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Abstract

We give a new proof of a theorem of Kleiner-Leeb: that any quasi-
isometrically embedded Euclidean space in a product of symmetric spaces
and Euclidean buildings is contained in a metric neighborhood of finitely
many flats, as long as the rank of the Euclidean space is not less than the
rank of the target. A bound on the size of the neighborhood and on the
number of flats is determined by the size of the quasi-isometry constants.

Without using asymptotic cones, our proof focuses on the intrinsic geometry
of symmetric spaces and Euclidean buildings by extending the proof of
Eskin-Farb’s quasiflat with holes theorem for symmetric spaces with no
Euclidean factors.
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1 Introduction

We will give a new proof and a generalization of

Theorem 1.1 (Kleiner-Leeb) Let Em be m-dimensional Euclidean space,
and suppose ϕ : Em → X is a (κ,C) quasi-isometric embedding, where X is
a product of symmetric spaces and Euclidean buildings and m equals the rank
of X . Then there exist finitely many flats F1, F2, ..., FM ⊆ X such that

ϕ(Em) ⊆ NbhdN

( M⋃

i=1

Fi

)
,

where M = M(κ,X) and N = N(κ,C, X).
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Theorem 1.1 was proved in [6]. It can be used to give a new proof of a conjecture
of Margulis’ from the 1970’s (also proved in [6]) that any self-quasi-isometry of
X as above is a bounded distance from an isometry when all factors correspond
to higher rank simple groups. For an indication as to how Theorem 1.1 can be
used to give a proof of this fact, see [3] where Eskin-Farb give a proof of Theorem
1.1 and Margulis’ conjecture in the case when X is a symmetric space.

Our proof of Theorem 1.1 does not use asymptotic cones as the proof of Kleiner-
Leeb does. Rather, we adapt results of Eskin-Farb who used large-scale homol-
ogy to characterize quasiflats in symmetric spaces without Euclidean factors in
a way that allowed for the absence of large regions in the domain of a quasiflat
(a “quasiflat with holes”). Thus, we provide a marriage between the quasiflats
theorems of Kleiner-Leeb and Eskin-Farb: a quasiflats theorem that allows for
products of symmetric spaces and Euclidean buildings in the target of a quasi-
flat, and for holes in the domain; see Theorem 1.2 below. Theorem 1.1 occurs
as a special case.

Allowing for holes in our quasiflats leads to applications for the study of the
large-scale geometry of non-cocompact S -arithmetic lattices; see [10] and [11].

Bibliographic note. The full theorem of Kleiner-Leeb is more general than
Theorem 1.1 as it allows for generalized Euclidean buildings in the target of
ϕ. However, Theorem 1.1 does include all of the standard Euclidean buildings
that are naturally acted on by reductive groups over local fields.

Quasiflats with holes. For constants κ ≥ 1 and C ≥ 0, a (κ,C) quasi-
isometric embedding of a metric space X into a metric space Y is a function
ϕ : X → Y such that for any x1, x2 ∈ X :

1
κ

d(x1, x2)− C ≤ d(f(x1), f(x2)) ≤ κd(x1, x2) + C.

For a subset of Euclidean space Ω ⊆ Em , we let

Ω(ε,ρ) = {x ∈ Ω | By

(
εd(x, y)

) ∩ Ω 6= ∅ for all y ∈ Em −Bx(ρ) },
where we use the notation Bz(r) to refer to the ball of radius r centered at z .
Hence, Ω(ε,ρ) is the set of all points x ∈ Ω which can serve as an observation
point from which all points in Em (that are a sufficient distance from x) have
a distance from Ω that is proportional to their distance from x.

A special case to keep in mind is that if Ω = Em , then Ω(ε,ρ) = Em for any
ε ≥ 0 and ρ ≥ 0.

A quasiflat with holes is the image of Ω(ε,ρ) under a quasi-isometric embedding
φ : Ω → X .
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Before stating our main result, recall that for a metric space X , the rank of X
(or rank(X) for short) is the maximal dimension of a flat in X . Now we have
the following generalization of Theorem 1.1:

Theorem 1.2 (Quasiflats with holes) Let ϕ : Ω → X be a (κ,C) quasi-
isometric embedding where X is a product of symmetric spaces and Euclidean
buildings, Ω ⊆ Em , and m ≥ rank(X). There are constants M = M(κ,X) and
ε0 = ε0(κ,X), such that if ε < ε0 , then there exist flats F1, F2, ..., FM ⊆ X
such that

ϕ(Ω(ε,ρ)) ⊆ NbhdN

( M⋃

i=1

Fi

)
,

where N = N(κ,C, ρ, X).

Quasirank. We remark that by comparing the volume of the domain and
image of a function ϕ satisfying the hypotheses of Theorem 1.2, it is clear
that no quasi-isometric embeddings exist of a Euclidean space into X when
the dimension of the Euclidean space is greater than the rank of X . This
observation is not new and follows very easily from the pre-existing quasiflats
theorems. However, we choose to state our theorem in this more general manner
since the proof given below does not depend on the dimension of the Euclidean
space once its dimension at least equals the rank of X , and our proof will run
more smoothly if we allow for dimensions larger than the rank of X .

Applications for quasiflats. One would like to characterize quasiflats as a
starting point for understanding quasi-isometries of a lattice as Mostow did for
cocompact lattices. (See [7], [8], [9], [6], [3], [2], [10], and [11] for the details of
this brief sketch.)

The basic example of a quasiflats theorem is the Morse-Mostow Lemma which
states that a quasi-isometric embedding of R into a rank one symmetric space
has its image contained in a metric neighborhood of a unique geodesic.

For general symmetric spaces and Euclidean buildings X , it is not the case that
a quasi-isometrically embedded Euclidean space is necessarily contained in the
neighborhood of a single flat. (Recall that a flat is an isometrically embedded
Euclidean space.) If, however, the dimension of a quasi-isometrically embedded
Euclidean space is equal to the dimension of a maximal flat in X , then its
image will be contained in a neighborhood of finitely many flats.

Quasiflats can be used in the study of quasi-isometries of cocompact lattices
as follows. First, we may assume that any self-quasi-isometry of a cocompact
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lattice in a semisimple Lie group is a quasi-isometry of its orbit in an appropriate
product of symmetric spaces and Euclidean buildings, X . Second, since any
flat in X is necessarily contained in a metric neighborhood of the cocompact
lattice orbit, we can restrict the quasi-isometry to any flat and examine its
image. The space X has a boundary at infinity which is defined in terms of
the asymptotic behavior of flats, so in determining the images of flats we are
finding a map on the boundary of X . Finally—as long as X contains no factors
that are real hyperbolic spaces, complex hyperbolic spaces, or trees—one can
deduce from the properties of the boundary map that the quasi-isometry is a
finite distance from an isometry.

The story is different for non-cocompact lattices. Generic flats in X will not
be contained in a neighborhood of a non-cocompact lattice orbit. Hence, we
cannot apply the same proof technique.

However, the generic flat will have a substantial portion of its volume contained
in a neighborhood of a non-cocompact lattice orbit. With an eye towards this
feature, Eskin-Farb provided a foundational tool for studying quasi-isometries
of non-cocompact lattices in real semisimple Lie groups by defining and char-
acterizing quasiflats with holes in symmetric spaces.

Using quasiflats with holes in symmetric spaces, Eskin developed a boundary
map in the non-cocompact lattice case for real groups en route to proving that
any quasi-isometry of a higher rank arithmetic group is a finite distance from
a commensurator.

By allowing for Euclidean building factors in the image of a quasiflat with
holes, we will be able to use this same approach to analyze quasi-isometries of
non-cocompact lattices in semisimple Lie groups over arbitrary local fields.

Outline. Our proof of Theorem 1.2 in the case that X is a Euclidean building
is self-contained aside from results of Eskin-Farb on the large-scale homology
of pinched sets in Euclidean space and some consequences of those results.
Hopefully, the reader who is interested in only the case when X is a building
can read through our proof without having to consider symmetric spaces.

In the general case, when X is a nontrivial product of a symmetric space and a
Euclidean building, we rely heavily on the results of Eskin-Farb for symmetric
spaces. Our approach is to project the quasiflat with holes into the building
factor Xp , and into the symmetric space factor X∞ . By projecting the quasiflat
with holes to Xp , we can apply arguments below that were created expressly for
buildings while ignoring the symmetric space factor. Conversely, by projecting
the quasiflat with holes to X∞ , we can directly apply most of the content of
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[3] to analyze the image. After examining the image in each factor, we piece
together the information obtained in the full space X to obtain our result.

Thus, in our approach to proving Theorem 1.2, we will try to avoid dealing
with the product space X . We do this since arguments for symmetric spaces
and Euclidean buildings (although extremely similar in spirit) have to be dealt
with using different tools.

The approach of projecting to factors is taken from the work of Eskin-Farb as
well. Their test case for their general theorem was when X = H2 × H2 , and
they used the projection method to reduce most of the proof to arguments in
the hyperbolic plane [4].

In Section 2 we will show that certain subspaces in X which behave like rank
one spaces cannot accommodate quasi-isometric embeddings of large Euclidean
sets. This fact will be formulated more precisely in terms of homology.

Some of the nearly rank one spaces are then glued together to give a “degenerate
space” in X which is a fattening of the singular directions in X with respect
to a given basepoint. (Recall that a direction is singular if it is contained
in more than one flat.) Using a Mayer-Vietoris sequence, it can be shown
that the degenerate space cannot accommodate quasi-isometric embeddings of
large Euclidean sets of large dimension. It is at this point where we apply our
hypothesis that the dimension of Em equals, or exceeds, the rank of X .

In Section 3 we begin to analyze the asymptotic behavior of quasiflats with
holes. We define—following Eskin-Farb—what it means for a direction in a
quasiflat with holes to limit on a point in the boundary at infinity of X .

The results of Section 2 show that the image of a quasiflat with holes must have
a substantial intersection with the complement of the degenerate space. (The
complement of the degenerate space is the region of X for which limit points
are defined.) We argue further to show that limit points exist.

Since the nondegenerate space behaves much like a rank one space itself, we can
show that the image of a quasiflat with holes in the nondegenerate space cannot
extend in too many directions (i.e. the number of limit points is bounded). We
construct our bound by contrasting the polynomial growth of Euclidean space
with the high cost of travelling out in different directions in a rank one space. It
is from the finite set of limit points that the finite set of flats from the conclusion
of Theorem 1.2 is constructed.

Section 4 contains a few lemmas to insure that all definitions depending on
basepoints are well-defined up to a constant.
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We conclude in Section 5 with a proof of Theorem 1.2. Results from Sections
2, 3, and 4 are used in the proof.

Definitions. Recall that a polysimplex is a product of simplices. Replacing
simplices with polysimplices in the definition of a simplicial complex creates
what is called a polysimplicial complex.

A Euclidean building Xp is a polysimplicial complex endowed with a metric dp

that satisfies the four properties below:

(i) There is a family, {Aα}, of subcomplexes of Xp such that each
Aα is isometric to Edim(Xp) and Xp =

⋃
αAα . Each Aα is called

an apartment.

(ii) Any two polysimplices of maximal dimension (called chambers)
are contained in some Aα .

(iii) If Aα and Aβ are two apartments each containing the chambers
c1 and c2 , then there is an isometric polysimplicial automorphism
of X sending Aα to Aβ , and fixing c1 and c2 pointwise.

(iv) The group of isometric polysimplicial automorphisms of Xp

acts transitively on the set of chambers.

Note that condition (iv) is nonstandard. Often one assumes the stronger con-
dition that a building be thick. We desire to weaken the thickness condition to
condition (iv) so that Euclidean space can naturally be given the structure of
a Euclidean building.

Also notice that we do not assume Xp to be locally finite. Hence, we are
including the buildings for, say, GLn(C(t)) in our examination.

Along with the nonstandard definition of a Euclidean building given above,
we also give the standard definition of a symmetric space as a Riemannian
manifold X∞ such that for every p ∈ X∞ , there is an isometry g of X∞ such
that g(p) = p and the derivative of g at p equals −Id.

Conventions. Throughout this paper we will be examining products of sym-
metric spaces and Euclidean buildings. Since Euclidean space is a Euclidean
building by our definition, we may assume that our symmetric spaces do not
have Euclidean factors. This will allow us to more readily apply results from
[3] where it is assumed that the symmetric spaces have no Euclidean factors.

We may also assume that our symmetric spaces do not have compact factors.
Otherwise we could simply compose the quasi-isometry ϕ from Theorem 1.2
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with a projection map to eliminate the compact factors, then apply Theorem
1.2, pull back the flats obtained to the entire symmetric space, and increase the
size of N by the diameter of the compact factors.

Notation. If a and b are positive numbers we write a ¿ b when there is a
constant λ = λ(X, κ) < 1 such that a < λb. If there are variables x1, ...xn

and a constant η = η(X,κ, x1, ..., xn) < 1 such that a < ηb, then we write
a ¿(x1,...,xn) b. We will use the notation a = O(b) to mean that a < λb for
some constant λ = λ(X, κ) without specifying the size of λ.

Remarks. With modification to only the conclusion of the proof of Lemma 3.6,
our results hold when Em is replaced by a 1-connected nilpotent real Lie group.
For example, this shows that a Heisenberg group cannot quasi-isometrically
embed into SL4(k) for any locally compact nondiscrete field k .

Also the proof presented below can be modified in Lemma 3.2 to allow for the
presence of R-buildings in the target of the quasiflat with holes.

Acknowledgements. Benson Farb was my Ph.D. thesis advisor under whose
direction this work was carried out. I thank him for suggesting this problem to
me, and for his constant support and encouragement.

Thanks also to Alex Eskin for listening to many of my ideas and for providing
feedback.

Thanks to Tara Brendle, Dan Margalit, Karen Vogtmann, and a referee for
valuable comments made on an earlier draft.

I would also like to thank the University of Chicago for supporting me as a
graduate student while I developed the ideas in this paper, and Cornell Univer-
sity for the pleasant working environment given to me while I completed the
writing of this paper.

I was supported in part by an N.S.F. Postdoctoral Fellowship.

2 Pinching functions and homology

Throughout the remainder, let Xp be a Euclidean building with a chosen base-
point ep ∈ Xp , and let X∞ be a symmetric space with basepoint e∞ ∈ X∞ . We
will assume that X∞ has no compact or Euclidean factors (see the conventions
in the preceding section).

We let X = X∞ ×Xp , and we define π∞ : X → X∞ and πp : X → Xp to be
the projection maps. Define the point e ∈ X as the pair (e∞, ep).
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Throughout we let n ∈ N equal rank(X).

Graded quasi-isometric embeddings. We will put quasiflats with holes
aside until the final section of this paper. We concentrate instead on embeddings
of entire Euclidean spaces into X under a weaker assumption than our map is
a quasi-isometry.

For points x, y1, y2, ..., yn ∈ X and a number ρ ≥ 0, we let

Dx(ρ; y1, y2, ..., yn) = max{ρ, d(x, y1), ..., d(x, yn)}.
For numbers κ ≥ 1, ρ ≥ 0, and ε ≥ 0, we define a function φ : X → Y to be a
(κ, ρ, ε) graded quasi-isometric embedding based at x ∈ X if for all z, w ∈ X :

1
κ

d(z, w)− εDx(ρ; z, w) ≤ d(φ(z), φ(w)) ≤ κd(z, w) + εDx(ρ; z, w).

A function φ : X → Y is called (κ, ρ) radial at x ∈ X if for all z ∈ X :

1
2κ

Dx(ρ; z) ≤ d(φ(z), φ(x)) ≤ (2κ)Dx(ρ; z).

Combining the two definitions above, φ : X → Y is a (κ, ρ, ε) radial graded
quasi-isometric embedding ((RGQIE) for short) based at x if it is a (κ, ρ, ε)
graded quasi-isometric embedding at x, and κ radial at x.

In the proof of Theorem 1.2, we will see that one can easily extend the domain
of a quasiflat with holes to all of Em in such a way that the extension is a
(RGQIE). From the behavior of (RGQIE)’s that is characterized in Sections 2
through 4, we will be able to characterize the image of a quasiflat with holes.

Until explicitly stated otherwise, let φ : Em → X be a (κ, ε, ρ) (RGQIE) based
at 0 with φ(0) = e. The image of such a function is a graded quasiflat.

Pinching on rays in buildings. Let

K = { g ∈ Isom(X) | ge = e },
and let γp : [0,∞) → {e∞} × Xp be a geodesic ray with γp(0) = e. The
space Kγp is a topological tree as can be seen by restricting the geodesic re-
traction Xp → {ep}. However, the tree Kγp will often not be convex. These
trees in X are negatively curved, and our first goal is to show that large sub-
sets of Euclidean space cannot embed into them, or even into small enough
neighborhoods of them. This in itself is straightforward to show, but we shall
want to handle this problem in a way that allows us to conclude that large
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Euclidean sets cannot embed into fattened neighborhoods of K translates of
certain (n− 1)-dimensional spaces.

Let

Kγp(δ) = {x ∈ {e∞} ×Xp | d(x, t) < δd(x, e) for some t ∈ Kγp },
so that Kγp(δ) is a neighborhood of Kγp in {e∞} × Xp that is fattened in
proportion to the distance from the origin by a factor of δ . We will want to
project Kγp(δ) onto Kγp where calculations can be made more easily.

Define
π(γp, δ) : Kγp(δ) → Kγp

by choosing for any x ∈ Kγp(δ), some π(γp, δ)(x) ∈ Kγp , such that

d(x, π(γp, δ)(x)) ≤ δd(x, e).

By definition, π(γp, δ) only modifies distances by a linear error of δ , so com-
posing with φ will still be a (RGQIE). Precisely, we have the following:

Lemma 2.1 If ε < δ < 1/2, then π(γp, δ) ◦ φ : φ−1(Kγp(δ)) → Kγp is a
(2κ, ρ, 5κδ) (RGQIE) based at 0.

Proof Verifying that π(γp, δ) ◦ φ is a graded quasi-isometric embedding is an
easy sequence of inequalities:

d
(
π(γp, δ)◦φ(x) , π(γp, δ) ◦ φ(y)

)

≤ d
(
π(γp, δ) ◦ φ(x) , φ(x)

)
+ d

(
π(γp, δ) ◦ φ(y) , φ(y)

)
+ d

(
φ(x) , φ(y)

)

≤ d
(
φ(x) , φ(y)

)
+ 2δDe

(
0;φ(x), φ(y)

)

≤ κd
(
x, y

)
+ εD0

(
ρ; x, y

)
+ 4κδD0

(
ρ; x, y

)
.

The other inequality is similar.

That π(γp, δ) ◦ φ is radial is also straightforward:

d
(
π(γp, δ) ◦ φ(x) , e

) ≤ d
(
π(γp, δ) ◦ φ(x) , φ(x)

)
+ d

(
φ(x) , e

)

≤ (1 + δ)d
(
φ(x) , e

)

≤ 2κ(1 + δ)D0

(
ρ; x

)
.

Again, the other inequality is similar.

As in [3], for numbers r ≥ 0, η > 1, and β > 0, we define an (r, η, β) pinching
function on a set W ⊆ Em to be a proper, continuous function f : W → R≥0

such that for any x, y ∈ W , we have d(x, y) < βs whenever the following two
properties hold:
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(i) r ≤ s ≤ f(x) ≤ f(y) ≤ ηs;
(ii) there is a path ψ : [0, 1] → W such that ψ(0) = x,

ψ(1) = y , and s ≤ f(ψ(t)) for all t ∈ [0, 1].

If there exists an (r, η, β) pinching function on some W ⊆ Em , then we say
that W is (r, η, β)-pinched.

Eskin-Farb used pinching functions as a means of showing that large Euclidean
sets cannot quasi-isometrically embed into certain negatively curved subspaces
of symmetric spaces. To show the analogous result for our general X , we will
first construct a pinching function for φ−1(Kγp(δ)). Since Eskin-Farb con-
structed a pinching function on the similarly defined sets φ−1(Kγ∞(δ)), we
will then be in a position to handle the case for a general ray by pulling back
pinching functions obtained through projection to factors.

Our candidate for a pinching function on φ−1(Kγp(δ)) is

f(γp, δ) : φ−1(Kγp(δ)) → R≥0,

where
f(γp, δ)(x) = d(π(γp, δ) ◦ φ(x), e).

Lemma 2.2 If ε < δ < 1/2, then f(γp, δ) is a (5κρ, 1 + δ, 84κ3δ) pinching
function on the set φ−1(Kγp(δ)) ⊆ Em .

Proof Note that we may assume π(γp, δ) ◦ φ is continuous by a connect-the-
dots argument. Hence, f(γp, δ) is clearly continuous and proper. We assume
x, y ∈ φ−1(Kγp(δ)) are such that

5κρ ≤ s ≤ f(γp, δ)(x) ≤ f(γp, δ)(y) ≤ (1 + δ)s,

and there is a path ψ : [0, 1] → φ−1(Kγp(δ)) with s ≤ f(γp, δ)(ψ(t)) for all
t ∈ [0, 1].

By the radial condition of Lemma 2.1,

5κρ ≤ d
(
π(γp, δ) ◦ φ(x) , e

) ≤ 4κD0(ρ; x).

It follows that ρ < d(x, 0). Hence, by the radial condition of Lemma 2.1 and
our pinching assumptions,

d(x, 0) ≤ 4κd
(
π(γp, δ) ◦ φ(x) , e

) ≤ 4κ(1 + δ)s.

The existence of ψ implies that π(γp, δ) ◦ φ(x) and π(γp, δ) ◦ φ(y) are in the
same connected component of Kγp −Be(s). Therefore,

d
(
π(γp, δ) ◦ φ(x) , π(γp, δ) ◦ φ(y)

) ≤ 2δs.
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We may assume d(x, 0) ≥ d(y, 0). Then, by the graded condition of Lemma
2.1,

2δs ≥ 1
2κ

d(x, y)− (5κδ)d(x, 0) ≥ 1
2κ

d(x, y)− (5κδ)4κ(1 + δ)s.

That is, d(x, y) < 84κ3δs.

Graded neighborhoods. For a set Y ⊆ X , we can create a neighborhood
of Y by fattening points in Y in δ -proportion to their distance from e. In
symbols, we let

Y [δ] = {x ∈ X | d(x, y) < δd(x, e) for some y ∈ Y }.

Pinching on general rays. Lemma 6.8 in [4] demonstrates a pinching function
for sets of the form φ−1(Kγ∞(δ)) where γ∞ : [0,∞) → X∞×{ep} is a geodesic
ray, and Kγ∞(δ) ⊆ X∞ × {ep} is defined analogously to Kγp(δ) ⊆ {e∞} ×
Xp . We can use this pinching function along with the pinching function from
Lemma 2.2 to show that φ−1(Kγ[δ]) is a pinched set, where γ : [0,∞) → X
is an arbitrary geodesic ray with γ(0) = e. Our argument proceeds by simply
applying our already existing pinching functions to the image of Kγ[δ] under
the projection maps onto the factors of X .

We want to define a real valued tilt parameter, τ , on the space of geodesic
rays γ : [0,∞) → X with γ(0) = e. The parameter will measure whether γ
leans more towards the Xp or the X∞ factor. Notice that any such γ can be
decomposed as γ(t) = (γ∞(t), γp(at)) for some number a ≥ 0, and all t ≥ 0,
where γ∞ ⊆ X∞ and γp ⊆ Xp are unit speed geodesic rays based at e∞ and ep

respectively. Now we simply set τ(γ) = a. (For τ to be defined everywhere we
allow for the case when a = ∞, which is just to say that γ is contained in the
building factor.) Hence, if τ(γ) > 1 (resp. < 1) then γ is leaning towards the
building factor (resp. symmetric space factor), and when creating a pinching
function on Kγ[δ] it will be most efficient to project onto the Xp (resp. X∞ )
factor of X .

We begin with the following technical observation.

Lemma 2.3 Assume γ : [0,∞) → X is a geodesic ray with γ(0) = e and that
y ∈ Kγ[δ]. Then,

(i) πp(y) ∈ Kγp

(
δ
√

1 + cot2(| tan−1 τ(γ)− sin−1 δ|+)
)

, and

(ii) π∞(y) ∈ Kγ∞
(
δ
√

1 + cot2(| tan−1 1/τ(γ)− sin−1 δ|+)
)

,
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where |x|+ = max{x, 0}.

Proof By definition of Kγ[δ] there exists a t ≥ 0 and a k ∈ K such that

d
(
πp(y) , kγp(τ(γ)t)

)
= d

(
πp(y) , πp(kγ(t))

)

≤ d
(
y , kγ(t)

)

< δd(y, e)

≤ δ
√

d(πp(y), ep)2 + d(π∞(y), e∞)2.

Using straightforward trigonometry it can be verified that

d(π∞(y), e∞) ≤ d(πp(y), ep) cot(| tan−1 τ(γ)− sin−1 δ|+).

Then (i) follows. The proof of (ii) is similar.

We will use part (i) of the previous lemma to create a pinching function for
geodesic rays that tilt towards Xp . This is the content of Lemma 2.5, but
we will first note that the projection onto Xp does not significantly distort
distances.

Lemma 2.4 Let γ : [0,∞) → X be a geodesic ray with γ(0) = e. If ε < δ
and τ(γ) ≥ 1, then πp ◦ φ : φ−1(Kγ[δ]) → Xp is a (2κ, ρ, η1) (RGQIE) where
η1 = O(δ).

Proof Note that on Kγ[δ], πp is a (2, 0, O(δ)) (RGQIE) where 2 is an upper
bound given by our restriction on τ(γ). Composition with φ completes the
result.

Now for the pinching function:

Lemma 2.5 Let γ : [0,∞) → X be a geodesic ray with γ(0) = e. For τ(γ) ≥ 1
and ε < δ ¿ 1, the set φ−1(Kγ[δ]) ⊆ Em is (10κρ, 1 + δ,O(δ))-pinched.

Proof Let δp = max
{

2η1, δ
√

1 + cot2(tan−1 τ(γ)− sin−1 δ)
}

, and note that
our conditions on τ(γ) and δ imply that, say,

1 <

√
1 + cot2(tan−1 τ(γ)− sin−1 δ) < 2.
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By Lemma 2.3, πp(Kγ[δ]) ⊆ Kγp(δp). Hence, we can choose our pinching
function g : φ−1(Kγ[δ]) → R≥0 to be given by

g(z) = d(π(γp, δp) ◦ πp ◦ φ(z), ep).

Indeed, we can use Lemma 2.4 to replace φ with πp◦φ in Lemma 2.2. It follows
that g is a (10κρ, 1 + δp, 672κ3δp) pinching function.

If τ(γ) ≤ 1, we can apply Lemma 2.3 to Lemma 6.8 of [3] and obtain a similar
result. Hence, we have a pinching function on φ−1(Kγ[δ]) for any geodesic ray
γ that is based at the origin. Precisely, we have

Lemma 2.6 If ε ¿ δ ¿ 1, then the set φ−1(Kγ[δ]) ⊆ Em is (r0, 1 +
O(δ), O(δ))-pinched for any geodesic ray γ : [0,∞) → X with γ(0) = e. Here
r0 = r0(X, κ, ρ, δ).

Homology results of Eskin-Farb and their consequences. Pinching func-
tions were introduced in [3] as a tool for showing that sets which simultaneously
support Euclidean metrics and “quasinegatively curved” metrics must be small
and, hence, cannot have any interesting large-scale homology. Precisely, we can
use our Lemma 2.6 in the proof of Corollary 6.9 from [3] to show

Lemma 2.7 There exists a ν1 > 0 such that if 1 ¿(ρ,δ,ε) r , while ε ¿ δ ¿ 1
and W ⊆ φ−1(Kγ[δ]), then the homology of the inclusion map ι∗ : Hp(W ∪
B0(r)) → Hp(W [ν1δ] ∪B0(r)) is zero for all p ≥ 1.

The above lemma can be used to show, for example, that the image of φ cannot
be contained in Kγ[δ]. Otherwise we could take a sphere of large radius in place
of W to arrive at a contradiction. This is an interesting fact, but we care to
know more. We are able to use this lemma to tell us that there are much larger
subspaces of X that spheres cannot embed into.

The larger subspaces are defined in terms of walls, so we begin by defining the
latter. A subset H ⊆ X is called a wall if it is a codimension 1 affine subspace
of a flat that is contained in at least two distinct flats. Note that the walls
through the point e ∈ X comprise the singular directions from e.

Our space X resembles a rank one space, from the vantage point of e ∈ X , in
the regions bounded away from the singular directions. Properties of negative
curvature are a powerful tool, so we will want to show the image of φ has a
substantial portion of its image bounded away from the singular directions.
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It is time to define Xe(δ) as the δ -nondegenerate space at e ∈ X consisting of
those points in X that are not contained in any δ -graded neighborhood of a
wall containing e. That is

Xe(δ) =
⋂

H∈We

(H[δ])c,

where We is the set of walls in X that contain e.

The complement Xe(δ)c of the δ -nondegenerate space is the δ -degenerate space.
We could repeat the definition for the special case that X is either a Eu-
clidean building or a symmetric space and obtain the sets Xp,ep(δ), Xp,ep(δ)c ,
X∞,e∞(δ), and X∞,e∞(δ)c .

Our goal for this section is to show that the image of φ is forced to travel
in Xe(δ). We can use Lemma 2.7 along with a Mayer-Vietoris sequence to
show that the image under φ of very large subsets of Em indeed cannot be
contained in Xe(δ)c . Note that in the Tits boundary of X , Xe(δ)c appears as
a neighborhood of the (n− 2)-skeleton. The spaces of the form Kγ[δ] that we
considered previously appear as neighborhoods of a family of points in the Tits
building. It is clear how one would want to use Lemma 2.7 and a Mayer-Vietoris
argument to arrive at the following

Lemma 2.8 There exists a constant ν2 > 0, such that if 1 ¿(ρ,δ,ε) r while
ε ¿ δ ¿ 1 and W ⊆ φ−1(Xe(δ)c), then the homology of the inclusion map
ι∗ : Hp(W ∪B0(r)) → Hp(W [ν2δ] ∪B0(r)) is zero for all p ≥ n− 1.

The basic idea of the proof is clear but there are some technicalities to con-
sider. This is essentially Lemma 5.6 of [3], whose proof takes place in the Tits
boundary where there is no difference between symmetric spaces and buildings.
Hence, the proof carries over completely to prove our Lemma 2.8.

Unbounded, nondegenerate components of graded quasiflats. Note
that the above lemma tells us that large metric (n− 1)-spheres in Em cannot
map into Xe(δ)c under φ. In Lemma 5.8 of [3], this idea is extended to show
that unbounded portions of Em map into Xe(δ) under φ. The arguments
there only involve an application of what is our Lemma 2.8 to the homology of
Euclidean sets. The proof applies verbatim to yield:

Corollary 2.9 There is a constant ν3 > 1, such that if ε ¿ δ ¿ 1 and
z ∈ φ−1(Xe(δ)) with 1 ¿(δ,ε,ρ) r ≤ d(z, 0), then the connected component of
φ−1(Xe(δ/ν3)) ∩B0(r)c that contains z is unbounded.
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Lemma 2.8 and Corollary 2.9 are the only results from this section that will
be used in the remainder of this paper. We will apply Lemma 2.8 in Section 5
during the proof of Theorem 1.2. Corollary 2.9 is used in the proof of Lemma
3.5 below to create a path in the graded quasiflat that avoids the nondegenerate
space and accumulates on a point in the boundary of X .

3 Limit points in Euclidean buildings

Boundary metric. A subset of a Euclidean building S ⊆ Xp is called a sector
based at x ∈ Xp , if it is the closure of a connected component of an apartment
less all the walls containing x.

Let X̂p be the set of all sectors based at ep . For any S ∈ X̂p , let γS : [0,∞) →
S be the geodesic ray such that γS(0) = ep , and such that γS(∞) is the center
of mass of the boundary at infinity of S with its usual spherical metric. We
will also use γS to denote the image of γS : [0,∞) → S.

We endow X̂p with the metric d̂p where

d̂p(Y, Z) =

{
π, if γY ∩ γZ = {ep};
1

|γY∩γZ| , otherwise.

In the above, |γY ∩ γZ| is the length of the geodesic segment γY ∩ γZ .

Note that d̂p is invariant under the action of the stabilizer of ep and is a
complete ultrametric on X̂p . That d̂p is an ultrametric means that it is a
metric, and

d̂p(Y, Z) ≤ max{d̂p(Y, X), d̂p(X, Z)} for any Y,Z, X ∈ X̂p.

We will use at times that

Z ∈ BS(r) implies BZ(r) = BS(r),

which is a reformulation of the ultrametric property.

Measuring angles. We also introduce a notion of angle between two points
in a building as measured from ep . We first define Φp : Xp → P(X̂p) by

Φp(x) = {S ∈ X̂p | x ∈ S },
where P(X̂p) denotes the power set of X̂p .

Then for any x, y ∈ Xp, we define

Θp(x, y) = inf
{

d̂p(Sx, Sy) | Sx ∈ Φp(x) and Sy ∈ Φp(y)
}
.
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We think of Θp(x, y) as measuring an angle between x and y .

We will also be measuring angles formed by triangles in a single apartment.
Since apartments are Euclidean spaces, we can simply use the Euclidean mea-
sure of angle. If A ⊆ Xp is an apartment and x, y, z ∈ A, we let ]Az (x, y) be
the standard Euclidean angle in A between x and y as measured at z . For
any subset H ⊆ A, and points x, z ∈ A, we let

]Az (x,H) = min{]Az (x, h)|h ∈ H}.

Core of a sector. From here on we will assume that 0 ≤ δ ≤ 1. For any
S ∈ X̂p , we let

S(δ) = {x ∈ S | d(∂S, x) ≥ δd(e, x) }.
We refer to S(δ) as the δ -core of S. Note that

⋃

S∈X̂p

S(δ) = Xp,ep(δ),

where Xp,ep(δ) is the δ -nondegenerate space of Xp at ep .

Relations between angles and distances. It is clear that geodesic rays
based at ep and travelling into the core of a sector travel transversely to walls.
We need a quantitative form of this fact which is the substance of the following

Lemma 3.1 Suppose S ∈ X̂p and S ⊆ A for some apartment A. Assume
that x ∈ S(δ), z ∈ γS , and Hz ⊆ A is a wall containing z . Then

]Az (x,Hz) ≥ sin−1(δ/2)

whenever d(x, ep) ≥ r and d(z, ep) ≤ (δr)/2.

Proof Notice that ]Az (x,Hz) is minimized when x ∈ ∂S(δ), d(x, ep) = r ,
and Hz is parallel to a wall Hep that bounds S. Therefore, we will assume
these three statements are true. Clearly, ]Az (x,Hz) = ]Az (x, πHz(x)) where
πHz : A → Hz is the orthogonal projection.

Note that
d(Hz,Hep) ≤ d(z, ep) ≤ δr

2
,

and
d(x, Hep) = d(x, ∂S) = δr.

Therefore,

d(x, πHz(x)) = d(x,Hep)− d(Hep , Hz) ≥ δr − δr

2
=

δr

2
.
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We conclude the proof by observing that

]Az (x, πHz(x)) = sin−1
[d(x, πHz(x))

d(x, z)

]
≥ sin−1(δ/2)

since d(x, z) ≤ d(x, ep) ≤ r .

The next lemma shows that deep points in the nondegenerate region of Xp at
ep that are separated by a large angle measured at ep must be a large distance
apart. A form of notation we will use in the proof is [ep, z] to denote the
geodesic segment with endpoints at ep and z .

Lemma 3.2 Suppose x, y ∈ Xp,ep(δ) and Θp(x, y) ≥ 2/(δr), while d(x, ep) ≥ r
and d(y, ep) ≥ r . Then d(x, y) ≥ (δr)/2 as long as δ ≤ 1.

Proof Choose sectors Sx,Sy ∈ X̂p such that Sx ∈ Φp(x) and Sy ∈ Φp(y).
Let z ∈ Xp be such that γx ∩ γy = [ep, z]. Then, we have d(ep, z) ≤ (δr)/2
since d̂p(Sx,Sy) ≥ 2/(δr).

Choose an apartment Ax containing Sx . Note that Sy ∩ Ax is a convex
polyhedron P in Ax that is bounded by walls. Since z ∈ ∂P , there must be a
wall Hz ⊆ Ax such that z ∈ Hz and Ax−Hz has a component which does not
intersect Sy . Choose a chamber cz ⊆ Sx containing z whose interior lies in
this component, and such that F = cz ∩ Ay is a codimension 1 simplex in cz .

Let cy ⊆ Sy be a chamber containing y . Note that [z, y]∪ cz ⊆ B(cz, cy), where
B(cz, cy) is the union of minimal galleries from cz to cy . Hence, [z, y] ∪ cz is
contained in an apartment (see e.g. [1] VI.6). Therefore, %(Ax, cz)|B(cz ,cy) is an
isometry, where %(Ax, cz) : Xp → Ax is the building retraction corresponding
to the pair (Ax, cz).

Since F ⊆ Ay , there is a unique wall H ′
z ⊆ Ay containing F . Since F ⊆ Hz

as well, we have ]Ay
z (y, H ′

z) = ]Ax
z (%(Ax, cz)(y),Hz).

Since %(Ax, c) is distance decreasing, and since Hz separates x from %(Ax, cz)(y),
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we have using Lemma 3.1:

d(x, y) ≥ d
(
%(Ax, cz)(x) , %(Ax, cz)(y)

)

= d
(
x, %(Ax , cz)(y)

)

≥ d
(
x,Hz

)
+ d

(
%(Ax, cz)(y) , Hz)

= sin[]Ax
z (x,Hz)]d(z, x) + sin[]Ax

z (%(Ax, cz)(y), Hz)]d
(
z, %(Ax, cz)(y)

)

= sin[]Ax
z (x,Hz)]d(z, x) + sin[]Ay

z (y, H ′
z)]d(z, y)

≥ δ

2

(
d(x, ep)− d(ep, z)

)
+

δ

2

(
d(y, ep)− d(ep, z)

)

≥ δr
(
1− δ

2

)

≥ δr

2
.

Our next lemma states that, after deleting a large compact set, if the core of
two sectors based at ep have a nontrivial intersection, then the two sectors are
close in the boundary metric.

Lemma 3.3 Let S1, S2 ∈ X̂p , and suppose that S1(δ)∩S2(δ)∩Bep(r)c 6= ∅.
Then d̂p(S1, S2) ≤ 2/(δr).

Proof We prove the contrapositive. That is, we assume that γS1∩γS2 = [ep, z]
where d(ep, z) < (δr)/2.

Choose an apartment A with S2 ⊆ A. We pick a wall, Hz , with z ∈ Hz ⊆ A
and such that S1 ∩S2 ⊆ J , where J is a component of A−Hz and J is the
closure of J .

By Lemma 3.1, x ∈ S2(δ)∩Be(r)c implies that ]Az (x,Hz) ≥ sin−1(δ/2). Hence,
any such x must be bounded away from Hz and, thus, from J . We have shown

S1(δ) ∩S2(δ) ∩Be(r)c ⊆ J ∩S2(δ) ∩Be(r)c = ∅
as desired.

To travel in the nondegenerate space between two deep points separated by a
large angle, one must pass near the origin. More precisely we have

Lemma 3.4 (No shifting) Suppose there is a path c : [0, 1] → Xe(δ) ∩
Be(r)c . Then Θp(c(0), c(1)) ≤ 2/(δr).
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Proof Since [0, 1] is compact, it is contained in finitely many sectors
S0, S1, ...,Sk ∈ X̂p. We may assume that these sectors are ordered so that
there exists a partition of [0, 1] of the form 0 = t0 < t1 < ... < tk = 1 with
c(0) ∈ S0 , c(1) ∈ Sk , and c[ti, ti+1] ⊆ Si .

Notice that our partition requires that c(ti) ∈ Si ∩Si+1 . Hence, we can apply
Lemma 3.3 to obtain that d̂p(Si, Si+1) ≤ 2/(δr) for all i. Therefore,

Θp(c(0), c(1)) ≤ d̂p(S0, Sk) ≤ max{d̂p(Si,Si+1)} ≤ 2
δr

.

Limit points. Let X̂∞ be the Furstenberg boundary of X∞ . That is, we let
X̂∞ be the space of all Weyl chambers up to Hausdorff equivalence. We endow
X̂∞ with the standard metric, d̂∞ , invariant under the stabilizer of e∞ . We
let Φ∞ : X∞,e∞(δ) → X̂∞ be the function that sends a point to its image at
infinity. As X is the product of X∞ and Xp , we define X̂ = X̂∞ × X̂p .

A δ -limit point of φ from e is a boundary point (C,S) ∈ X̂ , such that
there exists a path ψ : [0,∞) → φ−1(Xe(δ)) that escapes every compact set,
limt→∞Φ∞ ◦ φ ◦ ψ(t) = C, and limt→∞Φp ◦ φ ◦ ψ(t) = {S}. If this is the case
we call ψ a limit path from e, and we write that ψ limits to (C, S). We call
the set of all δ limit points of φ from e, the δ -limit set of φ from e. We denote
the δ -limit set of φ from e by Lφ,e(δ).

Existence of nondegenerate visual directions. For the next result of this
section, we return to the material of Section 2 and in particular to Corollary
2.9.

Later we will want to show there are a finite number of limit points in the limit
set of φ to create the finite number of flats for the conclusion of Theorem 1.2.
This plan will only succeed if there is a limit point to start with. The results
of Section 2 were derived for the purpose of showing that limit points exist.
By the Proposition below, we not only know they exist, we also have precise
information on how to construct them.

Proposition 3.5 (Deep points extended to limit points) Let ν3 be as
in Corollary 2.9. There is a constant η2 = η2(κ, δ), such that if ε ¿ δ ¿ 1 and
z ∈ φ−1(Xe(δ)) with 1 ¿(δ,ε,ρ) r ≤ d(z, 0), then there exists a boundary point
(C,S) ∈ Lφ,e(δ/ν3), such that

d̂p

(
S, Φp ◦ φp(z)

) ≤ 2
δr
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and

d̂∞
(
C,Φ∞ ◦ φ∞(z)

) ≤ e−η2r.

Proof Let U be the connected component of φ−1(Xe(δ/ν3)) ∩ B0(r)c that
contains z . From Corollary 2.9 we know that U is unbounded, so there exists
a path ψ : [0,∞) → U with ψ(0) = z and such that ψ escapes every compact
set.

Applying Lemma 3.4, we have that the diameter of Φp ◦ φp ◦ ψ([s,∞)) is at
most 2/(δRs), where Rs = d(0, ψ([s,∞))). Notice that Rs → ∞ as s → ∞,
and

Φp ◦ φp ◦ ψ
(
[t,∞)

) ⊆ Φp ◦ φp ◦ ψ
(
[s,∞)

)

when 0 ≤ s ≤ t. Therefore, lims→∞Φp ◦ φp ◦ ψ(s) exists. Call this limit {S}.
We conclude by remarking that d̂p(S, Φp ◦ φp(z)) ≤ 2/(δr) since

Φp ◦ φp

(
z
)

= Φp ◦ φp ◦ ψ
(
0
) ∈ Φp ◦ φp ◦ ψ

(
[0,∞)

)

and R0 = r .

The second part of the proposition is the content of Proposition 5.9 from [3].

A bound on visual directions for annuli. Once we show that there is
a bound on the number of directions at infinity that a graded quasiflat can
extend in, we can produce a finite collection of flats that will be our candidates
for satisfying the conclusion of Theorem 1.2.

Before showing that the number of asymptotic directions a graded quasiflat
travels in is bounded, we will show that the number of directions is bounded
for a quasi-annuli. This bound is independent of the size of the quasi-annuli.
We will then be in a position to apply the no shifting Lemma in a limiting
argument to show that the same bound exists for the number of directions of a
graded quasiflat.

Let AR ⊆ Xp be the annulus centered at ep , with inner radius R and outer
radius 2R. Let φ∞ = π∞ ◦ φ, and let φp = πp ◦ φ.

Before proceeding, note that π∞(Xe(δ)) = X∞,e∞(δ) and πp(Xe(δ)) = Xp,ep(δ).

Lemma 3.6 The image of πp

[
φ(AR) ∩ Xe(δ)

]
under Φp can be covered by

cp = O(1/δ2m) disjoint balls of radius (4κ)/(δ2R) for R > ρ and ε ¿ δ .
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Proof Let Si ∈ X̂p be such that ∪iBSi(
4κ

δ2R
) = X̂p , and BSi(

4κ
δ2R

)∩BSj (
4κ

δ2R
) =

∅ if i 6= j . That the balls can be chosen to be disjoint is a consequence of the
ultrametric property for X̂p .

We will twice make use of the fact that if x ∈ AR ∩ φ−1(Xe(δ)), then

d(φp(x), ep) = d
(
φ(x) , (φ∞(x), ep)

)
(1)

≥ δd(φ(x), e)

≥ δ

2κ
D0(ρ; x)

≥ δR

2κ
.

We claim that for any x ∈ AR ∩ φ−1(Xe(δ)),

Φp(φp(x)) ⊆ BSi

( 4κ

δ2R

)
for some i.

Indeed, suppose Z, Y ∈ Φp(φp(x)), and that Z ∈ BSi(
4κ

δ2R
). Notice that φp(x) ∈

Xp,ep(δ), so we can apply (1) and Lemma 3.3 to obtain

d̂p(Z,Y) ≤ 4κ

δ2R
.

Therefore,

d̂p(Y, Si) ≤ max{d̂p(Y,Z), d̂p(Z,Si)} ≤ 4κ

δ2R
as claimed.

Suppose i 6= j . If Φp(φp(x)) ⊆ BSi(
4κ

δ2R
) and Φp(φp(y)) ⊆ BSj (

4κ
δ2R

) for a pair
of points x, y ∈ AR ∩ φ−1(Xe(δ)), then BSi(

4κ
δ2R

) ∩ BSj (
4κ

δ2R
) = ∅. Hence, by

the ultrametric property of X̂p we have

d̂p

(
Φp ◦ φp(x) , Φp ◦ φp(y)

) ≥ 4κ

δ2R
=

2
δ(δR/2κ)

.

Therefore,

d
(
φp(x) , φp(y)

) ≥ δ(δR/2κ)
2

=
δ2R

4κ
by (1) and Lemma 3.2. Thus,

d(x, y) ≥ 1
κ

d(φ(x), φ(y))− εD0(ρ; x, y)

≥ 1
κ

d(φp(x), φp(y))− εD0(ρ; x, y)

≥ δ2R

4κ2
− ε2R

≥ δ2R

5κ2
.
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In summary, we have shown that

d(Bi, Bj) ≥ δ2R

5κ2
(i 6= j) (2)

where
Bi = AR ∩ φ−1

[
π−1

p

[
Φ−1

p

[
BSi

( 4κ

δ2R

)]]
∩Xe(δ)

]
.

If µm is Lebesgue measure on Em , then

µm

[
AR ∩ φ−1(Xe(δ))

] ≤ µm

[
AR

]
< µm

[
B0(1)

]
(2R)m. (3)

Combining (2) and (3) tells us that the number of nonempty Bi is bounded
above by

(10κ2)m(2R)m

(δ2R)m
=

20mκ2m

δ2m
.

We will also need to know that projecting onto the symmetric space factor will
produce a bound on the visual angles there. This is Lemma 4.2 in [3] which we
state as

Lemma 3.7 There exists a constant η3 = η3(κ, δ), such that the image of
π∞

[
φ(AR) ∩ Xe(δ)

]
under Φ∞ can be covered by c∞ = O(1/δ2m) balls of

radius e−η3R for 1 ¿(ρ,δ) R and ε ¿ δ .

Note that in [3] there is no building factor. Thus, the statement of Lemma 4.2 in
[3] does not mention the projection map π∞ . Also note that the number of balls
in [3] Lemma 4.2 is bounded by the smaller term O(1/δm). When projecting,
a factor of δ makes its way into the proof from the inequality d(π∞(x), e∞) ≥
δd(x, e) for x ∈ Xe(δ). The extra factor of δ influences c∞ by adjusting the
bound from O(1/δm) to O(1/δ2m), and our constant η3 is proportional to the
corresponding constant in [3]. Aside from these minor adjustments, the proof
carries through without modification.

A bound on visual directions for entire quasiflats. Using the bound on
the number of visual directions for annuli, we are prepared to pass to the limit
and produce a bound for the number of δ -limit points of φ.

Proposition 3.8 (Finite limit set) For δ sufficiently small, |Lφ,e(δ)| <
c∞cp .
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Proof Assume there are c∞cp+1 limit points {(Ci,Si)}c∞cp+1
i=1 . We will arrive

at a contradiction.

There are two cases to consider as either
∣∣{Ci}c∞cp+1

i=1

∣∣ > c∞ or
∣∣{Si}c∞cp+1

i=1

∣∣ > cp.

We will begin by assuming the latter.

After possibly re-indexing, let S1,S2, ...,Scp+1 be distinct elements of
{Si}c∞cp+1

i=1 .

Let α = mini6=j{d̂(Si, Sj)}. By assumption, there are paths ψi : [0,∞) →
φ−1(Xe(δ)) such that limt→∞Φp ◦ φp ◦ ψi(t) = {Si}. Pick ti > 0 such that

⋃
Φp ◦ φp ◦ ψi([ti,∞)) ⊆ BSi

(α

2

)
for all 0 ≤ i ≤ cp + 1. (4)

We will need a more uniform choice for the ti to allow us to apply Lemma 3.6,
so we let

R = max
{ 8κ

αδ2
, d

(
ψ1(t1), 0

)
, d

(
ψ2(t2), 0

)
, ..., d

(
ψcp+1(tcp+1), 0

)}
.

Then we take t′i > 0 such that d(ψi(t′i), e) = R for all 0 ≤ i ≤ cp + 1.

By our choice of α,

BSi

(α

2

)
∩BSj

(α

2

)
= ∅ for i 6= j.

Therefore, by (4),

BZi

(α

2

)
∩BZj

(α

2

)
= ∅ for i 6= j,

where Zi ∈ X̂p is a sector containing φp ◦ ψi(t′i). In particular, Zi /∈ BZj (α/2)
for i 6= j . However, we can apply Lemma 3.6 to obtain a proper subset P of
{1, ..., cp + 1} such that

{Zi}cp+1
i=1 ⊆

⋃

i∈P

BZi

(α

2

)
.

This is a contradiction.

If we assume
∣∣{Ci}c∞cp+1

i=1

∣∣ > c∞ , we can arrive at a similar contradiction using
Lemma 3.7. The details are carried out in Proposition 5.2 in [3].
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4 Independence of basepoint

So far we have limited ourselves by considering a fixed basepoint e. The proof
of Theorem 1.2 will require us to hop around from point to point in our quasiflat
with holes, and to treat several points as basepoints for the nondegenerate space
and, hence, for the limit set of φ. We will need to know therefore, that all of
the corresponding nondegenerate spaces and limit sets are compatible with each
other—that they are the same up to minor modifications of δ .

The following lemma is essentially Lemma 5.3 from [3].

Lemma 4.1 Let r > 0 be given and let e′ ∈ X be such that d(e, e′) ≤ r .
If x ∈ φ−1(Xe(δ)) and d(x, 0) ≥ max{ρ, (6κr)/δ} for some x ∈ Em , then
x ∈ φ−1(Xe′(δ/2)) as long as δ ≤ 1/3.

The next lemma is a short technical remark used in the final lemma of this
section.

Lemma 4.2 There exists a constant ν4 = ν4(Xp) such that if S ⊆ Xp is a
sector based at e, and S′ ⊆ Xp is a sector based at e′ ∈ Xp with Hd(S, S′) <
∞, then there is a sector Z ⊆ S ∩S′ such that Hd(Z, S) ≤ ν4d(e, e′).

Proof Let S be contained in an apartment A. Then there are isometries
a, n1, n2, ..., nk ∈ Isom(Xp) such that a stabilizes A, each ni stabilizes a half-
space of A containing a subsector of S′ , and k is bounded by a constant
depending only on X .

It is clear that the result holds if S′ = aS or S′ = niS. Hence the result for
the general S′ holds by the triangle inequality.

We are prepared to show that the δ -limit set of φ is as independent of the
choice of basepoint as one would expect. First though we need to identify the
boundaries of Xp created using two different basepoints. Previously we had
defined X̂p in a way that depended on ep . This was done mostly for notational
convenience, but the dependence on a basepoint would now be a hindrance for
us.

Our solution is to give an equivalent definition of X̂p as the space of all sectors
with arbitrary basepoints modulo the equivalence that two sectors be identified
if they are a finite Hausdorff distance from each other (this is equivalent to
the condition that the intersection of the two sectors contains a third sector).
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Now the metric on X̂p is determined by a choice of a basepoint (only up to a
Lipschitz equivalence though), but the space X̂p itself is independent of that
choice.

Lemma 4.3 Let e′ = φ(0′) for some 0′ ∈ Em , and suppose φ is a (κ, ρ, ε)
(RGQIE) based at 0′ as well as at 0. If δ ¿ 1, then Lφ,e′(δ) ⊆ Lφ,e(δ/2).

Proof Suppose (C′, S′) ∈ Lφ,e′(δ). Then there is a path ψ : [0,∞) →
φ−1(Xe′(δ)) such that the path φp ◦ψ : [0,∞) → Xπp(e′)(δ) escapes every com-
pact set and limits to {S′} when observed from πp(e′).

Let S be the sector based at ep such that Hd(S′,S) < ∞. Our goal is to show
that φp ◦ ψ limits to S when observed from ep .

To this end, for a given t > 0, let St be a sector based at ep such that
φp ◦ ψ(t) ∈ St . Let S′

t be a sector based at πp(e′) such that Hd(S′
t,St) < ∞.

Note that, by Lemma 4.2, φp◦ψ(t) ∈ S′
t for sufficiently large values of t. Hence,

the family S′
t limits to S′ from the vantage point of πp(e′).

Therefore, for any number r > 0 and sufficiently large values of t, we have
γS′(r) ∈ S′

t . Recall that γS′ is the geodesic ray in S′ based at πp(e′) that
travels down the center of S′ and is used for measuring distances between
points in X̂p from the vantage point of πp(e′).

By Lemmas 4.1 and 4.2, γS′(r) ∈ St(δ/2) ∩ S(δ/2). Now applying the no
shifting Lemma gives us that

d̂p(St, S) → 0

as t →∞. Therefore,
lim
t→∞Φp ◦ φp ◦ ψ(t) = {S}

as desired.

For the symmetric space part of the proof, see Lemma 5.4 of [3].

5 Proof of Theorem 1.2

Using the tools we have assembled thus far (in particular large-scale homology
of pinched sets, the no shifting Lemma, extending deep points to limit points,
the bound on limit points, and the independence of basepoints) we can retrace
the proof of Eskin-Farb given in [3] to prove the quasiflats with holes theorem.
Since this proof is essentially contained in [3], we will at times only sketch the
arguments.
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Proof of Theorem 1.2 Since Ω(ε,ρ′) ⊆ Ω(ε,ρ) when ρ′ < ρ, we may assume
that 1 ¿(C) ρ. We let ε and δ be positive numbers such that ε ¿ δ ¿ 1.

As in the proof of Theorem 8.1 of [3], if x ∈ Ω(ε,ρ) , we can use a connect-
the-dots construction to define a continuous map φx : Em → X such that
d(φx(y), ϕ(y)) ≤ O(ε)Dx(ρ; y). Hence, φx is a (κ, ρ, O(ε)) (RGQIE) based
at x.

Let ∂X be the Tits building for X . Because X̂ can be identified with the
simplices of maximal dimension in ∂X , we can measure their distances under
the Tits metric. It is well known that if a pair of points in X̂ have maximal
Tits distance (“opposite points”), then there is a unique flat that contains the
pair up to Hausdorff equivalence. Let F1, ..., FM be the flats so obtained from
pairs of opposite points in Lφx,φx(x)(δ). Note that M ≤ (c∞cp)2 where c∞ and
cp are as in Lemmas 3.6 and 3.7.

We will show that φx(x) is contained in a bounded neighborhood of ∪M
i=1Fi ,

but first we want to demonstrate that the limit set, and hence our choice of
flats, is independent of x.

Suppose z ∈ Ω(ε,ρ) and φz is constructed as φx to be a (κ, ρ, O(ε)) (RGQIE)
of Em based at z .

By construction, we have for any point y ∈ X :

d(φz(y), φx(y)) ≤ O(ε)
(
Dz(ρ; y) + Dx(ρ; y)

)
. (5)

It follows that φz is a (2κ, ρ + 2d(x, z), O(ε)) (RGQIE) based at x. Hence, we
obtain through Lemma 4.3 that

Lφz ,φz(z)(δ) ⊆ Lφz ,φz(x)(δ/2).

If (C, S) ∈ Lφz ,φz(x)(δ/2), then there is a corresponding limit path ψ : [0,∞) →
φ−1

z (Xφz(x)(δ/2)) that limits to (C,S). It follows from (5) that
ψ(t) ∈ φ−1

x (Xφx(x)(δ/4)) for sufficiently large values of t.

By projecting ψ onto factors and applying Lemma 3.2 of this paper and Lemma
4.1.i of [3] respectively, we see that

Θp,φx(x)

(
πp ◦ φx ◦ ψ(t), πp ◦ φz ◦ ψ(t)

)
→ 0

and
Θ∞,φx(x)

(
π∞ ◦ φx ◦ ψ(t), π∞ ◦ φz ◦ ψ(t)

)
→ 0
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as t → ∞. The function Θp,φx(x) above is defined analogously to Θp with a
basepoint of πp(φx(x)) rather than ep , and Θ∞,φx(x) is the Furstenberg angle
between points in X∞ measured at the point π∞(φx(x)).

Therefore, it must be that (C,S) ∈ Lφx,φx(x)(δ/4), and hence,

Lφz ,φz(x)(δ/2) ⊆ Lφx,φx(x)(δ/4).

Joining this inclusion with the previous inclusion of limit sets we have

Lφz ,φz(z)(δ) ⊆ Lφx,φx(x)(δ/4).

This shows that our choice of flats is well defined up to replacing δ with δ/4.

Now we return to the task of showing that φx(x) is within a bounded distance
of ∪M

i=1Fi . For the remainder of the proof we let φ = φx .

For a fixed 1 ¿(ρ,δ,ε) R there must be a y ∈ φ−1(Xφ(x)(δ)) such that
d(φ(y), φ(x)) = 2R. Otherwise, we could apply Lemma 2.8 with W ⊆ Em equal
to the sphere centered at x with radius d(x, y) to obtain a contradiction.

Let e = (e∞, ep) be the midpoint of the geodesic between φ(y) and φ(x) so
that φ(x), φ(y) ∈ Xe(δ). We project to each factor. Again we will examine the
case of a building.

By Proposition 3.5, there are limit points (Ci,Si) ∈ Lφ,e(δ) for i = 1, 2 such
that d̂p(S1,Φp ◦ φp(x)) ≤ 2/(δR) and d̂p(S2, Φp ◦ φp(y)) ≤ 2/(δR). This
implies that in the link at ep—denoted by Lep ⊆ Xp—the chambers S1 ∩ Lep

and S2∩Lep are opposite. Therefore, S1 and S2 are opposite in X̂p under the
Tits metric, and there is a unique apartment A12 ⊆ Xp that contains subsectors
of S1 and S2 .

We also note that the geodesic segments [ep, φp(x)] and [ep, φp(y)] can be ex-
tended to geodesic rays γx ⊆ S1 and γy ⊆ S2 respectively. The bi-infinite
path γx ∪ γy is a local geodesic, so it is a global geodesic which we name γ .

As γ is a convex subset of Euclidean space, it is contained in an apartment
A′ ⊆ Xp . Since γ ⊆ A′ , we have that A′ contains subsectors of S1 and S2 .
Hence,

ep ∈ γ ⊆ A′ = A12.

Therefore,
d
(
φp(x),A12

) ≤ d
(
φp(x), ep

) ≤ R.

27



In the proof of Theorem 1.1 of [3], it is shown that there is a constant Λ,
depending only on X∞ , and a flat F 12 ⊆ X∞ that contains C1 and C2 up to
Hausdorff equivalence, and such that

d
(
φ∞(x), F 12

) ≤ 1
2
(
κR + C

)
+ Λ.

Combining this inequality with its building analogue above yields:

d
(
φ(x), F 12 ×A12

) ≤
√

R2 +
(1

2
(
κR + C

)
+ Λ

)2
.

The proof of Theorem 1.2 is completed by observing that F 12×A12 ⊆ X is the
unique flat that contains (C1,S1) and (C2, S2) up to Hausdorff equivalence.
Hence, F 12 × A12 ∈ {Fi}M

i=1 . We take the constant N in the statement of

Theorem 1.2 to be
√

R2 + (1/2(κR + C
)

+ Λ)2 .
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