ON PRESENTATIONS OF INTEGER POLYNOMIAL
POINTS OF SIMPLE GROUPS OVER NUMBER
FIELDS
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In this paper we prove the following

Theorem 1. Let K be a number field and let Ok be its ring of inte-
gers. Let G be a connected, noncommutative, absolutely almost simple
algebraic K-group. If the K-rank of G equals 2, then G(Ok]t]) is not
finitely presented.

Actually, we will prove a slightly stronger version of Theorem 1 by
showing that if G(Oklt]) is as in Theorem 1, then G(Ok]t]) is not of
type F'Ps.

0.1. Related results. Krsti¢-McCool proved that GL3(A) is not finitely
presented if there is an epimorphism from A to F[t] for some field F
[K-M].

Suslin proved that SL,(A[t1,...,t]) is generated by elemetary ma-
trices if n > 3, A is a regular ring, and K;(A) =2 A* [Su|. Grunewald-
Mennicke-Vaserstein proved that Spa, (Alt1, .. ., tx]) is generated by ele-
mentary matrices if n > 2 and A is a Euclidean ring or a local principal
ideal ring [G-M-V].

In Bux-Mohammadi-Wortman, it’s shown that SL,(Z[t]) is not of
type F'P,_; [B-M-W]. The case when n = 3 is a special case of Theo-
rem 1.

While most of the results listed above allow for more general rings
than Ok|t], the result of this paper, and the techniques used to prove it,
are distinguished by their applicability to a class of semisimple groups
that extends beyond special linear and symplectic groups.

1. PRELIMINARY AND NOTATION

Throughout the remainder, we let G be as in Theorem 1 and we let
' = G(Oklt]).
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Let L be an algebraically closed field containing K ((t7!)) fixed once
and for all. In the the sequel the Zarsiki topology is defined with this
fixed algebraically closed field in mind.

Let S be a maximal K-split torus of G. Let {«, 5} be a set of simple
K-roots for (G, S), and define T = (ker(«))®, the connected component
containing the identity.

Let P be a maximal K-parabolic subgroup of G that has Zg(T) as
a Levi subgroup where Zg(T) denotes the centralizer of T in G. Let
U be unipotent radical of P. We have P = UZg(T). We can further
write

P =UHMT

where H < Zg(T) is a simple K-group of K-rank 1 and M is a K-
anisotropic torus contained in the center of Zg(T).

If z € K((t7')) is algebraic over K then z € K, hence G has
K((t71))-rank 2 as well and P is a K((t~!))-maximal parabolic of G.
It also follows that H has K((¢t7!))-rank 1 and that M is K((t71))-
anisotropic.

We let G, S, P, U, M, H and T denote the K((¢t!))-points of G, S,
P, U, M, H, and T, respectively.

Let X denote the Bruhat-Tits building associated to G. This is a
2-dimensional simplicial complex, and the apartments (maximal flats)
correspond to maximal K ((¢t71))-split tori.

We fix once and for all a K-embedding of G in some SL,. Using
this embedding we realize G(K|t]) and I' as subgroups of SL(K|t])
and SL(Ok|t]) respectively. This embedding also gives an isometric
embedding of X into A, _;, the building of SL, (K ((t™1))); see [La).

2. STABILIZERS OF THE ['-ACTION ON ITS EUCLIDEAN BUILDING

Lemma 2. If X s the Fuclidean building for G, then the I" stabilizers
of cells in X are F'P,, for all m.

Proof. We first recall the proof of [B-M-W, Lemma 2|. Let zy, €
A,_1 be the vertex stabilized by SL,(K|[[t"']]). We denote a diago-
nal matrix in GL,(K((t7!))) with entries s1, so, ..., 5, € K((t71))* by
D(s1, 82, ...,8,), and we let & C A,_1 be the sector based at z, and
containing vertices of the form D(¢™, ™2, ... t"")x, where each m; € Z
and my > mqg > ... > m,.

The sector & is a fundamental domain for the action of SLy(K[t])
on A,_; (see [So]). In particular, for any vertex z € A,_;, there is
some h, € SL,(K[t]) and some integers m; > my > ... > m, with
z=h,D,(t"™ t"2, .., t")xe. Welet h, = h.D,(t™,t"2, ..., t").
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For any N € N, let Wy be the (N + 1)-dimensional vector space
Wy = {p(t) € C[t] | deg(p(t)) < N}

which is endowed with the obvious K —structure. If Ny, -+, N,2 in N
are arbitrary then let

TL2

G{N17...7Nn2} = {X € HWNJ det(x) = 1}

i=1
where det(x) is a polynomial in the coordinates of x. To be more precise
this is obtained from the usual determinant function when one considers
the usual n xn matrix presentation of x, and calculates the determinant
in Mat,, (C[t]). )

For our choice of vertex z € A,_; above, the stabilizer of z in
SL,(K((t™'))) equals h.SL, (K[t ']])h;'. And with our fixed choice
of h,, there clearly exist some IV € N such that the stabilizer of the
vertex z in SL,(K[t]) is Gynz,.. n#,}(K). Furthermore, conditions on
N7 force a group structure on G, = Gy N7, N7y} Therefore, the stabi-

lizer of z in SL,, (K[t]) is the K-points of the affine K-group G, and
the stabilizer of z in SL,(Ok[t]) is G.(Ok). i
Let o be a cell in A, ;. The action of SL,(K]Jt]) on A,_; is type

preserving, so if ¢ C & is a simplex with vertices z1, 29, ..., 2;,, then the
stabilizer of ¢ in SL,(Ok]t]) is

(Gz1 M---N sz)(oK)

Which implies that the stabilizer of ¢ in I' is G,(Ok) where G, =
GNG.,N---NG,,.

If v C X is a cell, then we let o4, ...,0r be simplices of A, such
that their union contains 1, and such that their union is contained in
the union of any other set of simplices of A,,_; that contains .

The group I' may not act on X type-preservingly, but the stabilizer
of ¢ in I" will contain a finite index subgroup that fixes 1 pointwise. Be-
cause I’ does act type-preservingly on A,_;, we have that the stabilizer
of ¢ in I' contains

(Go, N---N Gy, ) (Ok)
as a finite index subgroup. This is an arithmetic group, and Borel-Serre

[B-S] proved that any such group is F'P,, for all m.
U

3. AN UNBOUNDED RAY IN '\ X

The group I' does not act cocompactly on X. Our next lemma is
a generalization of Mahler’s compactness criterion, and it will help us
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identify a ray in X whose projection to I'\ XX is proper. Our proof is
similar to [B-M-W, Lemma 11].

Lemma 3. Ife € X, a € G, u € T is nontrivial, and a "ua™ — 1 as
n — oo, then {T'a™e :n >0} C I'\X is unbounded.

Proof. Since G acts on X with bounded point stabilizers, it suffices to
show that {I'a™ : n > 0} C T'\G is unbounded.

If {T'a™ : n > 0} is bounded, then it is contained in a set ['B where
B C G is a bounded set. Thus, for any a”, we have a™ = ~b for some
v €T and b € B. Hence a "ua™ = b=ty tuyb.

Because u is nontrivial, vy *uy € I' — 1 is bounded away from 1, and
thus b='y~tuvyb is bounded away from 1. That’s a contradiction. [

4. AN UNBOUNDED SEMISIMPLE ELEMENT IN H(Ok][t])

Recall that H has K((t7!))-rank 1 (and K-rank 1), hence the Bruhat-
Tits building of H, which will be denoted by Xy, is a tree. Let S’ be
a maximal K-split, thus K((t71))-split, torus of H and let Q" and Q™
be opposite K-parabolic subgroups of H with Levi subgroup Zg(S’).

We denote the unpotent radical of Q* as R,(Q%), and we let QF =
QF(K((t))), Ru(@F) = Ru(QF)(K((t™1))), and S = S'(K((t™1))).

See [Se, Proposition 25| for the next lemma.

Lemma 4. Letu™ € R,(Q") andu™ € R,(Q™) and let F* = Fixx,, (u*).
Assume that FTNF~ = (. Then utu~ is a hyperbolic isometry of Xy

Proof. Let x be the midpoint between F'™ and F'~. Let p; be the path
between x and F'™ and let p, be the path between x and F~, and let
1 be an edge containing x, contained in p; U py, not contained in po,
and oriented towards F't.

Notice that u~ps U psy is an embedded path between x and v~ x and
that py Uup; Uutpy Uutu"py is an embedded path between z and
utu~z. The edge uTu~1 is a continuation of the latter path that is
oriented away from from both utu~z and x.

If uTu~ is elliptic, then it fixes the midpoint of the path between x
and vtu~z and maps 1 to an oriented edge pointed towards z. There-
fore, utu~ is hyperbolic.

O

Lemma 5. There exists elements u* € R,(QF)(Oklt]) of arbitrarily
large norm.

Proof. After perhaps replacing o with 2a, there is a root group U, <
R,(Q*) and a K-isomorphism of algebraic groups f : A* — U, for
some affine space A*.
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The regular function f is defined by polynomials f; € K{z1, ..., xx].
Because f maps the identity element to the identity element, each f;
has a constant term of 0.

The field of fractions of Ok is K. We let N be the product of the
denominators of the coefficients of the f;. Then the image under f of
the points (N#/,..., N#/) forms an unbounded sequence in j of points
in U, (Oklt]).

O

Lemma 6. There ezists a hyberbolic isometry b € H(Ok|t]) of the tree
Xpg.

Proof. Let ¢/ C Xy be the geodesic corresponding to S’, and choose
ut € R,(Q*)(Ok]t]) of sufficient norm such that ¢ N FT is disjoint
from ¢ N F~. Since F* and F~ are convex, and ¢ — (F* U F7) is
the geodesic between them, it follows that F'* N F~ = (). Now apply
Lemma 4. U

5. CONSTRUCTION OF CYCLES IN X NEAR [

Let b € H(Ok][t]) be as in Lemma 6, and let S” be the K ((¢~1))-split
one dimensional torus corresponding to the axis of b in Xg. Define the
K((t™1))-split torus A = (S”, T) <P and let A= A(K((t™!))). Let A
denote the apartment in X corresponding to A.

Recall that any unbounded element a € T translates A, and that
the axis for the translation is any geodesic in A that joins P with its
opposite parabolic PP, as usual P? = P?(K((t7!))) where P is the
oppositie parabolic containing Zg(T).

Note that b acts by translation on A. In fact, b translates orthogonal
to any geodesic in A that joins P with P°. Indeed, choose an element
w of the Weyl group with respect to A that reflects through a geodesic
joining P and P°?. Thus w fixes both parabolic groups, and their
common Levi subgroup, and hence H. Since S’ = ANH, w fixes S’ and
thus fixes any axis for b in A. Therefore, either b translates orthogonal
to any geodesic in A that joins P with PP, or else b translates along a
geodesic in A that joins P with P°. The latter option would contradict
Lemma 3 since for any e € A, we have I't"e = T'e € I'\X and yet
there is an unbounded a € T such that the ray determined by a”e is
parallel to the ray determined by 0"e and yet a "ua™ — 1 either for
any u € U(Oklt]) or for any u in the Oglt]-points of the unipotent
radical of PP,

The spherical Tits building for G and X is a graph, and the apart-
ment A corresponds to a circle in the spherical Tits building. Suppose



6 AMIR MOHAMMADI & KEVIN WORTMAN

this circle has vertices Py, ..., P, and edges )y, ..., Q, where each P;
is a maximal proper K ((t~!))-parabolic subgroup of G containing A,
each Q; is a minimal K ((¢t7!))-parabolic subgroup of G containing A,
and P; = P. We further assume that mod n, the edge (); has vertices
P; and Pig;.

Notice that U < Q; N Q,, since P = P; contains both Q; and Q,,.
That is, any element of U(Ok) fixes the edges @1 and Q.

Let U; be the root group corresponding to the half circle that con-
tains ()1 but not ()9, so that U; < U but U; N Q, = 1. Let U, be the
root group corresponding to the half circle that contains @), but not
Qn_1,sothat U, <Ubut U,NQ,_1 =1.

It follows that U —Q; has codimension in U at least 1 fori = 2, n—1.
Since U(Qk) is Zariski dense in U, there is some u € U(O) — (Qa U
Q,._1). It follows that u fixes the edges @,, and @1, but no other edges
in the circle corresponding to A.

Since u is a bounded element of G, it fixes a point in X. Therefore,
u fixes a geodesic ray in X that limits to an interior point of the edge
corresponding to ()1 in the spherical building. Any such geodesic ray
must contain a point in A, which is to say that u fixes a point in A.

Define a height function ¢ : A — R such that the pre-image of any
point is an axis of translation for b, such that s < ¢ if and only if any
geodesic ray in A that eminates from ¢~!(s) and limits to P contains
a point from ¢~ '(¢).

Let F ={x € A|uxr ==z}, let I =infrep{q(f)}, and let E =
{f€F|q(f)=1}. Since the fixed set of u in the circle at infinity of
A equals the union of the two edges 1 and (),,, and since F' is convex,
I exists and F is either a point of, a subray of, a line segment of, or an
entire axis of translation for b.

Notice that F is bounded, otherwise u would fix the point at infinity
that a subray of E limited to. This point at infinity would have distance
7/2 from the vertex P in the spherical metric, but this is not possible as
the previously identified fixed set of u in the boundary circle is centered
at P and has radius at most 7/3. (The bound 7/3 is realized exactly
when the root system for G is of type As.) Thus E is either a point or
a compact interval.

Since the fix set of u in the boundary circle is exactly the union
of @1 and @, and since F' is convex, F' is precisely the union of all
geodesic rays eminating from points in £ and limiting to points in the
arc ()1 U@Q,. That is F' is a polyhedral region in A that is symmetric
with respect to a reflection of A through a geodesic that limits to P
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and the opposite point of P. If E is a point, then F' has two geodesic
rays as its boundary: one ray that limits to P, and the other that
limits to P,. If E is a nontrivial interval, then the boundary of F' is
the union of F, a ray from an endpoint of F that limits to P, and a
ray from the other endpoint of E that limits to P,.

If E is an interval, we label its endpoints et and e~ such that F is
both oriented in the direction of translation of b, and in the direction
towards e', and away from e~. Let ey be the midpoint of E. If E is a
point, then ey = ¢t = e~ is that point.

For ng sufficiently large and for any n > ng, we define o,, C A as the
geodesic segment between b~ "e™ and b"e~. Notice that b~"e™ is the
only point in o, that is fixed by g, = b~"ub", and that b"e™ is the only
point in o, that is fixed by h,, = b"ub™".

Recall that A is the apartment corresponding to A and T C A is
a K-split one dimensional torus of G. Recall also that P = UZg(T).
Let a € T be such that a "ua™ — 1 as n — oo so that a"ey converges
to the cell at infinity corresponding to P as n — oo.

Let A, be the triangle with one face equal to ¢,, a second face
contained in the boundary of b "Fix4(u) = Fixa(g,), a third face
contained in the boundary of "Fix 4(u) = Fix4(h,,), and vertices b"e™,
b~"e™, and a uniquely determined point y,, € OFix4(g,) N OFix4(hy,).
Thus y,, converges to the cell at infinity corresponding to P as n — oc.

Note that

(1) U is a unipotent group so [[[[gn, hn], - -], hn], hn] = 1 for some
fixed number of nested commutators that’s independent of n.

(2) If w is a word in {gn, hn, g7, bty and d € {gn, hn, 9%, 0yt )
then wo,, and wdo,, are incident.

(1) and (2) imply that the word [[[[gn, hn], -], hnl, hn] (or possibly a
subword) describes a 1-cycle that is the union of translates of o, by
subwords of [[[[gn, Ans - - ], hn), hn]. We name this 1-cycle c,,.

The cone of ¢, at the point y, is the topological image of a 2-disk
¢n : D* — X such that ¢, (0D?) = c,.
If we let
XQ = FO‘nO

then clearly ¢, € X, for all n since b, g,, h,, € I and o, C (b)0y,.

6. PROOF OF THEOREM 1

We choose a I'-invariant and cocompact space X; C X to satisfy the
inclusions
XoCXiCXpC.CUZ X, =X
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In our present context, Brown’s criterion takes on the following form

[Br]

Brown’s Filtration Criterion 7. By Lemma 2, the group I" is not
of type F Py (and hence not finitely presented) if for any i € N, there
exists some class in the homology group Hy(Xq, Z) which is nonzero in

Hy(X;, 7).

Since I'\ X; is compact it follows from Lemma 3 that for any i there
there exists some j; such that a’ie; € X;. Choose n sufficiently large
so that a’ieg € A, C ¢,,. Recall that ¢, C X,. Since X is contractible
and 2-dimensional, any filling disk for ¢, must contain a’ey. That is,
¢, represents a nontrivial class in the homology of X — {a’ieq}, and
hence is nontrivial in the homology of Xj.

7. OTHER RANKS

The proof of Proposition 4.1 in [B-W] gives a short proof that SLa(Z[t])
is not finitely generated by examining the action of SLa(Z[t]) on the
tree for SLa(Q((¢71))). Replacing some of the remarks for SLa(Z[t])
in that paper with straightforward analogues from lemmas in this pa-
per, it is easy to see that the proof in [B-W] applies to show that if
H is a connected, noncommutative, absolutely almost simple algebraic
K-group of K-rank 1, then H(Ok/[t]) is not finitely generated.

It seems natural to state the following

Conjecture 1. Suppose H is a connected, noncommutative, abso-
lutely almost simple algebraic K-group whose K-rank equals k. Then
H(Ok|t]) is not of type Fy or FPy.

The conjecture has been verified when K = Q and H = SL,
[B-M-W].
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