Tangent and Right Triangles

The *tangent* function is the function defined as

$$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$$

The implied domain of the tangent function is every number θ except for those which have $\cos(\theta) = 0$: the numbers $\ldots, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \ldots$

Graph of tangent

Period of tangent

Tangent is a periodic function with period π , meaning that

$$\tan(\theta + \pi) = \tan(\theta)$$

This follows from Lemma 10 of the previous chapter which stated that

$$\cos(\theta + \pi) = -\cos(\theta)$$
 and $\sin(\theta + \pi) = -\sin(\theta)$

Therefore,

$$\tan(\theta + \pi) = \frac{\sin(\theta + \pi)}{\cos(\theta + \pi)} = \frac{-\sin(\theta)}{-\cos(\theta)} = \frac{\sin(\theta)}{\cos(\theta)} = \tan(\theta)$$

Tangent is an odd function

Recall that an *even* function is a function f(x) that has the property that f(-x) = f(x) for every value of x. Examples of even functions include x^2 , x^4 , x^6 , and $\cos(x)$.

An *odd* function is a function g(x) that has the property g(-x) = -g(x) for every value of x. Examples of odd functions include x^3 , x^5 , x^7 , and $\sin(x)$.

We can add tangent to our list of odd functions. To see why tangent is odd, we'll use that sine is odd and cosine is even:

Trigonometry for right triangles

*

Suppose that we have a right triangle. That is, a triangle one of whose angles equals $\frac{\pi}{2}$. We call the side of the triangle that is opposite the right angle the *hypotenuse* of the triangle.

If we focus our attention on a second angle of the right triangle, an angle that we'll call θ , then we can label the remaining two sides as either being *opposite* from θ , or *adjacent* to θ . We'll call the lengths of the three sides of the triangle *hyp*, *opp*, and *adj*. See the picture on the following page.

The following proposition relates the lengths of the sides of the right triangle shown above to the measure of the angle θ using the trigonometric functions sine, cosine, and tangent.

Proposition (13). In a right triangle as shown above, the following equations hold:

$$\sin(\theta) = \frac{opp}{hyp}$$
 $\cos(\theta) = \frac{adj}{hyp}$ $\tan(\theta) = \frac{opp}{adj}$

Proof: We begin with the triangle on the top right of this page, a right triangle with its side lengths labelled as instructed above: hyp for the hypotenuse, opp for the side opposite θ , and adj for the remaining side, which is adjacent to θ . The triangle below on the left is the first triangle scaled by the number $\frac{1}{hyp}$. That is, all lengths have been divided by the number hyp, but the angles remain unchanged. What we have then is a new right triangle whose hypotenuse has length $\frac{hyp}{hyp} = 1$.

The picture on the right shows $\sin(\theta)$ and $\cos(\theta)$. Notice that the triangles from the left and right are the same, so $\sin(\theta) = \frac{opp}{hyp}$ and $\cos(\theta) = \frac{adj}{hyp}$.

Last, notice that from the definition of tangent we have

$$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{\frac{\partial pp}{hyp}}{\frac{adj}{hyp}} = \frac{opp}{adj}$$

Problem. Find $\sin(\theta)$, $\cos(\theta)$, and $\tan(\theta)$ for the angle θ shown below.

Solution. The hypotenuse is the side that is opposite the right angle. It has length 5. Of the two remaining sides, the one that is opposite of θ has length 4, and the one that is adjacent to θ has length 3. Therefore,

				si	$n(\theta)$	$=\frac{op}{hy}$	$\frac{pp}{p} =$	$\frac{4}{5}$				
				CC	$\operatorname{os}(\theta)$	$=rac{aa}{hy}$	$\frac{dj}{p} =$	$\frac{3}{5}$				
				ta	n(heta)	$=\frac{op}{ac}$	$\frac{pp}{dj} =$	$\frac{4}{3}$				
*	*	*	*	*	*	*	*	*	*	*	*	*

Exercises

For #1-7, use the definition of tangent, that $\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$, to identify the given value. You can use the chart on page 227 for help.

1.) $\tan\left(\frac{\pi}{3}\right)$	5.) $\tan\left(-\frac{\pi}{6}\right)$
2.) $\tan\left(\frac{\pi}{4}\right)$	6.) $\tan\left(-\frac{\pi}{4}\right)$
3.) $\tan\left(\frac{\pi}{6}\right)$	7.) $\tan\left(-\frac{\pi}{3}\right)$
4.) $\tan(0)$	

Suppose that β is a real number, that $0 \leq \beta \leq \frac{\pi}{2}$, and that $\cos(\beta) = \frac{1}{3}$. Use Lemmas 7-12 from the previous chapter, the definition of tangent, and the periods of sine, cosine, and tangent to find the following values.

8.) $\sin(\beta)$	14.) $\cos(-\beta)$
9.) $\tan(\beta)$	15.) $\sin(-\beta)$
10.) $\sin(\beta + \frac{\pi}{2})$	16.) $\cos(\beta + 2\pi)$
11.) $\cos(\beta - \frac{\pi}{2})$	17.) $\sin(\beta + 2\pi)$
12.) $\cos(\beta + \pi)$	18.) $\tan(\beta + \pi)$
13.) $\sin(\beta + \pi)$	

Match the numbered piecewise defined functions with their lettered graphs below.

19.)
$$f(x) = \begin{cases} \sin(x) & \text{if } x \in [0,\infty); \text{ and} \\ \tan(x) & \text{if } x \in (-\frac{\pi}{2},0). \end{cases}$$

20.) $g(x) = \begin{cases} \tan(x) & \text{if } x \in (0,\frac{\pi}{2}); \text{ and} \\ \cos(x) & \text{if } x \in (-\infty,0]. \end{cases}$
21.) $h(x) = \begin{cases} \tan(x) & \text{if } x \in [0,\frac{\pi}{2}); \text{ and} \\ \cos(x) & \text{if } x \in (-\infty,0). \end{cases}$

22.)
$$p(x) = \begin{cases} \sin(x) & \text{if } x \in (0,\infty); \text{ and} \\ \tan(x) & \text{if } x \in (-\frac{\pi}{2},0]. \end{cases}$$

Use Proposition 13 to find $\sin(\theta)$, $\cos(\theta)$, and $\tan(\theta)$ for the angles θ given below. You might have to begin by using the Pythagorean Theorem to find the length of a side that is not labelled with a length.

242