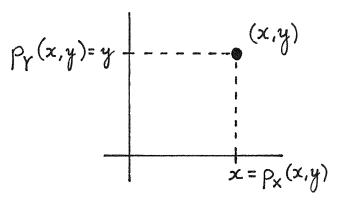
Sine and Cosine

Recall that $p_X : \mathbb{R}^2 \to \mathbb{R}$ where $p_X(x,y) = x$ is the projection onto the x-axis, and that $p_Y : \mathbb{R}^2 \to \mathbb{R}$ where $p_Y(x,y) = y$ is the projection onto the y-axis.



Examples:

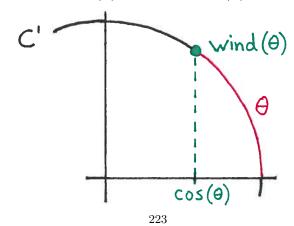
- $p_X(2,8) = 2$
- $p_Y(-3,5) = 5$
- $\bullet \ p_X\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) = \frac{1}{2}$

* * * * * * * * * * * * *

Definition of cosine

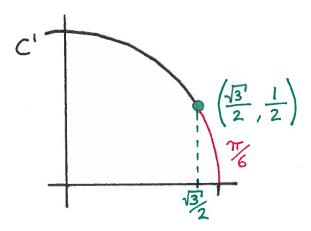
The *cosine* function is the function $\cos : \mathbb{R} \to \mathbb{R}$ defined as

$$\cos(\theta) = p_X \circ \operatorname{wind}(\theta)$$

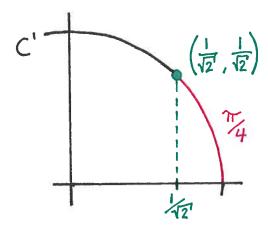


Examples.

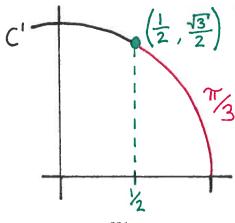
• $\cos\left(\frac{\pi}{6}\right) = p_X \circ \operatorname{wind}\left(\frac{\pi}{6}\right) = p_X\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) = \frac{\sqrt{3}}{2}$



• $\cos\left(\frac{\pi}{4}\right) = p_X \circ \operatorname{wind}\left(\frac{\pi}{4}\right) = p_X\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}}$

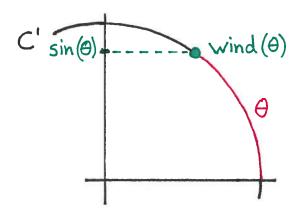


• $\cos\left(\frac{\pi}{3}\right) = p_X \circ \operatorname{wind}\left(\frac{\pi}{3}\right) = p_X\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) = \frac{1}{2}$



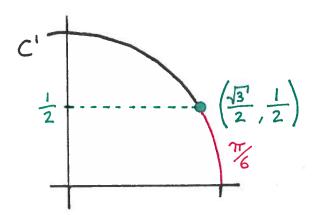
Definition of sine

The *sine* function is the function $\sin : \mathbb{R} \to \mathbb{R}$ defined as $\sin(\theta) = p_Y \circ \text{wind}(\theta)$

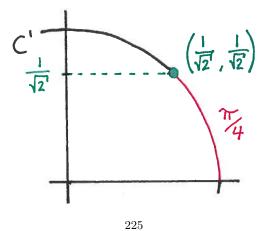


Examples.

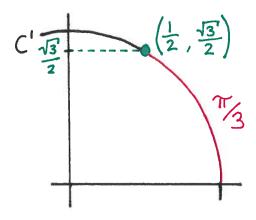
• $\sin\left(\frac{\pi}{6}\right) = p_Y \circ \operatorname{wind}\left(\frac{\pi}{6}\right) = p_Y\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) = \frac{1}{2}$



• $\sin\left(\frac{\pi}{4}\right) = p_Y \circ \operatorname{wind}\left(\frac{\pi}{4}\right) = p_Y\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}}$



•
$$\sin\left(\frac{\pi}{3}\right) = p_Y \circ \operatorname{wind}\left(\frac{\pi}{3}\right) = p_Y\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) = \frac{\sqrt{3}}{2}$$

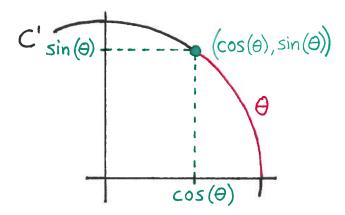


Cosine and sine are the coordinates of wind

If $\theta \in \mathbb{R}$, then $\cos(\theta)$ is $p_X \circ \text{wind}(\theta)$. That is, $\cos(\theta)$ is the x-coordinate of the point wind (θ) . Similarly, $\sin(\theta)$ is the y-coordinate of the point wind (θ) . Taken together, we have

$$\operatorname{wind}(\theta) = (\cos(\theta), \sin(\theta))$$

Throughout mathematics, the point on the unit circle obtained by beginning at the point (1,0) and winding a length of θ is usually written as $(\cos(\theta), \sin(\theta))$, and that's the way we'll usually write it from now on.

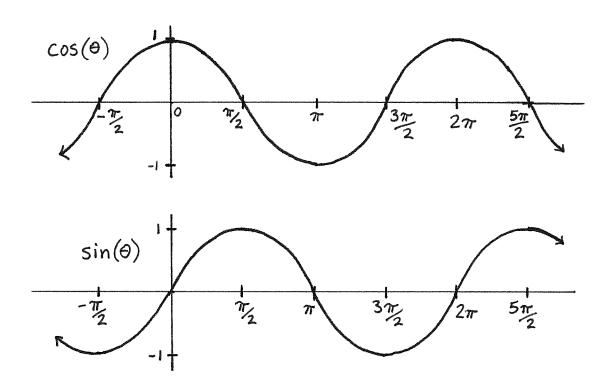


It will be important to keep in mind that a point on the unit circle is a point of the form $(\cos(\theta), \sin(\theta))$, and that any point of the form $(\cos(\theta), \sin(\theta))$ is a point on the unit circle.

The next page contains a list of some common values of θ that arise in trigonometry, along with their values from cos and sin.

θ	$\operatorname{wind}(\theta)$	$\cos(\theta)$	$\sin(\theta)$
$\frac{-\pi}{6}$	$\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$
0	(1,0)	1	0
$\frac{\pi}{6}$	$\left(\frac{\sqrt{3}}{2},\frac{1}{2}\right)$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
$\frac{\pi}{4}$	$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
$\frac{\pi}{3}$	$\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{2}$	(0,1)	0	1
$\frac{2\pi}{3}$	$\left(-\frac{1}{2},\frac{\sqrt{3}}{2}\right)$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$\frac{3\pi}{4}$	$\left(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$	$-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
$\frac{5\pi}{6}$	$\left(-\frac{\sqrt{3}}{2},\frac{1}{2}\right)$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
π	(-1,0)	-1	0
$\frac{7\pi}{6}$	$\left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$

Graphs of sine and cosine



Identities for sine and cosine

An *identity* is an equation in one variable that is true for every possible value of the variable. For example, x + x = 2x is an identity because it's always true. It does't matter whether x equals 1, or 5, or $-\frac{3}{5}$; it's always true that x + x = 2x.

The remainder of this chapter contains an assortment of important identities for the functions sine and cosine.

Lemma (7). (The Pythagorean identity) For any number θ ,

$$\cos(\theta)^2 + \sin(\theta)^2 = 1$$

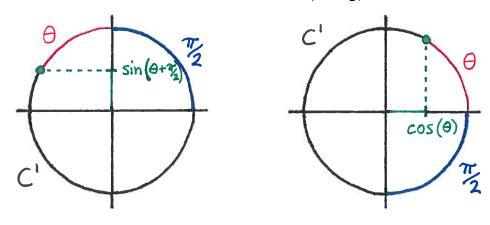
Proof: The equation for the unit circle is $x^2 + y^2 = 1$. Since $(\cos(\theta), \sin(\theta))$ is a point on the unit circle, it is a solution of this equation. That is,

$$\cos(\theta)^2 + \sin(\theta)^2 = 1$$

Lemma (8). For any number θ ,

$$\sin\left(\theta + \frac{\pi}{2}\right) = \cos(\theta)$$

Proof: The marked point on the y-axis in the picture on the left is $\sin\left(\theta + \frac{\pi}{2}\right)$. It's the y-coordinate of the point obtained by winding around the circle a distance of $\frac{\pi}{2}$ and then winding another θ more. We can rotate the picture on the left by a quarter turn clockwise, which would match $\sin\left(\theta + \frac{\pi}{2}\right)$ with the x-coordinate of the point obtained by winding around the circle a distance of θ , the number $\cos(\theta)$. Thus, $\sin\left(\theta + \frac{\pi}{2}\right) = \cos(\theta)$.



Lemma (9). For any number θ ,

$$\cos\left(\theta - \frac{\pi}{2}\right) = \sin(\theta)$$

Proof: We'll use Lemma 8 to prove this lemma. Notice that Lemma 8 tells us

$$\sin\left(\left[\theta - \frac{\pi}{2}\right] + \frac{\pi}{2}\right) = \cos\left(\left[\theta - \frac{\pi}{2}\right]\right)$$

Simplifying, we have

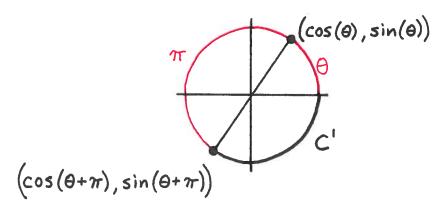
$$\sin(\theta) = \cos\left(\theta - \frac{\pi}{2}\right)$$

which is what we had wanted to show.

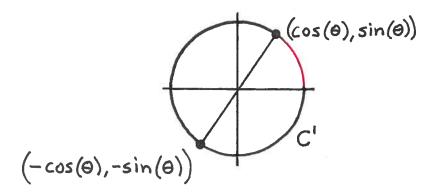
Lemma (10). For any number θ ,

$$cos(\theta + \pi) = -cos(\theta)$$
 and $sin(\theta + \pi) = -sin(\theta)$

Proof: The number π is exactly half the length of the unit circle. Therefore, the point $(\cos(\theta + \pi), \sin(\theta + \pi))$ is the point on the unit circle that is exactly halfway around the unit circle from the point $(\cos(\theta), \sin(\theta))$.



Also notice that the negative of the vector $(\cos(\theta), \sin(\theta))$, which is the vector $(-\cos(\theta), -\sin(\theta))$, is the vector that points in the opposite direction of $(\cos(\theta), \sin(\theta))$.



We can see in the two pictures above that the vectors drawn are the same. That is,

$$(\cos(\theta + \pi), \sin(\theta + \pi)) = (-\cos(\theta), -\sin(\theta))$$

Because these vectors are equal, their first coordinates are equal

$$\cos(\theta + \pi) = -\cos(\theta)$$

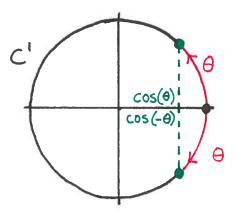
and their second coordinates are equal.

$$\sin(\theta + \pi) = -\sin(\theta)$$

Lemma (11). For any number θ ,

$$\cos(-\theta) = \cos(\theta)$$

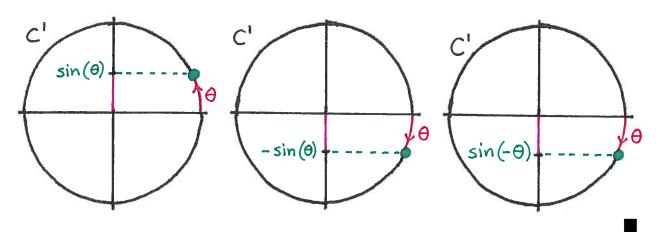
Proof: Whether we wind clockwise around the circle a length of θ , or counterclockwise a length of θ , the x-coordinates will be the same. Which is to say that $\cos(\theta) = \cos(-\theta)$.



Lemma (12). For any number θ ,

$$\sin(-\theta) = -\sin(\theta)$$

Proof: The picture on the left shows $\sin(\theta)$. The picture in the middle is the first picture flipped over the x-axis. All of the y-coordinates are exchanged with their negatives, so the picture in the middle shows $-\sin(\theta)$. The picture on the right shows $\sin(-\theta)$. Notice that the rightmost picture is the same picture as the one in the middle, and thus, $-\sin(\theta) = \sin(-\theta)$.



Even and odd functions

An even function is a function f(x) that has the property f(-x) = f(x) for every value of x. Examples of such functions include x^2 , x^4 , x^6 , and by Lemma 11, $\cos(x)$.

An *odd* function is a function g(x) that has the property g(-x) = -g(x) for every value of x. Examples of such functions include x^3 , x^5 , x^7 , and by Lemma 12, $\sin(x)$.

Period of sine and cosine

The period of the winding function is 2π , meaning that

$$wind(\theta) = wind(\theta + 2\pi)$$

Therefore,

$$(\cos(\theta), \sin(\theta)) = (\cos(\theta + 2\pi), \sin(\theta + 2\pi))$$

Because these vectors are equal, their first coordinates are equal

$$\cos(\theta) = \cos(\theta + 2\pi)$$

and their second coordinates are equal

$$\sin(\theta) = \sin(\theta + 2\pi)$$

These last two identities show that sine and cosine are, just as the winding function, *periodic* functions. Their period is 2π .

Exercises

For #1-14, identify the given value.

1.)	cos	$\left(\frac{5\pi}{4}\right)$
/		\ 4 /

8.)
$$\sin\left(\frac{5\pi}{4}\right)$$

2.)
$$\cos\left(\frac{4\pi}{3}\right)$$

9.)
$$\sin\left(\frac{4\pi}{3}\right)$$

3.)
$$\cos\left(\frac{3\pi}{2}\right)$$

10.)
$$\sin\left(\frac{3\pi}{2}\right)$$

4.)
$$\cos\left(\frac{5\pi}{3}\right)$$

11.)
$$\sin\left(\frac{5\pi}{3}\right)$$

5.)
$$\cos\left(\frac{7\pi}{4}\right)$$

12.)
$$\sin\left(\frac{7\pi}{4}\right)$$

6.)
$$\cos\left(\frac{11\pi}{6}\right)$$

13.)
$$\sin\left(\frac{11\pi}{6}\right)$$

7.)
$$\cos(2\pi)$$

14.)
$$\sin(2\pi)$$

Suppose that α is a real number, that $0 \le \alpha \le \frac{\pi}{2}$, and that $\cos(\alpha) = \frac{2}{3}$. Use Lemmas 7-12, and that the period of sine and cosine is 2π to find the following values.

15.)
$$\sin(\alpha)$$

20.)
$$\cos(-\alpha)$$

16.)
$$\sin(\alpha + \frac{\pi}{2})$$

21.)
$$\sin(-\alpha)$$

17.)
$$\cos(\alpha - \frac{\pi}{2})$$

22.)
$$\cos(\alpha + 2\pi)$$

18.)
$$\cos(\alpha + \pi)$$

23.)
$$\sin(\alpha + 2\pi)$$

19.)
$$\sin(\alpha + \pi)$$

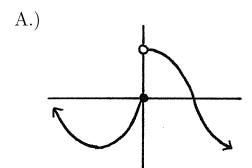
Match the numbered piecewise defined functions with their lettered graphs below.

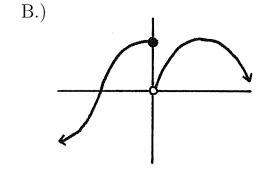
24.)
$$f(x) = \begin{cases} \cos(x) & \text{if } x \ge 0; \text{ and} \\ \sin(x) & \text{if } x < 0. \end{cases}$$

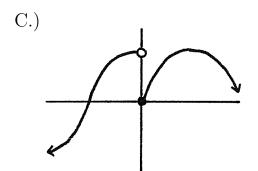
25.)
$$g(x) = \begin{cases} \sin(x) & \text{if } x \ge 0; \text{ and } \\ \cos(x) & \text{if } x < 0. \end{cases}$$

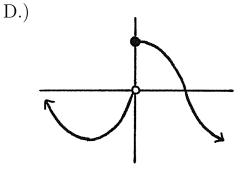
26.)
$$h(x) = \begin{cases} \cos(x) & \text{if } x > 0; \text{ and } \\ \sin(x) & \text{if } x \le 0. \end{cases}$$

27.)
$$p(x) = \begin{cases} \sin(x) & \text{if } x > 0; \text{ and} \\ \cos(x) & \text{if } x \le 0. \end{cases}$$









For #28-39, identify the given value.

28.)
$$\log_2(8)$$

29.)
$$\log_5(125)$$

$$30.) \log_3(9)$$

28.)
$$\log_2(8)$$
 29.) $\log_5(125)$ 30.) $\log_3(9)$ 31.) $\log_{13}(13)$

32.)
$$\log_{0}(3)$$

33.)
$$\log_2(\frac{1}{4})$$

34.)
$$\log_6(\frac{1}{6})$$

32.)
$$\log_9(3)$$
 33.) $\log_2\left(\frac{1}{4}\right)$ 34.) $\log_6\left(\frac{1}{6}\right)$ 35.) $\log_{10}(10,000)$

36.)
$$\log_7(49)$$

37.)
$$\log_e(e^7)$$

38.)
$$\log_e(\sqrt{e})$$

36.)
$$\log_7(49)$$
 37.) $\log_e(e^7)$ 38.) $\log_e(\sqrt{e})$ 39.) $\log_e(\frac{1}{e})$

Find the solutions of the equations given in #40-42.

40.)
$$\frac{x-1}{x} - 2x = 6$$
 41.) $\frac{x-1}{3x+2} = 4$ 42.) $x + \frac{1}{x} = 4$

$$41.) \ \frac{x-1}{3x+2} = 4$$

42.)
$$x + \frac{1}{x} = 4$$