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In this paper we prove the following

Theorem 1. Let K be a number field and let OK be its ring of inte-
gers. Let G be a connected, noncommutative, absolutely almost simple
algebraic K-group. If the K-rank of G equals 2, then G(OK [t]) is not
finitely presented.

Actually, we will prove a slightly stronger version of Theorem 1 by
showing that if G(OK [t]) is as in Theorem 1, then G(OK [t]) is not of
type FP2.

0.1. Related results. Krstić-McCool proved that GL3(A) is not finitely
presented if there is an epimorphism from A to F [t] for some field F
[K-M].

Suslin proved that SLn(A[t1, . . . , tk]) is generated by elemetary ma-
trices if n ≥ 3, A is a regular ring, and K1(A) ∼= A× [Su]. Grunewald-
Mennicke-Vaserstein proved that Sp2n(A[t1, . . . , tk]) is generated by ele-
mentary matrices if n ≥ 2 and A is a Euclidean ring or a local principal
ideal ring [G-M-V].

In Bux-Mohammadi-Wortman, it’s shown that SLn(Z[t]) is not of
type FPn−1 [B-M-W]. The case when n = 3 is a special case of Theo-
rem 1.

While most of the results listed above allow for more general rings
than OK [t], the result of this paper, and the techniques used to prove it,
are distinguished by their applicability to a class of semisimple groups
that extends beyond special linear and symplectic groups.

1. Preliminary and notation

Throughout the remainder, we let G be as in Theorem 1 and we let
Γ = G(OK [t]).
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Let L be an algebraically closed field containing K((t−1)) fixed once
and for all. In the the sequel the Zarsiki topology is defined with this
fixed algebraically closed field in mind.

Let S be a maximal K-split torus of G. Let {α, β} be a set of simple
K-roots for (G,S), and define T = (ker(α))◦, the connected component
containing the identity.

Let P be a maximal K-parabolic subgroup of G that has ZG(T) as
a Levi subgroup where ZG(T) denotes the centralizer of T in G. Let
U be unipotent radical of P. We have P = UZG(T). We can further
write

P = UHMT

where H ≤ ZG(T) is a simple K-group of K-rank 1 and M is a K-
anisotropic torus contained in the center of ZG(T).

If x ∈ K((t−1)) is algebraic over K then x ∈ K, hence G has
K((t−1))-rank 2 as well and P is a K((t−1))-maximal parabolic of G.
It also follows that H has K((t−1))-rank 1 and that M is K((t−1))-
anisotropic.

We let G, S, P, U, M, H and T denote the K((t−1))-points of G, S,
P, U, M, H, and T, respectively.

Let X denote the Bruhat-Tits building associated to G. This is a
2-dimensional simplicial complex, and the apartments (maximal flats)
correspond to maximal K((t−1))-split tori.

We fix once and for all a K-embedding of G in some SLn. Using
this embedding we realize G(K[t]) and Γ as subgroups of SL(K[t])
and SL(OK [t]) respectively. This embedding also gives an isometric
embedding of X into Ãn−1, the building of SLn(K((t−1))); see [La].

2. Stabilizers of the Γ-action on its Euclidean building

Lemma 2. If X is the Euclidean building for G, then the Γ stabilizers
of cells in X are FPm for all m.

Proof. We first recall the proof of [B-M-W, Lemma 2]. Let x0 ∈
Ãn−1 be the vertex stabilized by SLn(K[[t−1]]). We denote a diago-
nal matrix in GLn(K((t−1))) with entries s1, s2, ..., sn ∈ K((t−1))× by
D(s1, s2, ..., sn), and we let S ⊆ Ãn−1 be the sector based at x0 and
containing vertices of the form D(tm1 , tm2 , ..., tmn)x0 where each mi ∈ Z
and m1 ≥ m2 ≥ ... ≥ mn.

The sector S is a fundamental domain for the action of SLn(K[t])
on Ãn−1 (see [So]). In particular, for any vertex z ∈ Ãn−1, there is
some h′z ∈ SLn(K[t]) and some integers m1 ≥ m2 ≥ ... ≥ mn with
z = h′zDz(t

m1 , tm2 , ..., tmn)x0. We let hz = h′zDz(t
m1 , tm2 , ..., tmn).
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For any N ∈ N, let WN be the (N + 1)-dimensional vector space

WN = { p(t) ∈ C[t] | deg
(
p(t)

)
≤ N}

which is endowed with the obvious K−structure. If N1, · · · , Nn2 in N
are arbitrary then let

G{N1,··· ,Nn2} = {x ∈
n2∏
i=1

WNi
| det(x) = 1}

where det(x) is a polynomial in the coordinates of x. To be more precise
this is obtained from the usual determinant function when one considers
the usual n×n matrix presentation of x, and calculates the determinant
in Matn(C[t]).

For our choice of vertex z ∈ Ãn−1 above, the stabilizer of z in
SLn(K((t−1))) equals hzSLn(K[[t−1]])h−1z . And with our fixed choice
of hz, there clearly exist some N z

i ∈ N such that the stabilizer of the
vertex z in SLn(K[t]) is G{Nz

1 ,··· ,Nz
n2}(K). Furthermore, conditions on

N z
i force a group structure on Gz = G{Nz

1 ,··· ,Nz
n2}. Therefore, the stabi-

lizer of z in SLn(K[t]) is the K-points of the affine K-group Gz, and
the stabilizer of z in SLn(OK [t]) is Gz(OK).

Let σ be a cell in Ãn−1. The action of SLn(K[t]) on Ãn−1 is type
preserving, so if σ ⊂ S is a simplex with vertices z1, z2, ..., zm, then the
stabilizer of σ in SLn(OK [t]) is(

Gz1 ∩ · · · ∩Gzm

)
(OK)

Which implies that the stabilizer of σ in Γ is Gσ(OK) where Gσ =
G ∩Gz1 ∩ · · · ∩Gzm .

If ψ ⊂ X is a cell, then we let σ1, . . . , σk be simplices of Ãn−1 such
that their union contains ψ, and such that their union is contained in
the union of any other set of simplices of Ãn−1 that contains ψ.

The group Γ may not act on X type-preservingly, but the stabilizer
of ψ in Γ will contain a finite index subgroup that fixes ψ pointwise. Be-
cause Γ does act type-preservingly on Ãn−1, we have that the stabilizer
of ψ in Γ contains (

Gσ1 ∩ · · · ∩Gσk

)
(OK)

as a finite index subgroup. This is an arithmetic group, and Borel-Serre
[B-S] proved that any such group is FPm for all m.

�

3. An unbounded ray in Γ\X

The group Γ does not act cocompactly on X. Our next lemma is
a generalization of Mahler’s compactness criterion, and it will help us
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identify a ray in X whose projection to Γ\X is proper. Our proof is
similar to [B-M-W, Lemma 11].

Lemma 3. If e ∈ X, a ∈ G, u ∈ Γ is nontrivial, and a−nuan → 1 as
n→∞, then {Γane : n ≥ 0} ⊂ Γ\X is unbounded.

Proof. Since G acts on X with bounded point stabilizers, it suffices to
show that {Γan : n ≥ 0} ⊂ Γ\G is unbounded.

If {Γan : n ≥ 0} is bounded, then it is contained in a set ΓB where
B ⊂ G is a bounded set. Thus, for any an, we have an = γb for some
γ ∈ Γ and b ∈ B. Hence a−nuan = b−1γ−1uγb.

Because u is nontrivial, γ−1uγ ∈ Γ− 1 is bounded away from 1, and
thus b−1γ−1uγb is bounded away from 1. That’s a contradiction. �

4. An unbounded semisimple element in H(OK [t])

Recall that H hasK((t−1))-rank 1 (andK-rank 1), hence the Bruhat-
Tits building of H, which will be denoted by XH , is a tree. Let S′ be
a maximal K-split, thus K((t−1))-split, torus of H and let Q+ and Q−

be opposite K-parabolic subgroups of H with Levi subgroup ZH(S′).
We denote the unpotent radical of Q± as Ru(Q

±), and we let Q± =
Q±(K((t−1))), Ru(Q

±) = Ru(Q
±)(K((t−1))), and S ′ = S′(K((t−1))).

See [Se, Proposition 25] for the next lemma.

Lemma 4. Let u+ ∈ Ru(Q
+) and u− ∈ Ru(Q

−) and let F± = FixXH
(u±).

Assume that F+∩F− = ∅. Then u+u− is a hyperbolic isometry of XH .

Proof. Let x be the midpoint between F+ and F−. Let p1 be the path
between x and F+ and let p2 be the path between x and F−, and let
ψ be an edge containing x, contained in p1 ∪ p2, not contained in p2,
and oriented towards F+.

Notice that u−p2 ∪ p2 is an embedded path between x and u−x and
that p1 ∪ u+p1 ∪ u+p2 ∪ u+u−p2 is an embedded path between x and
u+u−x. The edge u+u−ψ is a continuation of the latter path that is
oriented away from from both u+u−x and x.

If u+u− is elliptic, then it fixes the midpoint of the path between x
and u+u−x and maps ψ to an oriented edge pointed towards x. There-
fore, u+u− is hyperbolic.

�

Lemma 5. There exists elements u± ∈ Ru(Q
±)(OK [t]) of arbitrarily

large norm.

Proof. After perhaps replacing α with 2α, there is a root group Uα ≤
Ru(Q

±) and a K-isomorphism of algebraic groups f : Ak → Uα for
some affine space Ak.
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The regular function f is defined by polynomials fi ∈ K[x1, . . . , xk].
Because f maps the identity element to the identity element, each fi
has a constant term of 0.

The field of fractions of OK is K. We let N be the product of the
denominators of the coefficients of the fi. Then the image under f of
the points (Ntj, . . . , Ntj) forms an unbounded sequence in j of points
in Uα(OK [t]).

�

Lemma 6. There exists a hyberbolic isometry b ∈ H(OK [t]) of the tree
XH .

Proof. Let `′ ⊆ XH be the geodesic corresponding to S ′, and choose
u± ∈ Ru(Q

±)(OK [t]) of sufficient norm such that `′ ∩ F+ is disjoint
from `′ ∩ F−. Since F+ and F− are convex, and `′ − (F+ ∪ F−) is
the geodesic between them, it follows that F+ ∩ F− = ∅. Now apply
Lemma 4. �

5. Construction of cycles in X near Γ

Let b ∈ H(OK [t]) be as in Lemma 6, and let S′′ be the K((t−1))-split
one dimensional torus corresponding to the axis of b in XH . Define the
K((t−1))-split torus A = 〈S′′,T〉 ≤ P and let A = A(K((t−1))). Let A
denote the apartment in X corresponding to A.

Recall that any unbounded element a ∈ T translates A, and that
the axis for the translation is any geodesic in A that joins P with its
opposite parabolic P op, as usual P op = Pop(K((t−1))) where Pop is the
oppositie parabolic containing ZG(T).

Note that b acts by translation on A. In fact, b translates orthogonal
to any geodesic in A that joins P with P op. Indeed, choose an element
w of the Weyl group with respect to A that reflects through a geodesic
joining P and Pop. Thus w fixes both parabolic groups, and their
common Levi subgroup, and hence H. Since S′ = A∩H, w fixes S′ and
thus fixes any axis for b in A. Therefore, either b translates orthogonal
to any geodesic in A that joins P with P op, or else b translates along a
geodesic inA that joins P with P op. The latter option would contradict
Lemma 3 since for any e ∈ A, we have Γbne = Γe ∈ Γ\X and yet
there is an unbounded a ∈ T such that the ray determined by ane is
parallel to the ray determined by bne and yet a−nuan → 1 either for
any u ∈ U(OK [t]) or for any u in the OK [t]-points of the unipotent
radical of Pop.

The spherical Tits building for G and X is a graph, and the apart-
ment A corresponds to a circle in the spherical Tits building. Suppose
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this circle has vertices P1, . . . , Pn and edges Q1, ..., Qn where each Pi

is a maximal proper K((t−1))-parabolic subgroup of G containing A,
each Qi is a minimal K((t−1))-parabolic subgroup of G containing A,
and P1 = P. We further assume that mod n, the edge Qi has vertices
Pi and Pi+1.

Notice that U ≤ Q1 ∩Qn since P = P1 contains both Q1 and Qn.
That is, any element of U(OK) fixes the edges Q1 and Qn.

Let U1 be the root group corresponding to the half circle that con-
tains Q1 but not Q2, so that U1 ≤ U but U1 ∩Q2 = 1. Let Un be the
root group corresponding to the half circle that contains Qn but not
Qn−1, so that Un ≤ U but Un ∩Qn−1 = 1.

It follows that U−Qi has codimension in U at least 1 for i = 2, n−1.
Since U(OK) is Zariski dense in U, there is some u ∈ U(OK)− (Q2 ∪
Qn−1). It follows that u fixes the edges Qn and Q1, but no other edges
in the circle corresponding to A.

Since u is a bounded element of G, it fixes a point in X. Therefore,
u fixes a geodesic ray in X that limits to an interior point of the edge
corresponding to Q1 in the spherical building. Any such geodesic ray
must contain a point in A, which is to say that u fixes a point in A.

Define a height function q : A → R such that the pre-image of any
point is an axis of translation for b, such that s ≤ t if and only if any
geodesic ray in A that eminates from q−1(s) and limits to P contains
a point from q−1(t).

Let F = {x ∈ A | ux = x }, let I = inff∈F{ q(f) }, and let E =
{ f ∈ F | q(f) = I }. Since the fixed set of u in the circle at infinity of
A equals the union of the two edges Q1 and Qn, and since F is convex,
I exists and E is either a point of, a subray of, a line segment of, or an
entire axis of translation for b.

Notice that E is bounded, otherwise u would fix the point at infinity
that a subray of E limited to. This point at infinity would have distance
π/2 from the vertex P in the spherical metric, but this is not possible as
the previously identified fixed set of u in the boundary circle is centered
at P and has radius at most π/3. (The bound π/3 is realized exactly
when the root system for G is of type A2.) Thus E is either a point or
a compact interval.

Since the fix set of u in the boundary circle is exactly the union
of Q1 and Qn, and since F is convex, F is precisely the union of all
geodesic rays eminating from points in E and limiting to points in the
arc Q1 ∪Qn. That is F is a polyhedral region in A that is symmetric
with respect to a reflection of A through a geodesic that limits to P
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and the opposite point of P . If E is a point, then F has two geodesic
rays as its boundary: one ray that limits to P2, and the other that
limits to Pn. If E is a nontrivial interval, then the boundary of F is
the union of E, a ray from an endpoint of E that limits to P2, and a
ray from the other endpoint of E that limits to Pn.

If E is an interval, we label its endpoints e+ and e− such that E is
both oriented in the direction of translation of b, and in the direction
towards e+, and away from e−. Let e0 be the midpoint of E. If E is a
point, then e0 = e+ = e− is that point.

For n0 sufficiently large and for any n ≥ n0, we define σn ⊆ A as the
geodesic segment between b−ne+ and bne−. Notice that b−ne+ is the
only point in σn that is fixed by gn = b−nubn, and that bne− is the only
point in σn that is fixed by hn = bnub−n.

Recall that A is the apartment corresponding to A and T ⊂ A is
a K-split one dimensional torus of G. Recall also that P = UZG(T).
Let a ∈ T be such that a−nuan → 1 as n→∞ so that ane0 converges
to the cell at infinity corresponding to P as n→∞.

Let ∆n be the triangle with one face equal to σn, a second face
contained in the boundary of b−nFixA(u) = FixA(gn), a third face
contained in the boundary of bnFixA(u) = FixA(hn), and vertices bne−,
b−ne+, and a uniquely determined point yn ∈ ∂FixA(gn) ∩ ∂FixA(hn).
Thus yn converges to the cell at infinity corresponding to P as n→∞.

Note that

(1) U is a unipotent group so [[[[gn, hn], · · · ], hn], hn] = 1 for some
fixed number of nested commutators that’s independent of n.

(2) If w is a word in {gn, hn, g−1n , h−1n } and d ∈ {gn, hn, g−1n , h−1n },
then wσn and wdσn are incident.

(1) and (2) imply that the word [[[[gn, hn], · · · ], hn], hn] (or possibly a
subword) describes a 1-cycle that is the union of translates of σn by
subwords of [[[[gn, hn], · · · ], hn], hn]. We name this 1-cycle cn.

The cone of cn at the point yn is the topological image of a 2-disk
φn : D2 → X such that φn(∂D2) = cn.

If we let
X0 = Γσn0

then clearly cn ∈ X0 for all n since b, gn, hn ∈ Γ and σn ⊆ 〈b〉σn0 .

6. Proof of Theorem 1

We choose a Γ-invariant and cocompact space Xi ⊆ X to satisfy the
inclusions

X0 ⊆ X1 ⊆ X2 ⊆ ... ⊆ ∪∞i=1Xi = X
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In our present context, Brown’s criterion takes on the following form
[Br]

Brown’s Filtration Criterion 7. By Lemma 2, the group Γ is not
of type FP2 (and hence not finitely presented) if for any i ∈ N, there

exists some class in the homology group H̃1(X0 , Z) which is nonzero in

H̃1(Xi , Z).

Since Γ\Xi is compact it follows from Lemma 3 that for any i there
there exists some ji such that ajie0 6∈ Xi. Choose n sufficiently large
so that ajie0 ∈ ∆n ⊆ φn. Recall that cn ⊆ X0. Since X is contractible
and 2-dimensional, any filling disk for cn must contain ajie0. That is,
cn represents a nontrivial class in the homology of X − {ajie0}, and
hence is nontrivial in the homology of Xi.

7. Other ranks

The proof of Proposition 4.1 in [B-W] gives a short proof that SL2(Z[t])
is not finitely generated by examining the action of SL2(Z[t]) on the
tree for SL2(Q((t−1))). Replacing some of the remarks for SL2(Z[t])
in that paper with straightforward analogues from lemmas in this pa-
per, it is easy to see that the proof in [B-W] applies to show that if
H is a connected, noncommutative, absolutely almost simple algebraic
K-group of K-rank 1, then H(OK [t]) is not finitely generated.

It seems natural to state the following

Conjecture 1. Suppose H is a connected, noncommutative, abso-
lutely almost simple algebraic K-group whose K-rank equals k. Then
H(OK [t]) is not of type Fk or FPk.

The conjecture has been verified when K = Q and H = SLn

[B-M-W].
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[K-M] Krstić, S., and McCool, J., Presenting GLn(k〈T 〉). J. Pure Appl. Algebra
141 (1999), 175-183.



POLYNOMIAL POINTS OF SIMPLE GROUPS OVER NUMBER FIELDS 9

[La] Landvogt, E., Some functorial properties of the Bruhat-Tits building. J.
Reine Angew. Math. 518 (2000) p.213-241.

[Se] Serre, J.-P., Trees. Translated from the French original by John Stillwell.
Corrected 2nd printing of the 1980 English translation. Springer Mono-
graphs in Mathematics. Springer-Verlag, Berlin, 2003.
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