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1 Introduction

Cocompact lattices in semisimple Lie groups over local fields with no rank one factors
are quasi-isometrically rigid. This was shown by Kleiner-Leeb [K-L] in general, and
Eskin-Farb [E-F 1] later gave a different proof in the case of real Lie groups.

Eskin then applied the “quasiflats with holes" theorem for symmetric spaces of Eskin-
Farb [E-F 1] to prove that any quasi-isometry of a non-cocompact irreducible lattice
in a real semisimple Lie group with no rank one factors is a finite distance from a
commensurator [Es]. As a consequence, any such lattice is quasi-isometrically rigid.
Basic examples of such lattices includeSLn(Z) for n ≥ 3. Druţu has given another
proof of Eskin’s theorem [Dr] using asymptotic cones and the results of [K-L].

Eskin’s theorem has a place in a larger body of work of Schwartz, Farb-Schwartz,
and Eskin. In particular, it has been shown that any quasi-isometry of an irreducible
non-cocompact lattice in a semisimple real Lie group, which is not locally isomorphic
to SL2(R), is a finite distance from a commensurator ([Sch 1], [Fa-Sch], [Sch 2], and
[Es]); see [Fa] for a full account.

While the theorem of Kleiner-Leeb applied to cocompactS-arithmetic lattices in semi-
simple Lie groups with no rank one factors, the question of quasi-isometric rigidity
for non-cocompactS-arithmetic lattices remained unexplored for a few years. The
first account of quasi-isometric rigidity for non-cocompactS-arithmetic lattices (and
the only account aside from this paper) was given by Taback [Ta]. Taback’s theorem
states that any quasi-isometry ofSL2(Z[1/p]) is a finite distance in the sup-norm from
a commensurator. Thus, Taback’s theorem provided evidence that quasi-isometries
of S-arithmetic lattices could be characterized in the same way as their arithmetic
counterparts.

http://www.ams.org/mathscinet/search/mscdoc.html?code=20F65, 20G30, 22E40
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Following the work of Eskin, we apply the quasiflats with holes theorem of [W1]
for products of symmetric spaces and Euclidean (affine) buildings to show that non-
cocompactS-arithmetic lattices in semisimple Lie groups with no rank one factors
are quasi-isometrically rigid. Examples of such lattices includeSLn(Z[1/p]) and
SLn(Fq[t]) for n ≥ 3, whereFq[t] is a polynomial ring with indeterminatet and
coefficients in the finite fieldFq. (See Section5 for more examples.)

As a special case of our results, we show that any finitely generated group quasi-
isometric toSLn(Z[1/p]), is in fact isomorphic toSLn(Z[1/p]) “up to finite groups"
as long asn≥ 3.

Our proof also shows that cocompact lattices in semisimple Lie groups with no rank
one factors are quasi-isometrically rigid, thus providing a unified proof of the theorems
of Kleiner-Leeb, Eskin-Farb, and Eskin. In particular, we give a proof of the theorem
of Kleiner-Leeb – a proof which does not use the theory of asymptotic cones.

Summary of definitions to come. In order to state our results, we briefly provide
some definitions. We will expand on these definitions in Section2.

For any topological groupH , we let Aut(H) be the group of topological group auto-
morphisms ofH .

For any valuationv of a global fieldK , let Kv be the completion ofK with respect to
v. If S is a set of valuations ofK , then we letOS≤ K be the ring ofS-integers.

We call an algebraicK -group G placewise not rank onewith respect toS if Kv −
rank(G) 6= 1 for all v ∈ S. We denote the adjoint representation byAd , and we
let G be the direct product of the groupsAd(G)(Kv) over all v ∈ S for which G is
Kv-isotropic.

Last, we letQI(G(OS)) be the quasi-isometry group ofG(OS), and we let Comm(G(OS))
be the commensurator group ofG(OS). We warn the reader here that our definition of
Comm(G(OS)) is slightly atypical (see Section2).

Quasi-isometries ofS-arithmetic groups. Our main result is

Theorem 1.1 Let K be a global field and S a finite nonempty set of inequivalent
valuations containing all of the archimedean ones. Suppose G is a connected simple
K -group that is placewise not rank one with respect to S.

(i) If G is K -isotropic and K is a number field, then there is an isomor-
phism:

QI
(

G(OS)
) ∼= Comm(G(OS)).
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(ii) If G is K -isotropic and K is a function field, then there exist an
inclusions:

Comm(G(OS)) ↪→ QI
(

G(OS)
)
↪→ Aut(G).

Furthermore, the image of QI(G(OS)) in Aut(G) has measure zero.

(iii) If G is K -anisotropic, then there is an isomorphism:

QI
(

G(OS)
) ∼= Aut(G).

As an example of Theorem1.1(i), we have

QI(SL3(Z[1/p])) ∼= PGL3(Q) o Z/2Z,
where the topology on the right side of the isomorphism is induced by the topology of
Q as the diagonal subspace ofR × Qp. This example is described in more detail in
Section5, where we also present five other examples.

We note that the theorem above leaves room for improvement, as theK -isotropic case
for function fields is not completely determined. However, results in this case are still
slightly stronger than they are for the fully resolvedK -anisotropic case.

Quasi-isometric rigidity. From Theorem1.1we can deduce

Corollary 1.2 Suppose K , S, and G are as in Theorem 1.1, and suppose that G is of
adjoint type. Let Λ be a finitely generated group, and assume there is a quasi-isometry

φ : Λ → G(OS).

(i) If G is K -isotropic and K is a number field, then there exists a finite
index subgroup ΛS of Λ and a homomorphism ϕ : ΛS → G(OS) with a
finite kernel and finite co-image such that

sup
λ∈ΛS

d
(
ϕ(λ), φ(λ)

)
<∞.

(ii) If G is K -isotropic and K is a function field, then there exists a finite
group F and an exact sequence

1→ F → Λ → Γ → 1,

such that Γ is a non-cocompact lattice in Aut(G).

(iii) If G is K -anisotropic, then there exists a finite group F and an exact
sequence

1→ F → Λ → Γ → 1,

such that Γ is a cocompact lattice in Aut(G).
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Bibliographic note. We will present a proof of Theorem1.1 that covers all of the
cases above, some of which are well known.

Part (iii) of Theorem1.1and Corollary1.2was shown by Kleiner-Leeb [K-L]. Part (iii)
was also shown whenK is a number field andSequals the set of archimedean valuations
by Eskin-Farb [E-F 1]. (Note that the theorems in [K-L] and [E-F 1] are stated in
equivalent terms of isometries of Euclidean buildings and/or symmetric spaces.)

Part (i) of Theorem1.1and Corollary1.2was shown by Eskin [Es] with the additional
assumption thatS equals the set of archimedean valuations. Druţu has also given a
proof of (i) assumingS is the set of archimedean valuations [Dr]. The proof in [Dr]
uses results from [K-L].

Corollary 1.2 follows directly from Theorem1.1 and, for part (i), Margulis’ super-
rigidity theorem. The proof of this corollary using Theorem1.1 is routine. See, for
example, Section 9 of [Es].

Similarities and differences between our proof and Eskin’s. The proof of Eskin’s
theorem involves studying the large-scale geometry of symmetric spaces on which
higher rank real semisimple Lie groups act. Our proof of Theorem1.1 applies the
“quasiflats with holes" theorem from [W1] (which itself is an extension of the quasiflats
with holes theorem of Eskin-Farb [E-F 1]) to extend Eskin’s proof by allowing for the
presence Euclidean buildings. (Recall that Euclidean buildings are the natural spaces
acted on by semisimple Lie groups over nonarchimedean local fields.) We rely on many
of Eskin’s arguments in using large-scale geometry to construct a boundary function
defined almost everywhere.

Where our proof differs substantially from Eskin’s, is in the way we complete the
boundary function. We are forced to confront this problem with different methods,
since the proof in [Es] relies on the fact that the Furstenberg boundary of a real
semisimple Lie group is a Euclidean manifold. This is not the case in general, as the
Furstenberg boundary of a semisimple Lie group over a nonarchimedean local field
is a Cantor set. Being unable to rely as heavily on topological arguments, we turn to
algebraic methods to find a completion. (See Section4 for an expanded outline of our
proof.)

Strong rigidity. Our main result can be viewed as a strengthening of strong rigidity.

Recall that the strong rigidity theorems – first proved by Mostow and later expanded on
greatly by Prasad, Margulis, and Venkataramana – state that any isomorphism between
irreducible lattices in semisimple Lie groups, which are not locally isomorphic to



Quasi-isometric rigidity of higher rank S-arithmetic lattices 5

SL2(R), extends to an isomorphism of the ambient semisimple group. Thus, the
ambient semisimple group is completely determined by the isomorphism class of a
lattice ([Mo], [Pr 1], [Pr 2], [Mar], and [Ve]).

Our result states that the quasi-isometry class alone of anS-arithmetic lattice meeting
the conditions of Theorem1.1 is enough to determine the ambient semisimple group.

We note that the proofs of strong rigidity in cases (i) and (ii) of our main theorem (given
by Margulis and Venkataramana respectively) are rooted in ergodic theory. Our unified
proof of cases (i), (ii), and (iii) is based on the large-scale geometry of symmetric
spaces and Euclidean buildings. As such, we return to Mostow’s original ideas and
present a proof that is of a more geometric nature than the ergodic theoretical proofs
of strong rigidity.

Number fields versus function fields. Although our results are not complete in the
function field case, we point out that this is only due to the absence of a characterization
of commensurators which does not exist in the function field case (see Proposition7.2).

Throughout the portion of the proof dealing with large-scale geometry, the function
field case allows for significant simplifications. The simplifications stem from the fact
that two Weyl chambers in a Euclidean building are Hausdorff equivalent if and only
if their intersection contains a Weyl chamber. Of course this is false for symmetric
spaces.
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opportunity to work on this problem and for believing I could solve it.

Thanks to Alex Eskin for helpful insights and for helping me discover some mistakes
I made along the way.
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the past five years, as well as Bruce Kleiner, Dan Margalit, and Karen Vogtmann for
suggestions about the exposition of this paper.

I would like to acknowledge the University of Chicago for supporting me as a graduate
student while I developed the ideas in this paper, and Cornell University for the pleasant
working environment given to me while I completed its writing.

Last and most important, I am grateful for Barbara Csima, Benson Farb, and Dan
Margalit; their support, encouragement, and patience made me into a mathematician.
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2 Definitions

We will take some time now to be precise with our definitions.

Quasi-isometries. For constantsκ ≥ 1 andC ≥ 0, a (κ,C) quasi-isometric embed-
ding of a metric spaceX into a metric spaceY is a functionφ : X → Y such that for
any x1, x2 ∈ X:

1
κ

d
(
x1, x2

)
− C ≤ d

(
φ(x1), φ(x2)

)
≤ κd

(
x1, x2

)
+ C.

We callφ a (κ,C) quasi-isometryif φ is a (κ,C) quasi-isometric embedding and there
is a numberD ≥ 0 such that every point inY is within distanceD of some point in
the image ofX.

Quasi-isometry groups. For a metric spaceX, we define the relation∼ on the set of
functionsX → X by φ ∼ ψ if

sup
x∈X

d
(
φ(x), ψ(x)

)
<∞.

We form the set of all self-quasi-isometries ofX, and denote the quotient space modulo
∼ by QI(X). We callQI(X) thequasi-isometry groupof X as it has a natural group
structure arising from function composition. Note that ifX andY are quasi-isometric
metric spaces, then there is a natural isomorphismQI(X) ∼= QI(Y).

Word metrics. A finitely generated groupΓ is naturally equipped with a proper
left-invariantword metric. This is the metric obtained by setting the distance between
γ ∈ Γ and 1∈ Γ to be the infimum of the length of all words written in a fixed finite
generating set that representγ .

The word metric depends on the choice of finite generating set, but only up to quasi-
isometry. Hence, the groupQI(Γ) is independent of the choice of a finite generating
set forΓ.

S-integers. Recall that finite algebraic extensions of eitherQ or the fieldFp(t) of
rational functions with indeterminatet and coefficients in a finite fieldFp, are called
global fields. If K is a global field then we denote the set of all inequivalent valuations
on K by VK , and we denote the set of all inequivalent archimedean valuations ofK by
V∞K .
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For any valuationv ∈ VK , let Kv be the topological completion ofK with respect
to v. The fieldKv is a locally compact nondiscrete field. Any field satisfying these
topological properties is called alocal field.

For a finite nonempty set of valuationsS⊆ VK containingV∞K , we define the ring of
S-integersin K to be

OS = { x ∈ K | 1≥ |x|v for all v ∈ VK − S}.

Rank. If a simple algebraic groupG is defined over a fieldL, we say it is anL-group.
An L-group G is called L-isotropic if L − rank(G) > 0, and calledL-anisotropic
otherwise. (Recall thatL − rank(G) is the maximum dimension of an algebraic
subgroup ofG which is diagonalizable overL.)

For a global fieldK and a simpleK -groupG, let VG,a
K ⊆ VK be the set of valuations

v for which G is Kv-anisotropic. Recall thatv ∈ VG,a
K is equivalent to the condition

that G(Kv) is compact.

We defineG to beplacewise not rank onewith respect to a chosen finite set of valuations
S, if Kv − rank(G) 6= 1 for all v ∈ S.

S-arithmetic groups. A group is calledS-arithmeticif it is isomorphic toG(OS) for
someK -groupG and for some finite nonempty setS⊆ VK containingV∞K .

Throughout the remainder,G is connected, simple, and placewise not rank one with
respect toS. Under these conditions it is well known thatG(OS) is a finitely generated
group, so it admits a proper word metric.

Lattices. A locally compact groupH supports a Haar measureµ. A discrete subgroup
Γ < H is called alattice if H/Γ has finite volume with respect toµ. This is necessarily
the case ifH/Γ is compact. Such lattices are calledcocompact; they are callednon-
cocompactotherwise.

We writeAd(G) for the image ofG under the adjoint representation ofG. The adjoint
representation has a finite kernel which equals the center ofG.

Define
G =

∏
v∈S−VG,a

K

Ad(G)(Kv).

The diagonal homomorphism ofG(OS) into G has a finite kernel. We write the image
of the diagonal homomorphism asG(OS)∆ . The reduction theory of Borel, Behr, and



8 Kevin Wortman

Harder established thatG(OS)∆ is a lattice inG and thatG(OS)∆ is cocompact if and
only if G is K -anisotropic.

We point out here thatG(OS)∆ is clearly irreducible as a lattice inG. Recall that a
lattice Γ < G is reducibleif Γ contains a finite index subgroup of the formΓ1 × Γ2

where

Γi = Γ ∩
∏
Ti

Ad(G)(Kv),

andT1 andT2 nontrivially partitionS− VG,a
K . Otherwise,Γ is irreducible.

Let Aut(G) be the group of all topological group automorphisms ofG. Since G
has a trivial center, it embeds into Aut(G) via inner automorphisms. Furthermore,G
is a closed cocompact subgroup of Aut(G), so G(OS)∆ is also a lattice in Aut(G).
Furthermore,G(OS)∆ is cocompact in Aut(G) if and only if it is cocompact inG.

Commensurators. An automorphismψ ∈ Aut(G) commensuratesG(OS)∆ if ψ(G(OS)∆)∩
G(OS)∆ is a finite index subgroup of bothψ(G(OS)∆) andG(OS)∆ .

Define Comm(G(OS)) < Aut(G) as the group of automorphisms that commensurate
G(OS)∆ . Notice that Comm(G(OS)) is different from the standard definition of the
commensurator group ofG(OS) in two ways: we projectG(OS) into G, and we do
not restrict ourselves to inner automorphisms.

Let Aut(K) be the group of field automorphisms ofK . There is an action of Aut(K)
on the set of affineK -varieties. Indeed, ifW is an affineK -variety, then we letσW
be the variety obtained by applyingσ to the coefficients of the polynomials that define
W . We define Aut(K)G to be the group of automorphismsσ ∈ Aut(K) such thatσG
is K -group isomorphic toG.

Since valuations are obtained by embeddingK into various local fields, there is an
obvious action of Aut(K) on the set of valuationsVK . We let Aut(K)G,S be the subgroup
of Aut(K)G consisting of thoseσ ∈ Aut(K)G such thatσ(S− VG,a

K ) = S− VG,a
K .

The group Aut(K) is finite whenK is a global field, so both Aut(K)G and Aut(K)G,S

are finite also.

We will see in Section7 that Comm(G(OS)) is an extension

1→ Aut (Ad(G))(K) → Comm(G(OS)) → Aut(K)G,S→ 1,

whereAut (Ad(G)) is theK -group of algebraic group automorphisms ofAd(G).
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If G is defined over a subfield ofK that is fixed pointwise by Aut(K)G,S, then the
above extension splits. Furthermore, ifG is K -split, then there is a split extension

1→ Ad(G)(K) → Aut (Ad(G))(K) → Out(Ad(G))(K) → 1,

whereOut(Ad(G)) is theK -group of outer automorphisms ofAd(G) (or alternatively
the K -group of automorphisms of the Dynkin diagram ofAd(G)).

Combining the two remarks above, we have that ifG is K -split and defined over a
subfield ofK that is fixed pointwise by Aut(K)G,S, then

Comm(G(OS)) ∼=
(

Ad(G)(K) o Out(Ad(G))(K)
)

o Aut(K)G,S.

Regardless of whether the extensions defining Comm(G(OS)) split, Comm(G(OS))
containsAd(G)(K) as a finite index subgroup since the outer automorphism group of a
simple algebraic group is finite. Therefore, we can define a topology on Comm(G(OS))
by assigning the topology onAd(G)(K) to be the subspace topology resulting from the
diagonal embedding

Ad(G)(K) −→
∏

v∈S−VG,a
K

Ad(G)(Kv).

Examples. A reader not familiar withS-arithmetic groups is encouraged at this point
to skip ahead to Section5 where a series of examples is presented.

3 Notes

Now that our definitions are in place, we revisit Theorem1.1.

Remarks on Theorem 1.1(i). In the K -isotropic case for number fields in The-
orem 1.1, the group ofK -rational points ofAd(G) is a finite index subgroup of
QI(G(OS)). Hence the group operation onQI(G(OS)) recoversK and a finite quo-
tient of G. These are two of the three ingredients used to createG(OS). The third
ingredient,S, cannot in general be recovered from the quasi-isometry group, but it can
be identified up to an element of the finite group Aut(K)G .

Let’s briefly make the paragraph above more precise.

Theorem1.1 states thatQI(G(OS)) is determined up to a topological group isomor-
phism as Comm(G(OS)). By a theorem of Borel-Tits ([Bo-T] Cor. 6.7),Ad(G)(K)+
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is the minimal finite index subgroup ofQI(G(OS)) whereAd(G)(K)+ is the subgroup
of Ad(G)(K) generated by theK -points of the unipotent radicals of theK -parabolic
subgroups ofAd(G). Therefore, any topological group isomorphism ofQI(G(OS))
induces a topological group isomorphism

f : Ad(G)(K)+ −→ Ad(G)(K)+,

where we assume the domain off has the topology derived fromS.

Another well known theorem of Borel-Tits ([Bo-T] Theorem (A)) states thatf = β◦σ0

whereσ ∈ Aut(K)G , and

σ0 : Ad(G)(K) −→ σAd(G)(K)

is the homomorphism defined by applyingσ to the matrix entries ofAd(G)(K), and

β : σAd(G) −→ Ad(G)

is a K -isomorphism of algebraic groups.

Sincef is a homeomorphism,σ is a homeomorphism as well. Therefore, the topology
on the image ofσ : K → K is given by the setσS, sinceS determines the topology of
the domain ofσ .

Note that if σ ∈ Aut(K)G and β : σAd(G) → Ad(G) is a K -isomorphism of
topological groups, thenσ0 restricts to an isomorphismAd(G)(OS) ∼= σAd(G)(OσS)
andβ( σAd(G)(OσS)) is commensurable withAd(G)(OσS) (see e.g. [Mar] I.3.1.1.iv).
Hence, recoveringSup to an element of Aut(K)G provides us with enough information
to reconstructG(OS) up to finite groups. In light of this, we could not hope for quasi-
isometries to pinpointS any more than up to an element of Aut(K)G .

For clarity, we observe that

SLn
(
Z[i,1/(2 + i)]

) ∼= SLn
(
Z[−i,1/(2− i)]

)
is an example of how the set of valuations can fail to be identified completely by quasi-
isometries since, in this example, the set cannot even be distinguished by isomorphisms
of groups.

Remarks on Theorem1.1(iii). In the K -anisotropic case, the simple groupAd(G)
is encoded in the quasi-isometry group, but the global fieldK is not.

For example, examine the quadratic form

Φ =
5∑

i=1

x2
i .
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Let SO be the special orthogonal group ofΦ, so that SO is Q-anisotropic and
Q(
√

11)-anisotropic.

There are exactly two elements ofV∞Q(
√

11)
— which we namev∞1 and v∞2 — and

Q(
√

11)v∞i
∼= R for i = 1,2. If we choose the valuationv(4+

√
11) ∈ VQ(

√
11) defined

by the prime ideal (4+
√

11) ⊆ Z[
√

11], thenQ(
√

11)v(4+
√

11)
is isomorphic to the

field of 5-adic numbers,Q5.

Let S= {v∞1 , v∞2 , v(4+
√

11)}. By the theorem of Kleiner-Leeb,

QI
(

SO
(
OS

)) ∼= SO(Q5).

(ThatSO is placewise not rank one with respect toS follows form the fact thati ∈ Q5.)

Next, we take our global field to beQ. We let S′ = {v∞, v(5)}, wherev∞ is the
archimedian valuation onQ and v(5) is the 5-adic valuation. Then Kleiner-Leeb’s
theorem also gives us

QI
(

SO
(
OS′

)) ∼= SO(Q5).

Hence, quasi-isometries could not distinguish betweenQ and Q(
√

11) in these two
examples.

Remarks on Theorem1.1(ii). My current level of knowledge for the generalS-
arithmetic group whenK is a function field andG is K -isotropic is at an intermediate
level. In this setting we have stronger results than in theK -anisotropic case, but less is
known than in the number field case.

There is some evidence that we should be able to remove the assumption thatK is
a number field from part (i) of Theorem1.1. The number field case itself provides
evidence that part (i) should hold for the function field case, and it has been shown that
Theorem1.1(i) holds for SLn(Fq[t]) when n≥ 3 [W2].

The distinction between number fields and function fields in theK -isotropic case exists
because our proof for number fields takes advantage of Ratner’s theorem for unipotent
flows [Ra]. Ratner’s theorem is a powerful tool, and it appears to be unknown in
positive characteristic.

Note that, in contrast with lattices in semisimple Lie groups overp-adic number fields,
lattices in semisimple Lie groups over function fields can be non-cocompact. In fact,
Harder showed that ifK is a global function field andG is a simpleK -group, then
G can beK -anisotropic only if G is of type An [Har]. Therefore, resolving the
K -isotropic case for function fields has heightened importance.
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Remarks on Corollary 1.2. In the remarks on Theorem1.1(i) it was pointed out that
in theK -isotropic case for a number fieldK , the quasi-isometry group ofG(OS) carries
the information needed to reconstructG(OS). Hence, an arbitrary finitely generated
group Λ that is quasi-isometric toG(OS) will also carry the information needed to
reconstructG(OS) asΛ andG(OS) will have the same quasi-isometry groups. This is
the content of part (i) of Corollary1.2.

Note that (i) states that the only way to deformG(OS) in the space of all finitely
generated groups without moving it outside of its initial quasi-isometry class is through
algebraic methods.

If we knew that Theorem1.1(i) held in the function field case, then Corollary1.2(i)
would apply to the function field case as well. In particular, case (i) of the above
corollary holds whenG(OS) is replaced bySLn(Fq[t]) for n≥ 3.

Rigidity for groups with poor finiteness properties. Any finitely generated group
that was previously known to be quasi-isometrically rigid contains a finite index sub-
group that is simultaneously complex linear, torsion-free, of typeF∞ , and of finite
cohomological dimension. Thus, the final comment in the preceding paragraph dis-
plays the first quasi-isometric rigidity result for a finitely generated group with poor
finiteness properties.

Indeed, it is well known thatSLn(Fq[t]) is not virtually torsion free. Hence,SLn(Fq[t])
is not complex linear, and any finite index subgroup has infinite cohomological dimen-
sion. In addition,SL3(Fq[t]) is knownnot to be finitely presentable (a result of Behr
[Be]), and independent work of Abels and Abramenko shows that the class of groups
of the formSLn(Fq[t]) wheren≥ 3 contains groups of typeFk , but not of typeFk+1

for all k ≥ 1 (see [Abl] and [Abr]). Recall that a groupπ is of typeFk if there exists
an Eilenberg-Mac LaneK(π,1) complex with finitek-skeleton, andπ is of typeF∞
if it is of type Fk for all k.

4 Outline

Our proof of Theorem1.1borrows heavily from [Es].

We proceed by realizing any element ofQI(G(OS)) as a quasi-isometric embedding

φ : N(Γ) −→ X,

whereX is a product of a symmetric space and a Euclidean building, andN(Γ) ⊆ X is a
set (defined in Section8) that both contains, and is contained in, a metric neighborhood
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of a G(OS) orbit. The existence of such a quasi-isometric embedding follows from a
theorem of Lubotzky-Mozes-Raghunathan [L-M-R].

Our goal is to show thatφ is within a finite distance of an element of Isom(X) ∼= Aut(G).

Constructing a boundary function defined a.e. In logical order, our proof begins
with Section8. Following Eskin, we apply basic ergodic theory to show that the
generic flatF ⊆ X has most of its volume contained inN(Γ). We denote this generic
collection of flats byU, and we note that in general,U is a proper subset of the set of
all flats in X.

For any flatF ∈ U, the quasi-isometric embeddingφ restricts to a quasi-isometric
embedding

Ω′
F −→ X,

whereΩ′
F ⊆ F ∩N(Γ) is a suitably large subset ofF . By precomposing with a closest

point projection, we have maps

φF : F −→ X.

We analyze the image of these maps using the quasiflats with holes theorem of [W1],
and we use the asymptotic behavior of the images to construct a function

∂φ : U∂ → B(G),

whereB(G) is the spherical Tits building forG andU∂ ⊆ B(G) is a subcomplex that
has full measure in the Furstenberg boundary.

For this task, we mostly defer to the proof in [Es] which covers the case whenX is a
symmetric space. Indeed, Eskin’s proof uses the geometry of symmetric spaces mostly
to establish a few foundational lemmas. These lemmas are used to analyze the behavior
at infinity of the quasiflats with holes. We supply the analogous foundational lemmas
for the general spaceX, and then Eskin’s proof applies to the more general setting.

Continuity of the boundary function on neighborhoods of faces. Section9 is
the final section of this paper. The first three lemmas of the section are meant as
replacements for foundational lemmas in [Es], so that we can apply a proof from [Es]
to derive a fourth lemma: the restriction of∂φ to the simplicial neighborhood of a face
of a maximal simplex inU∂ is continuous.
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Completing the boundary function. Our goal is to extend the domain of∂φ to all
of B(G). Then we can use Tits’ theorem to show that∂φ corresponds to an element
of Aut(G). This step is the content of Section6. Despite the fact that this section is
the third part of our proof if it were presented in logical order, it is placed in the early
portion of this paper as it is less technical than material from Sections8 and9, and as
it contains material unlike that found in [Es].

Eskin’s approach to finding an extension of∂φ, for the case whenK is a number field
and S = V∞K , was to find a topological completion of∂φ. A restriction of∂φ to a
co-null subset of the Furstenberg boundary is shown to be bi-Hölder. Then∂φ can be
completed to a domain ofB(G).

Eskin’s argument relied on the fact that the Furstenberg boundary of a real semisimple
Lie group is an analytic manifold and a topological manifold. In contrast, the Fursten-
berg boundary of a semisimple Lie group over a nonarchimedean local field is a Cantor
set. Therefore, our approach is forced to deviate from Eskin’s at this point.

We complete∂φ algebraically, using the Borel-Tits classification of abstract homo-
morphisms between simple groups. We restrict∂φ to a collection of countably many
chambers inU∂ (a spherical building forG over global fields) and argue that the
restriction is induced by an injective homomorphism of rational points of algebraic
groups. The homomorphism is specified by pairs: isomorphisms of algebraic groups
and inclusions of global fields into local fields. We show the field inclusions are con-
tinuous using the continuity of the boundary function on simplicial neighborhoods of
faces of maximal simplices. Then we extend the restriction to an automorphism ofG
by completing the field inclusions. Finally, we show that the extension of the restriction
is also an extension of∂φ.

See also [Dr] in the case whenK is a number field andS= V∞K for a more combinatorial
approach to this problem.

To conclude Section6, a result of [Es] is applied to show that the automorphism ofG
which corresponds to∂φ, stabilizesG(OS) up to Hausdorff equivalence. We denote
the group of all such automorphisms by AutHd(G; G(OS)). Therefore,

QI(G(OS)) ∼= AutHd(G; G(OS)).

Automorphisms coarsely preserving lattices. If G is K -anisotropic, thenG and
G(OS) are Hausdorff equivalent so AutHd(G; G(OS)) = Aut(G). In Section7 we
show that AutHd(G; G(OS)) is a null subset of Aut(G) otherwise. We also show that
AutHd(G; G(OS)) = Comm(G(OS)) whenG is K -isotropic andK is a number field.
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5 Examples

This section will be especially useful for geometric group theorists who are not spe-
cialists inS-arithmetic lattices.

In this section we present six examples illustrating various aspects of Theorem1.1. To
focus on previously unknown results, the examples below will all be for the case that
G is K -isotropic andS 6= V∞K .

Example (A) The basic global field isQ. It supports a countably infinite family of
inequivalent valuations (which we think of as metrics for the global field): an “infinite"
valuation and anl -adic valuation for every prime numberl . It is well known that these
are the only valuations supported onQ.

The infinite valuationv∞ : Q → R is obtained by embeddingQ into C and then
restricting the standard metric onC. Any valuation on a global field that is obtained
through an embedding intoC is calledarchimedean. By completingQ metrically with
respect tov∞ we obtain the real numbers. In the notation of Section1, this is written
asQv∞ = R.

The only archimedean valuation onQ is v∞ , but there are still thenonarchimedean
l -adic valuationsv(l) for prime numbersl . First, we define for any integerk, the natural
number degl(k) as the exponent ofl occurring in the prime factorization ofk. Then,
we definev(l) : Q → R by∣∣∣ n

m

∣∣∣
v(l)

= exp
(

degl(m)− degl(n)
)
.

Hence, the defining feature of thel -adic valuation is that it treats the size of powers of
l backwards from what our intuition is used to from the archimedean valuation. That
is |ln|v(l) → 0 asn→∞, and|1/ln|v(l) →∞ asn→∞.

The l -adic valuation onQ is not complete. If we completeQ with respect tov(l) , we
obtain thel-adic numbersQv(l) which is written simply asQl . The l -adic numbers are
locally compact and totally disconnected.

If we fix a prime numberp and letS= {v∞, v(p)}, then

OS = { x ∈ Q | 1≥ |x|v(l) for all primesp 6= l } = Z[1/p].

BecauseL − rank(SL3) = 2 for all fields L, Theorem1.1 applies toSL3(Z[1/p]).
Since Q admits no nontrivial automorphisms, the image ofSL3 under the adjoint
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representation isPGL3, and transpose-inverse is the only outer automorphism of
PGL3, we have

QI(SL3(Z[1/p])) ∼= PGL3(Q) o Z/2Z.

Notice that as abstract groups,

QI(SL3(Z[1/p])) ∼= QI(SL3(Z[1/l]))

for any primesp and l . However this isomorphism is not topological. Indeed,
QI(PGL3(Z[1/p])) is the quotient of a space of functions so it has a quotient topol-
ogy descending from the compact-open topology. This topology is equivalent to the
subspace topology onPGL3(Q) inherited from the diagonal embedding

PGL3(Q) → PGL3(R)× PGL3(Qp).

With this natural topological structure, the sequence of quasi-isometry classes given
by 1 0 p−n

0 1 0
0 0 1


for n ∈ N is discrete inQI(PGL3(Z[1/p])), but not in QI(PGL3(Z[1/l])). In
particular,SL3(Z[1/p]) and SL3(Z[1/l]) are not quasi-isometric ifp 6= l .

Example (B) Expanding on the previous example, we letP be any finite set of prime
numbers. Then for the finite set of valuationsS= {v∞} ∪ {v(p)}p∈P, the ringOS is:

{ x ∈ Q | 1≥ |x|v(l) for all primesl /∈ P} = Z[1/mP],

wheremP =
∏

p∈P p.

Expanding on the previous example in another direction, recall that for any fieldL, the
rank of SLn over L is n− 1. Hence, as long asn≥ 3 we have

QI(SLn(Z[1/mP])) ∼= PGLn(Q) o Z/2Z.

Again we note thatQI(SLn(Z[1/mP])) has a natural topology equivalent to the topol-
ogy obtained via the diagonal embedding

PGLn(Q) → PGLn(R)×
∏
p∈P

PGLn(Qp).

HenceQI(SLn(Z[1/mP])) becomes “more discrete" as the finite setP grows.
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Also notice that the semisimple Lie group

PGLn(R)×
∏
p∈P

PGLn(Qp)

is an index two subgroup of the topological closure ofQI(SLn(Z[1/mP])). Hence,
the quasi-isometry class ofSLn(Z[1/mP]) identifies the ambient semisimple Lie group
that containsSLn(Z[1/mP]) as a lattice.

Example (C) Examine the quadratic form

Φ = x2
1 + 2x2

2 −
√

2x2
3 +

5∑
i=4

(x2
i − x2

i+2).

As Φ is defined overQ(
√

2), the special orthogonal groupSOΦ is a Q(
√

2)-group.

There are exactly two archimedean valuations supported onQ(
√

2). They are obtained
from the embeddingsa+

√
2b 7→ a+

√
2b ∈ C anda+

√
2b 7→ a−

√
2b ∈ C. Call

these valuationsv∞1 and v∞2 respectively, and note thatQ(
√

2)v∞1 and Q(
√

2)v∞2 are
each isomorphic toR as topological fields, but each in a different way.

We want to add a nonarchimedean valuation to our example. Since 3 does not split as
a product of two primes inZ[

√
2], there is a unique extension of the 3-adic valuation

to Q(
√

2) (written asv(3)), andQ(
√

2)v(3)
∼= Q3(

√
2).

Let S = {v∞1 , v∞2 , v(3)}. ThenOS = Z[
√

2,1/3]. We can apply Theorem1.1 since
the rank ofSOΦ over bothQ(

√
2) andQ(

√
2)v∞2 is 2, and the rank ofSOΦ over both

Q(
√

2)v∞1 andQ(
√

2)v(3) is 3. (ThatQ(
√

2)v(3)− rank(SOΦ) = 3 follows from the fact
that

√
−2 ∈ Q3.)

There is a nontrivial element of Aut(Q(
√

2)). Namelyσ whereσ(a+b
√

2) = a−b
√

2.
However, whileσS= S, there is noQ(

√
2)-isomorphism betweenσ SOΦ andSOΦ .

Indeed,σ SOΦ and SOΦ are not even isomorphic overR as σΦ has signature (5,2)
and Φ has signature (4,3). Hence, Aut(Q(

√
2))G,S is trivial (as is Out(SOΦ)) so

Theorem1.1yields

QI
(

SOΦ(Z[
√

2,1/3])
)
∼= SOΦ(Q(

√
2)).

Example (D) The symplectic groupSP6 has rank 3 over any field. For the global field
Q(i), we take the lone archimedean valuationv∞ (given by restricting the standard
metric onC) along with the (2+ i)-adic and the (2− i)-adic valuations to comprise
the setS. (Note that 2+ i and 2− i are prime inZ[i].)
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ObviouslyQ(i)v∞
∼= C, and because (2+ i)(2− i) = 5, bothQ(i)v(2+i) andQ(i)v(2−i)

are isomorphic toQ5. Now

QI
(

SP6
(
Z

[
i,

1
2 + i

,
1

2− i

])) ∼= PSP6(Q(i)) o Z/2Z,

wherePSP6 is the adjoint group ofSP6. The nontrivial element ofZ/2Z represents
the automorphismσ of Q(i) defined byσ(i) = −i . Complex conjugation clearly
stabilizesS, and σPSP6 = PSP6 sincePSP6 is defined overQ.

Example (E) Let Fq be the finite field withq elements, and letFq(t) be the field
of rational functions with indeterminatet and coefficients inFq. This is the primary
example of a global function field. All other global function fields are finite algebraic
extensions ofFq(t) in analogy with the roleQ plays for number fields.

The characteristic ofFq(t) is nonzero so there are no embeddings of this field intoC
and, hence, no archimedean valuations.

Examine the valuation ofFq(t) at infinity, v∞ , defined on quotients of polynomials by∣∣∣p(x)
q(x)

∣∣∣
v∞

= exp
(

deg(p(t))− deg(q(t))
)
.

Note thatv∞ measures the degree of the pole of a rational function at∞ ∈ P1(Fq),
whereFq is the algebraic closure ofFq.

We could define an analogous valuation,vp, for every pointp ∈ P1(Fq). The ring
of functions f ∈ Fq(t) for which |f |vp ≤ 1 for all p ∈ P1(Fq) − {∞} are precisely
those rational functions which have no poles inP1(Fq)− {∞}. Equivalently, the ring
above is simply the ring of polynomials with indeterminatet . In the notation used in
Section1, we haveOS = Fq[t] for S= {v∞}.

CompletingFq(t) with respect tov∞ produces the locally compact field of formal
Laurent seriesFq((t−1)) with indeterminatet−1. Hence, we have by Theorem1.1that

QI
(

SLn(Fq[t])
)
<

(
PGLn

(
Fq((t−1))

)
o Z/2Z

)
o Aut

(
Fq((t−1))

)
for all n≥ 3. We remark that Aut

(
Fq((t−1))

)
is profinite and in particular is compact.

It will be shown in [W2] however, that for this particular example the quasi-isometry
group is determined exactly as it is in the number field case. That is,

QI
(
SLn(Fq[t])

) ∼= (
PGLn

(
Fq(t)

)
o Z/2Z

)
o B,

where B is a finite solvable subgroup ofPGL2(Fq). Precisely,B is the group of
Fq-points ofPGL2

∼= Aut (P1) that stabilize our distinguished point∞ ∈ P1(Fq).
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Example (F) We give a final example involving function fields for which I do not
at this time know of a proof that the quasi-isometry group is exactly the subgroup of
Aut(G) consisting commensurators.

Examine the smooth elliptic curveC over F5 given by the equationy2 = t3 − t . The
field of F5-rational functions onC is F5(t,

√
t3 − t), and it is a separable extension of

F5(t).

Note that (t = 2, y = 1) and (t = 1, y = 0) define points onC which we namep and
q respectively. We define valuations ofF5(t,

√
t3 − t) with respect to the pointsp and

q as we did in the previous example, and we letS= {vp, vq}. ThenOS is the ring of
regular functions onC− {p,q}.

Since [F5(t,
√

t3 − t) : F5(t)] = 2, and since the point ofC given by (t = 2, y = 4)
and the pointp each lie above 2∈ P1(F5), we know by the so-called fundamental
identity of valuation theory thatF5(t,

√
t3 − t)vp

∼= F5((t − 2)).

As the pointq ∈ C is the only point onC with t = 1 (i.e. q is a point of ramification)√
t3 − t /∈ F5(t)w1 wherew1 denotes the valuation ofF5(t) at the point 1∈ P1(F5).

Hence,F5(t,
√

t3 − t)vq
∼= F5((t − 1))(

√
t3 − t).

Now we are set to apply Theorem1.1which states in this case that

QI
(

SP6(OS)
)

is contained as a measure zero subgroup of the direct product of

PSP6

(
F5((t − 2))

)
o Aut

(
F5((t − 2))

)
with

PSP6

(
F5((t − 1))(

√
t3 − t)

)
o Aut

(
F5((t − 1))(

√
t3 − t)

)
.

This is a stronger result than the one that is known to hold in theK -anisotropic case,
but it is an incomplete result. There is evidence to suggest that there should be an
isomorphism

QI
(

SP6(OS)
)
∼= PSP6

(
F5(t,

√
t3 − t)

)
.

Note that it can be shown that Aut(F5(t,
√

t3 − t))G,S is trivial since there are no
nontrivial automorphisms ofC which fix the pointp and the pointq.

Corollary1.2(i) would hold for SP6(OS) if the above isomorphism existed.
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6 Completing the boundary function

Let G(OS) be as in Theorem1.1. SinceG(OS) and Ad(G)(OS) are commensurable
up to finite kernels (see e.g. [Mar] I.3.1.1.iv),

QI(G(OS)) ∼= QI(Ad(G)(OS)).

Thus we may, and will, assume throughout the remainder thatG is of adjoint type.

Let
G =

∏
v∈S−VG,a

K

G(Kv).

Let X be the natural product of nonpositively curved symmetric spaces and Euclidean
buildings on whichG acts by isometries and such that Isom(X)/G is compact. In this
case Isom(X) ∼= Aut(G).

Throughout we letn equal the rank ofX. (Recall the rank ofX is the maximal
dimension of a flat inX.)

Two boundaries. For any pointe ∈ X, there is a natural topology on the space of
directions frome which forms a simplicial complexB(G), called thespherical Tits
building for G. The spherical building is (n− 1)-dimensional, and it is the same as
the spherical building forG that is produced using the standard BN pair construction.
Hence, group automorphisms ofG induce simplicial automorphisms ofB(G).

A subsetL ⊆ X is called awall if it is a codimension 1 affine subspace of a flat
that is contained in at least two distinct flats. AWeyl chamberin X is the closure
of a connected component of a flatF ⊆ X less all the walls containing a fixed point
x ∈ F . Most of the time we will not care about the pointx which was used to create a
Weyl chamber. In those cases when the distinction is important, we say any such Weyl
chamber isbasedat x. (This is different terminology than was used in [W1]. See the
word of caution following the discussion of the Furstenberg metric.)

TheFurstenberg boundary of Xis the compact space of maximal simplices inB(G).
We denote it bŷX. It can be defined equivalently as the space of Weyl chambers inX
modulo the relation that two Weyl chambers are equivalent if they are a finite Hausdorff
distance from each other.

If X = X∞ × Xp , whereX∞ is a symmetric space andXp and a Euclidean building,
thenX̂ = X̂∞ × X̂p .
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Furstenberg metric. There are metrics on̂X∞ and X̂p that are invariant under a
fixed isotropy subgroup of Isom(X∞) and Isom(Xp) respectively. The metric on̂X∞
is well-known.

To define the metric on̂Xp , we begin by choosing a pointx ∈ Xp and a representative
Weyl chamberS ⊆ Xp for every equivalence class in̂Xp such thatS is based atx.
Thus, we regard̂Xp as the space of all Weyl chambers based atx.

For any Weyl chamber based atx, sayS, let γS : [0,∞) → S be the geodesic ray
such thatγS(0) = x and such thatγS(∞) is the center of mass of the boundary at
infinity of S with its usual spherical metric.

We endowX̂p with the metricd̂p where

d̂p(Y,Z) =

{
π, if γY ∩ γZ = {x};

exp
(
− |γY ∩ γZ|

)
, otherwise.

In the above,|γY ∩ γZ| is the length of the geodesic segmentγY ∩ γZ .

Note that d̂p is invariant under the action of the stabilizer ofx and is a complete
ultrametric onX̂p . That d̂p is an ultrametric means that it is a metric and

d̂p(Y,Z) ≤ max{d̂p(Y,X), d̂p(X,Z)} for anyY,Z,X ∈ X̂p.

We endowX̂ with the metricd̂ = max{d̂∞, d̂p}.

Caution. In [W1], Weyl chambers in buildings are called sectors, and the metricd̂p

is given a different form. In [W1], we made arguments by projecting onto the factors
of X, and most of the paper analyzed the geometry of Euclidean buildings. Thus, our
proof was geared towards terminology and tools more common for buildings. In this
paper, we favor terminology and metrics for buildings which are more compatible with
their better established symmetric space counterparts.

A boundary function defined a.e. In Section8, we will define a groupΓ that acts
on X and is isomorphic toG(OS) up to finite groups (Γ is a lattice in the simply
connected cover ofG). We will also define aΓ-invariant setN(Γ) ⊆ X such that
Γ\N(Γ) is compact. A theorem of Lubotzky-Mozes-Raghunathan [L-M-R] states that
Γ is quasi-isometric to any metric neighborhood of an orbit ofΓ in X. Hence, if we are
given a quasi-isometry ofG(OS), we may replace it with an equivalent quasi-isometric
embedding

φ : N(Γ) −→ N(Γ) ⊆ X.
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Every direction inX (i.e. every geodesic ray) is contained in a flat. In Section8 we
will show that enough flats inX have enough of their volume contained inN(Γ) to
enable us to construct a boundary function

∂φ : U∂ → B(G),

whereU∂ is a subcomplex ofB(G) that has full measure in̂X. The function∂φ is a
simplicial isomorphism ofU∂ onto its image.

We state below a lemma on a topological property of∂φ that is proved in Section9.
First, we defineN (f ) as the simplicial neighborhood inB(G) of a fixed (n − 2)-
dimensional simplexf ⊂ B(G). That is,N (f ) is the set of all chambers inB(G)
containing f . We defineNU(f ) to be the simplicial neighborhood off in U∂ , or
N (f ) ∩ U∂ .

Lemma 9.4 If f ⊂ U∂ is a simplex of dimension n− 2, then ∂φ|NU(f ) is continuous
in the Furstenberg metric.

Our goal is to show that∂φ is the restriction of an automorphism ofB(G) which is
continuous on̂X. Then by Tits’ Theorem,∂φ is induced by an element of Aut(G) ∼=
Isom(X). Knowing this would enable us to apply an argument of Eskin’s to show
further that∂φ corresponds to an isometry ofX which is a finite distance in the sup
norm fromφ.

Embeddings of spherical buildings. An embedding of spherical buildingsB1 into
B2 is a functionf : B1 → B2 that restricts to a simplicial isomorphism betweenB1

and f (B1).

We wish to describe a particularly nice class of embeddings that play a key role in
our proof. These are embeddings which arise from extremely well behaved homomor-
phisms of rational points of simple groups. We begin by describing the latter.

Let k be an arbitrary field andH a simplek-group. If k′ is an extension ofk, then
there are injective group homomorphisms ofH(k) into H(k′) of the form β ◦ ψ0,
whereψ : k → k′ is an injective homomorphism of fields andβ : ψH → H is a k′ -
isomorphism of algebraic groups. Any such homomorphism will be calledstandard.

Now let B(H(k)) andB(H(k′)) be the spherical buildings forH(k) andH(k′) respec-
tively. A standard homomorphism induces an embeddingf : B(H(k)) → B(H(k′)).
We call any such embeddingstandardas well.

Implicit in theorems of Tits and Borel-Tits, is
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Proposition 6.1 Let H be a simple connected k-group of adjoint type and assume k
is infinite. If k′ is an extension of k with k− rank(H) = k′ − rank(H) ≥ 2, then any
embedding ρ : B(H(k)) → B(H(k′)) is standard.

Proof Let H(k)+ be the subgroup ofH(k) generated by thek-points of the unipotent
radicals ofk-parabolic subgroups ofH . In Chapter 5 of [Ti 2], Tits shows how to
construct an injective group homomorphismρ∗ : H(k)+ → H(k′) which is induced by
ρ. We have used the equal rank condition here.

We would like to be able to apply the well known theorem of Borel-Tits that classifies
certain abstract homomorphisms between rational points of simple groups as being
standard ([Bo-T] Theorem (A)).

By construction,ρ∗ has a nontrivial image. Hence, our assumptions onH andk satisfy
all of the hypotheses onρ∗ needed to apply the theorem of Borel-Tits except, possibly,
for the condition that the image ofρ∗ is Zariski dense inH . If we let M be the the
Zariski closure of the image ofρ∗ , then our goal is to show thatM = H .

By Corollary 6.7 of [Bo-T], we know thatH(k)+ has no proper finite index subgroup.
Hence,M must be connected. Also note thatM modulo its radical,R(M ), has positive
dimension sinceH(k)+ is not solvable. In particular there exists a connected simple
factor L of positive dimension ofM/R(M ).

We postcomposeρ∗ with the natural sequence of homomorphisms,

M → M/R(M ) → L → Ad(L ),

to obtain a homomorphismH(k)+ → Ad(L) (k′) with a nontrivial, Zariski dense
image. Now we can apply Theorem (A) of [Bo-T] to conclude that there exists a field
homomorphismψ : k → k′ and an isogenyψH → Ad(L ). Therefore,

dim(H) = dim(ψH) = dim(Ad(L )) ≤ dim(M/R(M )) ≤ dim(M ).

BecauseH is connected andM ≤ H , we conclude thatM = H as desired. We are
then able to apply Theorem (A) of [Bo-T] to our original homomorphismρ∗ and arrive
at our desired conclusion.

A global sub-building. We would like to be able to apply Proposition6.1 to an
algebraically defined sub-building ofB(G). We will need to begin by finding an
extension ofK , for eachv ∈ S− VG,a

K , that is contained inKv and that satisfies the
hypothesis of Proposition6.1. This is the purpose of the following
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Lemma 6.2 For each v ∈ S, there is a finite algebraic extension Lv of K such that Lv

is contained in Kv and Lv − rank(G) = Kv − rank(G).

Proof Given a maximalKv-torusT < G, there is a group elementg ∈ G(Kv) such
that gT is defined overK , where gT denotes the conjugate ofT by g. See Section
7.1 Corollary 3 in [Pl-Ra] for a proof of this fact. It is assumed thatK is a number field
throughout most of [Pl-Ra], but the proof of this fact does not make an essential use of
the number field assumption, aside from the proof of theK -rationality of the maximal
toric variety ofG. For a proof of this last fact over arbitrary fieldsK , see [Bo-Sp].

Assume thatT andg are as above and thatKv − rank(T) = Kv − rank(G). It is well
known that there is a finite separable extensionFv of K over which gT splits (see
e.g. [Bo 2] 8.11). Hence, ifX( gT)L is the group of characters ofgT defined over an
extensionL of K , we have

X( gT)Kv = X( gT)Fv ∩ X( gT)Kv = X( gT)Fv∩Kv.

(Recall that a torus splits over a fieldL if and only if all of its characters are defined
over L.)

Therefore, we letLv = Fv ∩ Kv so that

Kv − rank(T) = Kv − rank(gT) = Lv − rank(gT).

Hence,

Kv − rank(G) ≤ Lv − rank(G).

SinceLv < Kv, the inequality is an equality.

We define the group

GR =
∏

v∈S−VG,a
K

G(Lv).

Let B(GR) be the spherical building forGR. By our choice ofLv, the buildingB(GR)
has countably many chambers, the dimensions ofB(GR) andB(G) are equal, andB(G)
naturally containsB(GR) as a subcomplex.

By conjugatingG(OS), we can assume thatB(GR) ⊆ U∂ . Indeed, sinceB(GR) has
countably many chambers, we can appeal to Lemma8.9below.
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Extending the global embedding. Define ∂φR as the restriction of∂φ to B(GR).
The induced group homomorphism

∂φR∗ :
∏

v∈S−VG,a
K

G(Lv)+ −→ G

has a nontrivial image in each factor ofG by construction. Also, Tits proved that each
G(Lv)+ is an abstract simple group ([Ti 1] Main Theorem). It follows that∂φR∗ , and
hence∂φR, preserves factors up to permutation.

Therefore we can apply Proposition6.1 to conclude that∂φR is induced by a family
of standard homomorphisms. Precisely, there is a permutationτ of S− VG,a

K , and for
eachv ∈ S− VG,a

K there exists an injective field homomorphism

ψv : Lv → Kτ (v)

and aKτ (v) -isomorphism of algebraic groups

βv : ψvG → G

such that∂φR∗ is the product of the homomorphisms

βv ◦ ψ0
v : G(Lv)+ → G(Kτ (v)).

Now extending∂φR amounts to extending eachψv. This is the technique of the
proposition below. Before we continue though, we require an extra piece of notation.

Let f ⊂ B(GR) be an (n− 2)-dimensional simplex. We denote the simplicial neigh-
borhood off in B(GR), or N (f ) ∩ B(GR), by NR(f ).

We continue with

Proposition 6.3 The map ∂φR : B(GR) → B(G) uniquely extends to an embedding
∂φR : B(G) → B(G) which is uniformly continuous on the Furstenberg boundary.

Proof Choose an apartmentΣ ⊆ B(GR) ⊆ B(G) and a chamberc ⊆ Σ. For any
(n− 2)-dimensional simplexf ⊆ c, there exists a root spaceRf ⊆ Σ (as defined in
[Ti 2] 1.12) such thatf ⊆ ∂Rf .

By Proposition 3.27 in [Ti 2], any chamber inNR(f ) is contained in an apartment of
B(GR) which containsRf . Therefore, by Proposition 5.6(i) of [Ti 2], there exists a
valuationw(f ) ∈ S− VG,a

K and anLw(f ) -defined root subgroupUw(f ) < G, such that
Uw(f )(Lw(f )) acts faithfully and transitively onNR(f )− { c}.
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The valuationw(f ) depends on a choice off . However, for any valuationv ∈ VG,a
K ,

we can choose a facefv ⊆ c such thatw(fv) = v. We assume we have chosen such a
face fv for all v ∈ S− VG,a

K .

If bv ∈ NR(fv)− { cv }, then for anyu ∈ Uv(Lv) we haveubv ∈ B(GR). Therefore,

∂φ(ubv) = ∂φR(ubv) = β ◦ ψ0
v(u)∂φR(bv)

SinceNR(fv) ⊆ NU(f ), it follows from Lemma9.4 that β ◦ ψ0
v , and henceψv, is

continuous for allv ∈ S− VG,a
K .

Using translation under addition, we see thatψv is also uniformly continuous. There-
fore, we can completeψv to ψv : Lv → Kτ (v) . Eachψv is injective since any field
homomorphism is injective.

Now let ∂φR : B(G) → B(G) be the embedding induced by the homomorphisms

βv ◦ ψv
0

: G(Lv) → G(Kτ (v)). The map∂φR is clearly continuous on the Fursten-
berg boundary, and since the Furstenberg boundary is compact,∂φR is uniformly
continuous.

If K is a number field then∂φR is an automorphism. In general though, it is not
necessarily the case that a self-embedding of a spherical building is an automorphism.
Take for example the spherical building for the standard flag complex ofPk(Fq((t)))
which is both isomorphic to, and properly contains, the flag complex forPk(Fq((t2))).

The surjectivity of∂φR will be shown in Lemma6.8and must wait until we can show
that∂φR extends∂φ. Then we can use the fact that∂φ has a dense image.

Extending the a.e. defined boundary function. Our goal is to show that∂φ is
extended by∂φR.

Earlier we chose each global fieldLv to be large in an algebraic sense with respect to
eachKv. We can also assume that eachLv is topologically large with respect to each
Kv by choosingLv < Kv to be a dense subfield. Indeed, ifLv is not dense we could
replaceLv with a finite extension that is dense inKv. This will ensure thatB(GR)
carries some of the topological information ofB(G). In particular we have

Lemma 6.4 For any (n− 2)-dimensional simplex f ⊂ B(GR), the set NR(f ) is dense
in N (f ) ⊆ B(G) under the subspace topology of the Furstenberg topology.

Proof Let Σf ⊆ B(GR) be an apartment containingf , and supposecf ⊆ Σf is a
chamber containingf .
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As in the proof of the previous lemma, there is a valuationv ∈ S− VG,a
K and anLv-

defined root subgroupU < G, such thatU(Lv) < GR acts faithfully and transitively
on the setNR(f ) − { cf }. It also follows from Proposition 5.6(i) of [Ti 2], that
U(Kv) < G acts faithfully and transitively on the setN (f )− { cf }. Therefore,U(Lv)
is homeomorphic toNR(f )− { cf }, andU(Kv) is homeomorphic toN (f )− { cf }.

SinceLv is dense inKv, and becauseU is isomorphic as anLv-variety to affine space,
we have thatU(Lv) is dense inU(Kv). Therefore, we have the following series of dense
inclusions

NR(f )− { cf } ⊆ N (f )− { cf }
⊆ N (f )

Let FR be the set of (n− 2)-dimensional simplices inB(GR) and define

DR =
⋃

f∈FR

NU(f )

We use the topological properties ofB(GR), and of∂φR, to deduce topological prop-
erties of∂φ|DR in the following

Lemma 6.5 The function ∂φ|DR : DR → B(G) is Furstenberg continuous.

Proof Let ε > 0 and a chamberc1 ⊂ DR be given.

By Proposition6.3, there is aδR > 0 such that

d̂
(
∂φ(w1) , ∂φ(w2)

)
< ε/3

for all chambersw1,w2 ⊂ B(GR) with d̂(w1,w2) < δR.

Supposec2 ⊂ DR is a chamber witĥd(c1, c2) < δR/3. By Lemma6.4and Lemma9.4,
there are chambersc′i ⊂ B(GR) that intersectci in an (n− 2)-dimensional simplex,
and such that̂d(ci , c′i) < δR/3 andd̂(∂φ(ci), ∂φ(c′i)) < ε/3. Hence

d̂(∂φ(c1), ∂φ(c2)) ≤ d̂(∂φ(c′1), ∂φ(c′2)) + Σ2
i=1d̂(∂φ(ci), ∂φ(c′i)) < ε.

Since∂φ|DR and∂φR are continuous we have

Lemma 6.6 For any simplex q⊂ DR, we have ∂φ(q) = ∂φR(q).
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Proof Both ∂φ|DR and ∂φR|DR are continuous so they are uniquely determined by
∂φR. Indeed, according to Lemma6.4, B(GR) is Furstenberg dense inDR.

In Section8, a maximalKv-split torusAv < G is chosen for eachv ∈ S− VG,a
K . The

tori are used to supply an ergodic theory argument that allows for the creation of the
boundary function∂φ : U∂ → B(G).

Let ΣA ⊂ B(G) be the apartment stabilized by the group∏
v∈S−VG,a

K

Av(Kv) < G.

By conjugatingG(OS), we may assume thatΣA is an apartment in∆(GR). Let W
be the Weyl group with respect toΣA, and denote a fixed chamber inΣA by a+ . Let
a− be the chamber inΣA opposite ofa+ . For eachw ∈ W we let Pw < G be the
stabilizer ofwa+ .

In Section8, we will see that there exists a co-null subsetU ⊆ G such thatU∂ = Ua+ .
By Fubini’s theorem, we can conjugateG(OS) such thatPw ∩ U is co-null in Pw for
all w ∈ W.

Define

Uw
∂ = {gwa− ∈ X̂ | g ∈ Pw ∩ U }

and

Uw = {g ∈ U | gwa− ∈ Uw
∂ }.

Note thatwa− is opposite ofwa+ , so we have thatPwwa− is a full measure subset of
X̂. SincePw ∩ U is co-null in Pw, it follows that Uw

∂ is a full measure subset of̂X.
Hence,Uw ⊆ G is co-null for all w ∈ W. Consequently,∩w∈WUw ⊆ G is co-null.

We replaceU with ∩w∈WUw. As a result, ifc ⊂ U∂ is a chamber, then there is an
apartmentΣc which is completely contained inU∂ , and such that the chamber opposite
from c in Σc is contained inΣA. For any chamberc⊂ U∂ , we let

δA(c) = min
Σc

{dΣc(c,ΣA) },

where the min is taken over allΣc as above with respect to the Tits metricdΣc on Σc.

We can now improve upon Lemma6.6.

Lemma 6.7 For any simplex q⊂ U∂ , we have ∂φ(q) = ∂φR(q).
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Proof For a chamberc⊂ U∂ , we prove that∂φ(c) = ∂φR(c) by induction onδA(c).

If δA(c) ≤ 1, then the result follows from the previous lemma. Now suppose the result
is true for any chamberf ⊂ U∂ with δA(f ) ≤ k−1, and letc⊂ U∂ be a chamber with
δA(c) = k.

Let Σc ⊂ U∂ be an apartment containingc, and such that the chamber inΣc opposite
of c is contained inΣA. Choose a chamberf ⊂ Σc such thatdΣc(c, f ) = 1 and
δA(f ) < k. If f op is the chamber inΣc opposite off , then δA(f op) ≤ 1. By our
induction hypothesis,∂φ(f ) = ∂φR(f ) and∂φ(f op) = ∂φR(f op).

It will be shown in Lemma8.8that∂φ preserves apartments. Therefore,∂φ(Σc) is an
apartment. In fact,∂φ(Σc) is the unique apartment containing∂φR(f ) and∂φR(f op).
Note that∂φR(Σc) is also the unique apartment containing∂φR(f ) and∂φR(f op).

We conclude our proof by observing that both∂φ(c) and∂φR(c) must be the unique
chamber in∂φ(Σc) = ∂φR(Σc) that contains∂φ(c∩ f ) = ∂φR(c∩ f ), but not∂φ(f ) =
∂φR(f ).

The extension is an automorphism. Now that we have shown that∂φR extends∂φ,
we have to prove that∂φR is surjective, and hence an automorphism ofB(G). Then it
follows that∂φR corresponds to an automorphism ofG, or alternatively, an isometry
of X.

Lemma 6.8 The map ∂φR is an automorphism of B(G).

Proof Let φ∗ be a coarse inverse forφ, and defineU∂∗ and∂φ∗R analogously toU∂

and∂φR.

Let Σ ∈ U∗
∂ , and letF ⊆ X be the flat corresponding toΣ. Note thatφ ◦φ∗ preserves

the portion ofF that lies near an orbit ofG(OS) in X (see Section8). SinceF is the
only flat in X that is a finite Hausdorff distance from itself, it follows that

∂φR ◦ ∂φ∗R(Σ) = Σ.

Hence,
U∗
∂ ⊆ ∂φR

(
B(G)

)
.

Note that the map∂φR either has a closed null image or is surjective sinceKτ (v) is a
ψv(Lv)-vector space. The lemma follows sinceU∗

∂ is co-null in X̂.
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Automorphisms that correspond to quasi-isometries. Let Hd denote the Hausdorff
distance between closed subsets ofG. We define the group

AutHd(G; G(OS)) = {ϕ ∈ Aut(G) | Hd(ϕ(G(OS)) , G(OS)) <∞}.

Using Lemma6.7 and Lemma8.3(vii), Eskin’s proof that the automorphism∂φR ∈
Aut(G) ∼= Isom(X) corresponds to an isometry ofX that is a finite distance fromφ
([Es] Step 7) can be applied to show

Proposition 6.9 There is an isomorphism

QI(G(OS)) ∼= AutHd(G; G(OS))

The proof proceeds by identifying points inX as intersections of flats inX. Flats are
parameterized by apartments inB(G), so∂φR completely determines where points inX
are mapped to under the corresponding isometry ofX. Any point in aG(OS)-orbit is a
bounded distance from the intersection of flats whose boundaries are inU∂ . Therefore,
φ maps points in aG(OS)-orbit to within a bounded distance of their images under the
isometry corresponding to∂φR.

Eskin’s proof makes no mention of the topological nature of this isomorphism, but it
clearly follows. The fact that the isomorphism is topological is more interesting in the
S-arithmetic setting since merely the abstract group type of the quasi-isometry group
of an arithmetic lattice in a real semisimple Lie group determines the lattice up to
commensurability.

7 Automorphisms coarsely preserving lattices

We want to determine the group AutHd(G; G(OS)) and complete our proof of Theo-
rem1.1.

The case of anisotropic groups. Notice that ifG is K -anisotropic, then AutHd(G; G(OS))
is isomorphic to Aut(G). Indeed,G(OS) is a cocompact lattice inG so Hd(G , G(OS)) <
∞. Thus, our proof of Theorem1.1(iii) is complete (assuming the results from Sec-
tions8 and9).
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The function field case for isotropic groups. The proof of Theorem1.1(ii) concludes
with Lemma7.1 below. We include the proof here to group it with similar results,
but its proof uses notation and concepts defined in Section8. The reader may want to
return to the proof of this small fact after having read what will follow.

Lemma 7.1 If G is K -isotropic, then the group AutHd(G; G(OS)) is a measure zero
subgroup of Aut(G).

Proof For a given element of AutHd(G; G(OS)), we letg : X → X be the correspond-
ing isometry. We choose a neighborhoodN(Γ)g ⊆ X of the setN(Γ) from Lemma8.3,
such thatN(Γ) ⊆ g(N(Γ)g).

Define volF to be Lebesgue measure onF , and letε be as in Lemma8.3. There is a
Weyl chamberC ⊆ X such that for anyg ∈ AutHd(G; G(OS)), for any flatF ⊆ X that
containsC up to Hausdorff equivalence, and for any pointx ∈ F , we have

lim
r→∞

volF
([

F ∩ N
(
Γ
)g] ∩ Bx(r)

)
volF

(
Bx(r)

) < 1− ε.

Let F′ ⊆ X be a flat containingg(C) up to Hausdorff equivalence. Then, by replacing
F with g−1(F′) in the preceding inequality, it follows that for any pointy ∈ F′ :

lim
r→∞

volF′
([

F′ ∩ N
(
Γ
)]
∩ By(r)

)
volF′

(
By(r)

) < 1− ε.

Therefore,F′ /∈ U. Hence, ifc ⊂ B(G) is the chamber representing the equivalence
class ofC, then AutHd(G; G(OS)) · c⊆ B(G)− U∂ .

The lemma follows from Fubini’s theorem sinceU∂ is co-null in X̂.

The number field case for isotropic groups. The proof of the following proposition
was indicated to me by Nimish Shah, and it completes the proof of Theorem1.1(i).

Proposition 7.2 If K is a number field and G is K -isotropic, then

AutHd
(
G; G(OS)

)
= Comm

(
G(OS)

)
.
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Proof Let ϕ ∈ AutHd(G,G(OS)). We have to show thatϕ ∈ Comm(G(OS)).

To simplify notation we letΛ = G(OS) andΛϕ = ϕ(G(OS)). By replacingΛ with a
finite index subgroup, we can assume thatΛ andΛϕ are contained in the group

G+ =
∏
v∈S

G(Kv)
+.

By Ratner’s theorem on unipotent flows ([Ra] Theorem 6.4), the orbit of the point
(Λ,Λϕ) in G+/Λ × G+/Λϕ under the diagonal action ofG+ is homogeneous. If
we denote the diagonal embedding ofG+ into G+ ×G+ by ∆G+ , then the previous
sentence says that

∆G+(Λ,Λϕ) = L(Λ,Λϕ),

whereL is a closed subgroup ofG+ ×G+ which contains∆G+ .

We claim that eitherL = ∆G+ or there is somev ∈ S such that

1×G(Kv)
+ ≤ (1×G+) ∩ L.

Indeed, if∆G+ < L, then there are group elementsg1,g2 ∈ G+ such that (g1,g2) ∈ L
and g1 6= g2. Hence, there is someg ∈ G+ with g 6= 1 and (1,g) ∈ L. That is to
say, (1× G+) ∩ L is nontrivial. Note that if (1,h) ∈ L, then for anyg ∈ G+ , we
have (1,ghg−1) = (g,g)(1,h)(g−1,g−1) ∈ L since∆G+ < L. Thus, (1× G+) ∩ L
is a normal subgroup of 1× G+ . Now a theorem of Tits’ ([Ti 1] Main Theorem)
tells us that that each groupG(Kv)+ is simple sinceG has a trivial center. Therefore,
1×G(Kv)+ ≤ L for somev ∈ S, since (1×G+) ∩ L is a nontrivial normal subgroup
of 1×G+ . Thus, our claim is proved.

If it is the case that 1× G(Kv)+ ≤ L, then ∆G+(Λ,Λϕ) contains{Λ} × G+/Λϕ ,
as Λϕ is irreducible. Hence, for anyg ∈ G+ , there is a sequence{gk} ⊆ G+ such
that ∆gk(Λ,Λϕ) → (Λ,gΛϕ). Since gkΛ → Λ, it follows that there are sequences
{hk} ⊆ G+ and{λk} ∈ Λ, such thatgk = hkλk andhk → 1. Therefore,h−1

k gk ∈ Λ
and h−1

k gkΛϕ → gΛϕ which proves thatΛΛϕ = G+/Λϕ . Note that our assumption
thatϕ ∈ AutHd(G; Λ) implies thatΛΛϕ is bounded. Thus, this case is precluded.

We are left to consider the case when∆G+ = L. We will show thatΛΛϕ ⊆ G+/Λϕ

is a closed set. To this end, suppose there is a sequence{λk} ⊆ Λ and a group element
g ∈ G+ with λkΛϕ → gΛϕ . Then∆λk(Λ,Λϕ) → (Λ,gΛϕ). Since∆G+(Λ,Λϕ) is
closed, (Λ,gΛϕ) = ∆h(Λ,Λϕ) for someh ∈ G+ . Therefore,gΛϕ = hΛϕ . Since
hΛ = Λ, we haveh ∈ Λ which shows thatΛΛϕ is closed.

SinceΛΛϕ is bounded, it must be compact which would require it to be finite or perfect.
As perfect sets are known to be uncountable,ΛΛϕ is finite. That isϕ ∈ Comm(G(OS))
as desired.
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Assuming the material from Sections8 and9, the proof of Theorem1.1 is complete.
It is the absence of the counterpart to Proposition7.2 for function fields that leads to
the discrepancy between (i) and (ii) of Theorem1.1and Corollary1.2.

The commensurator group. We close this section with a lemma that provides a
concrete description of Comm(G(OS)).

Lemma 7.3 The group Comm(G(OS)) is an extension of Aut (G)(K) by Aut(K)G,S.
If G is K -split and defined over a subfield of K that is fixed pointwise by Aut(K)G,S,
then

Comm(G(OS)) ∼=
(

G(K) o Out(G)(K)
)

o Aut(K)G,S.

Proof Recall thatG(OS) is embedded diagonally inG with respect to the simple
factors ofG. Hence, any group element in Comm(G(OS)) ∩ G would have to take
a finite index diagonal subgroup ofG(OS) into the diagonal ofG. It follows from
the Borel density theorem that any finite index subgroup ofG(OS) is a Zariski dense
subset in each simple factor ofG. Therefore, Comm(G(OS)) ∩G is also contained in
the diagonal ofG.

We have shown that, as an abstract group, Comm(G(OS)) ∩ G is a subgroup of the
groupL of inner automorphisms ofG(Kv) which commensurateG(OS) < G(Kv); the
choice ofv ∈ S− VG,a

K is arbitrary.

Borel’s well known determination of inner commensurators for arithmetic groups
([Bo 1] Theorem 2) essentially contains a proof thatL = G(K) < G(Kv). Therefore,
Comm(G(OS)) ∩G is the diagonal subgroup∆ G(K) < G.

If ϕ ∈ Comm(G(OS)), then G(OS) andϕ(G(OS)) are commensurable. Hence, an
inner automorphism ofG commensuratesG(OS) if and only if it commensurates
ϕ(G(OS)). Therefore,ϕ(∆ G(K)) = ∆ G(K).

Conversely, supposeϕ is an automorphism ofG with ϕ(∆ G(K)) = ∆ G(K). Then
ϕ(G(OS)) is a lattice contained in∆ G(K), soϕ(G(OS)) is commensurable toG(OS)
by the proof of the Margulis-Venkataramana arithmeticity theorem (see [Mar] pages
307-311). Therefore,ϕ ∈ Comm(G(OS)).

Hence, finding Comm(G(OS)) amounts to finding the subgroup of Aut(G) that stabi-
lizes ∆ G(K). This is what we shall do.

Supposeψ ∈ Aut(G) and thatψ(∆ G(K)) = ∆ G(K). By Theorem (A) of [Bo-T],
ψ ∈ Aut(G) can be uniquely written in the form∏

v∈S−VG,a
K

βv ◦ α◦v
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for some permutationτ of S−VG,a
K , a collection of field isomorphismsαv : Kv → Kτ (v) ,

and a collectionβv : αvG → G of Kτ (v) -isomorphisms of algebraic groups. Sinceψ
is a homeomorphism, each field isomorphismαv is a homeomorphism as well.

Since∆ G(K) is stabilized byψ ,

βv ◦ α◦v|G(K) = βw ◦ α◦w|G(K)

for all v,w ∈ S− VG,a
K . Again by Theorem (A) of [Bo-T], there exists a unique

σ ∈ Aut(K) and a uniqueK -isomorphism of algebraic groupsδ : σG → G, such that
δ ◦ σ0 is extended by allβv ◦ α◦v .

Because eachαv is a homeomorphism,σ : K → K is a homeomorphism betweenK
with the v-topology andK with the τ (v)-topology. Therefore,τ (v) = σ · v for all
v ∈ S− VG,a

K . That is,σ ∈ Aut(K)G,S.

We have identified an inclusion of Comm(G(OS)) into the group of pairs (δ, σ), where
σ ∈ Aut(K)G,S andδ : σG → G is a K -isomorphism. To see that the inclusion is an
isomorphism, let (δ, σ) be a given pair as above. For anyv ∈ S−VG,a

K , let σv : K → K
be defined byσv(x) = σ(x). We assume that the domain ofσv has thev-topology and
that the image ofσv has theσ · v-topology. Hence,σv is continuous, and it may be
completed topologically to obtain an isomorphismσv : Kv → Kσ·v. Then we define a
homomorphismG(Kv) → G(Kσ·v) by δ ◦ σv

◦ . The product map∏
v∈S−VG,a

K

δ ◦ σv
◦

is then an automorphism ofG that stabilizes∆ G(K). Hence, the group of pairs (δ, σ)
as above is isomorphic to Comm(G(OS)).

Notice that the group operation on Comm(G(OS)) is given by (δ, σ)(δ′, σ′) = (δ ◦
σδ′, σσ′), where σδ′ : σσ′G → σG is the K -isomorphism obtained by applyingσ
to the coefficients of the polynomials definingδ′ . This is the group structure of an
extension:

1→ Aut (G)(K) → Comm(G(OS)) → Aut(K)G,S→ 1.

The above extension splits ifG is defined over a subfield ofK that is fixed pointwise
by Aut(K)G,S. Indeed, ifG is defined over such a field, then for anyσ ∈ Aut(K) we
have σG = G. It follows that if idG : G → G is the identity map, then the pairs
(idG, σ) exist in Comm(G(OS)). Hence, the extension splits.

For the statement thatG beingK -split implies

Aut (G)(K) ∼= G(K) o Out(G)(K),

see, for example, the discussion in 5.7.2 of [Ti 2]. (Recall that we identifyOut(G)
with the automorphism group of the Dynkin diagram ofG.)
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8 Constructing a boundary function defined a.e.

Sections6 and7 show the conclusion of the proof for Theorem1.1once the boundary
function∂φ : U∂ → B(G) is created. In Section8, we outline the construction of∂φ.
We will refer to [Es] for most of the details of the construction.

Replacing the word metric. Let G̃ be the algebraic simply connected cover ofG.
We define

H =
∏

v∈S−VG,a
K

G̃(Kv)

and
Γ = G̃(OS).

Note that Γ and G(OS) are commensurable up to finite kernels (see e.g. [Mar]
I.3.1.1.iv).

Let K be a maximal compact subgroup ofH , and letε′ > 0 be given. Letµ be the
probability measure onΓ\H which is derived from Haar measure onH . We choose a
compact setD ⊆ Γ\H which contains the cosetΓ, and such thatµ(D) ≥ 1− ε′ .

We denote byN(Γ)◦ ⊆ H/K the set of all cosets with a representative inH that maps
into D under the quotient mapH → Γ\H . In symbols,

N(Γ)0 = {hK ∈ H/K | Γh ∈ D }.

SinceK is the isotropy group of a point inX, we can identifyH/K as a subset ofX.
For eachhK ∈ H/K, we letP(hK) be the set of points inX that are at least as close to
hK ∈ X as to any other point ofH/K ⊆ X. Precisely:

P(hK) = { x ∈ X | d(x,hK) ≤ d(x,gK) for all g ∈ H }.

Let
N(Γ) =

⋃
hK∈N(Γ)◦

P(hK).

Notice thatN(Γ) ⊆ X contains the orbitΓK. SinceΓ\N(Γ)◦ = D and P(K) are
compact,Γ\N(Γ) = Γ\[N(Γ)◦P(K)] is compact. Thus,Γ is quasi-isometric toN(Γ) ⊆
X with the path metric.

The geometry ofN(Γ) ⊆ X with the path metric is more convenient to work with than
the word metric onΓ. More convenient still, would be working with the geometry of
N(Γ) under the restricted metric fromX.
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In general, a lattice is not quasi-isometric to its orbit with the restricted metric, but with
our standing assumption that̃G is placewise not rank one, we can apply the theorem
below from [L-M-R]

Theorem 8.1 (Lubotzky-Mozes-Raghunathan) The word metric on Γ is quasi-
isometric to N(Γ) ⊆ X with the restricted metric.

Using Theorem8.1, the fact thatΓ andG(OS) are commensurable up to finite kernels,
and the fact that the inclusion ofN(Γ) with the restricted metric intoX is isometric,
we can realize a given quasi-isometry

φ : G(OS) → G(OS)

by a quasi isometric embedding
N(Γ) → X.

The resulting embedding is a finite distance in the sup norm fromφ, so we will also
denote it byφ. We will assume that

φ : N(Γ) → X

is a (κ,C) quasi-isometric embedding.

Ergodic actions of abelian groups. For eachv ∈ S− VG,a
K , let Av be a maximal

Kv-split torus inG̃. We define the group

A =
∏

v∈S−VG,a
K

Av(Kv) < H.

We denote the flat corresponding toA by A ⊆ X. We may assume thatK ∈ A.

We introduce a pseudometricdA on A by settingdA(a1,a2) to be equal tod(a1K,a2K)
for a1K,a2K ∈ X.

There is also a Haar measure onA which we denote byda. We denote Lebesgue
measure onA by volA . Then, after a normalization, we have for any measurable set
Y ⊆ A:

da
(

A∩
( ⋃

a∈Y

aKa−1
))

= volA
(
A ∩

( ⋃
a∈Y

aP(K)
))
.

The Birkhoff ergodic theorem is usually stated for an ergodic action ofZ. However,
a careful reading of the proof of the Birkhoff ergodic theorem shows that it applies to
ergodic actions of our pseudometric groupA as well (see e.g. [Bl] Theorem 3.2). That
is, if we let BA

1(r) ⊆ A be the ball of radiusr centered at the identity element ofA,
then we have the following
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Proposition 8.2 (Birkhoff ergodic theorem) If Y is a finite volume right ergodic
A-space and f ∈ L1(Y), then for a.e. y ∈ Y:

lim
r→∞

1
da(BA

1(r))

∫
BA

1 (r)
f (ya)da =

∫
Y

f .

Prasad’s proof of the strong approximation theorem for simply connected semisimple
Lie groups contains a proof of the ergodicity of theA-action onΓ\H (see [Pr 3] Lemma
2.9). Hence, we can apply the Birkhoff ergodic theorem to the action ofA on Γ\H .

Generic flats have most of their volume nearΓ. Following Eskin, we are now
prepared to show that a generic flat inX has most of its volume contained inN(Γ) ⊆ X.

For any group elementh ∈ H , define volhA to be Lebesgue measure on the flat
hA ⊆ X. That is, for any measurable setY ⊆ hA, we let

volhA(Y) = volA(h−1Y).

Thus, the measure volhA is compatibleda in a natural way.

We denote byBhA
x (r) ⊆ hA the metric ball centered at the pointx ∈ hA with radius

r > 0. Denote the characteristic functions ofN(Γ) ⊆ X and D ⊆ Γ\N(Γ) by χN(Γ)

andχD respectively.

By Proposition8.2, we have that forµ a.e. Γh ∈ Γ\H :

lim
r→∞

1

volhA(BhA
hK (r))

∫
BhA

hK (r)
χN(Γ) volhA

= lim
r→∞

1
da(BA

1(r))

∫
BA

1 (r)
χN(Γ)(haK)da

≥ lim
r→∞

1
da(BA

1(r))

∫
BA

1 (r)
χD(Γha)da

=
∫

Γ\H
χD

= µ(D)

≥ 1− ε′.

The inequality shows that for a.e.Γh ∈ Γ\H , anyγ ∈ Γ, and any pointx ∈ γhA:

lim
r→∞

volγhA

([
γhA ∩ N

(
Γ
)]
∩ BγhA

x (r)
)

volγhA

(
BγhA

x (r)
) ≥ 1− ε′.
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Hence, the generic flat has much of its volume contained inN(Γ).

The above argument is the basic idea behind Lemma8.3below. Refining the argument
will yield more precise information about how much of a generic flat is contained in
N(Γ). Then we will be in a position to apply the quasiflats with holes theorem from
[W1] to begin constructing a map onB(G).

More on the position of a generic flat with respect toΓ. Let h ∈ H . For a set
W ⊆ X contained in the flathA, we let

W(ε,ρ) = { x ∈ W | BhA
y

(
εd(x, y)

)
∩W 6= ∅ for all y ∈ hA− BhA

x (ρ) }.

Hence,W(ε,ρ) is the set of all pointsx ∈ W which can serve as an observation point
from which all points inhA (that are a sufficient distance fromx) have a distance from
W that is proportional to their distance fromx.

We denote the metricr -neighborhood of a setY ⊆ X by Nbhdr (Y). We denote the
Hausdorff distance between two setsP,Q⊆ X by Hd(P,Q).

Recall the definition of awall L ⊆ X as a codimension 1 affine subspace of a flat, that
is contained in at least two distinct flats.

Lemma8.3below is an amalgam of Lemmas 2.2, 3.2, and 5.2 from [Es]. We omit the
proof of the lemma as it is nearly identical to those in [Es]. We note that the proof
follows the principle shown above using the Birkhoff ergodic theorem.

We will assume throughout thatε > 0 is a sufficiently small number depending onκ
andX.

Lemma 8.3 There are constants ρ > 0, and ρ′ > 0 depending on ε and X; constants
λ0 > 1, λ1 > 1, N′ > 0, m> 0, and 1 > b > 0 depending on X; and a Γ-invariant
co-null set U ⊆ H such that for any h ∈ U there are sets

Ω∗
hA ⊆ ΩhA ⊆ Ω′

hA ⊆ hA ∩ N(Γ)

which satisfy the following properties:

(i) For any point x ∈ hA:

lim
r→∞

volhA
([

hA ∩ N
(
Γ
)]
∩ BhA

x (r)
)

volhA
(

BhA
x (r)

) ≥ 1− ε/4.
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(ii) Ω′
hA ⊆

(
hA ∩ N(Γ)

)
(ε,ρ) and for any point x ∈ hA:

lim
r→∞

volhA
(
Ω′

hA ∩ BhA
x (r)

)
volhA

(
BhA

x (r)
) ≥ 1− ε/2.

(iii) ΩhA ⊆ (Ω′
hA)(ε,ρ′) and for any point x ∈ hA:

lim
r→∞

volhA
(
ΩhA ∩ BhA

x (r)
)

volhA
(

BhA
x (r)

) ≥ 1− ε/2.

(iv) For any point x ∈ hA:

lim
r→∞

volhA
(
Ω∗

hA ∩ BhA
x (r)

)
volhA

(
BhA

x (r)
) ≥ 1−mε.

(v) If y ∈ Ω∗
hA and L ⊂ hA is a wall with d(y,L) < N′ then there is a group element

h′ ∈ U such that

h′A ∩ hA ⊆ Nbhd2N′(L)

and

Hd
(

hA ∩ Nbhdr (h
′A) , L

)
≤ λ1r

for any r > λ0 .

(vi) For any wall L ⊂ A and any point x ∈ hA:

lim
r→∞

volhA
(
Ω∗

hA ∩ BhA
x (r) ∩ hL

)
volhA

(
BhA

x (r)
) ≥ b.

(vii) There is a Γ invariant set E ⊆ U such that µ(Γ\E) > 1− ε/2, and hK ∈ ΩhA
for any h ∈ E.
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Remarks. There are some differences in this lemma with Lemmas 2.2, 3.2, and 5.2
in [Es]. In particular, the transverse flats in part (v) do not necessarily intersect in a
wall for the general spaceX, as can be arranged ifX is a symmetric space. Take for
example a regular trivalent tree which is the Euclidean building forSL2(Q2). The
walls in this example are vertices; the flats are lines, and there is no pair of lines which
intersect in a single point.

Also, the constantb in part (vi) is shown in [Es] to be nearly one. This discrepancy is
essentially due to the fact that ifX is a Euclidean building, then the orbit ofP(K) under
the action of thep-adic group that stabilizes a wall containingK may not contain all
of L. Take for example the building forSL3(Qp). However, Eskin’s proof only uses
that the constant is greater than 0, and that is all we shall need as well.

A collection of useful flats. Lemma8.3 provides us with a collection of flats inX
that have most of their volume, and a substantial portion of the volume of their walls,
contained inN(Γ). We denote this collection of flats byU. That is,

U = {hA|h ∈ U}.

Since any flatF ∈ U has most of its volume contained inN(Γ), we can restrict
φ : N(Γ) → X to F∩N(Γ) and begin to analyze the image using Theorem 1.2 of [W1].
We state this theorem as

Theorem 8.4 (Quasiflats with holes)Let ϕ : Ω → X be a (κ,C) quasi-isometric
embedding of a set Ω ⊆ En . There are constants M = M(κ,X) and δ0 = δ0(κ,X)
such that if δ < δ0 , then there exists flats F1,F2, ...,FM ⊆ X such that

ϕ
(
Ω(δ,R)

)
⊆ NbhdN

( M⋃
i=1

Fi

)
,

where N = N(κ,C,R,X).

Theorem8.4, and the fact that a generic flatF ⊆ X is contained inU, positions us to
begin constructing the function∂φ : U∂ → B(G) where the setU∂ ⊆ B(G) has full
measure in̂X.

Weyl chambers are mapped to Weyl chambers.For pointsx, z,w ∈ X and a number
ρ ≥ 0, we let

Dx(ρ; z,w) = max{ρ,d(x, z),d(x,w)}.

Define a functionφ : X → Y to be a (κ, ρ, ε) graded quasi-isometric embedding based
at x∈ X, if for all z,w ∈ X:
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1
κ

d(z,w)− εDx(ρ; z,w) ≤ d(φ(z), φ(w)) ≤ κd(z,w) + εDx(ρ; z,w).

If F ∈ U we let p : F → Ω′
F be a closest point projection and define

φF : F → X

by φF = φ ◦ p.

If x ∈ ΩF , then using Lemma8.3(ii), φF is a (κ, ρ,2κε) graded quasi-isometric
embedding based atx. Also note that by Theorem8.4, φF(F) is contained in a
neighborhood of finitely many flats since

Ω′
F ⊆

(
F ∩ N(Γ)

)
(ε,ρ).

We fix a Weyl chamberA+ ⊆ A based atK ∈ X. For anyh ∈ H , let hA+(∞) be the
equivalence class ofhA+ in X̂.

For two subsetsA andC of X, any pointx ∈ X, and a small numberδ > 0, we write
A ∼δ C if

Hd
(
A∩ Bx(r) , C∩ Bx(r)

)
≤ δr

for all sufficiently large numbersr > 0.

At this point in [Es], a detailed argument is used to show the analogue of the lemma
below (Lemma 3.14 in [Es]) for the case whenX is a symmetric space.

Lemma 8.5 Suppose hA ∈ U for some h ∈ H . There exists a constant λ depending
on κ and X, and some k ∈ K depending on h, such that

φhA
(
hA+

)
∼λ n√ε kA+.

Eskin’s proof proceeds by first showing that ifL is a wall of a flatF ∈ U, thenφF

mapsL into a “graded neighborhood" of a wallL′ ⊆ X. (For a definition of a graded
neighborhood see below, before the proof of Lemma8.7.) This is shown using the
Eskin-Farb quasiflats with holes theorem and the characterization of walls of flats in
U as “coarse intersections" of flats inU (see Lemma8.3(v)). A key ingredient for
this step is Eskin’s “no turns" lemma about quasi-isometries of Euclidean space which
respect a family of hyperplanes. (In this case the Euclidean spaces are our flats, and
the hyperplanes are the walls of the flats.)

Since Weyl chambers are defined by the set of walls that bound them, Eskin uses
the information about the images of walls to deduce the lemma above for symmetric
spaces.
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Eskin’s proof of the symmetric space version of Lemma8.5 uses the geometry of
symmetric spaces mostly to supply foundational tools for the main argument. We
will replace these tools with analogues that hold for products of symmetric spaces and
Euclidean buildings.

The first of the foundational tools needed is Lemma8.3 – even here Eskin’s proof
applied to the general case. The second tool is Theorem8.4which was proved in [W1].
The last two tools needed are Lemmas8.6 and8.7 below. They are direct analogues
of Lemmas B.1 and B.7 of [Es] respectively. After proving Lemmas8.6 and8.7, the
foundation to carry out Eskin’s proof for the general spaceX will be in place. Then
Eskin’s proof applies to establish Lemma8.5.

Coarse intersections of convex polyhedra.Any wall, L, in a flatF ⊆ X, dividesF
into two components. The closure of any such component is called ahalf-space. We
define aconvex polyhedronin X as an intersection of a flat,F , with a (possibly empty)
finite collection of half-spaces contained inF . Note that flats are convex polyhedra, as
are walls.

The following lemma is an analogue of Lemma B.1 in [Es]. It allows us to replace
coarse intersections of flats, walls, or convex polyhedra with a convex polyhedron.

Lemma 8.6 There are constants, λ2 and λ3 , such that if Q1 and Q2 are convex
polyhedra in X, and if r > λ2(1 + d(Q1,Q2)), then there is a convex polyhedron
P⊆ Q1 such that

Hd
(
Q1 ∩ Nbhdr (Q2) , P

)
≤ λ3r.

Proof If Qk ⊆ X is a convex polyhedron in the flatFk ⊆ X, and if Fk,∞ ⊆ X∞ and
Fk,p ⊆ Xp are flats such thatFk = Fk,∞ × Fk,p , then

Qk = Fk ∩
⋂

i

(
Hk,∞,i × Fk,p

)
∩

⋂
i

(
Fk,∞ × Hk,p,i

)
,

where eachHk,∞,i ⊆ Fk,∞ and eachHk,p,i ⊆ Fk,p is a half-space.

Hence, ifQk,∞ ⊆ Fk,∞ is the convex polyhedron given by

Qk,∞ = Fk,∞ ∩
⋂

i

Hk,∞,i

andQk,p ⊆ Fk,p is the convex polyhedron given by

Qk,p = Fk,p ∩
⋂

i

Hk,p,i ,
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thenQk = Qk,∞ ×Qk,p .

Note that [
Q1,∞ ∩ Nbhdr/

√
2(Q2,∞)

]
×

[
Q1,p ∩ Nbhdr/

√
2(Q2,p)

]
⊆

Q1 ∩ Nbhdr (Q2)

⊆[
Q1,∞ ∩ Nbhdr (Q2,∞)

]
×

[
Q1,p ∩ Nbhdr (Q2,p)

]
,

so we can reduce the proof of this lemma to the separate cases ofX = X∞ andX = Xp .
The former case is Lemma B.1 of [Es]. We will prove the lemma for the latter case.

Let Q1 andQ2 be convex polyhedron in a Euclidean buildingXp . Let F ⊆ Xp be an
apartment (flat) containingQ1.

Define
Pd(Q1,Q2) = Q1 ∩ Nbhdd(Q1,Q2)(Q2)

Since Q2 is convex, Nbhdd(Q1,Q2)(Q2) is convex as well ([Bri-H] Cor. II.2.5(1)).
ThereforePd(Q1,Q2) is convex. In fact,Pd(Q1,Q2) is a convex polyhedron. Indeed, if
c ⊆ F is a chamber, let

ρF,c : Xp → F

be the retraction corresponding toF and c. Thend(x, y) = d(x, ρF,c(y)) for all x ∈ c

and all y ∈ Q2. (For a good reference for retractions, and for buildings in general,
see [Bro].) Therefore, points in∂Pd(Q1,Q2) are determined by translating the region
ρF,c(Q2) a distance ofd(Q1,Q2). Hence,Pd(Q1,Q2) is bounded by walls which are
translates of the walls boundingρF,c(Q2). SincePd(Q1,Q2) is convex, and since there
are finitely many parallel families of walls inF , Pd(Q1,Q2) is bounded by finitely many
walls.

We let eachHi ⊆ F be a half-space such that

Pd(Q1,Q2) = F ∩
⋂

i

Hi .

For any numberr ≥ 0, let Hr+
i ⊆ F be the half-space that containsHi , and with the

additional property that

Hd
(
Hi , Hr+

i

)
= r + d(Q1,Q2).
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Define the convex polyhedronP+
r by

P+
r = Q1 ∩

( ⋂
i

Hr+
i

)
.

We claim that ifr ≥ 0, then

Q1 ∩ Nbhdr (Q2) ⊆ P+
r .

That is, we want to prove that

Q1 ∩ Nbhdr (Q2) ⊆ Hr+
i

for all i . To this end, letci ⊆ F be a chamber that is separated fromPd(Q1,Q2) by ∂Hr+
i .

Let
ρF,ci : Xp → F

be the retraction corresponding toci andF . SinceρF,ci is distance nonincreasing, we
have that

d
(
ρF,ci (Pd(Q1,Q2)) , ρF,ci (Q2)

)
≤ d

(
Pd(Q1,Q2) , Q2

)
= d

(
Q1 , Q2).

Therefore, ifx ∈ Q2:

d
(
∂Hr+

i , x
)
≥ d

(
∂Hr+

i , ρF,ci (x)
)

≥ d
(
∂Hr+

i , Pd(Q1,Q2)
)
− d

(
Pd(Q1,Q2) , ρF,ci (x)

)
= r + d(Q1,Q2)− d

(
ρF,ci (Pd(Q1,Q2)) , ρF,ci (x)

)
≥ r.

Hence,
Q1 ∩ Nbhdr (Q2) ⊆ Hr+

i

as desired.

We have shown thatQ1 ∩ Nbhdr (Q2) is contained in a convex polyhedron created by
pushing out the walls ofPd(Q1,Q2) by a uniform distance that is linear inr . Next we
observe thatQ1 ∩ Nbhdr (Q2) also contains a convex polyhedron created by pushing
out the walls ofPd(Q1,Q2) by a uniform distance that is linear inr .

Indeed, since there are only finitely many walls in any flatF′ up to translation, there
exists a positive constantβ < 1 depending only onX, such that ifQ⊆ F′ is a convex
polyhedron,s≥ 0, andQ(s) ⊆ F′ is the convex polyhedron obtained by pushing out
the walls that boundQ by a distance ofβs, then

Q(s) ⊆ Nbhds(Q) ∩ F′.
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Thus for any numberr ≥ d(Q1,Q2), and for the set of half-spaces{Hi } that define
Pd(Q1,Q2) , we letHr−

i ⊆ F be the half-space containingHi and such that

Hd
(
Hi , Hr−

i

)
= β

(
r − d(Q1,Q2)

)
.

And we define the convex polyhedronP−r by

P−r = Q1 ∩
( ⋂

i

Hr−
i

)
,

so that

P−r ⊆ Nbhd(r−d(Q1,Q2))(Pd(Q1,Q2)) ∩ F

⊆ Q1 ∩ Nbhdr (Q2)

In summary, we have shown that forr ≥ d(Q1,Q2)

P−r ⊆ Q1 ∩ Nbhdr (Q2) ⊆ P+
r

The lemma follows since there clearly exists a constantλ′ depending only onXp such
that

Hd
(
P−r , P+

r

)
< λ′[r + d(Q1,Q2)− β(r − d(Q1,Q2))]

< λ′[r + 2d(Q1,Q2)]

≤ λ′[3r].

Graded equivalence implies Hausdorff equivalence for Weyl chambers.LetAα ⊆
A be a wall containingK. For any collection of such walls{Aα }α∈σ , let

A+
σ = A+ ∩

⋂
α∈σ

Aα.

For any setA ⊆ X and anyt > 0, we define thegraded t-neighborhood of Aas the
set

A[t] = { x ∈ X | there is ana ∈ A with d(x,a) < td(x,K) }.

The following lemma is a generalization of Lemma B.7 in [Es].

Lemma 8.7 Assume there are three group elements h,h1,h2 ∈ H and that, outside of
some metric ball,

hA+
σ ⊆ h1A+[λ n

√
ε] ∩ h2A+[λ n

√
ε].
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If k1, k2 ∈ K satisfy the condition

Hd(hiA+ , kiA+) <∞,

then
k1A+

σ = k2A+
σ .

Proof A Weyl chamberC ⊆ X is a product of Weyl chambersC∞ ⊆ X∞ and
Cp ⊆ Xp . Note thatC∞ × Cp ⊆ (C′∞ × C′p)[t] implies that, outside of a ball,
C∞ ⊆ C′∞[t′] and C∞ ⊆ C′∞[t′] for t′ > t . Hence, we only need to show the case of
a building since symmetric spaces are covered by Lemma B.7 of [Es].

We can replacehA+
σ by kA+

σ for somek ∈ K such that Hd(hA+
σ , kA+

σ ) <∞. Then

kA+
σ ⊆ k1A+[λ n

√
ε] ∩ k2A+[λ n

√
ε]

outside of a large ball.

For any r > 0, let ar ∈ A+
σ be such thatd(ar ,A+

α ) > r for all α /∈ σ . By the
preceding inclusion, there exist pointsa1,a2 ∈ A+ such thatd(kar , kiai) ≤ λ n

√
εr for

all sufficiently large numbersr . Therefore,d(k1a1, k2a2) ≤ 2λ n
√
εr .

There is an apartmentA′ ⊆ Xp such that, outside of a ball,kiA+
σ ⊆ A′ for i =

1,2. If k1A+
σ 6= k2A+

σ , then for all sufficiently larger , we havekiai ∈ A′ ∩
kiA+

σ and d(k1a1, k2a2) > αr for some constantα depending only onXp . This is a
contradiction.

The proof of Lemma8.5 only requires the case of Lemma8.7 for σ = ∅. However,
the full form of Lemma8.7 is needed for the construction of∂φ.

The a.e. defined boundary function. Let N < H be the normalizer ofA < H . Let
B(G) be the Tits building forX. We defineU∂ as the simplicial subcomplex ofB(G)
given by

U∂ =
⋃
h∈U

⋃
n∈N

hnA+(∞).

We are prepared to define
∂φ : U∂ → B(G)

using Lemma8.5. We let∂φ(hA+(∞)) = kA+(∞) wherek ∈ K is such that
φhA(hA+) ∼λ n√ε (kA+).

That∂φ is well-defined, and restricts to an isomorphism ofU∂ onto its image, follows
from Step 4 of [Es] using our Lemma8.7 in place of Lemma B.7 in [Es].
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Flats are preserved. In Section6, we complete∂φ to an automorphism ofB(G).
In Lemma6.7, we use that apartments inB(G) that are contained inU∂ , are mapped
to apartments by∂φ. This is the content of the lemma below. The proof is from
Proposition 3.3 [Es], but we include it here as it is brief.

Lemma 8.8 If F ∈ U, then there is a flat F′ ⊆ X such that φF(F) ⊆ NbhdN(F′).

Proof Corresponding toφF(F) ⊆ X there is a finite setL(φF) ⊆ X̂ of limit points
(see [W1]). Intuitively L(φF) is a set of equivalence classes for finitely many Weyl
chambersC1, ...Ck ⊆ X such that

Hd
(
φF(F) , ∪iCi

)
<∞.

Choosex, y ∈ L(φF) that are opposite chambers inB(G). (That such chambers
exist is shown in [W1].) Since∂φ preserves incidence relations,∂φ is Tits distance
nonincreasing. Therefore,∂φ−1(x) and∂φ−1(y) are opposite.

Any chamberc ⊂ F(∞) is contained in a minimal gallery between∂φ−1(x) and
∂φ−1(y). Hence,∂φ(c) is contained in a minimal gallery fromx to y. That is,∂φ(c) is
a chamber in the unique apartment containingx andy. Now let F′ ⊆ X be the unique
flat such thatF(∞) containsx andy.

Countable subcomplexes. In Section6 we use the following lemma to find a “global
sub-building” ofB(G) contained inU∂ .

Lemma 8.9 If V is a countable collection of chambers in U∂ , then there is some
h ∈ H such that V ⊆ hU∂ .

Proof For each numberi ∈ N, we choose a chamberci ⊂ B(G) such thatV =
{ci}∞i=1. Define the set

Ui = {g ∈ H | gci ⊆ U∂}.

Note thatUi ⊆ H is co-null, so∩∞i=1Ui is co-null. Hence, there exists someh−1 ∈
∩∞i=1Ui , andh satisfies the lemma.
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9 Continuity of the boundary function on neighborhoods of
faces

To complete∂φ to an automorphism ofB(G) in Section6, we use that∂φ restricts
to a continuous map on simplicial neighborhoods of (n− 2)-dimensional simplices.
Precisely, we use Lemma9.4below.

As with Lemma8.5 in the previous section, our Lemma9.4 follows from the proof
of the analogous Lemma 5.3 in [Es] once a few foundational lemmas are provided
for products of symmetric spaces and Euclidean buildings. What we require are
replacements for Lemmas B.4, B.6, and B.8 in [Es]. Their analogues are listed below
as Lemmas9.1, 9.2, and9.3respectively.

Recall that we defined a metric on̂X in the early portion of Section6. We can assume
that the metric is invariant under the action ofK. Equivalently, we assume that the
basepoint used to define the metricd̂ is the cosetK ∈ H/K ⊆ X.

Lemma 9.1 There are constants ν1 , ν2 , and ν3 depending on X, such that if ki ∈ K,
zi ∈ kiA+ with d(z1, z2) ≤ ν1r , and d(zi , ki∂A+) ≥ ν2r where r is sufficiently large,
then

d̂(k1A+(∞), k2A+(∞)) ≤ exp(−ν3r).

Proof The hypotheses imply the analogous hypotheses on each factor,X∞ and Xp .
On the symmetric space factor the result is implied by Lemma B.4 of [Es], and since we
have endowed̂X with the box metric, the result follows once we establish the lemma
for the case thatX is a Euclidean building.

SupposingXp is a Euclidean building, we letν1 = 1/2 andν2 = 1. For the Weyl
chamberA+ ⊆ X, we letα > 1 be the constant such that the basepoints of the sectors
A+ andA+ −Nbhdr (∂A+) are at distanceαr from each other for allr > 0. Clearly
α depends only onXp . We letν3 = α/2.

We can assume, by repositioning the direction of the geodesic rays used to defined̂,
thatγA+ contains the point that the sectorA+−Nbhdr (∂A+) is based at. Indeed, our
choice thatγA+(∞) ∈ A+(∞) is the center of mass was completely arbitrary and any
point in the interior ofA+(∞) would suffice.

Now we proceed by forcing a contradiction. That is we assume thatd̂(k1A+(∞), k2A+(∞)) >
exp(−αr/2). Then γk1A+ ∩ γk2A+ is a geodesic segment with distinct endpoints
K, x ∈ Xp , that satisfy the inequalityd(K, x) < αr/2.
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Let Wx ⊆ k1A be a wall containingx and such that the closure of the component
of k1A − Wx containingK also containsk1A+ ∩ k2A+ . Note that the pointz1 ∈
k1A+ − Nbhdr (k1∂A+) is in the opposite component ofk1A − Wx by our choice of
α. Also by our choice ofα,

d(z1,Wx) > r/2.

If c ⊆ k1A+ is a chamber containingx, but not contained ink2A+ , then the retraction

ρk1A,c : Xp → k1A

corresponding to the apartmentk1A and to the chamberc, mapsz2 to the component
of k1A−Wx containingK.

Therefore, the geodesic segment fromz1 to ρk1A,c(z2) passes throughWx. Hence,

d(z1, z2) ≥ d(z1, ρk1A,c(z2))

≥ d(z1,Wx)

> r/2.

This completes our contradiction.

Lemma 9.2 There is a constant ν4 depending on X such that for sufficiently large
numbers Q and any k1, k2 ∈ K, there are zi ∈ kiA+ satisfying:

(i) d(z1, z2) ≤ Q
(ii ) d(zi ,e) ≤ ν4| log

(
d̂(k1A+(∞), k2A+(∞)

)
| , and

(iii ) d(zi , ki∂A+) ≥ ν5| log
(
d̂(k1A+(∞), k2A+(∞)

)
|

for some constant ν5 which depends on Q and on X.

Proof Again we prove the lemma for the caseX = Xp . The caseX = X∞ is Lemma
B.6 of [Es], and the Lemma9.2follows from the lemmas for each case.

If Xp is a Euclidean building, and ifk1A+ ∩ k2A+ does not contain a chamber of
Xp , then choosez1 ∈ γk1A+ and z2 ∈ γk2A+ to be distance 1 away fromK. Then
the conclusion of the lemma is satisfied for allQ > 0 by ν4=1 and someν5 which
depends only on the angle betweenγ+

A and∂A+ .

If k1A+ ∩ k2A+ does contain a chamber ofX, then letz1 = z2 ∈ k1A+ ∩ k2A+ be
the endpoint ofγk1A+ ∩ γk2A+ . Now the lemma holds for anyQ > 0, ν4 = 1, and
someν5 that depends only on the angle betweenγA+ and∂A+ .
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Lemma 9.3 Let x, y ∈ X. For any Weyl chamber Cx ⊆ X based at x, there is a Weyl
chamber Cy ⊆ X based at y such that

Hd(Cx , Cy) < λ′d(x, y)

for some constant λ′ .

Proof The lemma follows from Lemma B.8 of [Es], and from Lemma 4.3 of [W1].

Recall thatn is the rank ofX and that for any (n− 2)-dimensional simplexf ⊂ U∂ ,
we definedNU(f ) as the set of all chambers inU∂ that containf .

We can apply the proof of Lemma 5.3 in [Es] by replacing Lemmas B.4, B.6, and B.8
of [Es] with the three lemmas above to show:

Lemma 9.4 If f ⊂ U∂ is a simplex of dimension n− 2, then ∂φ|NU(f ) is continuous
in the Furstenberg metric.

Note that Lemma 5.3 of [Es] claims that∂φ|NU(c) is bi-Hölder. We only require
∂φ|NU(c) to be continuous as our method for completing∂φ is more algebraic, and less
topological, than Eskin’s.

The condition that chambers share a wall in the above lemma is needed so that two
Weyl chambers can be simultaneously slid along a common wall until they are based at
points inN(Γ) – the set our quasi-isometry is defined on. The sliding technique does
not change their Furstenberg distance.
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