.



A JOININGS CLASSIFICATION IN POSITIVE CHARACTERISTIC 27

We define D = D0 ∪
⋃`
i=1Di. To show that D satisfies the property

in the theorem suppose Φ is a neighborhood of D in G. We will now
work towards the definition of the neighborhood Ψ of C. As Φ is a
neighborhood of Di for each i = 1, . . . , `, we can apply the inductive
hypothesis to find open neighborhoods Ψi of Ci. This shows that as
long as x ∈ K \ (ΦΓ/Γ) then for any n ∈ N we have

1

θ(B)
θ
({

t ∈ B| λn(u(t))x ∈
⋃̀
i=1

ΨiΓ/Γ
})

< ε (12)

Removing Ψ′ =
⋃`
i=1 Ψi from D we obtain, by construction of the

sets Ci, a compact subset D′ = D \ Ψ′ ⊂ D \ Y . By Proposition 5.9
there exists a neighborhood Ω ⊂ Φ of D′ that also has no (F,Γ)-self-
intersections. This gives a neighborhood Ω∪Ψ′ ofD and so in particular
of D0. Recall that D0ΓL/ΓL = ϑ−1(LΓ/Γ × B). We claim there is a
neighborhood Q0 of B such that

(Ω ∪Ψ′)ΓL/ΓL ⊃ ϑ−1(LΓ/Γ×Q0). (13)

This is again a simple compactness argument relying on the proper-
ness of ϑ in Proposition 5.7. By construction of B (which relied on
Proposition 5.4) there exists now a neighborhood Q of A = ρ(C)w0.
By continuity of the representation ρ there exists a neighborhood Ψ
of C such that ρ(Ψ)w0 ⊂ Q. We claim that Ψ satisfies the statement
in the theorem for the given Φ and (2 + fκ)ε instead of ε, where κ is
the number of roots of unity in K and f is a constant depending on U
(more precisely the dimension and the residue field of Kν).

Let us indicate how the roots of unity will enter the estimate. Recall
that NG(F) equals the stabilizer of Kw and that w is K-rational. Hence
there exists a K-character χ on NG(F) such that ρ(g)w0 = χ(g)w0

for all g ∈ NG(F ). As Γ is commensurable with G(Oν) and ΓF is a
subgroup, it follows that ρ(ΓF ) ⊂ K× is a bounded subgroup of K×ω
for all places ω 6= ν. However, this shows that ρ(ΓF ) is contained in
the group of roots of unity of K.

To show the theorem suppose x = gΓ ∈ K \ (ΦΓ/Γ) and fix some

integer n ∈ N. Recall the union Ψ′ =
⋃`
i=1 Ψi of the neighborhoods

that was obtained via the inductive hypothesis. We define the following
sets

B(1) =
{
t ∈ B| λn(u(t)) 6∈ LΓ/Γ or λn(u(t)) ∈ Ψ′Γ/Γ

}
and

B(2) =
{
t ∈ B| λn(u(t)) ∈ (ΨΓ/Γ ∩ LΓ/Γ) \ (Ψ′Γ/Γ)

}
.
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Note that B(1)∪B(2) ⊃ {t ∈ B| λn(u(t)) ∈ ΨΓ/Γ}. Furthermore using
(11) and (12) above we have

θ(B(1)) ≤ 2εθ(B) (14)

To finish the proof we need to give a similar upper bound for θ(B(2)).
For this notice first that for all γ ∈ Γ we have ρ(gγ)w 6∈ Q0. Assume

the contrary, then as gΓ ∈ LΓ/Γ we have gγΓL ∈ ϑ−1(LΓ/Γ ×Q0) ⊂
ΩΓL/ΓL which implies x = gΓ ∈ ΦΓ/Γ which contradicts the assump-
tion on x and so proves the claim.

Fix some γ and the corresponding q = ρ(gγ)w0 ∈ ρ(gΓ)w0. For each
such q we will define Bq ⊂ B as follows; t ∈ Bq if there is an open ball
O ⊂ B such that

ρ(λn(u(O))gγ)w ⊂ Q0

and there exists some

t′ ∈ O such that λn(u(t′))x ∈ LΓ/Γ \ (Ψ′Γ/Γ).

Note that B(2) ⊂
⋃
q Bq, where the union is taken over all q ∈ ρ(gΓ)w.

For any t ∈ Bq we let Bq(t) be the largest ball in Bq which contains
t. Due to the non-Archimedean property this definition makes sense as
the union of two non-disjoint balls is always a ball. Also note that by
definition there exists for any t ∈ Bq some t′ ∈ Bq(t) with λn(u(t′))x ∈
LΓ/Γ \ (Ψ′Γ/Γ).

We have the following property for the various Bq’s which we will
refer to as:
(‡) Let q 6= q′ be in gΓw, such that Bq ∩Bq′ 6= ∅ then q′ = ζq where ζ
is a root of unity in E.

To see this let t ∈ Bq ∩ Bq′ , and let Bq(t) (resp. Bq′(t)) be the
largest ball in Bq (resp. in Bq′) which contains t, as above. Due to the
non-Archimedean property one of these balls contains the other which
implies that there exists t0 ∈ Bq(t) ∩Bq′(t) such that λn(u(t0))x ∈
LΓ/Γ \ (Ψ′Γ/Γ). The definitions give λn(u(t0))q = λn(u(t0))gγw and
λn(u(t0))q′w = λn(u(t0))gγ′w are in Q0. Hence by (13) we get that

λn(u(t0))gγ, λn(u(t0))gγ ∈ ΩΓL.

However, by construction Ω does not have any (F,Γ)-self-intersection.
Thus we must have γ′ = γδ where δ ∈ ΓF . As discussed above ρ(δ)w =
χ(δ)w and χ(δ) ∈ K is a root of unity which proves (‡).

Due to the maximality of the ball Bq(t) and since it is a proper subset
of B (due to the earlier established fact that gγw 6∈ Q0 for all γ ∈ Γ)
we may apply the properties of C,D,Q,Q0 as given by Proposition 5.4
— strictly speaking to the unique next largest ball containing Bq(t)
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which is in θ-measure only by a constant c bigger. This gives

θ(B(2) ∩Bq(t)) ≤ cεθ(Bq(t)).

We use the non-Archemidean feature once more to say that for t and
t′ in Bq either Bq(t) ∩ Bq(t

′) = ∅ or Bq(t) = Bq(t
′), i.e. if we list

these balls (without repetitions) we get a partition of Bq. Summing
over this partition we obtain

θ(B(2) ∩Bq) ≤ cεθ(Bq) (15)

Recall that {Bq} gives a covering for B(2). This time we do not claim
disjointness of the various sets. However, by (‡) the multiplicity of this
cover is bounded by κ. Therefore, we get from summing (15) over all
choices of q the inequality

θ(B(2)) ≤
∑
q

θ(B(2) ∩Bq) ≤

≤ cε
∑
q

θ(Bq) ≤ cκεθ
(⋃
q

Bq

)
≤ cκεθ(B)

This and (14) complete the proof. �

6. Proof of Theorem 1.2

Let the notation and conventions be as in the introduction and the
statement of Theorem 1.2. In particular let G be a connected, simply
connected, absolutely almost simple group defined over K. Define G =∏

ν G(Kν) and H = G×G. Let

F =

{
F | F is a connected K-closed subgroup of G×G,

F has no K -rational character

}
If there is no fear for confusion, we will simply say F ∈ F .

Proposition 6.1. Let x = (x1, x2) = (g1Γ1, g2Γ2) ∈ X satisfy that x1

and x2 are measure theoretically generic for the action of U on G/Γ1

and G/Γ2, respectively. Then U · x is equidistributed in (g1, g2)F0 · Γ.
Here either F0 = τ∆(G) if there exists some inner automorphism τ for
which U(g1, g2) ⊆ (g1, g2)τ∆(G) and τ∆(G) ∈ F , resp. F0 = H if there
doesn’t exists such an automorphism τ .

Proof. Let B be a fixed neighborhood of the identity in U as in Sec-
tion 5. Note that U comes equipped with natural family of admissible
expansions thanks to the fact that U is a horospherical subgroup of G.

We keep the notation λn for this family as in Section 5. Let X̃ be the
one-point compactification of X if X is not compact and be X if X is



30 MANFRED EINSIEDLER AND AMIR MOHAMMADI

compact. For any natural number n define the probability measure µn
on X by ∫

X

f(y)dµn(y) =
1

θ(B)

∫
B

f(λn(t)x)dθ(t)

where f is a bounded continuous function on X. As X̃ is compact the

space of probability measures on X̃ is weak∗ compact. Let µ be a limit
point of {µn}. By identifying µ we show that there is only one limit
points which in return gives convergence. It follows from nondivergence
of unipotent trajectories (Theorem 5.3) that µ is concentrated on X.
Note also that thanks to polynomial like behavior of unipotent flows
we have µ is U -invariant. The condition in the proposition regarding
the genericity of the components of x guarantees that µ is a joining for
the U action on X1 and X2. We let µ =

∫
Y
µydσ(y) be a decomposition

of µ into U -ergodic components. By assumption G is simply connected
so that the action of U on X1 and X2 is ergodic. Therefore, for a.e.
y ∈ Y the ergodic measure µy is a joining. We now consider the two
cases in the proposition separately.

Case 1. Suppose there exists an inner automorphism τ with F0 =
τ∆(G) being K-closed and satisfying U(g1, g2) ⊆ (g1, g2)F0. In this case
µ is a measure on the closed set (g1, g2)F0Γ ⊂ X. As a result we have
µ 6= m1×m2 and the same holds for almost every ergodic component µy.
Now recall from steps 2 and 3 of the proof of Theorem 1.1 in Section 4
that the ergodic joinint µy is invariant under zy∆(G) for some zy ∈
Z(U). Since µy 6= m1×m2 we have µy is the zy∆(G)-invariant measure
on a closed zy∆(G)-orbit. However, the support of µy is in (g1, g2)FΓ.
So we have for σ-almost every y, (g1, g2)F (g1, g2)−1 = zy∆(G) thus µ
is the Haar measure on (g1, g2)FΓ.

Case 2. There is no inner automorphism as in case 1. Now The-
orem 1.1 says that σ-almost every ergodic component µy is either the
Haar measure on X or the Haar measure on a closed orbit of a subgroup
zy∆(G). In the latter case we also know that µy is the Haar measure on
(e, gy)FyΓ where Fy = τy∆(G) ∈ F . As F is countable, we can rewrite
the above ergodic decomposition as the following countable sum

µ = cm1 ×m2 +
∑
i

µδi . (16)

Here m1 × m2 is the Haar measure on X, c ∈ [0, 1], and µδi is the
restriction of µ to

Xi = X(δi∆(G),U) \
⋃{

X(F ′,U)| F
′ ∈ F , F ′ ⊂ δi∆(G),

dimF ′ < dim δi∆(G)

}
. (17)
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Here δi ∈ G is a sequence such that the sequence δi∆(G) ∈ F con-
tains precisely one element of each element of F of the form τ∆(G).
Furthermore each U -ergodic component of µδi is the h(δi∆(G))h−1-
invariant measure on the closed orbit h δi∆(G)Γ for some h ∈ Xi. We
now make use of Theorem 5.5 which gives

µ(X(F,U)) = 0 for any F 6= H

This using (17) and (16) above guarantee that µ = m1 ×m2. �

We can now complete the proof of Theorem 1.2. Let x = (g1Γ1, g2Γ2) ∈
X be an arbitrary point. We want to consider the orbit ∆(G) ·x. First
note that as U acts ergodically on G/Γi for i = 1, 2, there is an mG-
full measure subset G of G such that (g, g) · x satisfies the genericity
hypothesis of Proposition 6.1 for all g ∈ G. For any F = τ∆(G) ∈ F
we define

EF = {g ∈ G| U(gg1, gg2) ⊂ (gg1, gg2)F}.

Note now that F is countable, so either there is some g ∈ G \
⋃
F EF

or mG(EF0) is positive for some F0. If g ∈ G \
⋃
F EF then by Propo-

sition 6.1, we have that (gg1, gg2)Γ is generic for mX1 × mX2 which
proves that ∆(G)(g1, g2)Γ is dense. On the other hand, if mG(EF0) is
positive for some F0 then (g1, g2)−1∆(G)(g1, g2) ⊂ F0 and ∆(G) · x
equals (g1, g2)F0 · Γ.

Appendix A. Quasi-isometries of irreducible positive-rank
arithmetic groups over function fields, by

Kevin Wortman

A.1. Quasi-isometries. Any finitely generated group has a left in-
variant word metric that is unique up to quasi-isometry. Recall that
a quasi-isometry between metric spaces is a function φ : X → Y such
that there are constants L ≥ 1 and C ≥ 0 for which any x1, x2 ∈ X:

1

L
d(x1, x2)− C ≤ d(φ(x1), φ(x2)) ≤ Ld(x1, x2) + C

and such that every point in Y is within distance C of some point in
the image of X.

The surge of interest in viewing finitely-generated groups as geomet-
ric objects led to the ongoing investigation of which distinct groups
are quasi-isometric to each other. Just as important is deciding all the
self-quasi-isometries that a given group can exhibit, and for this it is
convenient to define quasi-isometry groups:
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For a metric space X, we define the relation ∼ on the set of functions
X → X by φ ∼ ψ if

sup
x∈X

d(φ(x), ψ(x)) <∞

Then if Γ is a finitely-generated group with a word metric, we form
the set of all quasi-isometries of Γ, and denote the quotient modulo ∼
by QI(Γ). We call QI(Γ) the quasi-isometry group of Γ as it has a
natural group structure arising from function composition.

A.2. Quasi-isometries of lattices. Ideally one would like to be able
to determine the quasi-isometry group of any finitely-generated group.
While in practice this is a difficult problem for a general group, there
has been some very good progress made on this problem for certain spe-
cial classes of finitely-generated groups. Not surprisingly, since quasi-
isometries originated in Mostow’s study of strong rigidity, one of the
special classes that was studied with success was the class of irreducible
lattices in semisimple groups. Again, not surprisingly considering the
origins of these problems in Mostow’s work, it was the quasi-isometry
groups of cocompact lattices that were approached and classified first.

The quasi-isometry groups of cocompact lattices in semisimple groups
over nondiscrete locally compact fields was worked out independently
by cases in the work of Mostow, Tukia, Koranyi-Reimann, Pansu, and
Kleiner-Leeb [Mo68], [Tu85], [KR95], [Pa89], [KL97]. To summarize
briefly, if Γ is an irreducible cocompact lattice in a semisimple Lie
group G, then QI(Γ) is isomorphic “up to compact groups” to G as
long as the only rank one factors of G are locally isomorphic to Sp(n, 1)
and F−20

4 . If G has any other rank one factor, then the quasi-isometry
group does have a definable structure, but that structure varies by
cases, and in any of those cases QI(Γ) is infinite-dimensional.

The classification of quasi-isometry groups of irreducible non-cocompact
lattices in real semisimple Lie groups was worked out by Schwartz,
Farb, and Eskin [Sc95], [FSc96], [Sc96], [E98], [F97]. Later, Taback and
Wortman extended the classification to the setting of irreducible non-
cocompact arithmetic lattices in Lie groups over nondiscrete, locally
compact fields of characteristic zero [Ta00], [W07], [W08]. Roughly
speaking, any quasi-isometry of a lattice described in this paragraph
is a finite distance in the sup-norm from a commensurator, as long as
the lattice in question is not commensurable with PGL2(Z). To state
the result precisely, we first need to organize some notation.

A.3. Commensurators. We let K be a global field, VK the set of all
inequivalent valuations on K, and V ∞K ⊆ VK the subset of archimedean
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valuations. We will use S to denote a finite nonempty subset of VK
that contains V ∞K , and we write the corresponding ring of S-integers in
K as OS.

For any valuation v ∈ VK , we let Kv be the completion of K with
respect to v. For any nonempty set of valuations S ⊆ VK , and any
algebraic K-group G, we define

GS =
∏
v∈S

G(Kv)

We identify G(OS) as a discrete subgroup of GS using the diagonal
embedding.

We let Aut(GS) be the group of topological group automorphisms
of GS. An automorphism ψ ∈ Aut(GS) commensurates G(OS) if
ψ(G(OS)) ∩G(OS) is a finite index subgroup of both ψ(G(OS)) and
G(OS).

We define the commensurator group of G(OS) to be the subgroup
of Aut(GS) consisting of automorphisms that commensurate G(OS).
This group is denoted as CommAut(GS)(G(OS)). Notice that it differs
from the standard definition of the commensurator group of G(OS) in
that we have not restricted ourselves to inner automorphisms.

A.4. Number fields. The sum of the results mentioned above of Schwartz,
Farb, Eskin, Taback, and Wortman are given by the following

Theorem A.1. Suppose K is a global number field, and G is a con-
nected, absolutely simple, K-isotropic, algebraic K-group of adjoint
type. If either K � Q, S 6= V ∞K , or G is not Q-isomorphic to PGL2,
then there is an isomorphism

QI(G(OS)) ∼= CommAut(GS)(G(OS))

Note that Theorem A.1 does not apply to PGL2(Z) as this group is
virtually free, and thus has an uncountable quasi-isometry group.

A.5. Function fields. While Theorem A.1 completely resolves the
quasi-isometric classification of non-cocompact, irreducible, arithmetic
groups over global number fields, most cases for the quasi-isometric
classification of non-cocompact, irreducible, arithmetic groups over global
function fields had remained open. The expected result is as follows:

Conjecture A.2. Suppose K is a global function field, and G is a
connected, absolutely simple, K-isotropic, algebraic K-group of adjoint
type. If

∑
v∈S rankKv(G) > 1, then there is an isomorphism

QI(G(OS)) ∼= CommAut(GS)(G(OS))
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Note that the assumption from Conjecture A.2 that
∑

v∈S rankKv(G) >
1 is equivalent to the finite generation of the group G(OS), and thus
is required in order for QI(G(OS)) to be defined.

An application of the paper that this note is an appendix to is to
provide a proof for a significant portion of Conjecture A.2 in the form
of the following theorem.

Theorem A.3. Suppose K is a global function field, and G is a con-
nected, absolutely simple, K-isotropic, algebraic K-group of adjoint
type. If rankKv(G) > 1 for each v ∈ S, then there is an isomorphism

QI(G(OS)) ∼= CommAut(GS)(G(OS))

Proof. We denote by AutHd(GS ; G(OS)) the set of all ψ ∈ Aut(GS)
such that the Hausdorff distance between G(OS) and ψ(G(OS)) is
finite. Proposition 6.9 of [W07] states that

QI(G(OS)) ∼= AutHd(GS ; G(OS))

We want to show that

AutHd(GS ; G(OS)) ∼= CommAut(GS)(G(OS))

which proves the theorem.
Nimish Shah indicated the proof of Proposition 7.2 in [W07] which

was used in the quasi-isometric classification of arithmetic groups in
characteristic zero. This proof is basically the same. Only some minor
modifications have been made.

Let Λ = G(OS). We may assume that Λ is contained G+
S , which is

the subgroup of GS generated by the unipotent radicals of parabolic

subgroups of the factor groups G(Kv). If we let Ad : G̃ → G be the

universal covering of G, then Ad−1(Λ) is a lattice in G̃S. We denote
Ad−1(Λ) by Γ.

Any ψ ∈ AutHd(GS ; Λ) corresponds to an automorphism ψ̃ ∈ Aut(G̃S)

that stabilizes Γ up to finite Hausdorff distance. We let Γ∗ = ψ̃(Γ).

By Theorem 1.2, there is a closed subgroup L ≤ G̃S× G̃S containing

∆(G̃S) and such that

∆(G̃S)(Γ,Γ∗) = L(Γ,Γ∗)

We claim there are only two cases: either L is contained in ∆(G̃S)(Z×
Z) where Z is the center of G̃S, or else there is some v ∈ S such

that 1 × G̃(Kv) ≤ L. To prove our claim, suppose L is not con-

tained in ∆(G̃S)(Z × Z). Then there is some (g1, g2) ∈ L such that

(1, g−1
1 g2) is not central in 1 × G̃S. Note that since ∆(G̃S) ≤ L, we

have (1, g−1
1 g2) ∈ L.



A JOININGS CLASSIFICATION IN POSITIVE CHARACTERISTIC 35

If (1, h) ∈ (1× G̃S) ∩ L and g ∈ G̃S, then

(1, ghg−1) = (g, g)(1, h)(g−1, g−1) ∈ ∆(G̃S)L∆(G̃S) = L

which is to say that (1× G̃S) ∩ L is a noncentral, normal subgroup of

1 × G̃S. Therefore, (1 × G̃S) ∩ L contains 1 × G̃(Kv) for some v ∈ S,
and we have proved our claim.

If it is the case that 1 × G̃(Kv) ≤ L for some v ∈ S, then it is an
easy exercise to show (as in Proposition 7.2 of [W07]) that ΓΓ∗ is dense

in G̃S/Γ
∗ which contradicts our assumption that Γ∗ is non-cocompact

and a finite Hausdorff distance from Γ.
We are left with the case that L is contained in ∆(G̃S)(Z × Z). We

want to show that ΓΓ∗ is a closed subset of G̃S/Γ
∗, so we suppose we

have a sequence {γk} ⊆ Γ and a group element g ∈ G̃S with γkΓ
∗ →

gΓ∗. Thus (γk, γk)(Γ,Γ
∗)→ (Γ, gΓ∗). By the defining property of L ≤

∆(G̃S)(Z × Z), we also have that (γk, γk)(Γ,Γ
∗) → (hz1, hz2)(Γ,Γ∗)

for some h ∈ G̃S and z1, z2 ∈ Z. Since Z is contained in Γ and
Γ∗ by construction, the two previous sentences pool to give us that
(Γ, gΓ∗) = (hΓ, hΓ∗). Therefore h ∈ Γ so γkΓ

∗ → gΓ∗ = hΓ∗ ∈ ΓΓ∗

which proves that ΓΓ∗ is a closed subset of G̃S/Γ
∗.

We have that, ΓΓ∗ is a countable, closed, and bounded subset of

G̃S/Γ
∗. Thus, ΓΓ∗ is finite which is to say that Γ and Γ∗ are commen-

surable. It follows that ψ commensurates Λ.
�

Conjecture A.2 has also been proved in the case when there are
v, w ∈ S such that rankKv(G) = 1 and rankKw(G) > 1. Indeed, the
proof of the main theorem of [W08] applies to this “mixed rank” case
essentially without modification. One simply needs to replace the role
of the real semisimple Lie group factor in the proof from [W08] with
G(Kw) and replace the Borel reference for reduction theory of rank one
arithmetic groups in real semisimple Lie groups with its counterpart
for the positive characteristic case. (One account of this well-known
counterpart can be found in [BW08].) Otherwise, the proof needs no
nonobvious modifications.

In light of Theorem A.3 and the comment of the above paragraph,
Conjecture A.2 reduces to studying lattice actions on a product of trees:

Conjecture A.4. Suppose K is a global function field, and G is a
connected, absolutely simple, K-isotropic, algebraic K-group of adjoint
type. If rankKv(G) = 1 for all v ∈ S, and |S| > 1, then there is an
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isomorphism

QI(G(OS)) ∼= CommAut(GS)(G(OS))

Note that [W07] provides a step towards proving Conjecture A.4
by proving that any quasi-isometry of G(OS) is induced by a factor-
preserving quasi-isometry of the product of Bruhat-Tits trees corre-
sponding to GS.
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