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Abstract. We determine when an arithmetic subgroup of a reduc-
tive group defined over a global function field is of type FP∞ by
comparing its large-scale geometry to the large-scale geometry of lat-
tices in real semisimple Lie groups.

1. Introduction

Throughout this paper, K is a global function field, and S is a finite
nonempty set of pairwise inequivalent valuations on K. We let OS ≤
K be the corresponding ring of S-integers. We denote a reductive
K-group by G.

In 1971 Serre proved that G(OS) is of type WFL if and only if
the semisimple K-rank of G equals 0; see Théorème 4 of [Se 1] and
the following Compléments.

As type FP∞ is a weaker property than type WFL, an immediate
consequence is that G(OS) is of type FP∞ if the semisimple K-rank
of G equals 0. The converse of this statement had been believed since
the late 1970’s1 and evidence had been collected to support it as a
conjecture. However, it remained unresolved in general.

Our main result confirms this conjecture:

Theorem 1.1. The arithmetic group G(OS) is of type FP∞ if and
only if the semisimple K-rank of G equals 0.

As a special case of our main result, SLn(Fq[t]) is not of type FP∞.
Even this basic example was previously unknown in full generality;

? Supported by an NSF Postdoctoral Fellowship.
1 see e.g. the final introductory paragraph of [St 2]
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see Example below. Here, Fq[t] is the ring of polynomials with one
indeterminate t and coefficients in the finite field with q elements, Fq.

We will also give a more precise statement about the finiteness
lengths of arithmetic groups; see Theorem B. As a special case of
that result, SLn(Fq[t]) is not even of type FPn−1.
Historical remarks. Interest in the finiteness properties of arith-
metic groups over function fields was sparked in 1959 by Nagao’s
proof that SL2(Fq[t]) is not finitely generated [Na].

Activities of the next 33 years completely determined which arith-
metic subgroups of reductive groups over function fields are finitely
generated, and which are finitely presented (the answers fit the form
of Conjecture 1.3 below). Work on these results was carried out
by Behr, Hurrelbrink, Keller, Kneser, Lubotzky, McHardy, Nagao,
O’Meara, Rehmann-Soulé, Serre, Splitthoff, and Stuhler. See [Be 1],
[Be 2], [Be 3], [Hu], [Ke], [Lu], [McH], [OM], [Re-So], [Se 2], [Spl], and
[St 1].

Less understood are the higher finiteness properties for these groups,
such as type FPn for n ≥ 3. Aside from the result of Serre mentioned
earlier, all of the work in this direction has been carried out with
heavy restrictions on G and OS ; see the papers of Abels, Abramenko,
Behr, and Stuhler ([Abl], [Abr 1], [Abr 2], [Abr 3], [Be 4], and [St 2]).

Theorem 1.1 follows as a corollary of Theorem 1.2 below. Before
presenting the statement of Theorem 1.2, we introduce some notation.
Type FPm. Recall that for a commutative ring R, we say a group
Γ is of type FPm over R if there exists a projective resolution

Pm → Pm−1 → · · · → P1 → P0 → R→ 0

of finitely generated RΓ modules, where the action of RΓ on R is
trivial. If Γ is of type FPm over R for all nonnegative integers m, we
say that Γ is of type FP∞ over R. If Γ is of type FPm (resp. FP∞)
over Z, we simply write that Γ is of type FPm (resp. FP∞).
Remark. Every group is of type FP0. Type FP1 is equivalent to the
property of finite generation. Every finitely presented group is of type
FP2, but the converse does not hold in general; see Bestvina-Brady’s
Example 6.3(3) in [Be-Br].
Finiteness length. The homological finiteness length of Γ over R
is defined to be

φ(Γ ;R) = sup{m | Γ is of type FPm over R}
For short, we write φ(Γ ) in place of φ(Γ ;Z).
Rank. For any field extension L/K, the L-rank of G, denoted rankL G,
is the dimension of a maximal L-split torus of G. The semisimple L-
rank of G is the L-rank of the derived subgroup of G.
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If rankL(G) = 0, we say G is L-anisotropic. Otherwise, G is L-
isotropic.
Sum of local ranks. For a valuation v ofK, letKv be the completion
ofK with respect to v. For anyK-group G, we define the nonnegative
integer

k(G, S) =
∑

v∈S

rankKv G

We are now prepared to state

Theorem 1.2. If H is a connected noncommutative absolutely al-
most simple K-isotropic K-group, then

φ
(
H(OS)

) ≤ k(H, S)− 1

That Theorem 1.1 follows from Theorem 1.2 is routine; see e.g.
2.6(c) of [Be 3].

Example. A special case of Theorem 1.2 is the inequality

φ
(
SLn(Fq[t])

)
≤ n− 2

or more generally,

φ
(
SLn(OS)

)
≤ |S|(n− 1)− 1

Indeed, for any field L, the number rankL SLn equals the dimension
of the diagonal subgroup in SLn. Hence, for any K and any S, we
have

k(SLn, S) =
∑

v∈S

rankKv SLn = |S|(n− 1)

This inequality is known to be sharp in some cases. For example,
Stuhler showed that φ(SL2(OS)) = |S| − 1 [St 2], and Abels and
Abramenko independently showed that φ(SLn(Fq[t])) = n − 2 as
long as q ≥ 2n−2 or q ≥ ( n−2

bn−2
2
c
)

respectively [Abl], [Abr 1].

Is the inequality sharp in general? Theorem 1.2 provides evi-
dence for the following long-standing conjecture, which offers a strik-
ing relation between the two functions φ and k.

Conjecture 1.3. If H is a connected noncommutative absolutely al-
most simple K-isotropic K-group, then

φ
(
H(OS)

)
= k(H, S)− 1
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See [Be 3] for other evidence.

Type Fm. Recall that a group Γ is of type Fm if there exists an
Eilenberg-Mac Lane complex K(Γ, 1) with finite m-skeleton. For m ≥
2, a group is of type Fm if and only if it is finitely presented and of type
FPm. It then follows from [Be 3] that FPm and Fm are equivalent
conditions for the arithmetic groups considered in this paper. Thus,
Theorems 1.1 and 1.2, and Conjecture 1.3, may be equivalently stated
by substituting Fm for FPm.
Type WFL. Although we will make no further use of it, we recall the
definition of type WFL for completeness with respect to comments
in the initial portion of the introduction: A group Γ is of type WFL
if there exists a torsion-free finite-index subgroup of Γ , and if for
any such subgroup Γ ′, the ring Z admits a finite length resolution by
finitely generated free ZΓ ′-modules.
Contrast with number fields. Our theorems are particular to the
case of global fields of positive characteristic. In characteristic zero,
we have the following

Theorem 1.4 (Raghunathan, Borel-Serre)). Any S-arithmetic
subgroup of a reductive group defined over a global number field con-
tains a finite-index torsion-free subgroup Γ that allows for a finite
K(Γ, 1).

In particular, any S-arithmetic subgroup of a reductive group de-
fined over a number field is finitely presented and of type FP∞. Ex-
amples of groups for which the above theorem applies include SLn(Z)
and SLn(Z[1/p]). See [Ra 1] for the case of arithmetic groups, and
[Bo-Se] for the case of S-arithmetic groups.
Idea behind the proof. Although Theorem 1.1 shows a differ-
ence between arithmetic groups in positive characteristic and those
in characteristic zero, it is through the deep-rooted similarity of these
two families that we shall find a proof of Theorem 1.1.

Indeed, our motivating example for proving Theorem 1.2 was the
proof of Epstein-Thurston that SL3(Z) is not combable; see Chapter
10 Section 4 of [Ep et al.]. Recall that their proof proceeds by cre-
ating an exponential Dehn function for SL3(Z) as follows. A family
of closed curves with increasing lengths are constructed in a portion
of the symmetric space SL3(R)/SO3(R) that is a bounded distance
from the subset SL3(Z)SO3(R) ⊆ SL3(R)/SO3(R). The discs in
SL3(R)/SO3(R) that fill these loops in the most metrically efficient
manner have areas that are quadratic in the length of the loops that
they bound. These efficient discs are not so useful in studying the
large-scale geometry of SL3(Z) though, since the discs travel farther
away from the subspace SL3(Z)SO3(R) as the length of their bound-
ary curves increase.
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To better understand the geometry of SL3(Z), we only consider
filling discs of the constructed loops that are contained in the orig-
inal bounded neighborhood of SL3(Z)SO3(R). What is shown in
[Ep et al.] is that any such family of discs would be metrically in-
efficient in the sense that the discs would have areas that are at least
exponential in the length of their boundary curves. The result is an
exponential Dehn function for SL3(Z), which implies that SL3(Z) is
not combable.

Our proof of Theorem 1.2 in the special case when H(OS) =
SL3(Fq[t]) proceeds by constructing an analogous family of loops in
a bounded neighborhood of a given SL3(Fq[t])-orbit in the Euclidean
building,X, associated to SL3

(
Fq((t−1))

)
where Fq((t−1)) is a field of

formal Laurent series. As with the case for SL3(Z), the closed curves
have metrically efficient filling discs in X whose areas are quadratic
in the length of their boundary curves. Also like the case for SL3(Z),
these filling discs travel farther away from the given orbit as the
length of their boundary curves increase, so they are not helpful in
learning about the large-scale geometry of SL3(Fq[t]). However, in
this case, there does not exist a filling disc for any of our constructed
loops that is contained in the fixed bounded neighborhood of the
SL3(Fq[t])-orbit. Indeed, X is a contractible 2-dimensional simplicial
complex, so filling discs are essentially unique. We then apply K.
Brown’s filtration criterion to conclude that SL3(Fq[t]) is not finitely
presented.
Distortion dimension. The contrast between arithmetic groups
over function fields with arithmetic groups over number fields di-
minishes if we consider a metric analogue of finiteness length.

Let us direct our attention for the moment to an irreducible lattice
Γ in a semisimple group over arbitrary nondiscrete locally compact
fields; we can even allow for Γ to be nonarithmetic. We let XΓ be
the natural product of irreducible symmetric spaces and Euclidean
buildings that Γ acts on. Given a point x ∈ XΓ and a real number
r, we define the space

XΓ (r) = { y ∈ XΓ | d(y , Γx) ≤ r }
Using the Hurewicz theorem—as in Abels-Tiemeyer’s Theorem

1.1.4 of [A-T]—and recalling that type FPm and type Fm are equiva-
lent conditions for Γ allows us to state K. Brown’s filtration criterion
for Γ to be of type FPm in terms of homotopy groups. Precisely, Γ
is of type FPm if and only if for any real number r ≥ 0 there exists
a real number r′ ≥ r such that for any k < m the homomorphism
induced by inclusion

πk

(
XΓ (r) , x

) −→ πk

(
XΓ (r′) , x

)

is trivial; see Theorems 2.2 and 3.2 [Br 1].
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As a special case we recover the easy to prove fact that Γ is of
type FP∞ if it acts cocompactly on XΓ . If Γ does not act cocom-
pactly, then Theorems 1.1 and 1.4 (along with Corollary 7.3 of [Lu])
characterize those Γ contained in semisimple groups over function
fields as precisely those which fail to be of type FP∞. (Recall that
an arithmetic lattice H(OS) acts cocompactly on XH(OS) if and only
if the absolutely almost simple K-group H is K-anisotropic.)

To include metric properties of the large-scale geometry of lattices,
we define Γ as being undistorted up to dimension m if: given any
r ≥ 0, there exist real numbers r′ ≥ r, λ ≥ 1, and C ≥ 0 such that
for any k < m and any Lipschitz k-sphere s ⊆ XΓ (r), there exists a
Lipschitz (k + 1)-ball BΓ ⊆ XΓ (r′) with ∂BΓ = s and

volume(BΓ ) ≤ λ[volume(BX)] + C

for all Lipschitz (k + 1)-balls BX ⊆ X with ∂BX = s. We adopt the
convention that Γ is always undistorted up to dimension 0.

Now we define the distortion dimension of Γ to be the nonnega-
tive integer

ψ(Γ ) = sup{m | Γ is undistorted up to dimension m}
Conjecture 1.5. If Γ is an irreducible lattice in a semisimple group
over nondiscrete locally compact fields, then ψ

(
Γ

)
= ∞ if and only

if Γ acts cocompactly on XΓ .

That ψ(Γ ) = ∞ when Γ acts cocompactly is clear. The converse
had been conjectured for lattices in real semisimple Lie groups fol-
lowing the Epstein-Thurston proof that ψ(SLn(Z)) ≤ n − 2, and a
general proof seems approachable. (See 10.4 [Ep et al.] for SLn(Z).)

Less attention has been given to S-arithmetic lattices in charac-
teristic zero, but the conjecture should not change in this setting. In
positive characteristic, Conjecture 1.5 follows from Theorem 1.1.

As Conjecture 1.5 extends Theorem 1.1 for absolutely almost sim-
ple K-groups G into the context of arbitrary global fields, we are
naturally led to speculate how Conjecture 1.3 might be broadened
to include fields of characteristic zero. Thus, we define τ(XΓ ) to be
the Euclidean rank of XΓ , and we note that for Γ = H(OS) as in
Conjecture 1.3, τ(XΓ ) = k(H, S). We ask

Question 1.6. Let Γ be a noncocompact irreducible lattice in a semisim-
ple group over nondiscrete locally compact fields. Is it true that

ψ
(
Γ

)
= τ(XΓ )− 1

If not, then can the definition of ψ be reasonably modified so that
the above formula is true?
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This problem is daunting. For example, an affirmative answer
to the first question implies Thurston’s claim that SLn(Z) has a
quadratic Dehn function for n ≥ 4. See also remarks from Gromov’s
book (5.D.(5).(c) [Gr]).

We will just mention a few pieces of evidence for a positive answer.
We note that ψ(Γ ) = 0 if and only if either Γ is not finitely generated
or the word metric on Γ is not quasi-isometric to the metric induced
from its action on XΓ ; see the example in Section 2. Hence, it follows
from work of Lubotzky (Corollary 7.3 of [Lu]) and Lubotzky-Mozes-
Raghunathan [L-M-R] that ψ(Γ ) = 0 if and only if τ(XΓ ) = 1. Note
also that Leuzinger-Pittet [Le-Pi 1], Behr [Be 3], and (a generaliza-
tion of) Taback (Lemma 4.2 of [Ta]), show that τ(XΓ ) = 2 implies
ψ(Γ ) = 1.

For related material, see the papers of Druţu, Hattori, Leuzinger-
Pittet, Noskov, and Pittet: [Dr 1], [Dr 2], [Hat], [Le-Pi 2], [No], and
[Pi].
Possible generalizations to other rings of functions. In [Bu-Wo]
we use techniques from this paper to give a geometric proof that
SL2(Z[t, t−1]) is not finitely presented—a fact first proved by Krstić-
McCool [Kr-Mc].

It is likely that the ideas below can be used to do more in this
direction of generalizing Theorem 1.2 to apply to a class of fields and
rings that properly includes global function fields and their rings of
S-integers; see the question in the introduction of [Bu-Wo].
Outline of the paper. We begin in Section 2 with a special case
of our proof to motivate what follows. The proof of Theorem 1.2 is
contained in Section 3.

Acknowledgements. We thank Stephen DeBacker and Dan Barbasch for telling
us about the existence of anisotropic tori in semisimple groups over local fields of
positive characteristic, and Gopal Prasad for recommending some improvements
we made to an earlier draft of this paper.

We are also happy to thank Ross Geoghegan for suggesting that our proof
would be more efficiently carried out by using homology with coefficients in Fp,
and Indira Chatterji for helping us to see the connection between finite generation
for lattices in nonarchimedean semisimple groups and bounded distortion of the
word metric for lattices in real semisimple Lie groups.

This paper also benefitted from conversations we had with our colleagues at
Cornell University and the University of Chicago: Tara Brendle, Nathan Broaddus,
Kenneth Brown, Allen Hatcher, Paul Jung, Robert Kottwitz, Alessandra Pantano,
Ravi Ramakrishna, Edward Swartz, Karen Vogtmann, and Dan Zaffran; it is our
pleasure to thank them.

The second author thanks Benson Farb and Dan Margalit for their instrumen-
tal encouragement.

2. An example

The first piece of evidence for Theorem 1.1 was:
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Theorem 2.1 (Nagao). The group SL2(Fq[t]) is not finitely gener-
ated.

In this section we will see how our proof of Theorem 1.2 applies
to this special case. For motivation, we will first review some of the
geometry of SL2(Z), a mathematical cousin of SL2(Fq[t]).

Consider the action of SL2(Z) on the
hyperbolic plane H2. The diagram shows
the upper half-plane model. There is a
distinguished point ∞ at the top of the
diagram that no SL2(Z)-orbit accumu-
lates on. Specifically, it is well-known
that the orbit of the complex number i
avoids the open horoball B that is cen-
tered at ∞ and consists of all complex
numbers with imaginary parts greater

i

0 1 2 3

∞

than 1. The boundary of this horoball is approximated by the points
n+ i for n ∈ Z. (Notice that n+ i =

(
1 n
0 1

)
i.)

The geodesic joining i and 1 + i travels into the horoball B. The
geodesic between i and 2 + i travels farther into the horoball, the
geodesic between i and 3 + i farther still, and so on. Continuing this
process, we see that no metric neighborhood of the orbit SL2(Z)i ⊆
H2 is convex inH2. Sufficiently large metric neighborhoods of SL2(Z)i
are however connected, as SL2(Z) is finitely generated:

Lemma 2.2. Suppose a finitely generated group Γ acts on a geodesic
metric space X. Then, for any point x ∈ X, there is a number R > 0
such that the R-neighborhood

NbhdR(Γx) ⊆ X

is connected.

Proof. Let {γ1, γ2, . . . , γn} be a finite generating set for Γ . Choose R
such that the ball BR(x) contains all translates γix. Then ΓBR(x) =
NbhdR(Γx) is connected. ut

Now let’s look at a proof of Nagao’s theorem along the lines of
our proof for Theorem 1.2. This is not Nagao’s original proof, rather
it is a simplified form of Stuhler’s argument [St 2].

The locally compact field Fq((t−1)) contains Fq[t] as a discrete
subring. Thus, SL2(Fq[t]) is a discrete subgroup of SL2

(
Fq((t−1))

)
.

There is a natural nonpositively curved space that SL2

(
Fq((t−1))

)
acts on: the regular (q + 1)-valent tree T . If Fq[[t−1]] < Fq((t−1)) is
the ring of Taylor series, then this well-known action is obtained
by identifying the vertices of T with homothety classes of spanning
Fq[[t−1]]-submodules of a 2-dimensional vector space over Fq((t−1))
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that are free and of rank 2. This is in analogy to the identification
of the unit tangent bundle of H2 with the unit tangent bundle of
the Teichmüller space of 2-dimensional Euclidean tori with volume
equal to 1, or equivalently, with homothety classes of spanning Z-
submodules of R2 that are free and of rank 2.

Just as the boundary of H2 is a circle, or P1(R), the boundary of T
can be identified with P1

(
Fq((t−1))

)
. We use the standard identifica-

tion of P1
(
Fq((t−1))

)
with Fq((t−1))∪{∞}. The group SL2

(
Fq((t−1))

)
has two induced actions on P1

(
Fq((t−1))

)
: one from its action on T ,

and one from its action on the 2-dimensional vector space Fq((t−1))2.
These actions coincide.

In another analogy with the situation for
SL2(Z), any ray from any point x ∈ T to-
wards ∞ escapes every metric neighborhood
of the orbit SL2(Fq[t])x (one can see this us-
ing Mahler’s compactness criterion). The di-
agram on the right has x contained in the
geodesic joining the two boundary points 0
and ∞. We write f ∗ x ∈ T as shorthand
for the point

(
1 f
0 1

)
x. The geodesic segment

between x and tn ∗ x is the portion of the

x

0 t t2 t3

∞

geodesic joining the boundary points 0 and tn that lies at or above
the level of x in the diagram. These segments contain increasing sub-
sets of the geodesic ray from x to∞ as n ∈ N grows. Hence, no metric
neighborhood of the orbit SL2(Fq[t])x ⊆ T is convex.

The comparison with SL2(Z) stops here since, in T , convexity is
equivalent to connectedness. Using Lemma 2.2, we see that SL2(Fq[t])
is not finitely generated. Our proof is complete.

3. Proof of Theorem B

In what follows, we let p equal the characteristic of K. Rather than
proving Theorem 1.2 directly, our goal will be to prove a slightly
stronger claim:

Proposition 3.1. If H is a connected noncommutative absolutely al-
most simple K-isotropic K-group, then

φ
(
H(OS);Fp

) ≤ k(H, S)− 1

Theorem 1.2 follows since a group Γ is of type FPm over Fp if it
is of type FPm over Z: just tensor a projective resolution for Z by
finitely generated ZΓ -modules with Fp to obtain a projective resolu-
tion for Fp by finitely generated FpΓ -modules.
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3.1. Method of proof for Proposition 3.1

We define the ring

KS =
∏

v∈S

Kv

so that

H(KS) =
∏

v∈S

H(Kv)

Let X be the Euclidean building corresponding to H(KS), that is
the product of the irreducible Euclidean buildings for H(Kv). Recall
that X has dimension k(H, S).

We fix a base point e ∈ X (to be specified later) and consider
closed metric neighborhoods of the orbit H(OS)e. That is, for each
number r ≥ 0, we set

X(r) =
{
x ∈ X | d(x , H(OS)e

) ≤ r
}

We will find a number r0 > 0 and construct, for each r ≥ r0, a cycle in
X(r0) that represents a nontrivial element in the reduced homology
group with coefficients in Fp

H̃k(H,S)−1

(
X(r) ; Fp

)

This shows that the inclusions X(r0) ⊆ X(r) induce nontrivial ho-
momorphisms

H̃k(H,S)−1

(
X(r0) ; Fp

) −→ H̃k(H,S)−1

(
X(r) ; Fp

)

In view of K. Brown’s filtration criterion (see Theorem 2.2 and the
following remark in [Br 1]), the existence of this family of nontrivial
homomorphisms together with the following standard facts about the
action of H(OS) on X implies Proposition 3.1: (i) X is contractible;
(ii) H(OS) acts on X with finite cell stabilizers; and (iii) the sub-
spaces X(r) are H(OS)-invariant and compact modulo H(OS).

Excluding a tree. For the remainder of this paper, we will assume
that k(H, S) > 1. That is, we assume that X is not a tree. This
assumption is made only to avoid complications in our exposition;
the philosophy of the proof still applies to the case when k(H, S) = 1
as is shown in Section 2.
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3.2. An apartment coarsely separated by H(OS)

We will find an apartment in X that “coarsely intersects” an H(OS)-
orbit in a hyperplane. (Later, we will use this (k(H, S)−1)-dimensional
hyperplane and its translates to construct the (k(H, S) − 1)-cycles
mentioned above.) Since apartments in X correspond to products of
maximal Kv-split tori in H, this problem reduces to algebra.

We begin by choosing a parabolic group that will accompany us
throughout our proof. In what follows, we are assuming that the
reader has a basic knowledge of the structure of parabolic subgroups
of reductive groups relative to fields that are not algebraically closed,
as can be found for example in 21.11 and 21.12 of [Bo].

Since H is K-isotropic, there exists a nontrivial maximal K-split
torus of H. We let ΦK be the roots of H with respect to this torus.
Choose an ordering on ΦK , and let ∆K ⊆ ΦK denote the correspond-
ing collection of simple roots.

Choose, and fix throughout, a root α0 ∈ ∆K . We define the 1-
dimensional K-split torus

T1 =
( ⋂

α∈∆K−α0

ker(α)
)◦

The above superscript ◦ denotes the connected component of the
identity. We let ZH(T1) be the centralizer of T1 in H.

There exists a maximal proper K-parabolic subgroup of H, de-
noted P+, with the following Levi decomposition:

P+ = Ru(P+)o ZH(T1)

In the above, Ru(P+) is the unipotent radical of P+.
We can expand the Levi decomposition to a Langlands decompo-

sition by noting that ZH(T1) is an almost direct product of T1, the
derived group ZH(T1)der, and Da for some K-anisotropic diagonal-
izable group Da. Thus:

P+ = Ru(P+)oT1DaZH(T1)der

Before proceeding with the existence of the torus and the apart-
ment that is our goal in this section, we record the following well-
known result.

Proposition 3.2. Let G be a reductive K-group. Then for any finite
nonempty set S′ of pairwise inequivalent valuations and any family
{Av}v∈S′ of maximal Kv-tori of G, there is a maximal K-torus Aπ

of G and group elements gv ∈ G(Kv) such that

Aπ = gvAv

for all v ∈ S′, where gvAv denotes Av conjugated by gv.
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Proof. There is a proof of this proposition in Section 7.1 Corollary 3
of [Pl-Ra] for the case when K is a global number field. The proof
also applies for global function fields after replacing the argument for
the K-rationality of the variety of maximal tori in G with the proof
of Theorem 7.9 in [Bo-Sp]. ut

We will make use of the above proposition in the proof of the
proposition below.

Proposition 3.3. There exists a maximal K-torus A ≤ H such that:

(i) The maximal K-split torus of A is T1, and
(ii) A contains a maximal Kv-split torus of H for all v ∈ S.

Proof. For each v ∈ S, let Av be a maximal Kv-torus of ZH(T1)der
such that Av contains a maximal Kv-split torus of ZH(T1)der.

Then choose a valuation of K, call it w, that is inequivalent to
any of the valuations of S, and let Aw be a maximal Kw-torus in
ZH(T1)der that is Kw-anisotropic. The existence of such a torus is
well-known; see e.g. Section 2.4 of [De].

Now apply Proposition 3.2 to G = ZH(T1)der and S′ = S ∪ {w}.
Since Aπ isKw-anisotropic, it is necessarilyK-anisotropic. Therefore,
part (i) is satisfied by

A = T1Da
◦Aπ

To verify part (ii), note that T1 is contained in a maximalKv-split
torus of H. Hence,

rankKv(H) = rankKv(ZH(T1))
= rankKv(T1Da) + rankKv(ZH(T1)der)
= rankKv(T1Da) + rankKv(Aπ)
= rankKv(A)

ut
Since A contains a maximal Kv-split torus for all v ∈ S, there

is an apartment Σ ⊆ X that A(KS) acts on properly and cocom-
pactly as a translation group of maximal rank, dim(Σ) = k(H, S).
By Dirichlet’s units theorem (see Theorem 5.12 [Pl-Ra]) and the pre-
ceding proposition, the arithmetic group A(OS) is a finitely generated
abelian group of rank

(∑

v∈S

rankKv(A)
)
− rankK(A) = k(H, S)− 1

Choose a point e ∈ Σ. Since A(OS) ≤ A(KS) acts properly on
Σ, the base point e is contained in an affine hyperplane V ⊆ Σ, of
dimension k(H, S)− 1, that A(OS) acts on cocompactly. This point
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e ∈ Σ is the point we specify for our definition in Section 3.1 of the
spaces X(r) ⊆ X.
Example. In the case when K = Fq(t), OS = Fq[t], and H = SL3,
the torus T1 can be taken as the group of matrices of the form



a 0 0
0 a 0
0 0 a−2




Then the parabolic group P+ can be taken to be the determinate 1
matrices of the form (∗ ∗ ∗

∗ ∗ ∗
0 0 ∗

)

The resulting group Ru(P+) would be the 2-dimensional commuta-
tive group (1 0 ∗

0 1 ∗
0 0 1

)

This would leave the semisimple group ZH(T1)der to be the copy of
SL2 that sits in the upper left corner of SL3, and Da would be trivial.

The group A(OS) in this example can be taken to be the group
generated by the matrix



t2 + 1 t 0
t 1 0
0 0 1




With the notation from the proof of Proposition 3.3, the Zariski clo-
sure of A(OS) would equal Aπ ≤ ZH(T1)der.

3.3. A space for the manufacture of cycles: choosing r0

Let D ⊆ V be a fundamental domain for the A(OS)-action on V .
Applying Satz 3 of [Be 1], there is a compact set C ⊆ Ru(P+)(KS)
such that Ru(P+)(KS) = Ru(P+)(OS)C. Since A(OS) normalizes
Ru(P+)(KS), we have:

Ru(P+)(KS)V ⊆ Ru(P+)(KS)A(OS)D
⊆ A(OS)Ru(P+)(KS)D
⊆ A(OS)Ru(P+)(OS)CD
⊆ H(OS)CD
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Since the region CD ⊆ X is bounded, we can choose a number
r0 > 0 such that

Ru(P+)(KS)V ⊆ H(OS)CD ⊆ X(r0)

It is inside the space Ru(P+)(KS)V where we shall produce cycles
that remain nontrivial in the homology of X(r) for r ≥ r0.

3.4. A direction away from X(r0)

Recall our choice of α0 ∈ ∆K from the beginning of Section 3.2. This
root is nontrivial when restricted to T1, so for any v ∈ S, the set

{ a ∈ T1(Kv) | |α0(a)|v > 1 }
is nonempty and open in the Hausdorff topology induced by the met-
ric | · |v on Kv that arises from v.

Since T1 is K-isomorphic to an affine line with a point removed,
it satisfies the weak approximation property with respect to S. That
is, the diagonal embedding

T1(K) −→
∏

v∈S

T1(Kv)

has a dense image. Therefore, there exists some a+ ∈ T1(K) such
that

|α0(a+)|v > 1

for all v ∈ S.
It will be important for us later to have a direction in Σ, that

leads away from every X(r). The direction we will use is given by the
sequence (an

+e)n∈N. Note that the above condition on a+ assures us
that the sequence (an

+)n∈N is not contained in any compact subset of
H(KS). Therefore, (an

+e)n∈N does specify a direction in Σ.
Let X∞ be the visual boundary of X. It can be identified in a nat-

ural way with the spherical Tits building for H(KS). Note that X∞
is the spherical join of the spherical buildings for the groups H(Kv)
with v ∈ S. We let Σ∞ ⊆ X∞ be the apartment corresponding to
Σ ⊆ X, and we let a∞+ ∈ Σ∞ be the accumulation point of (an

+e)n∈N.
We let Π∞

+ be the unique simplex in X∞ that is maximal among
all simplices stabilized by the action of P+(KS). Note that Π∞

+ is
the spherical join over S of the simplices associated with the groups
P+(Kv) in the spherical buildings for H(Kv).

The conditions on our choice of a+ were imposed to insure that the
orbit of e under its iterates would accumulate inside Π∞

+ . Specifically,
we have:

Lemma 3.4. The point a∞+ ∈ Σ∞ is contained in Π∞
+ .
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Proof. Using the definition of spherical joins, we can reduce to the
case when S contains a single valuation v. What follows is routine;
see e.g. 2.4 [Pr].

We let Q be the Kv-parabolic subgroup of H with

Q(Kv) = { g ∈ H(Kv) | ga∞+ = a∞+ }
The proof of this lemma amounts to showing that

P+(Kv) ≤ Q(Kv)

Note that ga∞+ = a∞+ if and only if

d(gan
+e , a

n
+e) = d(a−n

+ gan
+e , e)

is a bounded sequence. Since distance from e is a proper function,
and because the action of H(Kv) on X is proper, we can alternatively
characterize Q(Kv) as the group

{ g ∈ H(Kv) | (a−n
+ gan

+)n∈N ⊆ H(Kv) is precompact }
Let u and h be the Lie algebras of Ru(P+) and H respectively.

We denote the set of positive roots given by our ordering of ΦK in
Section 3.2 as Φ+

K ⊆ ΦK , and we write the set of roots that are linear
combinations of elements in ∆K − α0 as [∆K − α0].

If T is the maximal K-split torus in H that was chosen to produce
the roots ΦK , then our choice of P+ from Section 3.2 implies that

u =
⊕

α∈Φ+
K−[∆K−α0]

{ v ∈ h | Ad t(v) = α(t)v for all t ∈ T }

Note that Φ+
K − [∆K − α0] is exactly the subset of ΦK consisting of

sums of the form
∑

αi∈∆K
niαi with ni ≥ 0 for all i and n0 ≥ 1. By

our definition of T1 ≤ T as being contained in the kernel of every
root in ∆K − α0, and as a+ ∈ T1, we can express u as a finite direct
sum

u =
⊕

n≥1

{ v ∈ u | Ad a+(v) = nα0(a+)v }

Since |α0(a+)|v > 1, we see that for any u ∈ Ru(P+)(Kv),

a−n
+ uan

+ → 1

as n→∞. Hence, if u ∈ Ru(P+)(Kv) and z ∈ ZH(T1)(Kv), then

a−n
+ uzan

+ = a−n
+ uan

+z → z

In particular, the above sequence is precompact. As a consequence,
uz, and thus all of

P+(Kv) = Ru(P)(Kv)o ZH(T1)(Kv)

is contained in Q(Kv). ut
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With a little more effort, it can be shown that a∞+ ∈ Π∞
+ − ∂Π∞

+ ,
but we will not need this fact.

Now we know the direction of a∞+ . Our last point of business in
this section is to see that this direction leads away from the orbit
H(OS)e. This argument is standard.

Lemma 3.5. For any r > 0, there exists an n ∈ N such that an
+e /∈

X(r).

Proof. Choose any nontrivial γ ∈ Ru(P+)(OS). As in the proof of
the preceding lemma, a−n

+ γan
+ → 1.

¿From Theorem I.1.12 of [Ra 2], the sequence (an
+)n∈N ⊆ H(KS)

induces a sequence in the quotient space H(OS)\H(KS) that is not
contained in any compact set. The lemma follows. ut

3.5. A blueprint at infinity

In this section we will construct a cycle inside X∞ in the direction
given by the sequence (a−n

+ e)n∈N. This is the direction in Σ that is
opposite to a∞+ . In Section 3.7, translates of this cycle will be “coned
off” from points of the form an

+e. Then, these cones will be intersected
with Ru(P+)(KS)V to produce cycles in X(r0).

We let Π∞− be the simplex opposite to Π∞
+ in the spherical apart-

ment Σ∞. This simplex is the unique maximal simplex in X∞ that is
fixed under the action of P−(KS), where P− is the maximal proper
K-parabolic subgroup of H that contains ZH(T1) and is opposite to
P+.

We let ∆∞− be the simplicial star of Π∞− in the apartment Σ∞.
That is, ∆∞− is the union of all simplices in Σ∞ that contain Π∞− .
The description of a chain in the boundary. Let σ be a codi-
mension 1 simplex in Σ∞ that is contained in the boundary of ∆∞− .
The geodesic continuation of σ in Σ∞ is a great sphere, that is, the
boundary of a closed simplicial hemisphere Rα ⊆ Σ∞ (called a root
space). Among the two possible hemispheres, Rα and R−α, in Σ∞
that contain σ in their boundary (called opposite root spaces), we fix
notation so that R−α contains Π∞− .

Lemma 3.6. There exists a group element u−α ∈ Ru(P−)(KS) fix-
ing R−α pointwise and satisfying the condition

Σ∞ ∩ u−αΣ
∞ = R−α

Proof. We may assume that S consists of a single valuation v. The
general case follows from the definition of the spherical join.

Let Q be the minimal Kv-parabolic subgroup of H corresponding
to the chamber containing σ and Π∞− . Let ΦKv be the set of roots of
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H with respect to the maximal Kv-split torus in A, let Φnd
Kv

⊆ ΦKv

be the set of nondivisible roots, and let ∆Kv ⊆ Φnd
Kv

be the set of
simple roots associated with our choice of Q.

As explained in 5.6 of [Ti], there is a root −α ∈ Φnd
Kv

such that
any nontrivial element u−α of the root group U(−α)(Kv) ≤ H(Kv)
fixes R−α pointwise and satisfies Σ∞ ∩ u−αΣ

∞ = R−α. (A similar
statment holds by replacing −α throughout with α, where the root
α ∈ Φnd

Kv
is the negative of α.)

Note that all we have left to show is U(−α) ≤ Ru(P−).

Recall the standard correspondence that assigns to any subset I ⊆
∆Kv a Kv-parabolic subgroup of H containing Q, denoted QI ; see
e.g. 21.12 [Bo]. Since σ is of codimension 1 in Σ∞, the Kv-parabolic
subgroup of H corresponding to σ is of the form Q{β} for a single
simple root β ∈ ∆Kv . We also have that U(−α)(Kv) ≤ Q{β}(Kv) and
U(α)(Kv) ≤ Q{β}(Kv) since σ ⊆ R−α∩Rα is fixed by U(−α)(Kv) and
U(α)(Kv). It follows from 21.12 of [Bo] that either −α = β or α = β.

Since U(−α)(Kv) fixes R−α pointwise, the chamber corresponding
to Q is also fixed under the action of U(−α)(Kv). Hence, U(−α) ≤ Q
implying that −α is positive under the ordering on ΦKv consistent
with ∆Kv . Now it must be that −α = β.

Since Π∞− * σ, we have Q{−α} = Q{β} � P−. Therefore, if we
assume J ⊆ ∆Kv is such that QJ = P−, then −α /∈ J . It follows that
U(−α) ≤ Ru(P−) as desired. ut

Any Kv-parabolic subgroup of H that is contained in P− must
contain Ru(P−). Thus, u−α ∈ Ru(P−)(KS) fixes ∆∞− pointwise.
Therefore, ∆∞− ⊆ R−α which, in turn, implies that ∆∞− ∩ Rα is the
union of some codimension 1 simplices in the boundary of ∆∞− (in-
cluding σ). We name this union Fα and call it a geodesically continued
face of ∆∞− . We take a minimal (hence finite) family of root spaces
{Rα}α∈A which exhaust the boundary of ∆∞− as the union of the
corresponding geodesically continued faces of ∆∞− .

Applying Lemma 3.6 to the opposite parabolic and opposite root
space, we have that for each for each α ∈ A, there is a group ele-
ment uα ∈ Ru(P+)(KS) that fixes Rα pointwise and satisfies Σ∞ ∩
uαΣ

∞ = Rα. Hence, ∆∞− ∩ uα∆
∞− = Fα.

We define the group U ≤ Ru(P+)(KS) to be generated by the
finite set of uα as above. As it will be useful in Section 3.7, we also
choose our uα to fix the point e. This can always be arranged by
replacing the uα with conjugates by elements of A(KS).

It is well known that every element of Ru(P+)(KS) has order a
power of p (see e.g. 4.1 [Bo]), so U is a p-group. Since the group
Ru(P+)(KS) is nilpotent, U is a finitely-generated nilpotent torsion
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group and thus is finite (see e.g. Theorem 9.17 [Mac]). We conclude
that U is a finite p-group.

By abuse of notation, we shall denote the formal sum of cham-
bers in ∆∞− simply by ∆∞− . Now we form the (k(H, S) − 1)-chain∑

u∈U u∆
∞− .

Properties of the chain in the boundary. In the remainder of
this section, we will show that

∑
u∈U u∆

∞− is a cycle describing a
simplicial decomposition of U∆∞− =

⋃
u∈U u∆

∞− .

Lemma 3.7. If u ∈ U is nontrivial and C∞ ⊆ ∆∞− is a chamber,
then uC∞ * ∆∞− .

Proof. Suppose uC∞ ⊆ ∆∞− . Then we have Π∞− ⊆ C∞ ∩ uC∞ by the
definition of ∆∞− . As the action of H(KS) on X∞ is type preserving,
uΠ∞− = Π∞− . This implies that u ∈ P−(KS) ∩Ru(P+)(KS) = 1. ut
Lemma 3.8. The chain

∑
u∈U u∆

∞− is a cycle over Fp.

Proof. Suppose that u ∈ U is nontrivial and that ∆∞− ∩u∆∞− contains
an interior point x of a maximal simplex of a geodesically continued
face of ∆∞− , say Fα. We begin by verifying that u fixes Fα pointwise,
and that Fα = ∆∞− ∩ u∆∞− .

Indeed, u fixes pointwise a simplex of Fα that contains x, since u
acts by type preserving simplicial automorphisms on X∞. The an-
tipodal point of x in Σ∞ is contained in the boundary of a chamber
of Σ∞ containing Π∞

+ ; we call this chamber C∞. As in the comment
immediately following proof of Lemma 3.6, we see that C∞ is fixed
by u ∈ Ru(P+)(KS).

The hemisphere Rα is the convex hull spanned by the simplex of
Fα that contains x and the chamber C∞. Therefore, u fixes every
point in Rα ⊇ Fα.

For the remaining claim that Fα = ∆∞− ∩ u∆∞− : If there was a
point y ∈ ∆∞− ∩ u∆∞− outside of Rα, then u would have to fix y since
Rα is fixed pointwise by u and the action is by isometries. Hence, u
fixes pointwise the convex hull of Rα and y. But that is all of Σ∞,
and any u ∈ Ru(P+)(KS) fixing Σ∞ pointwise is the identity. So we
have verified our claims.

We are now prepared to show that the homological boundary of∑
u∈U u∆

∞− is 0 modulo p. Applying the boundary homomorphism
yields:

∂
( ∑

u∈U

u∆∞−
)

=
∑

u∈U

∂(u∆∞− ) =
∑

u∈U

∑

α∈A

uFα

where, again stretching notation slightly, Fα denotes the formal sum
of all simplices in the geodesically continued face with the orientation
induced from the orientation on ∆∞− .
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The claims we verified above show that, for u, v ∈ U and all α ∈ A,
either uFα ∩ vFα is contained in the topological boundary of uFα

or alternatively, uFα and vFα are equal as chains. Thus, we choose
a complete set {f1, f2, . . . , fn} of representatives for the chains in
{uFα}u∈U,α∈A so that

∑

u∈U

∑

α∈A

uFα =
n∑

i=1

|Ui|fi

where Ui ≤ U is the stabilizer of fi. Since U is a finite p-group, |Ui|
is a power of p. Moreover, since each Fα is stabilized by a nontrivial
uα ∈ U , each group Ui is nontrivial. Therefore,

∂
( ∑

u∈U

u∆∞−
)
≡ 0 (mod p)

ut
Observation. By the preceding lemmas, U∆∞− represents a class in
the homology group H̃k(H,S)−1(U∆∞− ; Fp).

3.6. A line of communication from infinity to X(r0)

In the next section, we will build cycles in X(r0) by transferring
the topological data from U∆∞− into X(r0) by method of “casting
shadows” of U∆∞− on Ru(P+)(KS)V . For the shadow to contain the
same topological data as U∆∞− , it is important, for example, to have
the shadow of ∆∞− in V be compact. The purpose of this section is
to establish that fact, although we state this problem below using
different language.

Recall that Σ∞ can be regarded as the space of all geodesic rays
in Σ based at e. We let V∞ ⊆ Σ∞ be the set of all geodesic rays
contained in V emanating from e. Note that V∞ is an equatorial
sphere in Σ∞.

We call a point in Σ∞ rational if it is represented by a geodesic
ray based at e that passes through another (and hence infinitely
many) points of A(KS)e. Let Σ∞Q denote the set of rational points in
Σ∞. Since A(KS) acts on Σ as a lattice of translations of full rank
k(H, S) = dim(Σ), the set Σ∞Q is dense in Σ∞.

Similarly, we let V∞Q denote the set of those points in V∞ that can
be joined to e by a geodesic ray passing through infinitely many points
of A(OS)e. From our choice of V before the Example in Section 3.2,
it is also clear that V∞Q is dense in V∞.

Lemma 3.9. We have V∞Q = V∞ ∩Σ∞Q .
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Proof. The action of A(OS) factors through the inclusion A(OS) ↪→
A(KS). Since A(OS) acts on V as a lattice of maximum rank k(H, S)−
1 = dim(V ), the affine lattices A(OS)e and V ∩A(KS)e are commen-
surable. Hence, they define identical rational structures at infinity.
ut

The goal of this section is:

Lemma 3.10. We have ∆∞− ∩ V∞ = ∅.
Proof. We proceed by contradiction. So assume ∆∞− ∩ V∞ 6= ∅. Our
first step will be to show that ∆∞− ∩ V∞Q 6= ∅. There are two cases.
First, V∞ contains an interior point of ∆∞− . Then the intersection
∆∞− ∩V∞ is open in V∞ and contains a rational point since these are
dense in V∞. That is ∆∞− ∩V∞Q 6= ∅. Second, if V∞ does not contain
an interior point of ∆∞− then since V∞ has codimension 1 in Σ∞ and
because∆∞− is spherically convex in Σ∞, we deduce that V∞ contains
a boundary simplex of ∆∞− . Since the affine lattice A(KS)e ⊆ Σ
is commensurable to the affine lattice of vertices in the Euclidean
Coxeter complex underlying the apartment Σ, rational points are
dense in every simplex in Σ∞. Therefore, V∞ ∩ (

Σ∞Q ∩ ∆∞−
) 6= ∅.

Using Lemma 3.9, we again find a point in ∆∞− ∩ V∞Q .
Now choose b ∈ A(OS) such that bne converges to a point b∞ ∈

∆∞− ∩ V∞Q as n → ∞, and let D ≤ A be the Zariski closure of the
cyclic group 〈b〉. After replacing b with a suitable power of b, we may
assume that D is connected.

Recall that for each v ∈ S, the group Ru(P−) is contained in
any minimal Kv-parabolic subgroup of H that is contained in P−.
Therefore, Ru(P−)(KS) fixes ∆∞− pointwise and, consequently, fixes
the point b∞ ∈ ∆∞− . As in the proof of Lemma 3.4,

Ru(P−)(OS) ≤ Ru(P−)(KS)
≤ { g ∈ H(KS) | gb∞ = b∞ }
= { g ∈ H(KS) | (b−ngbn)n∈N is precompact }

Therefore, for any γ ∈ Ru(P−)(OS), the sequence (b−nγbn)n∈N ⊆
H(OS) is both discrete and precompact. Hence, it is finite. We con-
clude that

b−nγbn = b−mγbm

for distinct n and m. Now, γ centralizes bn−m.
Let Dγ be the subgroup of A that is the Zariski closure of the

group generated by bn−m. Then, γ centralizes Dγ .
Note that Dγ ≤ D, and let

ϕ : D → D/Dγ
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be the quotient map. Since ϕ(〈b〉) is finite, it is equal to its own
Zariski closure. Thus,

D/Dγ = ϕ(D) ⊆ ϕ(〈b〉)
Using the finiteness of ϕ(〈b〉) again, we have that the dimensions of
Dγ and D are equal. Therefore, Dγ = D by the connectivity of D.
Thus, we have shown that Ru(P−)(OS) centralizes D.

Since bne → b∞, iterates of b define an unbounded sequence in
D(Kv) for at least one v ∈ S. It follows that D contains a nontrivial
Kv-split torus Dd. Indeed, if D were Kv-anisotropic, then D(Kv)
would be compact.

We denote the centralizer of Dd in H by L. Therefore, L is a
reductive group that contains A as a maximal torus (20.4 [Bo]).

We have shown that

Ru(P−)(OS) ≤ L(Kv)

As Ru(P−) is K-isomorphic as a variety to affine space (see 21.20
[Bo]), Ru(P−)(OS) is Zariski dense in Ru(P−) (use 3.1.1.ii [Mar]).
Thus,

Ru(P−) ≤ L

It follows that if α is any root of H relative to A that corresponds
to a root group U(α) ≤ H contained in Ru(P−), then α is also a root
of L relative to A. Thus, −α is a root of L relative to A as well, so
U(−α) ≤ L. Hence,

Ru(P+) ≤ L

Since Ru(P+) and Ru(P−) generate H (14.21 (iii) [Bo]), we have
H ≤ L. That is H = L, so the center of H contains the infinite group
generated by b. This is our contradiction. ut

3.7. Cycle assembly in X(r0)

Let C∆ ⊆ Σ be the cone of all geodesic rays contained in Σ, based
at e, and limiting to points in ∆∞− .

Recall our choice of a+ ∈ H(KS) as a translation of Σ such that

an
+e→ a∞+ ∈ Π∞

+

Recall also that Π∞
+ ⊆ Σ∞ is the collection of antipodal points for

points in Π∞− ⊆ Σ∞ and that ∆∞− is the union of chambers in Σ∞
containing Π∞− .

Therefore, Lemma 3.10 implies for n ≥ 1 that any geodesic ray
emanating from an

+e and limiting to ∆∞− is separated by V . Hence,
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there is a well-defined geodesic projection toward an
+e that gives rise

to a homeomorphism

∆∞− −→ V ∩ an
+C∆

Recall that we chose U to fix e. Thus, an
+Ua

−n
+ fixes an

+e. It follows
that for all u ∈ U , there are well-defined geodesic projections toward
an

+e that give rise to homeomorphisms

πu
n : an

+u∆
∞
− = an

+ua
−n
+ ∆∞− −→ an

+ua
−n
+ (V ∩ an

+C∆)

We claim that these homeomorphisms piece together to give a sur-
jection

πn : an
+U∆

∞
− −→ an

+Ua
−n
+ (V ∩ an

+C∆)

Recall that we showed in the first step of the proof for Lemma 3.8 that
any u ∈ U fixes ∆∞− ∩ u∆∞− pointwise. Thus, an

+ua
−n
+ fixes an

+∆
∞− ∩

an
+u∆

∞− pointwise. Since an
+ua

−n
+ fixes an

+e as well, it fixes all geodesic
rays from an

+∆
∞− ∩an

+u∆
∞− to an

+e. Hence, the geodesic projections π1
n

and πu
n agree on an

+∆
∞− ∩an

+u∆
∞− . Since we can write any intersection

an
+u∆

∞− ∩ an
+u

′∆∞− as an
+ua

−n
+ (an

+∆
∞− ∩ an

+u
−1u′∆∞− ) it follows that

the geodesic projections πu
n and πu′

n agree on an
+u∆

∞− ∩ an
+u

′∆∞− for
any u, u′ ∈ U , and thus πn is well-defined.

Note that πn is continuous since all maps πu
n are continuous. Also

note that the image of πn is contained in Ru(P+)(KS)V ⊆ X(r0).
The collection of

∑
u∈U πn

(
an

+u∆
∞−

)
are the cycles we have been

searching for throughout this paper.

Lemma 3.11. There is a point s ∈ Σ, a chamber s ⊆ Σ, and a sector
S ⊆ C∆ such that:

(i) s ∈ s ⊆ S; and
(ii) For each nontrivial u ∈ U ,

S ∩ %Σ,s(uC∆) = ∅
where %Σ,s : X → Σ is the building retraction for the pair (Σ, s).

Proof. Let S′ ⊆ C∆ and T ⊆ X be sectors that do not contain a
common subsector. Consider an apartment Σ∗ ⊆ X that contains
disjoint subsectors S0 ⊆ S′ and T0 ⊆ T. For any chamber c ⊆ S0,
the retraction %Σ,c restricts to an isometry from Σ∗ to Σ that fixes
S0 pointwise. Thus, we have

S0 ∩ %Σ,c(T0) = ∅
ChooseD ≥ 0 such that T is contained within the closed metricD-

neighborhood of T0. Now choose S ⊆ S0 such that the closed metric
D-neighborhood of S in Σ is completely contained within S0. Then
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for any two chambers s ⊆ S and t ⊆ T, the distance from %Σ,s(t) to
%Σ,s(T0) is at most D since %Σ,s does not increase distances. As the
distance from %Σ,s(T0) to S is at least D, we find

S ∩ %Σ,s(T) = ∅
By Lemma 3.7, uC∆ can be covered by finitely many T as above

for any nontrivial u ∈ U . Thus, we can assume, after perhaps passing
to a subsector of S, that S∩%Σ,s(T) = ∅ for all such u and T. Hence,
the lemma is satisfied for any choice of s ∈ s. ut

We fix s, s, and S as above, and for every n ∈ N we let

φn : Σ − {an
+s} → Σ∞

be the visual projection to the boundary from the point an
+s.

Lemma 3.12. For every r ≥ r0, the inclusion X(r0) ↪→ X(r) induces
a nontrivial homomorphism

H̃k(H,S)−1(X(r0) ; Fp) −→ H̃k(H,S)−1(X(r) ; Fp)

Proof. Choose n ∈ N such that V separates an
+S into a compact

component (containing s) and a noncompact component, and such
that

an
+e /∈ X

(
r + d(e, s)

)

The latter condition can be arranged by Lemma 3.5, and it implies
that

%−1
Σ, an

+s(a
n
+s) = {an

+s} * X(r)

where %Σ, an
+s is the retraction corresponding to the pair (Σ, an

+s)
Therefore, the following composition is well defined:

an
+U∆

∞
− → X(r0) ↪→ X(r) → Σ − {an

+s} → Σ∞

where the map on the left is πn, the map second from the right is
%Σ, an

+s, and the map on the far right is φn.
Since %Σ, an

+s is simply %Σ,s conjugated by an
+, Lemma 3.11 implies

that there is an open neighborhood of φn(V ∩an
+S) ⊆ ∆∞− that has 1-

point pre-images of points under the above composition. Hence, using
excision—as in determining degrees of maps between spheres (see e.g.
Proposition 2.30 of [Ha])—one sees that the image of the homology
class represented by an

+U∆
∞− is nontrivial under the homomorphism

induced by the above composition

H̃k(H,S)−1(a
n
+U∆

∞
− ; Fp) −→ H̃k(H,S)−1(Σ

∞ ; Fp)

Our result follows as the above homomorphism factors through

H̃k(H,S)−1(X(r0) ; Fp) −→ H̃k(H,S)−1(X(r) ; Fp)

showing that the class represented by
∑

u∈U πn

(
an

+u∆
∞−

)
is nontrivial

in the homology of X(r). ut
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Our proof of Proposition 3.1 is complete.
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