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We show thatS-arithmetic lattices in semisimple Lie groups with no rank one
factors are quasi-isometrically rigid.
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1 Introduction

Cocompact lattices in semisimple Lie groups over local fields with no rank one factors
are quasi-isometrically rigid. This was shown by Kleiner-LelH ][] in general, and
Eskin-Farb E-F 1] later gave a different proof in the case of real Lie groups.

Eskin then applied the “quasiflats with holes" theorem for symmetric spaces of Eskin-
Farb [E-F 1] to prove that any quasi-isometry of a non-cocompact irreducible lattice
in a real semisimple Lie group with no rank one factors is a finite distance from a
commensuratorgg. As a consequence, any such lattice is quasi-isometrically rigid.
Basic examples of such lattices incluBé&,(Z) for n > 3. Drutu has given another
proof of Eskin’s theorem)r] using asymptotic cones and the resultskofi].

Eskin’s theorem has a place in a larger body of work of Schwartz, Farb-Schwartz,
and Eskin. In particular, it has been shown that any quasi-isometry of an irreducible
non-cocompact lattice in a semisimple real Lie group, which is not locally isomorphic

to SL»(R), is a finite distance from a commensurat@dh 1, [Fa-Sch, [Sch 3, and

[ES); see F4 for a full account.

While the theorem of Kleiner-Leeb applied to cocompaetrithmetic lattices in semi-
simple Lie groups with no rank one factors, the question of quasi-isometric rigidity
for non-cocompact-arithmetic lattices remained unexplored for a few years. The
first account of quasi-isometric rigidity for non-cocomp&eairithmetic lattices (and

the only account aside from this paper) was given by Tab#@ak [Taback’s theorem
states that any quasi-isometry®E,(Z[1/p]) is a finite distance in the sup-norm from

a commensurator. Thus, Taback’s theorem provided evidence that quasi-isometries
of S-arithmetic lattices could be characterized in the same way as their arithmetic
counterparts.
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Following the work of Eskin, we apply the quasiflats with holes theoremf][

for products of symmetric spaces and Euclidean (affine) buildings to show that non-
cocompactS-arithmetic lattices in semisimple Lie groups with no rank one factors
are quasi-isometrically rigid. Examples of such lattices incl&le (Z[1/p]) and
SLn(Fg[t]) for n > 3, where[Fq[t] is a polynomial ring with indeterminaté and
coefficients in the finite field"y. (See Sectio® for more examples.)

As a special case of our results, we show that any finitely generated group quasi-
isometric toSLn(Z[1/p]), is in fact isomorphic toSLy(Z[1/p]) “up to finite groups"
as long asn > 3.

Our proof also shows that cocompact lattices in semisimple Lie groups with no rank
one factors are quasi-isometrically rigid, thus providing a unified proof of the theorems
of Kleiner-Leeb, Eskin-Farb, and Eskin. In particular, we give a proof of the theorem
of Kleiner-Leeb — a proof which does not use the theory of asymptotic cones.

Summary of definitions to come. In order to state our results, we briefly provide
some definitions. We will expand on these definitions in Seion

For any topological groupd, we let AutH) be the group of topological group auto-
morphisms oH.

For any valuatiorv of a global fieldK, let K, be the completion oK with respect to
v. If Sis a set of valuations df, then we letOs < K be the ring ofS-integers.

We call an algebraid -group G placewise not rank onwith respect toS if K, —
rank@G) # 1 for all v € S. We denote the adjoint representation Agl, and we
let G be the direct product of the groupgsl(G)(Ky) over allv € S for which G is
Ky-isotropic.

Last, we [etQZ(G(Os)) be the quasi-isometry group G{Os), and we let Comn®(Os))

be the commensurator group 8{Os). We warn the reader here that our definition of
Comm(G(0Oy)) is slightly atypical (see Sectidd).

Quasi-isometries ofS-arithmetic groups. Our main result is

Theorem 1.1 Let K be a global field and S a finite nonempty set of inequivalent
valuations containing all of the archimedean ones. Suppose G is a connected simple
K -group that is placewise not rank one with respect to S.

() If G is K-isotropic and K is a number field, then there is an isomor-
phism:
Q7 (G(Os)) = CommG(O9)).
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(i) If G is K-isotropic and K is a function field, then there exist an
inclusions:

Comm@G(0s)) — QI (G(Vs)) — Aut(G).
Furthermore, the image of QZ(G(Os)) in Aut(G) has measure zero.

(iii) If G is K -anisotropic, then there is an isomorphism:
Q7 (G(0s)) = Aut(G).
As an example of Theoreth 1(i), we have
QZ(SLs(Z[1/p])) = PGL3(Q) x Z/2Z,

where the topology on the right side of the isomorphism is induced by the topology of
Q as the diagonal subspacegfx Qp. This example is described in more detail in
Sectionb, where we also present five other examples.

We note that the theorem above leaves room for improvement, &s-tbetropic case
for function fields is not completely determined. However, results in this case are still
slightly stronger than they are for the fully resolviédanisotropic case.

Quasi-isometric rigidity. From Theoremi.1we can deduce
Corollary 1.2 Suppose K, S, and G are as in Theorem 1.1, and suppose that G is of
adjoint type. Let A be a finitely generated group, and assume there is a quasi-isometry
¢ A — G(Og).
() If G is K-isotropic and K is a number field, then there exists a finite

index subgroup As of A and a homomorphism ¢ : As — G(Os) with a
finite kernel and finite co-image such that

supd(ga()\), (;S()\)) < 0.

AEAs

(ii) If G is K -isotropic and K is a function field, then there exists a finite
group F and an exact sequence

1-F—-A->T-—>1
such that T' is a non-cocompact lattice in Aut(G).

(iii) If G is K -anisotropic, then there exists a finite group F and an exact
sequence
1-F—-A->T-—1

such that T' is a cocompact lattice in Aut(G).
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Bibliographic note. We will present a proof of Theorerh.1 that covers all of the
cases above, some of which are well known.

Part (iii) of Theoreml.1and Corollaryl.2was shown by Kleiner-LeellKfL]. Part (iii)
was also shown whek is a number field an8 equals the set of archimedean valuations
by Eskin-Farb E-F 1]. (Note that the theorems irK[L] and [E-F 1] are stated in
equivalent terms of isometries of Euclidean buildings and/or symmetric spaces.)

Part (i) of Theoreni.land Corollaryl.2was shown by Eskingg with the additional
assumption thak equals the set of archimedean valuations. Drufu has also given a
proof of (i) assumingS is the set of archimedean valuatio®]. The proof in Dr]

uses results fromk-L].

Corollary 1.2 follows directly from Theoreni.1 and, for part (i), Margulis’ super-
rigidity theorem. The proof of this corollary using Theordni is routine. See, for
example, Section 9 od|.

Similarities and differences between our proof and Eskin’s. The proof of Eskin’s
theorem involves studying the large-scale geometry of symmetric spaces on which
higher rank real semisimple Lie groups act. Our proof of Theotetrapplies the
“quasiflats with holes" theorem frori\[1] (which itself is an extension of the quasiflats

with holes theorem of Eskin-FarE{F 1) to extend Eskin’s proof by allowing for the
presence Euclidean buildings. (Recall that Euclidean buildings are the natural spaces
acted on by semisimple Lie groups over nonarchimedean local fields.) We rely on many
of Eskin’s arguments in using large-scale geometry to construct a boundary function
defined almost everywhere.

Where our proof differs substantially from Eskin’s, is in the way we complete the
boundary function. We are forced to confront this problem with different methods,
since the proof in E9 relies on the fact that the Furstenberg boundary of a real
semisimple Lie group is a Euclidean manifold. This is not the case in general, as the
Furstenberg boundary of a semisimple Lie group over a nonarchimedean local field
is a Cantor set. Being unable to rely as heavily on topological arguments, we turn to
algebraic methods to find a completion. (See Sectifor an expanded outline of our
proof.)

Strong rigidity. Our main result can be viewed as a strengthening of strong rigidity.

Recall that the strong rigidity theorems —first proved by Mostow and later expanded on
greatly by Prasad, Margulis, and Venkataramana — state that any isomorphism between
irreducible lattices in semisimple Lie groups, which are not locally isomorphic to
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SL»(R), extends to an isomorphism of the ambient semisimple group. Thus, the
ambient semisimple group is completely determined by the isomorphism class of a
lattice (Mo], [Pr 1, [Pr J, [Mar], and [Ve)).

Our result states that the quasi-isometry class alone &arithmetic lattice meeting
the conditions of Theorerh.1is enough to determine the ambient semisimple group.

We note that the proofs of strong rigidity in cases (i) and (ii) of our main theorem (given
by Margulis and Venkataramana respectively) are rooted in ergodic theory. Our unified
proof of cases (i), (ii), and (iii) is based on the large-scale geometry of symmetric
spaces and Euclidean buildings. As such, we return to Mostow’s original ideas and
present a proof that is of a more geometric nature than the ergodic theoretical proofs
of strong rigidity.

Number fields versus function fields. Although our results are not complete in the
function field case, we point out that this is only due to the absence of a characterization
of commensurators which does not exist in the function field case (see Prop@sdion

Throughout the portion of the proof dealing with large-scale geometry, the function
field case allows for significant simplifications. The simplifications stem from the fact
that two Weyl chambers in a Euclidean building are Hausdorff equivalent if and only
if their intersection contains a Weyl chamber. Of course this is false for symmetric
spaces.
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Thanks to Alex Eskin for helpful insights and for helping me discover some mistakes
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the past five years, as well as Bruce Kleiner, Dan Margalit, and Karen Vogtmann for
suggestions about the exposition of this paper.

I would like to acknowledge the University of Chicago for supporting me as a graduate
student while | developed the ideas in this paper, and Cornell University for the pleasant
working environment given to me while | completed its writing.

Last and most important, | am grateful for Barbara Csima, Benson Farb, and Dan
Margalit; their support, encouragement, and patience made me into a mathematician.
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2 Definitions

We will take some time now to be precise with our definitions.

Quasi-isometries. For constants > 1 andC > 0, a (, C) quasi-isometric embed-
ding of a metric space into a metric space is a function¢ : X — Y such that for
any xg, X € X:

Td(x,%0) — C < d(60a), 606)) < rdl(xa, %) + C.

We call ¢ a (k, C) quasi-isometrjf ¢ is a (x, C) quasi-isometric embedding and there
is a numberD > 0 such that every point ity is within distanceD of some point in
the image ofX.

Quasi-isometry groups. For a metric spac&, we define the relatior- on the set of
functionsX — X by ¢ ~ 9 if

supd(¢(x), ¥(X)) < oo.
XeX

We form the set of all self-quasi-isometriesXfand denote the quotient space modulo
~ by QZ(X). We call QZ(X) thequasi-isometry groupf X as it has a natural group
structure arising from function composition. Note thaXifindY are quasi-isometric
metric spaces, then there is a natural isomorphd&nX) = 9QZ(Y).

Word metrics. A finitely generated groug® is naturally equipped with a proper
left-invariantword metric This is the metric obtained by setting the distance between
~v €I and 1€ T to be the infimum of the length of all words written in a fixed finite
generating set that represent

The word metric depends on the choice of finite generating set, but only up to quasi-
isometry. Hence, the grou@Z(I') is independent of the choice of a finite generating
set forT.

S-integers. Recall that finite algebraic extensions of eitt@@ror the fieldFy(t) of
rational functions with indeterminateand coefficients in a finite field,, are called
global fields If K is a global field then we denote the set of all inequivalent valuations
on K by Vk, and we denote the set of all inequivalent archimedean valuatidqsgf
Ve
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For any valuationv € Vg, let K, be the topological completion df with respect
to v. The fieldKy is a locally compact nondiscrete field. Any field satisfying these
topological properties is calledlacal field

For a finite nonempty set of valuatio®C Vk containingVge®, we define the ring of
S-integersn K to be

Os={xeK|1>|xyforallve Vkx—S}.

Rank. If asimple algebraic grouf is defined over a fieldl, we say itis arL-group.

An L-group G is calledL-isotropicif L — rank@G) > 0, and calledL-anisotropic
otherwise. (Recall that — rank(@G) is the maximum dimension of an algebraic
subgroup ofG which is diagonalizable ovdkr.)

For a global fieldK and a simpleK-group G, let V,f’a C Vk be the set of valuations
v for which G is Ky-anisotropic. Recall that € V,f’a is equivalent to the condition
that G(K,) is compact.

We defineG to beplacewise not rank oneith respect to a chosen finite set of valuations
S, if Ky —rank@G) # 1 forallve S.

S-arithmetic groups. A group is calledS-arithmetiaf it is isomorphic toG(Os) for
someK -group G and for some finite nonempty s8tC Vi containingVee®.

Throughout the remainde6 is connected, simple, and placewise not rank one with
respect tdS. Under these conditions it is well known tha{Os) is a finitely generated
group, so it admits a proper word metric.

Lattices. Alocally compactgroupgd supports a Haar measyue A discrete subgroup
I' < H is called datticeif H/T" has finite volume with respect jo. This is necessarily
the case ifH/T" is compact. Such lattices are calleocompactthey are calledon-
cocompacbtherwise.

We write Ad(G) for the image ofG under the adjoint representation®f The adjoint
representation has a finite kernel which equals the centér. of

Define
G= [] Ad(G)K.).

veS—Vlf’a

The diagonal homomorphism &(Os) into G has a finite kernel. We write the image
of the diagonal homomorphism &(©s)”. The reduction theory of Borel, Behr, and
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Harder established th&@(Os)” is a lattice inG and thatG(Os)> is cocompact if and
only if G is K-anisotropic.

We point out here thaG(Os)> is clearly irreducible as a lattice iG. Recall that a
lattice I' < G is reducibleif T' contains a finite index subgroup of the fodm x I';
where

Iy =T N [JAd(G)(Ky),
Ti

andT1 and T, nontrivially partitionS— Vf’a. Otherwise " isirreducible

Let Aut(G) be the group of all topological group automorphisms@f Since G
has a trivial center, it embeds into AG via inner automorphisms. Furthermof@,
is a closed cocompact subgroup of AB}( so G(Og)? is also a lattice in Autp).
FurthermoreG(Os)? is cocompact in Autg) if and only if it is cocompact irG.

Commensurators. Anautomorphism) € Aut(G) commensurate&(Og) if ¥(G(Og)>)N
G(O9)? is a finite index subgroup of both(G(Os)?) and G(Os)>.

Define CommG(Os)) < Aut(G) as the group of automorphisms that commensurate
G(0s)™. Notice that ComntG(Os)) is different from the standard definition of the
commensurator group db(Os) in two ways: we projecG(Os) into G, and we do
not restrict ourselves to inner automorphisms.

Let Aut(K) be the group of field automorphisms Kf. There is an action of AuK)

on the set of affinK -varieties. Indeed, iWW is an affineK -variety, then we let”W

be the variety obtained by applyingto the coefficients of the polynomials that define
W. We define AutK)g to be the group of automorphismse Aut(K) such that®G

is K-group isomorphic tds.

Since valuations are obtained by embedditgnto various local fields, there is an
obvious action of Aut{) on the set of valuationgx . We let AutK)g s be the subgroup
of Aut(K)g consisting of those € Aut(K)g such thatr(S— Ve®) = S— Ve,

The group AutK) is finite whenK is a global field, so both Au)c and AutK)g s
are finite also.

We will see in SectiorY that CommG(Osg)) is an extension
1—- AUt(Ad(G))(K) — Comm@((’)s)) — AUt(K)GS — 1,

whereAut (Ad(G)) is theK-group of algebraic group automorphismsAd(G).
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If G is defined over a subfield df that is fixed pointwise by AuK)g s, then the
above extension splits. Furthermore@@fis K -split, then there is a split extension

1 — Ad(G)(K) — Aut(Ad(G))(K) — Out(Ad(G))(K) — 1,

whereOut(Ad(G)) is theK -group of outer automorphisms 8d(G) (or alternatively
the K-group of automorphisms of the Dynkin diagramAd (G)).

Combining the two remarks above, we have thabifis K-split and defined over a
subfield ofK that is fixed pointwise by AuK)g s, then

Comm@G(0g)) = <Ad(G)(K) X Out(Ad(G))(K)) x Aut(K)g.s.

Regardless of whether the extensions defining CoB(0g)) split, CommG(Os))
containsAd(G)(K) as a finite index subgroup since the outer automorphism group of a
simple algebraic group is finite. Therefore, we can define a topology on CGKdPa])

by assigning the topology o&d(G)(K) to be the subspace topology resulting from the
diagonal embedding

AdG)K) — [ AdG)Ky).
veS—V,(f’a

Examples. A reader not familiar withS-arithmetic groups is encouraged at this point
to skip ahead to Sectidnwhere a series of examples is presented.

3 Notes

Now that our definitions are in place, we revisit Theorkrh

Remarks on Theorem1.1(i). In the K-isotropic case for number fields in The-
orem 1.1, the group ofK-rational points ofAd(G) is a finite index subgroup of
Q7(G(0Os)). Hence the group operation &Z(G(Os)) recoversK and a finite quo-
tient of G. These are two of the three ingredients used to cré4tes). The third
ingredient,S, cannot in general be recovered from the quasi-isometry group, but it can
be identified up to an element of the finite group AUt .

Let’s briefly make the paragraph above more precise.

Theoreml.1 states thatQZ(G(Os)) is determined up to a topological group isomor-
phism as Comn@(Os)). By a theorem of Borel-Tits §o-T] Cor. 6.7), Ad(G)(K)™
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is the minimal finite index subgroup @Z(G(Os)) whereAd(G)(K)™ is the subgroup
of Ad(G)(K) generated by th& -points of the unipotent radicals of thé-parabolic
subgroups ofAd(G). Therefore, any topological group isomorphism@f (G(Os))
induces a topological group isomorphism

f : Ad(G)(K)" — Ad(G)(K)™,
where we assume the domainfohas the topology derived fror8.

Another well known theorem of Borel-TitsBp-T] Theorem (A)) states thdt= Goc°
whereo € Aut(K)g, and

0% Ad(G)(K) — “Ad(G)(K)
is the homomorphism defined by applyiagto the matrix entries oAd(G)(K), and
B : °Ad(G) — Ad(G)
is aK-isomorphism of algebraic groups.

Sincef is a homeomorphismy is a homeomorphism as well. Therefore, the topology
on the image ot : K — K is given by the set'S, sinceS determines the topology of
the domain ofs.

Note that if o € Aut(K)g and 3 : °Ad(G) — Ad(G) is a K-isomorphism of
topological groups, then® restricts to an isomorphisid (G)(Os) = “Ad(G)(O,s)
and(°Ad(G)(0O,s)) is commensurable witAd (G)(O,s) (see e.g. Mar] 1.3.1.1.iv).
Hence, recoverin® up to an element of Aul{)g provides us with enough information
to reconstrucG(Os) up to finite groups. In light of this, we could not hope for quasi-
isometries to pinpoing any more than up to an element of A)G .

For clarity, we observe that
Sln(Z[i, 1/ +1)]) 2 SLa(2Z[-i,1/(2— 1)])

is an example of how the set of valuations can fail to be identified completely by quasi-
isometries since, in this example, the set cannot even be distinguished by isomorphisms
of groups.

Remarks on Theorem1.1(iii). In the K-anisotropic case, the simple groéu(G)
is encoded in the quasi-isometry group, but the global fielid not.

For example, examine the quadratic form

5
o = Z x2.
i—1
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Let SO be the special orthogonal group df, so thatSO is Q-anisotropic and
Q(v/11)-anisotropic.

There are exactly two elements vg(m) — which we namevi® and v5° — and

Q(V11)~ =R for i = 1,2. If we choose the valuation,, 17, € Vg, /17) defined

by the prime ideal (4- v/11) C Z[v/11], then@(\/ﬁ),(4+m) is isomorphic to the
field of 5-adic numbersQ)s.

Let S= {v{°, V5", V4, ,13)} - By the theorem of Kleiner-Leeb,

QI( ) (05)) ~ SO(Qy).
(ThatSO is placewise not rank one with respecB#ollows form the fact that € Qs.)

Next, we take our global field to b&. We letS = {v*, v}, wherev™ is the
archimedian valuation o and v is the 5-adic valuation. Then Kleiner-Leeb’s
theorem also gives us

QI(SO (Og)) ~ SO(Qs).

Hence, quasi-isometries could not distinguish betw8eand Q(v/11) in these two
examples.

Remarks on Theorem1.1(ii). My current level of knowledge for the gener&t
arithmetic group wheiK is a function field ands is K -isotropic is at an intermediate
level. In this setting we have stronger results than inkhanisotropic case, but less is
known than in the number field case.

There is some evidence that we should be able to remove the assumptidh ithat

a number field from part (i) of Theorehl The number field case itself provides
evidence that part (i) should hold for the function field case, and it has been shown that
Theoreml.1(i) holds for SL,(Fg[t]) whenn > 3 [W2].

The distinction between number fields and function fields indhisotropic case exists
because our proof for number fields takes advantage of Ratner’s theorem for unipotent
flows [Ra. Ratner’'s theorem is a powerful tool, and it appears to be unknown in
positive characteristic.

Note that, in contrast with lattices in semisimple Lie groups @#adic number fields,
lattices in semisimple Lie groups over function fields can be non-cocompact. In fact,
Harder showed that K is a global function field ands is a simpleK-group, then

G can beK-anisotropic only ifG is of type A, [Harfl. Therefore, resolving the

K -isotropic case for function fields has heightened importance.
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Remarks on Corollary 1.2 In the remarks on Theorefn(i) it was pointed out that

in theK -isotropic case for a number fiel, the quasi-isometry group @&(Os) carries
the information needed to reconstrug{Os). Hence, an arbitrary finitely generated
group A that is quasi-isometric t6(Os) will also carry the information needed to
reconstructG(Os) asA andG(Os) will have the same quasi-isometry groups. This is
the content of part (i) of Corollary.2

Note that (i) states that the only way to defoi&(Os) in the space of all finitely
generated groups without moving it outside of its initial quasi-isometry class is through
algebraic methods.

If we knew that Theoreni.1(i) held in the function field case, then CorollatyX(i)
would apply to the function field case as well. In particular, case (i) of the above
corollary holds wherG(Os) is replaced bySLn(Fq[t]) for n > 3.

Rigidity for groups with poor finiteness properties. Any finitely generated group

that was previously known to be quasi-isometrically rigid contains a finite index sub-
group that is simultaneously complex linear, torsion-free, of tifgg, and of finite
cohomological dimension. Thus, the final comment in the preceding paragraph dis-
plays the first quasi-isometric rigidity result for a finitely generated group with poor
finiteness properties.

Indeed, itis well known thaBLn(Fq[t]) is not virtually torsion free. Hence&SLn(Fq[t])

is not complex linear, and any finite index subgroup has infinite cohomological dimen-
sion. In addition,SL3(Fq[t]) is knownnotto be finitely presentable (a result of Behr
[Be]), and independent work of Abels and Abramenko shows that the class of groups
of the form SL(Fq[t]) wheren > 3 contains groups of typE, but not of typeFy, 1

for all k > 1 (see Pbl] and [Abr]). Recall that a groupr is of type Fy if there exists

an Eilenberg-Mac Lan& (7, 1) complex with finitek-skeleton, andr is of type F,

if it is of type F for all k.

4 OQutline

Our proof of Theorem..1borrows heavily from 9.
We proceed by realizing any element@f (G(Os)) as a quasi-isometric embedding
(b : N(F) B X7

whereX is a product of a symmetric space and a Euclidean building\Nghyl C X is a
set (defined in Sectio8) that both contains, and is contained in, a metric neighborhood
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of a G(Os) orbit. The existence of such a quasi-isometric embedding follows from a
theorem of Lubotzky-Mozes-Raghunath&nNI-R].

Our goalisto show that is within a finite distance of an element of IsOR(& Aut(G).

Constructing a boundary function defined a.e. In logical order, our proof begins
with Section8. Following Eskin, we apply basic ergodic theory to show that the
generic flatF C X has most of its volume contained M(I"). We denote this generic
collection of flats bytl, and we note that in general, is a proper subset of the set of
all flats in X.

For any flatF € I, the quasi-isometric embedding restricts to a quasi-isometric
embedding

;:—>X7

whereQr C FNN(T) is a suitably large subset &f. By precomposing with a closest
point projection, we have maps

¢F  F — X.

We analyze the image of these maps using the quasiflats with holes theoréri]pf [
and we use the asymptotic behavior of the images to construct a function

0¢ : Uy — B(G),

where B(G) is the spherical Tits building fo andUg C B(G) is a subcomplex that
has full measure in the Furstenberg boundary.

For this task, we mostly defer to the proof iBJ which covers the case wheXis a
symmetric space. Indeed, Eskin’s proof uses the geometry of symmetric spaces mostly
to establish a few foundational lemmas. These lemmas are used to analyze the behavior
at infinity of the quasiflats with holes. We supply the analogous foundational lemmas
for the general spac¥, and then Eskin’s proof applies to the more general setting.

Continuity of the boundary function on neighborhoods of faces. Section9 is

the final section of this paper. The first three lemmas of the section are meant as
replacements for foundational lemmas litg], so that we can apply a proof fror&§

to derive a fourth lemma: the restriction @b to the simplicial neighborhood of a face

of a maximal simplex ifJ, is continuous.
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Completing the boundary function. Our goal is to extend the domain 6t to all

of B(G). Then we can use Tits’ theorem to show tlat corresponds to an element
of Aut(G). This step is the content of Sectién Despite the fact that this section is
the third part of our proof if it were presented in logical order, it is placed in the early
portion of this paper as it is less technical than material from Sec8@m&l9, and as

it contains material unlike that found i §.

Eskin’s approach to finding an extensiondf, for the case wheK is a number field
and S = Vg°, was to find a topological completion @fp. A restriction of 0¢ to a
co-null subset of the Furstenberg boundary is shown to bedtddd. Thend¢ can be
completed to a domain df(G).

Eskin’s argument relied on the fact that the Furstenberg boundary of a real semisimple
Lie group is an analytic manifold and a topological manifold. In contrast, the Fursten-
berg boundary of a semisimple Lie group over a nonarchimedean local field is a Cantor
set. Therefore, our approach is forced to deviate from Eskin’s at this point.

We completed¢ algebraically, using the Borel-Tits classification of abstract homo-
morphisms between simple groups. We residigtto a collection of countably many
chambers inUy (a spherical building foiG over global fields) and argue that the
restriction is induced by an injective homomorphism of rational points of algebraic
groups. The homomorphism is specified by pairs: isomorphisms of algebraic groups
and inclusions of global fields into local fields. We show the field inclusions are con-
tinuous using the continuity of the boundary function on simplicial neighborhoods of
faces of maximal simplices. Then we extend the restriction to an automorphi€m of
by completing the field inclusions. Finally, we show that the extension of the restriction
is also an extension al¢.

See alsolDr] in the case wheK is anumber field an8 = Vg° for amore combinatorial
approach to this problem.

To conclude Sectiof, a result of g9 is applied to show that the automorphism®f
which corresponds td¢, stabilizesG(Os) up to Hausdorff equivalence. We denote
the group of all such automorphisms by AyiG; G(Os)). Therefore,

QZ(G(0s)) = Autpy(G; G(0s)).

Automorphisms coarsely preserving lattices. If G is K-anisotropic, therG and
G(Og) are Hausdorff equivalent so Awl(G; G(Os)) = Aut(G). In Section7 we
show that Augg(G; G(Os)) is a null subset of Aut) otherwise. We also show that
Autyg(G; G(Os)) = Comm(G(0Os)) whenG is K -isotropic andK is a number field.
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5 Examples

This section will be especially useful for geometric group theorists who are not spe-
cialists in S-arithmetic lattices.

In this section we present six examples illustrating various aspects of Théoteio
focus on previously unknown results, the examples below will all be for the case that
G is K-isotropic andS # Vg°.

Example (A) The basic global field i€). It supports a countably infinite family of
inequivalent valuations (which we think of as metrics for the global field): an “infinite”
valuation and am-adic valuation for every prime numbkr It is well known that these
are the only valuations supported @n

The infinite valuationv>® : Q — R is obtained by embeddin@ into C and then
restricting the standard metric db. Any valuation on a global field that is obtained
through an embedding int0 is calledarchimedeanBy completingQ metrically with
respect tor>° we obtain the real numbers. In the notation of Secfipthis is written
asQy~ =R.

The only archimedean valuation @ is v*°, but there are still th@onarchimedean
|-adic valuations/y for prime numbers. First, we define for any integés, the natural
number dedk) as the exponent df occurring in the prime factorization d¢f. Then,

we definev(|) :Q — R by

n
‘— = exp (deg(m) — deg(n)).
m V(|)
Hence, the defining feature of theadic valuation is that it treats the size of powers of
| backwards from what our intuition is used to from the archimedean valuation. That

is [I"ly,, — 0 asn — oo, and|1/I"|y, — co asn — oo.

The |-adic valuation orfQ is not complete. If we complet® with respect tovg), we
obtain thel-adic numbers@\,(l) which is written simply a€),. Thel-adic numbers are
locally compact and totally disconnected.

If we fix a prime numbep and letS= {v*°,v(y}, then
Os={xe€ Q|12 [x, forall primesp # | } = Z[1/p].

Becausel — rankSLz) = 2 for all fields L, Theoreml.1 applies toSL3(Z[1/p]).
Since Q@ admits no nontrivial automorphisms, the imageSif; under the adjoint
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representation i$GL3, and transpose-inverse is the only outer automorphism of
PGL3, we have

QZ(SLs(Z[1/p])) = PGL3(Q) x Z/2Z.
Notice that as abstract groups,
QZ(SLs(Z[1/p])) = QI(SLs(Z[1/1]))

for any primesp and |. However this isomorphism is not topological. Indeed,
QZ(PGL3(Z[1/p])) is the quotient of a space of functions so it has a quotient topol-
ogy descending from the compact-open topology. This topology is equivalent to the
subspace topology dAGL 3(Q) inherited from the diagonal embedding

PGL3(Q) — PGL3(R) x PGL3(Qp).

With this natural topological structure, the sequence of quasi-isometry classes given

by
1 0 p"
00 1

for n € N is discrete inQZ(PGL3(Z[1/p])), but not in QZ(PGL3(Z[1/1])). In
particular,SL3(Z[1/p]) and SL3(Z[1/1]) are not quasi-isometric b # |.

Example (B) Expanding on the previous example, wekebe any finite set of prime
numbers. Then for the finite set of valuatioBs= {v>°} U {v(p) }pep, the ring Os is:

{x€ Q1= x|y, forall primesl ¢ P} = Z[1/mg],
wheremp = Hpep p.

Expanding on the previous example in another direction, recall that for any.fjelha
rank of SL, overL isn— 1. Hence, as long as> 3 we have

QI(SLa(Z[1/me])) = PGLA(Q) x Z/2Z.

Again we note tha©Z(SLn(Z[1/me])) has a natural topology equivalent to the topol-
ogy obtained via the diagonal embedding

PGLn(Q) — PGLa(R) x [ [ PGLn(Qp).
peP

HenceQZ(SLn(Z[1/mp])) becomes “more discrete" as the finite fegrows.
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Also notice that the semisimple Lie group

PGLn(R) x [ [ PGLA(Qy)
peP
is an index two subgroup of the topological closure@f (SL,(Z[1/mp])). Hence,
the quasi-isometry class 8Ly (Z[1/mg]) identifies the ambient semisimple Lie group
that containsSL,(Z[1/mg]) as a lattice.

Example (C) Examine the quadratic form

5
O =]+ 26 - V2E+) (¢ -2
i=4

As @ is defined overQ(v/2), the special orthogonal gro®0,, is a Q(v/2)-group.

There are exactly two archimedean valuations supporté@(ef2). They are obtained
from the embeddinga+ v/2b — a+ v/2b € C anda+ v2b — a— v/2b e C. Call
these valuations{® and Vv5° respectively, and note th@(ﬁ)\,cfo and Q(\@)\,go are
each isomorphic tiR as topological fields, but each in a different way.

We want to add a nonarchimedean valuation to our example. Since 3 does not split as
a product of two primes ifZ[v/2], there is a unique extension of the 3-adic valuation

to Q(v/2) (written asv(z)), andQ(v/2)y; = Q3(V2).

Let S= {V{°,v5°,v(3)}. ThenOs = Z[/2,1/3]. We can apply Theorerh.1 since
the rank ofSO, over bothQ(v'2) andQ(v'2) is 2, and the rank 080, over both
Q(V2) andQ(v'2)y is 3. (ThatQ(v/2)y, — rankS0Og) = 3 follows from the fact
that /-2 € Q3.)

There is a nontrivial element of A@(v/2)). Namelyo wheres(a+bv/2) = a—bv/2.
However, whilecS = S, there is noQ(v/2)-isomorphism betweefiSO4; and SOy, .
Indeed,” SO and SOg4 are not even isomorphic ové&® as?® has signature (2)
and ® has signature (8). Hence, Aut@(ﬁ))eys is trivial (as isOut(SOgs)) so
Theoreml.lyields

07 ( S0s(21v2,1/3))) = SO4(Q(V2).

Example (D) The symplectic groufPs has rank 3 over any field. For the global field
Q(), we take the lone archimedean valuatiofi (given by restricting the standard
metric onC) along with the (2+ i)-adic and the (2- i)-adic valuations to comprise
the setS. (Note that 2+ i and 2— i are prime inZ[i].)
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Obviously Q(i)y~ = C, and because (2 i)(2 — i) = 5, bothQ(i)y,,;, and Q(i)y,,_,
are isomorphic td)s. Now
1 1

QI(SPG (@l 57 ﬁ])) ~ PSRy(Q()) x Z/2Z,

wherePSHR; is the adjoint group 06Ps. The nontrivial element of/2Z represents
the automorphisnv of Q(i) defined byo(i) = —i. Complex conjugation clearly
stabilizesS, and “PSP; = PSR; sincePSR; is defined ovef).

Example (E) Let Fq be the finite field withq elements, and lefq(t) be the field

of rational functions with indeterminateand coefficients irFy. This is the primary
example of a global function field. All other global function fields are finite algebraic
extensions offy(t) in analogy with the role plays for number fields.

The characteristic oF(t) is nonzero so there are no embeddings of this field to
and, hence, no archimedean valuations.

Examine the valuation dfy(t) at infinity, v, defined on quotients of polynomials by
PO _
[0 = @0 (degb®) — degb)).
Note thatv., measures the degree of the pole of a rational functiosoat P1(Fq),
where[Fy is the algebraic closure df.

We could define an analogous valuatioag, for every pointp € IP’l(Fq). The ring
of functionsf € Fq(t) for which [f|,, < 1 forall p € IPl(Fq) — {0} are precisely
those rational functions which have no pole®HFq) — {oc}. Equivalently, the ring
above is simply the ring of polynomials with indeterminaten the notation used in
Sectionl, we haveOs = Fy[t] for S= {v}.

CompletingFg(t) with respect tov,, produces the locally compact field of formal
Laurent serieﬁ-?q((t_l)) with indeterminate—1. Hence, we have by Theoreml that

QI(SLn(IFq[t])> < (PGLn (Fo(t™)) = Z/ZZ) x Aut (Fq((t™))
forall n > 3. We remark that AufFq((t™1))) is profinite and in particular is compact.

It will be shown in W2] however, that for this particular example the quasi-isometry
group is determined exactly as it is in the number field case. That is,

QT (SLn(Fy[t])) = (PGLn (Fq(t)) » Z/zz) B,

where B is a finite solvable subgroup d?GL,(Fy). Precisely,B is the group of
Fq-points of PGL, 2 Aut (P1) that stabilize our distinguished point € P1(F).



Quasi-isometric rigidity of higher rank S-arithmetic lattices 19

Example (F) We give a final example involving function fields for which | do not
at this time know of a proof that the quasi-isometry group is exactly the subgroup of
Aut(G) consisting commensurators.

Examine the smooth elliptic curv@ over Fs given by the equatioy® = t> —t. The
field of Fs-rational functions orC is Fs(t, v/t3 —t), and it is a separable extension of
Fs(t).

Note that { = 2,y = 1) and { = 1,y = 0) define points orC which we namep and
g respectively. We define valuations B(t, v/t3 — t) with respect to the points and
g as we did in the previous example, and weSet {Vvp, vq}. ThenOs is the ring of
regular functions or€ — {p,q}.

Since [Fs(t, V13 —t) : F5(t)] = 2, and since the point of given by ¢ = 2,y = 4)
and the pointp each lie above Z P(Fs), we know by the so-called fundamental
identity of valuation theory thaFs(t, v/t3 — t)y, = F5((t — 2)).

As the pointq € C is the only point onC with t = 1 (i.e. q is a point of ramification)
V13 —t ¢ Fs(t)y, wherew; denotes the valuation ds(t) at the point 1 PY(Fs).
Hence,Fs(t, vt3 —t),, = F5((t — 1))(Vt3 —1).

Now we are set to apply Theorelinl which states in this case that
(04 ( SPG(OS)>
is contained as a measure zero subgroup of the direct product of
PSR (IF5((t - 2))) 1 Aut (IF5((t . 2)))
with

PSR <F5((t — )/ t)) » Aut <F5((t — )/ - t)).

This is a stronger result than the one that is known to hold irktkenisotropic case,
but it is an incomplete result. There is evidence to suggest that there should be an
isomorphism

QI( spe(os)) ~ PSP, (Fs(t, v/ — 1)).

Note that it can be shown that AlY(t,vt® —t))g s is trivial since there are no
nontrivial automorphisms of which fix the pointp and the poing.

Corollary 1.2(i) would hold for SP;(Os) if the above isomorphism existed.
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6 Completing the boundary function

Let G(Og) be as in Theorem.1 SinceG(Os) and Ad(G)(Os) are commensurable
up to finite kernels (see e.gMpr] 1.3.1.1.iv),

QI(G(0s)) = QI(Ad(G)(Os)).
Thus we may, and will, assume throughout the remainderGhiatof adjoint type.

Let
G= ][] Gk

ves-ved

Let X be the natural product of nonpositively curved symmetric spaces and Euclidean
buildings on whichG acts by isometries and such that I1sé@))(G is compact. In this
case IsomX) = Aut(G).

Throughout we letn equal the rank ofX. (Recall the rank ofX is the maximal
dimension of a flat irX.)

Two boundaries. For any pointe € X, there is a natural topology on the space of
directions frome which forms a simplicial compleX3(G), called thespherical Tits
building for G. The spherical building isn(— 1)-dimensional, and it is the same as
the spherical building fo6 that is produced using the standard BN pair construction.
Hence, group automorphisms @finduce simplicial automorphisms @&(G).

A subsetL C X is called awall if it is a codimension 1 affine subspace of a flat
that is contained in at least two distinct flats. Weyl chambein X is the closure

of a connected component of a flatC X less all the walls containing a fixed point

x € F. Most of the time we will not care about the poiivhich was used to create a
Weyl chamber. In those cases when the distinction is important, we say any such Weyl
chamber idasedat x. (This is different terminology than was used WW]]. See the

word of caution following the discussion of the Furstenberg metric.)

The Furstenberg boundary of ¥ the compact space of maximal simpliced3(G).

We denote it by)A(. It can be defined equivalently as the space of Weyl chambexs in
modulo the relation that two Weyl chambers are equivalent if they are a finite Hausdorff
distance from each other.

If X =X, x X,, whereX, is a symmetric space anX}, and a Euclidean building,
thenX = X X Xp.
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Furstenberg metric. There are metrics oiX,, and X, that are invariant under a
fixed isotropy subgroup of Iso¥(.) and IsomkK,) respectively. The metric oX.,
is well-known.

To define the metric oDAKp, we begin by choosing a pointe X, and a representative
Weyl chamberS C X, for every equivalence class ﬁﬁp such thatS is based ak.
Thus, we regarCT(p as the space of all Weyl chambers basex. at

For any Weyl chamber basedatsay S, let vg : [0,00) — & be the geodesic ray
such thatys(0) = x and such thatys(oo) is the center of mass of the boundary at
infinity of & with its usual spherical metric.

We endowX,, with the me'[ricaID where

a@y=] ™ if v N3 = {x};
P exp( — [ypNys3l), otherwise.

In the above|vyy N 73| is the length of the geodesic segmentN 3.

Note thatd, is invariant under the action of the stabilizer fand is a complete
ultrametric onX,. Thatd, is an ultrametric means that it is a metric and

dp(2). 3) < max{dy(), X),dp(X, 3)}  forany®), 3, % € X,
We endowX with the metricd = max{aoo,ap}.

Caution. In [W1], Weyl chambers in buildings are called sectors, and the m&gric

is given a different form. In\|V1], we made arguments by projecting onto the factors
of X, and most of the paper analyzed the geometry of Euclidean buildings. Thus, our
proof was geared towards terminology and tools more common for buildings. In this
paper, we favor terminology and metrics for buildings which are more compatible with
their better established symmetric space counterparts.

A boundary function defined a.e. In Section8, we will define a groud™ that acts
on X and is isomorphic taG(Os) up to finite groups I is a lattice in the simply
connected cover o). We will also define al'-invariant setN(I') € X such that
I\N(T") is compact. A theorem of Lubotzky-Mozes-RaghunathaM[R] states that

I" is quasi-isometric to any metric neighborhood of an orbif @f X. Hence, if we are
given a quasi-isometry d&(Os), we may replace it with an equivalent quasi-isometric
embedding

¢ N(T) — N(T) C X.
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Every direction inX (i.e. every geodesic ray) is contained in a flat. In Sec8ave
will show that enough flats irX have enough of their volume containedN{I") to
enable us to construct a boundary function

9 Uy — B(G),

whereUy, is a subcomplex of3(G) that has full measure iX. The functiond¢ is a
simplicial isomorphism ofJy onto its image.

We state below a lemma on a topological propertyofthat is proved in Sectiof.
First, we defineN/ (f) as the simplicial neighborhood i8(G) of a fixed f — 2)-
dimensional simpleX c B(G). That is, N'(f) is the set of all chambers i3(G)
containingf. We defineNy(f) to be the simplicial neighborhood df in Uy, or
N(F)NU;y.

Lemma9.4 Iff C Uy is a simplex of dimension n — 2, then O¢|aq(t) is continuous
in the Furstenberg metric.

Our goal is to show thad¢ is the restriction of an automorphism 8{G) which is
continuous orX. Then by Tits’ Theorem@¢ is induced by an element of A@j =
Isom(X). Knowing this would enable us to apply an argument of Eskin’s to show
further thatd¢ corresponds to an isometry &f which is a finite distance in the sup
norm from¢.

Embeddings of spherical buildings. An embedding of spherical buildings; into
B, is a functionf : B1 — By that restricts to a simplicial isomorphism betweBn
andf(By).

We wish to describe a particularly nice class of embeddings that play a key role in
our proof. These are embeddings which arise from extremely well behaved homomor-
phisms of rational points of simple groups. We begin by describing the latter.

Let k be an arbitrary field anti a simplek-group. If k' is an extension ok, then
there are injective group homomorphisms t(k) into H(k') of the form 3 o ¢°,
wheret : k — K is an injective homomorphism of fields art: YH — H is ak'-
isomorphism of algebraic groups. Any such homomorphism will be caligddard

Now let B(H(k)) and B(H(K')) be the spherical buildings fdid(k) andH (k') respec-
tively. A standard homomorphism induces an embedding3(H(k)) — B(H(K)).
We call any such embeddirsggandardas well.

Implicit in theorems of Tits and Borel-Tits, is
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Proposition 6.1 Let H be a simple connected K-group of adjoint type and assume kK
is infinite. If K' is an extension of k with k — rankH) = k' — rankH) > 2, then any
embedding p : B(H(K)) — B(H(K)) is standard.

Proof LetH(k)™ be the subgroup dfi(k) generated by th&-points of the unipotent
radicals ofk-parabolic subgroups dfl. In Chapter 5 of Ti 2], Tits shows how to
construct an injective group homomorphigm: H(k)*™ — H(k’) which is induced by
p. We have used the equal rank condition here.

We would like to be able to apply the well known theorem of Borel-Tits that classifies
certain abstract homomorphisms between rational points of simple groups as being
standard @o-T] Theorem (A)).

By constructionp, has a nontrivial image. Hence, our assumptionsicamdk satisfy

all of the hypotheses op. needed to apply the theorem of Borel-Tits except, possibly,
for the condition that the image ¢f, is Zariski dense irH. If we let M be the the
Zariski closure of the image qf,, then our goal is to show th&l = H.

By Corollary 6.7 of Bo-T], we know thatH (k)™ has no proper finite index subgroup.
Hence M must be connected. Also note titmodulo its radicalR(M), has positive
dimension sinceH (k)™ is not solvable. In particular there exists a connected simple
factorL of positive dimension oM /R(M).

We postcompose,. with the natural sequence of homomorphisms,
M — M/R(M) — L — Ad(L),

to obtain a homomorphisnd(k)* — Ad(L) (k') with a nontrivial, Zariski dense
image. Now we can apply Theorem (A) &¢-T] to conclude that there exists a field
homomorphismy : k — k' and an isogeny’H — Ad(L). Therefore,

dim(H) = dim(¥H) = dim(Ad(L)) < dim(M /R(M)) < dim(M).

BecauseH is connected ant < H, we conclude thaM = H as desired. We are
then able to apply Theorem (A) dBp-T] to our original homomorphism, and arrive
at our desired conclusion. O

A global sub-building. We would like to be able to apply Propositidhl to an
algebraically defined sub-building d#(G). We will need to begin by finding an
extension ofK, for eachv € S— V}f”a, that is contained ik, and that satisfies the
hypothesis of PropositioB.1 This is the purpose of the following
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Lemma 6.2 Foreach Vv € S, there is a finite algebraic extension LY of K such that LY
is contained in Ky and LV — rank@G) = K, — rank@G).

Proof Given a maximaKy-torusT < G, there is a group elemegte G(K,) such
that 9T is defined ovelK, where 9T denotes the conjugate df by g. See Section
7.1 Corollary 3 in PI-R4 for a proof of this fact. Itis assumed thidtis a number field
throughout most offfl-R4, but the proof of this fact does not make an essential use of
the number field assumption, aside from the proof ofkheationality of the maximal
toric variety of G. For a proof of this last fact over arbitrary fiells see Bo-Sg.

Assume thafl andg are as above and thKt, — rank(T) = K, — rank@G). It is well
known that there is a finite separable extensinof K over which °T splits (see
e.g. Bo 2] 8.11). Hence, ifX(9T)_ is the group of characters ST defined over an
extensionL of K, we have

X( Mk, = X( e, N X( Tk, = X T)ruk,-

(Recall that a torus splits over a fieldif and only if all of its characters are defined
overL.)

Therefore, we letY = FY N K,, so that
Ky — rank(T) = Ky — rank(°T) = LY — rank(°T).

Hence,
Ky — rank@G) < LY — rank@G).

Sincel’ < Ky, the inequality is an equality. |

We define the group
Gr= [ o).

ves-vg?

Let B(GRr) be the spherical building foBg. By our choice ofLY, the buildingB(Gg)
has countably many chambers, the dimensiort$(@R) and B(G) are equal, and(G)
naturally containg3(Ggr) as a subcomplex.

By conjugatingG(Os), we can assume th#(Gr) C Uy. Indeed, since3(Gg) has
countably many chambers, we can appeal to Ler@r@aelow.
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Extending the global embedding. Define 0¢r as the restriction ob¢ to B(GR).
The induced group homomorphism

Ire: [ ST —G
veS—fo""l

has a nontrivial image in each factor @fby construction. Also, Tits proved that each
G(LY)™" is an abstract simple groupl{[1] Main Theorem). It follows thaB¢g., and
henced¢r, preserves factors up to permutation.

Therefore we can apply Propositiénl to conclude thab¢r is induced by a family
of standard homomorphisms. Precisely, there is a permutatminS — Vf’a, and for
eachv e S— VS’a there exists an injective field homomorphism

Uy LY — Ko
and aK-isomorphism of algebraic groups
By: "G — G
such thatd¢rg. is the product of the homomorphisms

Byoyd: GILY)T — G(Krw)-

Now extendingd¢r amounts to extending each,. This is the technique of the
proposition below. Before we continue though, we require an extra piece of notation.

Let f C B(Ggr) be an ( — 2)-dimensional simplex. We denote the simplicial neigh-
borhood off in B(Gg), or N'(f) N B(GRr), by Ng(f).

We continue with

Proposition 6.3 The map 0¢r : B(Gr) — B(G) uniquely extends to an embedding
O¢r : B(G) — B(G) which is uniformly continuous on the Furstenberg boundary.

Proof Choose an apartmeit C B(Ggr) C B(G) and a chambec C . For any
(n — 2)-dimensional simplex C c, there exists a root spadg C X (as defined in
[Ti 2] 1.12) such that C 0R;.

By Proposition 3.27 inTi 2], any chamber inV(f) is contained in an apartment of
B(Gr) which containsR;. Therefore, by Proposition 5.6(i) off{ 2], there exists a
valuationw(f) € S— Vg and anL"®"-defined root subgrouplys < G, such that
U (LMD) acts faithfully and transitively oiVg(f) — { c}.
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The valuationw(f) depends on a choice 6f However, for any valuatiow Vf’a,
we can choose a fade C ¢ such thatw(f,) = v. We assume we have chosen such a
facef, forall v e S— Vg2,

If by € Nr(fy) — { ¢}, then for anyu € U, (L) we haveub, € B(Gr). Therefore,
dp(uby) = dgr(uby) = B 0 Yo (UW)IPr(by)

Since Nr(fy) € Nu(f), it follows from Lemma9.4 that 3 o 40, and henceyy, is
continuous for alv € S— V2.

Using translation under addition, we see thatis also uniformly continuous. There-
fore, we can completey, to i, : LV — Krv)- Eachqy is injective since any field
homomorphism is injective.

Now let O¢r : B(G) — B(G) be the embedding induced by the homomorphisms
By oty : GIY) — G(K:). The mapd¢r is clearly continuous on the Fursten-
berg boundary, and since the Furstenberg boundary is comfagtijs uniformly
continuous. O

If K is a number field the¢r is an automorphism. In general though, it is not
necessarily the case that a self-embedding of a spherical building is an automorphism.
Take for example the spherical building for the standard flag compl@é(@i‘q((t)))

which is both isomorphic to, and properly contains, the flag comple?"deq((tz))).

The surjectivity ofdgr will be shown in Lemmas.8 and must wait until we can show
that O¢pr extendsd¢. Then we can use the fact thad has a dense image.

Extending the a.e. defined boundary function. Our goal is to show thad¢ is
extended bydgr.

Earlier we chose each global field to be large in an algebraic sense with respect to
eachK,. We can also assume that edchis topologically large with respect to each
Ky by choosingL’ < K, to be a dense subfield. IndeedLif is not dense we could
replacelY with a finite extension that is dense Ky,. This will ensure that3(Gg)
carries some of the topological information 8(G). In particular we have

Lemma 6.4 For any (n — 2)-dimensional simplex f C B(GR), the set Nr(f) is dense
in N'(f) C B(G) under the subspace topology of the Furstenberg topology.

Proof Let 3 C B(Gr) be an apartment containing and suppose&: C Y is a
chamber containing.



Quasi-isometric rigidity of higher rank S-arithmetic lattices 27

As in the proof of the previous lemma, there is a valuation S — VE"’" and anL"-
defined root subgroup) < G, such thatU(L") < Ggr acts faithfully and transitively
on the setNg(f) — {ct }. It also follows from Proposition 5.6(i) ofTj 2], that
U(Ky) < G acts faithfully and transitively on the saf(f) — { ¢ }. Therefore,U(LY)
is homeomorphic toVgr(f) — { ¢t }, andU(K,) is homeomorphic toV(f) — { ¢ }.

Sincel is dense irK,, and becaus¥ is isomorphic as ah"-variety to affine space,
we have thatJ(L") is dense ilJ(Ky). Therefore, we have the following series of dense
inclusions

Nr(f) —{c } SN()—{c}
C N(f)

Let Fr be the set of i{ — 2)-dimensional simplices iB8(Gr) and define

Dr = U Nu(f)

fGFR

We use the topological properties B{Gg), and of d¢g, to deduce topological prop-
erties of 0¢|p, in the following

Lemma 6.5 The function 0¢|p, : Dr — B(G) is Furstenberg continuous.

Proof Lete > 0 and a chamber; C Dgr be given.

By Proposition6.3, there is ar > 0 such that
a(a¢(w1), a¢(w2)) <¢/3
for all chambersvy, w, C B(GR) with d(wi, w,) < Jg.

Suppose; C Dris achamberwittﬂ(cl, C2) < dr/3. By Lemmab.4and Lemma®.4,
there are chamberg C B(Ggr) that intersect; in an (0 — 2)-dimensional simplex,
and such thatl(c;, ¢) < dr/3 andd(9¢(ci), dé(c)) < /3. Hence

d(@¢(c1), 96(c2)) < d(D(ch), Dd(ch)) + SE1d(De(G), D(C))) < e. 0
Sinced¢|p, and dgr are continuous we have

Lemma 6.6 For any simplex g C Dr, we have 0¢(Q) = 0¢r(q).
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Proof Both d¢|p, and d¢r|p, are continuous so they are uniquely determined by
J¢r. Indeed, according to Lemn@a4, B(GR) is Furstenberg dense Di. ad

In Section8, a maximalK,-split torusA, < G is chosen for eacki € S— V}f’a. The
tori are used to supply an ergodic theory argument that allows for the creation of the
boundary functiord¢ : Ug — B(G).

Let Xa C B(G) be the apartment stabilized by the group
II Ak <G
ves-vg?

By conjugatingG(0Os), we may assume that, is an apartment ilA(Gr). Let W
be the Weyl group with respect 95, and denote a fixed chamberiy by a*. Let
a~ be the chamber ift5 opposite ofa™. For eachw € W we letP,, < G be the
stabilizer ofwa’.

In Section8, we will see that there exists a co-null subeC G such thalUy = U/at.
By Fubini’s theorem, we can conjuga@Os) such thatP,, N/ is co-null in P, for
allwe W.

Define
UY = {gwa eX|gePynif}

and
UV ={gel |gwa euy}.

Note thatwa~ is opposite ofwa™, so we have thaP,wa~ is a full measure subset of
X. SincePy NU is co-null in Py, it follows that UY is a full measure subset .
Hence " C G is co-null for allw € W. Consequentlypyew/™ C G is co-null.

We replaceld with NwewdW. As a result, ifc C Uy is a chamber, then there is an
apartment:; which is completely contained ldy, and such that the chamber opposite
from cin X is contained inX . For any chambet C Uy, we let

da(c) = min{ dx,(C, =a) },
where the min is taken over &llc as above with respect to the Tits metdg, on >.

We can now improve upon Lemn&a6.

Lemma 6.7 For any simplex g C Uy, we have 0¢(0) = 0¢r(Q).
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Proof For a chambec C Uy, we prove thab¢(c) = d¢r(c) by induction onda(c).

If 6a(c) < 1, then the result follows from the previous lemma. Now suppose the result
is true for any chambdr C Uy with da(f) < k— 1, and letc C Uy be a chamber with
oa(c) = k.

Let 3¢ C Uy be an apartment containirgy and such that the chamberii} opposite
of c is contained inXa. Choose a chambdr C > such thatdy, (c,f) = 1 and
oa(f) < k. If f°P is the chamber inS; opposite off, then ja(f°?) < 1. By our
induction hypothesisp¢(f) = dgr(f) and dgp(f°P) = dpr(fOP).

It will be shown in LemmaB.8thatd¢ preserves apartments. Therefave(>..) is an
apartment. In factpp(3c) is the unique apartment containibigr(f) and 0¢r(f°P).
Note thatdgr(Xc) is also the unique apartment containidgr(f) and 9pr(f°P).

We conclude our proof by observing that ba@h(c) and d¢r(c) must be the unique
chamber iMN¢g(3c) = 0¢r(2c) that containgp(cNf) = dpr(cNT), but notoe(f) =
IPr(f). O

The extension is an automorphism. Now that we have shown tha@liyr extendsde,
we have to prove thal¢g is surjective, and hence an automorphisnB¢&). Then it
follows that 9¢r corresponds to an automorphism®f or alternatively, an isometry
of X.

Lemma 6.8 The map O¢r is an automorphism of B(G).

Proof Let ¢* be a coarse inverse far, and definels+ and d¢j analogously tdJy
and J¢R.

Let X € U3, and letF C X be the flat corresponding f6. Note thaty o ¢* preserves
the portion ofF that lies near an orbit o&(Os) in X (see SectioB). SinceF is the
only flat in X that is a finite Hausdorff distance from itself, it follows that

OgR o %(E) = .
Hence,
Uj  Bm(5()).

Note that the ma@¢r either has a closed null image or is surjective siKGg, is a
(LY)-vector space. The lemma follows sindg is co-null in X. ad
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Automorphisms that correspond to quasi-isometries. Let Hd denote the Hausdorff
distance between closed subset&of\We define the group

Auta(G; G(Os)) = { ¢ € Aut(G) | Hd(p(G(09)), G(Os)) < oo }.

Using Lemma6.7 and LemmaB.3(vii), Eskin’s proof that the automorphis®gr €
Aut(G) = Isom(X) corresponds to an isometry of that is a finite distance fromp
([E9 Step 7) can be applied to show

Proposition 6.9 There is an isomorphism

Q7(G(Os)) = Autyy(G; G(Os))

The proof proceeds by identifying points ¥ias intersections of flats iK. Flats are
parameterized by apartments#(G), sod¢r completely determines where pointsin
are mapped to under the corresponding isomet¥.of\ny point in aG(Os)-orbit is a
bounded distance from the intersection of flats whose boundaries@ge ihherefore,

¢ maps points in &(Og)-orbit to within a bounded distance of their images under the
isometry corresponding t8¢g.

Eskin’s proof makes no mention of the topological nature of this isomorphism, but it

clearly follows. The fact that the isomorphism is topological is more interesting in the

S-arithmetic setting since merely the abstract group type of the quasi-isometry group
of an arithmetic lattice in a real semisimple Lie group determines the lattice up to

commensurability.

7 Automorphisms coarsely preserving lattices

We want to determine the group A(G; G(Os)) and complete our proof of Theo-
reml.1

The case of anisotropic groups. Notice thatifG is K -anisotropic, then Auiy(G; G(Os))
isisomorphicto AutG). Indeed G(Os) is acocompact lattice i& so HAG , G(Osg)) <
oo. Thus, our proof of Theorerh. 1(iii) is complete (assuming the results from Sec-
tions8 and9).
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The function field case for isotropic groups. The proof of Theorer.1(ii) concludes
with Lemma7.1 below. We include the proof here to group it with similar results,
but its proof uses notation and concepts defined in Seétidrhe reader may want to
return to the proof of this small fact after having read what will follow.

Lemma 7.1 If G is K-isotropic, then the group Autuy(G; G(Os)) is a measure zero
subgroup of Aut(G).

Proof Fora given element of Aug(G; G(Os)), we letg : X — X be the correspond-
ing isometry. We choose a neighborhdé(")? C X of the setN(I") from Lemma8.3,
such thatN(I") C g(N(I")?).

Define vok to be Lebesgue measure B and lete be as in Lemma&.3. There is a
Weyl chamber® C X such that for anyg € Autyg(G; G(Os)), for any flatF C X that
contains¢ up to Hausdorff equivalence, and for any poirg F, we have

Vol (FAND)T nB)

= volr (Bx(r)) <ioe

Let F’ C X be a flat containingy(¢) up to Hausdorff equivalence. Then, by replacing
F with g~1(F’) in the preceding inequality, it follows that for any point F':

vole ([F'ON(D)] N By0)
lim
o0 VOIE/ (By(r))

Therefore,F’ ¢ $1. Hence, ifc C B(G) is the chamber representing the equivalence
class of€, then Autyy(G; G(Os)) - ¢ C B(G) — Usy.

<1l-—-=.

The lemma follows from Fubini's theorem sintg is co-null in X. ]

The number field case for isotropic groups. The proof of the following proposition
was indicated to me by Nimish Shah, and it completes the proof of ThebrEmn

Proposition 7.2 If K is a number field and G is K -isotropic, then

Autig (G; G(Osg)) = Comm( G(Os)).
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Proof Let ¢ € Autyg(G, G(Os)). We have to show thap € CommG(Osg)).
To simplify notation we letA = G(Os) and A? = ¢(G(Os)). By replacingA with a
finite index subgroup, we can assume thaand A¥ are contained in the group

Gt =JJGKy)".

ves

By Ratner’'s theorem on unipotent flowdRg] Theorem 6.4), the orbit of the point
(A,A%) in Gt /A x GT/A¥ under the diagonal action @&&* is homogeneous. If
we denote the diagonal embedding®@f into G+ x G™ by AG™, then the previous
sentence says that

AGH(A, A?) = L(A, A¥),

wherelL is a closed subgroup @&* x G™ which containsAG™.
We claim that eithet. = AG™ or there is some € S such that
1xGK)T <@AxGHNL.

Indeed, ifAG™ < L, then there are group elements g, € G such that@;, g2) € L
andg; # go. Hence, there is somg € G™ with g # 1 and (1g) € L. Thatis to
say, (1x G™) N L is nontrivial. Note that if (1h) € L, then for anyg € G*, we
have (1ghg™) = (9,9)(1,h) (g %, g71) € L sinceAG" < L. Thus, (1x Gt)nL
is a normal subgroup of ¥ G™. Now a theorem of Tits’ ([i 1] Main Theorem)
tells us that that each group(K,)™ is simple sinceG has a trivial center. Therefore,
1 x G(Ky)" < L for somev € S, since (1x G™) N L is a nontrivial normal subgroup
of 1 x G™. Thus, our claim is proved.

If it is the case that & G(K,)" < L, then AGt(A, A¥) contains{A} x G /A?,

as A¥ is irreducible. Hence, for ang € G*, there is a sequencigk} C G* such
that Agk(A, A¥) — (A,gA”®). SincegkA — A, it follows that there are sequences
{h¢} € G and{\¢} € A, such thatgy = hylg andhg — 1. Thereforehglgk S\
and h, 'g«A? — gA¥ which proves thatA» = G*/A¥. Note that our assumption
thatp € Autpg(G; A) implies thatAA¥ is bounded. Thus, this case is precluded.

We are left to consider the case whAG™ = L. We will show thatAA® C G /A¥
is a closed set. To this end, suppose there is a seqyen¢e_ A and a group element
g € G with \\AY — gA?. Then AX(A, A?) — (A, gA¥). Since AGT(A, A¥) is
closed, (\,gA®) = Ah(A, A¥) for someh € G™. Therefore,gA¥ = hA¥. Since
hA = A, we haveh € A which shows that\A¥ is closed.

SinceAA¥ is bounded, it must be compact which would require it to be finite or perfect.
As perfect sets are known to be uncountaldlay is finite. Thatisp € Comm@G(Os))
as desired. |
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Assuming the material from SectioBsand9, the proof of Theorenmi.1is complete.
It is the absence of the counterpart to Proposifidhfor function fields that leads to
the discrepancy between (i) and (ii) of Theorériand Corollaryl.2

The commensurator group. We close this section with a lemma that provides a
concrete description of ComiB(Os)).

Lemma 7.3 The group Comm(G(Os)) is an extension of Aut(G)(K) by Aut(K)g s.
If G is K-split and defined over a subfield of K that is fixed pointwise by Aut(K)g s,
then

CommG(0g) = (G(K) x OutG)(K)) x Aut(K)s s

Proof Recall thatG(Os) is embedded diagonally i with respect to the simple
factors of G. Hence, any group element in Com@&{(Ds)) N G would have to take
a finite index diagonal subgroup @(Os) into the diagonal ofG. It follows from
the Borel density theorem that any finite index subgrous@®s) is a Zariski dense
subset in each simple factor &. Therefore, Comnt(Os)) N G is also contained in
the diagonal ofG.

We have shown that, as an abstract group, Ca&(®)) N G is a subgroup of the
groupL of inner automorphisms d&(K,) which commensurat&(Os) < G(Ky); the
choice ofv € S— V¢ is arbitrary.

Borel's well known determination of inner commensurators for arithmetic groups
([Bo 1] Theorem 2) essentially contains a proof that G(K) < G(K,). Therefore,
Comm@G(Os)) N G is the diagonal subgroup G(K) < G.

If o € Comm@G(0Os)), then G(Os) and o(G(Os)) are commensurable. Hence, an
inner automorphism ofs commensurate$s(0Os) if and only if it commensurates
©(G(Og)). Therefore (A G(K)) = A G(K).

Conversely, supposg is an automorphism o& with (A G(K)) = A G(K). Then
©(G(Og)) is a lattice contained it\ G(K), so0 o(G(Os)) is commensurable tG(Os)

by the proof of the Margulis-Venkataramana arithmeticity theorem (9ke] [pages
307-311). Thereforep € CommG(Osg)).

Hence, finding Comng(Os)) amounts to finding the subgroup of AG that stabi-
lizes A G(K). This is what we shall do.

Supposey € Aut(G) and thatiy(A G(K)) = A G(K). By Theorem (A) of Bo-T],
1 € Aut(G) can be uniquely written in the form

II Bvoas

ves-vg
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for some permutation of S—V,f’a, acollection of fieldisomorphisms, : Ky — K ),
and a collections, : ““G — G of K. «)-isomorphisms of algebraic groups. Singe
is a homeomorphism, each field isomorphiegmis a homeomorphism as well.

Since A G(K) is stabilized by,

By o aylak) = Bw © aylo)
for all vw € S— Vf’a. Again by Theorem (A) of Bo-T], there exists a unique
o € Aut(K) and a unique& -isomorphism of algebraic groups. °G — G, such that
§ o 0¥ is extended by alB, o af.

Because each,, is a homeomorphismy : K — K is a homeomorphism betwedh
with the v-topology andK with the 7(v)-topology. Therefores(v) = o - v for all
veS—Ve? Thatis,o € Aut(K)g s.

We have identified an inclusion of Com@(Os)) into the group of pairsi o), where
o € Aut(K)g,sandd : °G — G is aK-isomorphism. To see that the inclusion is an
isomorphism, letd, o) be a given pair as above. For anyg S— Vf’a, leto, : K — K
be defined by (X) = o(X). We assume that the domain &f has thev-topology and
that the image ob, has theo - v-topology. Henceg, is continuous, and it may be
completed topologically to obtain an isomorphisin: Ky — K,.,. Then we define a
homomorphisnG(K,) — G(K,.v) by § o 3,°. The product map
[1 oo

ves-VvE?
is then an automorphism @ that stabilizesA G(K). Hence, the group of pairg, (o)
as above is isomorphic to Com&(Os)).

Notice that the group operation on Con®&{(Ds)) is given by ¢,0)(¢8',0") = (0 o
7§’ oo’), where 7§’ 1 °°'G — “G is the K-isomorphism obtained by applying
to the coefficients of the polynomials definidg. This is the group structure of an
extension:

1 — Aut(G)(K) — CommG(Os)) — Aut(K)g s — 1.

The above extension splits@ is defined over a subfield & that is fixed pointwise
by Aut(K)g s. Indeed, ifG is defined over such a field, then for anye Aut(K) we
have °G = G. It follows that if idg : G — G is the identity map, then the pairs
(idg, o) existin CommG(Os)). Hence, the extension splits.

For the statement th& beingK -split implies
Aut(G)(K) = G(K) x Out(G)(K),

see, for example, the discussion in 5.7.2 Tfg]. (Recall that we identifyOut(G)
with the automorphism group of the Dynkin diagram@®f) ad



Quasi-isometric rigidity of higher rank S-arithmetic lattices 35

8 Constructing a boundary function defined a.e.

Sectionss and7 show the conclusion of the proof for Theordni once the boundary
function0¢ : Uy — B(G) is created. In Sectio, we outline the construction @f¢.
We will refer to [E9 for most of the details of the construction.

Replacing the word metric. Let G be the algebraic simply connected cover®f
We define _
H= J[ Gy

ves-Ve?

and N
I' =G(Os).

Note thatI" and G(Os) are commensurable up to finite kernels (see e.flar]
[.3.1.1.iv).

Let & be a maximal compact subgroup idf, and lets’ > 0 be given. Letu be the
probability measure ofi\H which is derived from Haar measure 6h We choose a
compact seD C I'\H which contains the cosét, and such that(D) > 1 — ¢'.

We denote byN(I')° C H/R the set of all cosets with a representativéHrithat maps
into D under the quotient mad — T"\H. In symbols,

N(I)Y° ={hRecH/R|TheD}.

Since R is the isotropy group of a point iX, we can identifyH /K as a subset oX.
For eachhf € H/R, we letP(hR) be the set of points iX that are at least as close to
hf € X as to any other point dfl /8 C X. Precisely:

P(hg) = {x € X| d(x,hg) < d(x,gR) forallg € H }.

Let
ND)= | PhR).
h&eN(T)°
Notice thatN(I") C X contains the orbif"&. Since'\N(I')° = D and P(R) are
compactI'\N(T") = I'\[N(I")°P(R)] is compact. Thus[ is quasi-isometric ttl(I") C
X with the path metric.

The geometry oN(I") C X with the path metric is more convenient to work with than
the word metric orl*. More convenient still, would be working with the geometry of
N(I") under the restricted metric froiX.
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In general, a lattice is not quasi-isometric to its orbit with the restricted metric, but with
our standing assumption th&t is placewise not rank one, we can apply the theorem
below from L-M-R]

Theorem 8.1 (Lubotzky-Mozes-Raghunathan) The word metric on T' is quasi-
isometric to N(I") C X with the restricted metric.

Using Theoren8.1, the fact thaf® and G(Os) are commensurable up to finite kernels,
and the fact that the inclusion ®(I") with the restricted metric intX is isometric,
we can realize a given quasi-isometry

¢ : G(Os) — G(Os)
by a quasi isometric embedding
NI — X.
The resulting embedding is a finite distance in the sup norm #orso we will also
denote it byy. We will assume that
¢ NTI)— X

is a (k, C) quasi-isometric embedding.

Ergodic actions of abelian groups. For eachv € S— V,f’a, let Ay be a maximal
Ky-split torus inG. We define the group

A= J] AuK)<H.
ves-ve?
We denote the flat correspondingAdby A C X. We may assume tha& € A.

We introduce a pseudometrilza on A by settingda(as, a2) to be equal tal(a.R, a2K)
for a1 R, apR € X.

There is also a Haar measure Anwhich we denote byda. We denote Lebesgue
measure o4 by voly. Then, after a normalization, we have for any measurable set

Y CA:
da(Aﬁ (gaﬁa‘l)) = voly (Am (gaP(ﬁ)>).

The Birkhoff ergodic theorem is usually stated for an ergodic actio.oHowever,

a careful reading of the proof of the Birkhoff ergodic theorem shows that it applies to
ergodic actions of our pseudometric grodi@as well (see e.g.Hl] Theorem 3.2). That

is, if we let Bf(r) C A be the ball of radiug centered at the identity element Af

then we have the following
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Proposition 8.2 (Birkhoff ergodic theorem) If Y is a finite volume right ergodic

A-space and f € LY(Y), then fora.e. y € Y:
lim 1

r—oco da(By(r)) JeA()

Prasad’s proof of the strong approximation theorem for simply connected semisimple

Lie groups contains a proof of the ergodicity of theaction on'\H (see Pr 3 Lemma
2.9). Hence, we can apply the Birkhoff ergodic theorem to the actichaf I'\H.

f(yada= /Yf.

Generic flats have most of their volume nearl’. Following Eskin, we are now
prepared to show that a generic flarhas most of its volume containediN(I") C X.

For any group elemenh € H, define vol4 to be Lebesgue measure on the flat
hA C X. Thatis, for any measurable sétC hA, we let

volh(Y) = vol4(h~1Y).
Thus, the measure vg| is compatibleda in a natural way.

We denote byBM(r) C hA the metric ball centered at the poixte h.A4 with radius
r > 0. Denote the characteristic functions{I") C X andD C I'\N(I") by xn(r)
and xp respectively.

By Proposition8.2, we have that fop: a.e.T’"h € T'\H:

1
im —MM—— XN() VOlh 4
rﬂoovolhA(BRé(r)) Bl (r) “

= lim

1
_ hag)da
r—o0 da(B'f‘(r)) B’f(l’) XN(F)( )

1
> lim ———
— r—oo da(BR(N) Jeag)

= / XD
I'\H

= (D)
>1—¢.

xp(I"ha)da

The inequality shows that for a.&h € T'\H, any~ € T", and any poink € yhA:
vobna ([fhANN(T)] N BM (D)

e VOlyha (BQhA(f))

>1—¢.
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Hence, the generic flat has much of its volume contained(in).

The above argument is the basic idea behind Ler@rBbelow. Refining the argument
will yield more precise information about how much of a generic flat is contained in
N(I). Then we will be in a position to apply the quasiflats with holes theorem from
[W1] to begin constructing a map dfi(G).

More on the position of a generic flat with respect tol'. Let h € H. For a set
W C X contained in the flahA, we let
W,y = {x€ W | BM(ed(x,y)) N\W # O forally € hA — BY(p) }.

Hence, W ) is the set of all pointx € W which can serve as an observation point
from which all points inh A (that are a sufficient distance frox) have a distance from
W that is proportional to their distance from

We denote the metric-neighborhood of a sef € X by Nbhd(Y). We denote the
Hausdorff distance between two s&Q C X by Hd(P, Q).

Recall the definition of avall L C X as a codimension 1 affine subspace of a flat, that
is contained in at least two distinct flats.

Lemma8.3below is an amalgam of Lemmas 2.2, 3.2, and 5.2 frish. [We omit the
proof of the lemma as it is nearly identical to those i¥[ We note that the proof
follows the principle shown above using the Birkhoff ergodic theorem.

We will assume throughout that> 0 is a sufficiently small number depending en
andX.

Lemma 8.3 There are constants p > 0, and p’ > 0 depending on ¢ and X; constants
M>1, A >1,N >0 m>0,and 1 > b > 0 depending on X; and a I -invariant
co-null set U C H such that for any h € U there are sets

Qfa € Oha €y ShANNT)
which satisfy the following properties:
(i) For any point X € hA:
vola ([hANN(T)] N BJ())

r—eo VOlp 4 (BQA(r))

>1-¢/4
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(i) Qf 4 € (hANN()) and for any point X € hA:

(g,p)

VOlha ( s BQA(r))

lim >1-¢/2
= volpy (BQA(r))
(iii) Qna € (1)) and for any point X € hA:
VOlh 4 (QhA N BQA(I’))
lim >1-¢/2

= ol (BJ())

(iv) For any point X € hA:

volh4 (Q;A N BQA(r))
lim

=% ol <BQA(r))

>1—me.

() Ify € Qf 4, and L C hA is a wall with d(y, L) < N’ then there is a group element
W € U such that

W.ANhA C Nbhdy (L)
and
Hd (hA 1 Nbhd (W.A) | L> < Mr
for any r > Ao.

(vi) For any wall L C A and any point X € hA:

VOolha ( 5 NBM(I) N hL>
lim

oo vOlh 4 (BQA(r)) b

(vii) There is a " invariant set E C U such that u(I'\E) > 1 — ¢/2, and h& € Qpy
forany h € E.
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Remarks. There are some differences in this lemma with Lemmas 2.2, 3.2, and 5.2
in [E9. In particular, the transverse flats in part (v) do not necessarily intersect in a
wall for the general spack, as can be arranged X is a symmetric space. Take for
example a regular trivalent tree which is the Euclidean buildingSbs(Q,). The

walls in this example are vertices; the flats are lines, and there is no pair of lines which
intersect in a single point.

Also, the constanb in part (vi) is shown in E9 to be nearly one. This discrepancy is
essentially due to the fact thatif is a Euclidean building, then the orbit B{]) under
the action of thep-adic group that stabilizes a wall containisigmay not contain all
of L. Take for example the building fd8L3(Qp). However, Eskin’s proof only uses
that the constant is greater than 0, and that is all we shall need as well.

A collection of useful flats. Lemma8.3 provides us with a collection of flats iK
that have most of their volume, and a substantial portion of the volume of their walls,
contained inN(I"). We denote this collection of flats By. That is,

= {hAh e u}.

Since any flatF € 34 has most of its volume contained MN(I"), we can restrict
¢ : N(I') — X to FNN(T") and begin to analyze the image using Theorem 1.3\ [
We state this theorem as

Theorem 8.4 (Quasiflats with holes)Let ¢ : 2 — X be a (k,C) quasi-isometric
embedding of a set Q0 C E". There are constants M = M(k, X) and 6o = do(k, X)
such that if § < §gp, then there exists flats F1,F», ..., Fy € X such that

M
o(Qs) S Nbhdy (U )
where N = N(k, C, R, X). )

TheoremB.4, and the fact that a generic flet C X is contained ini, positions us to
begin constructing the functiofi¢ : Uy — B(G) where the setly C B(G) has full
measure irX.

Weyl chambers are mapped to Weyl chambers.For pointsx, z, w € X and a number
p >0, we let
D(p; 2 W) = max{p, d(x, 2), d(x,w)}.

Define a functionp : X — Y tobe a &, p, £) graded quasi-isometric embedding based
at xe X, ifforall zw e X:
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%d(Z, W) — eDu(p; Z,W) < d(¢(2), p(W)) < £d(z, W) + eDx(p; Z, W).

If F e weletp: F — Qf be a closest point projection and define
op:F—X

by ¢r = ¢ o p.
If x € Qf, then using Lemma&.J(ii), ¢r is a (, p, 2x¢) graded quasi-isometric
embedding based at. Also note that by TheorerB.4, ¢r(F) is contained in a
neighborhood of finitely many flats since

O C (FAND) -
We fix a Weyl chamberd™ C A based aiR € X. For anyh € H, let hA™(cc) be the
equivalence class dfA+ in X.

For two subset#\ and C of X, any pointx € X, and a small numbef > 0, we write
A~s Cif
Hd (AN By(r), CNBx(r)) < ér

for all sufficiently large numbers > 0.

At this point in [E9, a detailed argument is used to show the analogue of the lemma
below (Lemma 3.14 ing9) for the case wheiX is a symmetric space.

Lemma 8.5 Suppose hA € 4 for some h € H. There exists a constant \ depending
on k and X, and some k € K depending on h, such that

¢hA(hA+) N)\\ryg kA+.

Eskin's proof proceeds by first showing thatlifis a wall of a flatF € 4, then ¢f

mapsL into a “graded neighborhood" of a wdll C X. (For a definition of a graded
neighborhood see below, before the proof of Lenfina) This is shown using the
Eskin-Farb quasiflats with holes theorem and the characterization of walls of flats in
i1 as “coarse intersections” of flats ih (see LemmaB.3(v)). A key ingredient for

this step is Eskin’s “no turns" lemma about quasi-isometries of Euclidean space which
respect a family of hyperplanes. (In this case the Euclidean spaces are our flats, and
the hyperplanes are the walls of the flats.)

Since Weyl chambers are defined by the set of walls that bound them, Eskin uses
the information about the images of walls to deduce the lemma above for symmetric
spaces.
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Eskin’s proof of the symmetric space version of LemB& uses the geometry of
symmetric spaces mostly to supply foundational tools for the main argument. We
will replace these tools with analogues that hold for products of symmetric spaces and
Euclidean buildings.

The first of the foundational tools needed is Lem&a — even here Eskin’s proof
applied to the general case. The second tool is The8rémhich was proved in\V1].
The last two tools needed are Lemn&6 and8.7 below. They are direct analogues
of Lemmas B.1 and B.7 ofHq respectively. After proving Lemmas.6 and8.7, the
foundation to carry out Eskin’s proof for the general spXceill be in place. Then
Eskin’s proof applies to establish Lemraa.

Coarse intersections of convex polyhedra.Any wall, L, in a flatF C X, dividesF
into two components. The closure of any such component is caledf-@pace We
define aconvex polyhedrom X as an intersection of a fla,, with a (possibly empty)
finite collection of half-spaces containedin Note that flats are convex polyhedra, as
are walls.

The following lemma is an analogue of Lemma B.1 kg It allows us to replace
coarse intersections of flats, walls, or convex polyhedra with a convex polyhedron.

Lemma 8.6 There are constants, \o and A3, such that if Q1 and Q» are convex
polyhedra in X, and if r > Ap(1 + d(Q1, Q2)), then there is a convex polyhedron
P C Qs such that

Hd (Q1 N Nbhd(Q2) , P) < Asr.

Proof If Q¢ C X is a convex polyhedron in the fl& C X, and if F o € X, and
Frp € X, are flats such theffx = Fx o x Fip, then

Qw=FkN ﬂ (Hk,oo,i X Fk,p) N ﬂ (Fk,oo X Hk,p,i>,
i i

where eactHy i C Fkoo and eactHy i C Fy, is a half-space.

Hence, ifQx~ C Fk o iS the convex polyhedron given by

Qk,oo = I:k,oo N ﬂ Hk,oo,i
i

and Qg p C Fyy is the convex polyhedron given by

Qk7p = Fk7p N ﬂ Hk7p7i’
i
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thenQx = Qk 0o X Qup-

Note that
[Quoc NBIG,, 5(Qz.c)| X |Qup NG, 5(Qz,)]

C

Q1 N'Nbhd (Q2)

C

|Quoc NNDNGH(Qz00)]| X | Qup M NBIGHQ2)].

so we can reduce the proof of this lemma to the separate ca¥es 0f,, andX = X,.
The former case is Lemma B.1 d§. We will prove the lemma for the latter case.

Let Q: and Q. be convex polyhedron in a Euclidean buildiKg. Let F C X, be an
apartment (flat) containin@; .

Define

Pd(@1,02) = Q1 N Nbhdyg,,0,)(Q2)

Since Q. is convex, Nbhdy,,q,)(Q2) is convex as well @ri-H] Cor. 11.2.5(1)).
ThereforePy(q, q,) is convex. In fact,Pqyq,,q,) IS a convex polyhedron. Indeed, if
¢ C F is a chamber, let

pF’c:Xp_> F

be the retraction correspondingfoandc. Thend(x,y) = d(x, pr c(y)) for all x € ¢

and ally € Q,. (For a good reference for retractions, and for buildings in general,
see Bro].) Therefore, points iNPy(q,,q,) are determined by translating the region
pr.«(Q2) a distance ofd(Q1, Qo). Hence,Pqq,,q,) is bounded by walls which are
translates of the walls bounding: (Q2). SincePqyq, q,) iS convex, and since there
are finitely many parallel families of walls iR, Pq(q,,q,) is bounded by finitely many
walls.

We let eactH; C F be a half-space such that

Paor.a) = F N[ Hi.
i

For any number > 0, letH™ C F be the half-space that contaihig, and with the
additional property that

Hd (Hi, H") = r +d(Q1, Q2).
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Define the convex polyhedrd?" by
P+ = QiN (ﬂH{*).
i

We claim that ifr > 0, then

Q1 N Nbhd(Q2) C Py

That is, we want to prove that

Q1 N Nbhd(Qy) C H T

foralli. Tothis end, let; C F be a chamber that is separated frBag, o,) by OH{ .
Let

pF,Ci . Xp — F
be the retraction corresponding toandF. Sincepr is distance nonincreasing, we
have that
d(prF.c (Pau.02) » PF.a(Q2)) < d(Py0y) . Q2) =d(Q1, Qo).

Therefore, ifx € Q>:
d(aHir+7 X) > d(aHir+a PF ¢ (X))
> d(OH{, Pa@.,02)) — d(Pd(@.,2) » PF., (X))

=r+ d(le QZ) - d(pF,ci (Pd(Ql,Qz)) sy PF . (X)>
>r.

Hence,
Q1N Nbhd (Q2) C H{ "

as desired.

We have shown thaD; N Nbhd (Q-) is contained in a convex polyhedron created by
pushing out the walls oPq(q,,q,) by a uniform distance that is linear m Next we
observe that); N Nbhd (Q,) also contains a convex polyhedron created by pushing
out the walls ofPyq, 0,) by a uniform distance that is linear m

Indeed, since there are only finitely many walls in any Batup to translation, there
exists a positive constart < 1 depending only oiX, such that ifQ C F’ is a convex
polyhedron,s > 0, andQ(s) C F’ is the convex polyhedron obtained by pushing out
the walls that bound) by a distance ofjs, then

Q(s) € Nbhd(Q) N F'.
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Thus for any number > d(Q1, Q2), and for the set of half-spacddH; } that define
Pd(@.,0,), We letH{~ C F be the half-space containirtdy and such that

Hd (Hi, H{ ") = B(r — d(Q1, Q2)).
And we define the convex polyhedréy by

Pr=QiN (ﬂH{—),
i
so that

P, C Nbhd—d(q,,0,) (Pa..@) NF
C Q1 N Nbhd (Qy)

In summary, we have shown that foe> d(Q1, Qo)
Py C QN Nbhd(Q) € Pf

The lemma follows since there clearly exists a conspantepending only orX,, such
that

Hd (P, P{") < N'[r +d(Q1, Q2) — B(r — d(Q1, Q2))]
< N[r + 2d(Q1, Q)]
< V[3r].

Graded equivalence implies Hausdorff equivalence for Weyl chambers.Let A, C
A be a wall containing?. For any collection of such wall§ A, } ¢, let

Al =A"n ] Aa.

aco

For any setA C X and anyt > 0, we define th@raded t-neighborhood of As the
set
Alt] = {x e X | there is ara € Awith d(x, a) < td(x, g) }.

The following lemma is a generalization of Lemma B.7 |
Lemma 8.7 Assume there are three group elements h, hy, hy € H and that, outside of

some metric ball,

hAL € hiAT[AVe] N AT [AVE].
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If ki, ko € R satisfy the condition
Hd(h A", kAT) < oo,

then
klAOT = szj,“ )

Proof A Weyl chamber¢& C X is a product of Weyl chamberé,, C X,, and

¢, C Xp,. Note that€, x &€, C (€, x &)[t] implies that, outside of a ball,
Ceo C C [t and € C €. _[t'] for t' > t. Hence, we only need to show the case of
a building since symmetric spaces are covered by Lemma BE$f |

We can replacé A} by kAT for somek € & such that HdfAT, kAT) < co. Then
kAT C ki AT[AE] Nk AT[AVeE]
outside of a large ball.

For anyr > 0, leta, € A} be such thad(a, Af) > r forall o ¢ o. By the
preceding inclusion, there exist poirdg, a; € A" such thatd(ka,, kia;) < A\/er for
all sufficiently large numbers. Therefored(kias, kpap) < 2\y/er.

There is an apartmentl’ C X, such that, outside of a balk.A}f C A’ fori =
1,2. If kAT # kAL, then for all sufficiently larger, we haveka € A’ N
kiA+ andd(kiag, koap) > ar for some constant depending only orX,. This is a
contradiction. O

The proof of LemmaB.5 only requires the case of Lemn&a7 for o = (). However,
the full form of Lemma3.7is needed for the construction 6.

The a.e. defined boundary function. Let N < H be the normalizer oA < H. Let
B(G) be the Tits building forX. We defineUy as the simplicial subcomplex @&(G)

given by
Us = [ (J hna* (o).
helt neN
We are prepared to define
0¢ : Uy — B(G)

using LemmaB.5. We let 9p(hA+(00)) = kAT (c0) wherek € £ is such that
Pha(hAT) ~, oz (KAT).

That0¢ is well-defined, and restricts to an isomorphisngf onto its image, follows
from Step 4 of E9 using our Lemma.7in place of Lemma B.7 inHg.
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Flats are preserved. In Section6, we completed¢ to an automorphism oB(G).

In Lemma6.7, we use that apartments B(G) that are contained iy, are mapped
to apartments by)¢. This is the content of the lemma below. The proof is from
Proposition 3.3, but we include it here as it is brief.

Lemma 8.8 IfF € 4, then there is a flat F' C X such that ¢ (F) C Nbhdy(F').

Proof Corresponding tase(F) C X there is a finite sef(¢r) C X of limit points
(see W1)). Intuitively L(¢r) is a set of equivalence classes for finitely many Weyl
chamberg?,, ...¢x C X such that

Hd (¢ (F) , Ui€i) < oc.

Choosex,y € L(¢g) that are opposite chambers B(G). (That such chambers
exist is shown in\1].) Sinced¢ preserves incidence relationdy is Tits distance
nonincreasing. Therefor&y—1(x) andd¢—1(y) are opposite.

Any chamberc C F(co) is contained in a minimal gallery betweeh—1(x) and
d¢~1(y). Hence,0¢(c) is contained in a minimal gallery fromto y. Thatis,04(c) is
a chamber in the unique apartment containirandy. Now letF’ C X be the unique
flat such thaf(co0) containsx andy. |

Countable subcomplexes. In Section6 we use the following lemma to find a “global
sub-building” of B(G) contained inUy.

Lemma 8.9 If V is a countable collection of chambers in Uy, then there is some
h € H such that V C hUjy.

Proof For each number € N, we choose a chamber C B(G) such thatv =
{ci}2,. Define the set

U ={geH|gg C Uy}

Note thatZf C H is co-null, sonX, is co-null. Hence, there exists sorhel e
NZ,U;, andh satisfies the lemma. O
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9 Continuity of the boundary function on neighborhoods of
faces

To completed¢ to an automorphism oB(G) in Section6, we use thab¢ restricts
to a continuous map on simplicial neighborhoods f-(2)-dimensional simplices.
Precisely, we use Lemntas below.

As with Lemma8.5in the previous section, our Lemn®a4 follows from the proof

of the analogous Lemma 5.3 ilc§] once a few foundational lemmas are provided
for products of symmetric spaces and Euclidean buildings. What we require are
replacements for Lemmas B.4, B.6, and B.8Hi3[ Their analogues are listed below

as Lemma9®.1, 9.2 and9.3respectively.

Recall that we defined a metric ¢fin the early portion of Sectiof. We can assume
that the metric is invariant under the action #f Equivalently, we assume that the
basepoint used to define the metigs the coselR € H/8 C X.

Lemma 9.1 There are constants v1, v», and v3 depending on X, such that if k| € R,
z € kA" with d(z1, ) < 11r, and d(z,kOA™T) > vor where 1 is sufficiently large,
then

d(kp AT (00), ko AT (00)) < expvar).

Proof The hypotheses imply the analogous hypotheses on each fAgtoand X,,.

On the symmetric space factor the result is implied by Lemma B.Egf@nd since we
have endowed with the box metric, the result follows once we establish the lemma
for the case thaX is a Euclidean building.

SupposingX, is a Euclidean building, we let; = 1/2 andv, = 1. For the Weyl
chamberA™ C X, we leta > 1 be the constant such that the basepoints of the sectors
AT and AT — Nbhd (0.A") are at distancer from each other for alt > 0. Clearly

a depends only oiX,. We letvz = a/2.

We can assume, by repositioning the direction of the geodesic rays used todlefine
thatv 4+ contains the point that the sectdr” — Nbhd (0.A") is based at. Indeed, our
choice thaty 4+ (o¢) € AT (o) is the center of mass was completely arbitrary and any
point in the interior of A" (cc) would suffice.

Now we proceed by forcing a contradiction. Thatiswe assumeﬁ(k@.téfr (00), ko AT (00)) >
exp(-ar/2). Theny, 4+ N y,4+ iS a geodesic segment with distinct endpoints
R, X € X,, that satisfy the inequalitd(g, X) < ar/2.
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Let Wy C ki.A be a wall containingk and such that the closure of the component
of kpA — W, containing & also containsk; AT N ko AT. Note that the pointy €
ki AT — Nbhd (k;0.AT) is in the opposite component &f.A — Wy by our choice of
«. Also by our choice oty,
d(z1, W) > r/2.

If ¢ C ki AT is a chamber containing, but not contained itk, A™, then the retraction

Prad,c - Xp — KA

corresponding to the apartmdnt4 and to the chambar, mapsz to the component
of ki A — Wy containingk.

Therefore, the geodesic segment freqto py, 4 (z2) passes througidy. Hence,
d(z1, 2) = d(z1, piy4,c(22))
2 d(Zl, WX)
>r/2.

This completes our contradiction. O

Lemma 9.2 There is a constant v4 depending on X such that for sufficiently large
numbers Q and any ki, ky € &, there are 7 € kA" satisfying:

(i) dz1,2) < Q R
(i) d(z,€) < va|log (d(ksAT(c0), ko AT (c0))] , and
(iii) d@@, kA.AT) > vs|log (d(kp.AT(c0), koA (c0))]

for some constant vs which depends on Q and on X.

Proof Again we prove the lemma for the caXe= X,. The caseX = X, is Lemma
B.6 of [E9, and the Lemm®&.2follows from the lemmas for each case.

If X, is a Euclidean building, and i;.A* N k,.A™ does not contain a chamber of
Xp, then choosey € v, 4+ andz € y, 4+ to be distance 1 away fromR. Then
the conclusion of the lemma is satisfied for @l> 0 by v4,=1 and somess which
depends only on the angle betwee;@ andoA™T.

If ki AT Nko.AT does contain a chamber &f, then letz; = 2z € kiAT Nk AT be
the endpoint ofyy, 4+ N Y, 4+. Now the lemma holds for an® > 0, v4 = 1, and
somevs that depends only on the angle betweep andd.A™. ad
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Lemma 9.3 Let X,y € X. For any Weyl chamber €x C X based at X, there is a Weyl
chamber €y C X based at y such that

Hd(@x, €)) < N'd(x,y)

for some constant \'.
Proof Thelemmafollows from Lemma B.8 0oEfg, and fromLemma4.3oy/1]. O

Recall thatn is the rank ofX and that for anyrf — 2)-dimensional simplex C Uy,
we definedVy (f) as the set of all chambers Wy that containf .

We can apply the proof of Lemma 5.3 i&q] by replacing Lemmas B.4, B.6, and B.8
of [E9 with the three lemmas above to show:

Lemma 9.4 Iff C Uy is a simplex of dimension n — 2, then O¢|q(f) is continuous
in the Furstenberg metric.

Note that Lemma 5.3 off claims thatd¢|sy () is bi-Holder. We only require
09| (o) to be continuous as our method for completihgis more algebraic, and less
topological, than Eskin’s.

The condition that chambers share a wall in the above lemma is needed so that two
Weyl chambers can be simultaneously slid along a common wall until they are based at
points inN(I") — the set our quasi-isometry is defined on. The sliding technique does
not change their Furstenberg distance.

References

[Abl] Abels, H.,Finiteness properties of certain arithmetic groups in the function field case.
Israel J. Math.76(1991), 113-128.

[Abr]  Abramenko, P., Finiteness properties of Chevalley groups ovgftF. Israel J. Math.,
87(1994), 203-223.

[Be] Behr, H., SL3(Fq[t]) is not finitely presentablé?roc. Sympos. “Homological group
theory” (Durham 1977). London Math. Soc., Lecture Notes S6€r.213-224.

[BI] Blume, F., Ergodic theory.in Handbook of measure theokol. Il. North-Holland,
Amsterdam (2002), 1185-1235.

[Bo 1] Borel, A., Density and maximality of arithmetic subgrougs Reine Angew. Math.,
224(1966), 78-89.



Quasi-isometric rigidity of higher rank S-arithmetic lattices 51

[Bo 2] Borel, A., Linear algebraic groupsGraduate Texts in Mathematics, No. 126, Springer-
Verlag, New York (1991).

[Bo-Sp] Borel, A., and Springer, T. A., Rationality properties of linear algebraic groups II.
Toéhoku Math. Journ20 (1968), 443-497.

[Bo-T] Borel, A., and Tits, J., Homomorphisms “abstraits” de groups a@griques simples.
Ann. Math.,97 (1973), 499-571.

[Bri-H] Bridson, M., and Haefliger, A., Metric spaces of non-positive curvature.
Grundlehren der Mathematischen Wissenschaften, Vol. 319. Springer-Verlag, Hei-
delberg (1999).

[Bro] Brown, K., Buildings.Springer-Verlag, New York (1989).

[Dr]  Drutu, C., Quasi-isometric classification of non-uniform lattices in semisimple groups
of higher rank.Geom. Funct. Anal.10(2000), 327-388.

[Es] Eskin, A., Quasi-isometric rigidity of nonuniform lattices in higher rank symmetric
spacesJ. Amer. Math. Soc11(1998), 321-361.

[E-F 1] Eskin, A., and Farb, B., Quasi-flats and rigidity in higher rank symmetric spacks.
Amer. Math. Soc.10(1997), 653-692.

[E-F 2] Eskin, A., and Farb, B., Quasi-flats and rigidity irH? x H?. Lie Groups and Ergodic
Theory, Nari's Publishing House, New Delhi (1998), 75-104.

[Fa] Farb, B., The quasi-isometry classification of lattices in semisimple Lie grddpsh.

Res. Letta.4 (1997), 705-717.

[Fa-Sch] Farb, B., and Schwartz, R.,The large-scale geometry of Hilbert modular groups.
J. Diff. Geom. 44 (1996), 435-478.

[Har] Harder, G., Uber die Galoiskohomologie halbeinfacher algebraischer Gruppen, III.
J. Reine Angew. Mat274/275(1975), 125-138.

[K-L] Kleiner, B., Leeb, B., Rigidity of quasi-isometries for symmetric spaces and Euclidean
buildings.Inst. Haute€tudes Sci. Publ. Math86 (1997), 115-197.

[L-M-R] Lubotzky, A., Mozes, S., and Raghunathan, M. S.The word and Riemannian
metrics on lattices of semisimple groupsst. HautesEtudes Sci. Publ. Math91
(2000), 5-53.

[Mar] Margulis, G. A., Discrete subgroups of semisimple Lie groupsyebnisse der Math-
ematik und ihrer Grenzgebeite, Springer-Verlag, Berlin-Heidelberg-New York (1991).

[Mo] Mostow, G. D.,Strong rigidity of locally symmetric spacé¥inceton University Press,
Princeton (1973).

[PI-Ra] Platonov, V., and Rapinchuk, A., Algebraic groups and number theofure and
Applied Mathematics, No. 139, Academic Press, Boston, (1994).

[Pr1] Prasad, G.,Strong rigidity ofQ-rank 1 lattices. Invent. Math. 21 (1973), 255-86.

[Pr2] Prasad, G.,Lattices in semisimple groups over local fielasStudies in algebra and
number theoryAcademic Press, New York (1979), 285-354.



52 Kevin Wortman

[Pr 3] Prasad, G.,Strong approximation for semi-simple groups over function fids. of
Math.,105(1977), 553-572.

[Ra] Ratner, M., On the p-adic and S-arithmetic generalizations of Raghunathan’s con-
jectures.Lie Groups and ergodic theory, Narosa Publishing House, New Delhi (1998),
167-202.

[Sch 1] ,Schwartz, R., The quasi-isometry classification of rank one lattickst. Hautes
Etudes Sci. Publ. Math82 (1995), 133-168.

[Sch 2] Schwartz, R.,Quasi-isometric rigidity and Diophantine approximatidgkcta Math.,
177(1996), 75-112.

[Ta] Taback, J., Quasi-isometric rigidity for PSi(Z[1/p]). Duke Math. J.,101 (2000),
335-357.

[Ti1l] Tits, J., Algebraic and abstract simple groupsnn. of Math.,80(1964), 313-329.

[Ti2] Tits, J., Buildings of spherical type and finite BN-paitsecture Notes in Math., vol.
386, Springer-Verlag, New York (1974).

[Ve] Venkataramana, T. N., On superrigidity and arithmeticity of lattices in semisimple
groups over local fields of arbitrary characteristitwvent. Math.,92 (1988), 255-306.

[W1] Wortman, K., Quasiflats with holes in reductive groupalgebr. Geom. Topol6
(2006), 91-117.

[W2] Wortman, K., Quasi-isometries oBL,(IFg[t]) . In preparation.

Yale University, Mathematics Dept., PO Box 208283, New Haven, CT 06520-8283, USA

kevin.wortman@yale.edu


mailto:kevin.wortman@yale.edu

	1 Introduction
	2 Definitions
	3 Notes
	4 Outline
	5 Examples
	6 Completing the boundary function
	7 Automorphisms coarsely preserving lattices
	8 Constructing a boundary function defined a.e.
	9 Continuity of the boundary function on neighborhoods of faces
	Bibliography

