
Sine and Cosine

Recall that pX : R2 → R where pX(x, y) = x is the projection onto the
x-axis, and that pY : R2 → R where pY (x, y) = y is the projection onto the
y-axis.

Examples:

• pX(2, 8) = 2

• pY (−3, 5) = 5

• pX
(
1
2 ,
√
3
2

)
= 1

2

* * * * * * * * * * * * *

Definition of cosine
The cosine function is the function cos : R→ R defined as

cos(θ) = pX ◦ wind(θ)
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Sine and Cosine
Recall that Px : R2 —* IR where px(x, y) = x is the projection onto the

x-axis, and that py : 1R2 —÷ IR where py(x, y) = y is the projection ollto the
y-axis.

(x

Px (x,)
Examples:

= 2

• pY(—3,5)= 5

• (1 /1PX2, 2 1 — 2

* * * * * * * * * * * * *

Definition of cosine
The cosine functioll is the function cos : R —÷ IR defined as

L

* sws.
àTK?I IiS.

?LO7

cos(9) = Px 0 wind(&)

8
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Sine and Cosine
Recall that Px : R2 —+ IR where px(x, y) = x is the projection onto the

x-axis, and that py : R2 —+ R where py(x, y) = y is the projection onto the
y-axis.

(x)
-----1

—

________

Examples:

•px(2,8)= 2

•pY(—3,5)= 5

•pX(4) =

* * * * * * * * * * * * *

Definition of cosine
The cosine function is the function cos : R —+ IR defined as

cos(O) =pxowind(O)
LD1t5,
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Examples.

• cos
(
π
6

)
= pX ◦ wind

(
π
6

)
= pX

(√
3
2 ,

1
2

)
=
√
3
2

• cos
(
π
4

)
= pX ◦ wind

(
π
4

)
= pX

(
1√
2
, 1√

2

)
= 1√

2

• cos
(
π
3

)
= pX ◦ wind

(
π
3

)
= pX

(
1
2 ,
√
3
2

)
= 1

2
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Definition of sine
The sine function is the function sin : R→ R defined as

sin(θ) = pY ◦ wind(θ)

Examples.

• sin
(
π
6

)
= pY ◦ wind

(
π
6

)
= pY

(√
3
2 ,

1
2

)
= 1

2

• sin
(
π
4

)
= pY ◦ wind

(
π
4

)
= pY

(
1√
2
, 1√

2

)
= 1√

2
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Sine and Cosine
Recall that Px : R2 —+ R where px(x, y) = x is the projection onto the

x-axis, and that py R2 — R where py(x, y) = y is the projection ont.o the
y-axis.

(x,i)

—

_________

Examples:

•px(2,8)= 2

•pY(—3,5)=5

(1 1• Px2 --j —

* * * * * * * * * * * * *

Definition of cosine
The cosine function is the function cos : R —+ R defined as

cos(9) = Px ° wind(9)
c.I’Q5,

•‘LO1
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• sin
(
π
3

)
= pY ◦ wind

(
π
3

)
= pY

(
1
2 ,
√
3
2

)
=
√
3
2

Cosine and sine are the coordinates of wind
If θ ∈ R, then cos(θ) is pX ◦wind(θ). That is, cos(θ) is the x-coordinate of

the point wind(θ). Similarly, sin(θ) is the y-coordinate of the point wind(θ).
Taken together, we have

wind(θ) =
(

cos(θ), sin(θ)
)

Throughout mathematics, the point on the unit circle obtained by begin-
ning at the point (1, 0) and winding a length of θ is usually written as(

cos(θ), sin(θ)
)
, and that’s the way we’ll usually write it from now on.

It will be important to keep in mind that a point on the unit circle is a point
of the form

(
cos(θ), sin(θ)

)
, and that any point of the form

(
cos(θ), sin(θ)

)
is a point on the unit circle.

The next page contains a list of some common values of θ that arise in
trigonometry, along with their values from cos and sin.
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Sine and Cosine
Recall that Px : JR2 —+ JR where px(x, y) = x is the projection onto the

x-axis, and that py : JR2 —+ R where py(x, y) = y is the projection onto the
y-axis.

.
(x,i)

Px
Examples:

•px(2,8)= 2

•pY(—3,5)=5

•Px(’
v\_1
, 1) — (as(e), 5n (e

* * * * * * * * * * * * *

Definition of cosine
The cosine function is the function cos : JR JR defined as

Ecas(e, Sin (e))

c.os(e)

C6 * SV
I*M$.

L7

cos(6) = Px o wind(9)
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θ wind(θ) cos(θ) sin(θ)

−π
6

(√
3
2 ,−

1
2

) √
3
2 −1

2

0
(
1, 0
)

1 0

π
6

(√
3
2 ,

1
2

) √
3
2

1
2

π
4

(
1√
2
, 1√

2

)
1√
2

1√
2

π
3

(
1
2 ,
√
3
2

)
1
2

√
3
2

π
2

(
0, 1
)

0 1

2π
3

(
− 1

2 ,
√
3
2

)
−1

2

√
3
2

3π
4

(
− 1√

2
, 1√

2

)
− 1√

2
1√
2

5π
6

(
−
√
3
2 ,

1
2

)
−
√
3
2

1
2

π
(
− 1, 0

)
−1 0

7π
6

(
−
√
3
2 ,−

1
2

)
−
√
3
2 −1

2
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Graphs of sine and cosine

Identities for sine and cosine
An identity is an equation in one variable that is true for every possible

value of the variable. For example, x + x = 2x is an identity because it’s
always true. It does’t matter whether x equals 1, or 5, or −3

5 ; it’s always true
that x+ x = 2x.

The remainder of this chapter contains an assortment of important identi-
ties for the functions sine and cosine.

Lemma (7). (The Pythagorean identity) For any number θ,

cos(θ)2 + sin(θ)2 = 1

Proof: The equation for the unit circle is x2+y2 = 1. Since (cos(θ), sin(θ))
is a point on the unit circle, it is a solution of this equation. That is,

cos(θ)2 + sin(θ)2 = 1

�
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Graphs of sine and cosine

Identities for sine and cosine
An identity is an equation in one variable that is true for every possible

value of the variable. For example, x + x = 2x is an identity because it’s
always true. It does’t matter whether x equals 1, or 5, or —, it’s always true
that x+x=2x.
The remainder of this chapter is an assortment of identities for the functions

sine and cosine.

Lemma (7). (The Pythagorean identity) For any number 6,
cos(O)2 + sin(0)2 = 1

Proof: Regardless of what 0 equals, the point wind(9) is on the unit circle.
Recall that wind(0) = (cos(0),sin(0)), so that (cos(0),sin(0)) is a point on

the unit circle.
The equation for the unit circle is x2 + y2 = 1. Since (cos(0), sin(0)) is a

point on the unit circle, it is a solution to the equation for the unit circle,
x2 + y2 = 1. That is,

cos(0)2 + sin(0)2 = 1
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Lemma (8). For any number θ,

sin
(
θ +

π

2

)
= cos(θ)

Proof: The marked point on the y-axis in the picture on the left is
sin
(
θ+ π

2

)
. It’s the y-coordinate of the point obtained by winding around the

circle a distance of π
2 and then winding another θ more. We can rotate the

picture on the left by a quarter turn clockwise, which would match sin
(
θ+ π

2

)
with the x-coordinate of the point obtained by winding around the circle a
distance of θ, the number cos(θ). Thus, sin

(
θ + π

2

)
= cos(θ).

�

Lemma (9). For any number θ,

cos
(
θ − π

2

)
= sin(θ)

Proof: We’ll use Lemma 8 to prove this lemma. Notice that Lemma 8 tells
us

sin
([
θ − π

2

]
+
π

2

)
= cos

([
θ − π

2

])
Simplifying, we have

sin(θ) = cos
(
θ − π

2

)
which is what we had wanted to show. �
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Lemma (10). For any number θ,

cos(θ + π) = − cos(θ) and sin(θ + π) = − sin(θ)

Proof: The number π is exactly half the length of the unit circle. There-
fore, the point

(
cos(θ+ π) , sin(θ+ π)

)
is the point on the unit circle that is

exactly halfway around the unit circle from the point
(

cos(θ) , sin(θ)
)
.

Also notice that the negative of the vector
(

cos(θ) , sin(θ)
)
, which is the

vector
(
−cos(θ) , − sin(θ)

)
, is the vector that points in the opposite direction

of
(

cos(θ) , sin(θ)
)
.

We can see in the two pictures above that the vectors drawn are the same.
That is, (

cos(θ + π) , sin(θ + π)
)

=
(
− cos(θ) , − sin(θ)

)
Because these vectors are equal, their first coordinates are equal

cos(θ + π) = − cos(θ)

and their second coordinates are equal.

sin(θ + π) = − sin(θ)

�
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Lemma (10). For any number ,
cos(O+7r) = —cos(9) and sin(O+7r) = —sin(O)

Proof: The number ir is exactly half the length of the unit circle. There
fore, the point wind(9 + 7r) is the point on the unit circle that is exactly
halfway around the unit circle from the point wind(&).

2

e I

Also notice that the vector —wind(s) is a vector of the same length of
wind(O), that points in the opposite direction of wind(U).

(cos(e+’r, Sri(9+7r))

We can see in the two pictures above that wind(6 + ir) and —wind(E) are
the same vector. Therefore,

(cos(&+), sin(O+7r)) =wind(9+ir)
= —wind(6)

= —( cos(&), sin(s))
= ( —cos(&), —sin(9))

Because these vectors are equal, their first coordinates are equal
cos(9+ir) = —cos(&)

and their second coordinates are equal.
sin(O+7r) = —sin(&)

.
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2

e I

Also notice that the vector —wind(s) is a vector of the same length of
wind(O), that points in the opposite direction of wind(U).

(cos(e+’r, Sri(9+7r))

We can see in the two pictures above that wind(6 + ir) and —wind(E) are
the same vector. Therefore,

(cos(&+), sin(O+7r)) =wind(9+ir)
= —wind(6)

= —( cos(&), sin(s))
= ( —cos(&), —sin(9))

Because these vectors are equal, their first coordinates are equal
cos(9+ir) = —cos(&)

and their second coordinates are equal.
sin(O+7r) = —sin(&)

.
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Lemma (10). For any number 9,
cos(O+ir) = —cos(&) and sin(&-j-7r) = —sin(6)

Proof: The number it is exactly half the length of the unit circle. There
fore, the point wind(9 + it) is the point on the unit circle that is exactly
halfway around the unit circle from the point wind(6).

2

C (e) 1n

Also notice that the vector —wind(9) is a vector of the same length of
wind(9), that points in the opposite direction of wind(9).

(— cos(’), -sn-i (&))

We can see in the two pictures above that wind(& + it) and —wind(O) are
the same vector. Therefore,

(cos(9 + it), sin(6 + it)) wind(6 + it)
= —wind(O)

= —( cos(&), sin(9))
= ( —cos(&), —sin(9))

Because these vectors are equal. their first coordinates are eqilal
cos(&+ir) = —cos(9)

and their second coordinates are equal.
sin(9 + it) = — sin(O)
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the same vector. Therefore,

(cos(9 + it), sin(6 + it)) wind(6 + it)
= —wind(O)
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Lemma (11). For any number θ,

cos(−θ) = cos(θ)

Proof: Whether we wind clockwise around the circle a length of θ, or
counterclockwise a length of θ, the x-coordinates will be the same. Which is
to say that cos(θ) = cos(−θ).

�

Lemma (12). For any number θ,

sin(−θ) = − sin(θ)

Proof: The picture on the left shows sin(θ). The picture in the middle is
the first picture flipped over the x-axis. All of the y-coordinates are exchanged
with their negatives, so the picture in the middle shows − sin(θ). The picture
on the right shows sin(−θ). Notice that the rightmost picture is the same
picture as the one in the middle, and thus, − sin(θ) = sin(−θ).

�
231

Lemma (11). For any number 0,
cos(—9) = cos(9)

Y1i

Proof: Whether we wind clockwise around the circle a length of 0, o ‘J

counterclockwise a length of 9, the i-coordinates will be the same. Which is
to say that cos(0) cos(—0).

Lemma (12). For any number 0,
sin(—9) = —sin(O)

Proof: If we wind clockwise around the circle a length of 9, or counterclock
wise a length of 9, the y-coordinates will most likely not be equal. However,
notice from the picture below that the only difference between sin(9) and
sin(—9) is that one is the negative of the other. That is, — sin(O) = sin(—0).
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Even and odd functions
An even function is a function f(x) that has the property f(−x) = f(x)

for every value of x. Examples of such functions include x2, x4, x6, and by
Lemma 11, cos(x).

An odd function is a function g(x) that has the property g(−x) = −g(x)
for every value of x. Examples of such functions include x3, x5, x7, and by
Lemma 12, sin(x).

Period of sine and cosine
The period of the winding function is 2π, meaning that

wind(θ) = wind(θ + 2π)

Therefore, (
cos(θ) , sin(θ)

)
=
(

cos(θ + 2π) , sin(θ + 2π)
)

Because these vectors are equal, their first coordinates are equal

cos(θ) = cos(θ + 2π)

and their second coordinates are equal

sin(θ) = sin(θ + 2π)

These last two identities show that sine and cosine are, just as the winding
function, periodic functions. Their period is 2π.
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Exercises

For #1-14, identify the given value.

1.) cos
�

5⇡

4

�

8.) sin
�

5⇡

4

�

2.) cos
�

4⇡

3

�

9.) sin
�

4⇡

3

�

3.) cos
�

3⇡

2

�

10.) sin
�

3⇡

2

�

4.) cos
�

5⇡

3

�

11.) sin
�

5⇡

3

�

5.) cos
�

7⇡

4

�

12.) sin
�

7⇡

4

�

6.) cos
�

11⇡

6

�

13.) sin
�

11⇡

6

�

7.) cos
�

2⇡
�

14.) sin
�

2⇡
�

Suppose that ↵ is a real number, that 0  ↵  ⇡

2

, and that cos(↵) = 2

3

.
Use Lemmas 7-12, and that the period of sine and cosine is 2⇡ to find the
following values.

15.) sin(↵) 20.) cos(�↵)

16.) sin(↵ + ⇡

2

) 21.) sin(�↵)

17.) cos(↵� ⇡

2

) 22.) cos(↵ + 2⇡)

18.) cos(↵ + ⇡) 23.) sin(↵ + 2⇡)

19.) sin(↵ + ⇡)
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Match the numbered piecewise defined functions with their lettered graphs
below.

24.) f(x) =

(

cos(x) if x � 0; and

sin(x) if x < 0.

25.) g(x) =

(

sin(x) if x � 0; and

cos(x) if x < 0.

26.) h(x) =

(

cos(x) if x > 0; and

sin(x) if x  0.

27.) p(x) =

(

sin(x) if x > 0; and

cos(x) if x  0.

A.) B.)

C.) D.)
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For #28-39, identify the given value.

28.) log
2

(8) 29.) log
5

(125) 30.) log
3

(9) 31.) log
13

(13)

32.) log
9

(3) 33.) log
2

�

1

4

�

34.) log
6

�

1

6

�

35.) log
10

(10, 000)

36.) log
7

(49) 37.) log
e

(e7) 38.) log
e

(
p
e) 39.) log

e

�

1

e

�

Find the solutions of the equations given in #40-42.

40.) x�1

x

� 2x = 6 41.) x�1

3x+2

= 4 42.) x+ 1

x

= 4
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