
Polynomial Equations

A polynomial equation in two variables is an equation of the form

p(x, y) = q(x, y)

where both p(x, y) and q(x, y) are polynomials in two variables.

Examples.

• xy + 2 = y2 � 3x� 4

(xy + 2 is a quadratic polynomial. So is y2 � 3x� 4.)

• y � x = 2

(y � x is a linear polynomial. 2 is a constant polynomial.)

• x2 � 5x+ y � 2 = �7xy � y + 2

• 3x2 � xy + 4y2 � 5x+ 6� 7 = 0

Domains of polynomial equations
Because every polynomial in two variables has a domain of R2, the implied

domain of any polynomial equation in two variables is R2, the entire plane.

* * * * * * * * * * * * *

Solutions of equations
If p(x, y) = q(x, y) is a polynomial equation in two variables, then a point

in the plane (↵, �) 2 R2 is a solution of the equation if the number p(↵, �)
equals the number q(↵, �). That is, if p(↵, �) = q(↵, �).

Examples.

• The point in the plane (1, 2) is a solution of the equation
x2 + y2 = x+ y + 2 because 12 + 22 = 5 = 1 + 2 + 2.

• The point (0,�1) is a solution of the same equation x2+y2 = x+y+2
because 02 + (�1)2 = 1 = 0 + (�1) + 2.
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• The point (3, 1) is not a solution of the same equation
x2 + y2 = x+ y + 2 because 32 + 12 = 10 6= 6 = 3 + 1 + 2.

The set of every solution of an equation p(x, y) = q(x, y) is the set

S = { (↵, �) 2 R2 | p(↵, �) = q(↵, �) }
Thus, if S is the set of solutions of the equation from the previous examples,

x2 + y2 = x+ y + 2, then (1, 2) 2 S and (0,�1) 2 S, while (3, 1) /2 S.

Solutions as geometric objects
The set of solutions of a polynomial equation in one variable is always finite,

so we can just write out a list of the solutions. In contrast, a polynomial
equation in two variables can have infinitely many solutions. It would be
impossible to write a list of infinitely many points in the plane, but it often
is possible to make a drawing of every point in the plane that is a solution of
a particular equation.

Examples.

• Let p(x, y) be the linear polynomial x and let q(x, y) be the constant
polynomial 3. The solutions of the equation p(x, y) = q(x, y), the equation
x = 3, are the points (↵, �) in the plane with the property that

↵ = p(↵, �) = q(↵, �) = 3

Thus, (3, 7), and (3,�2), and (3, 100) are solutions of the equation x = 3.
The set of all solutions, of all pairs of numbers whose x-coordinates equal 3,
forms a vertical line in the plane.
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• The point (3, 1) is not a solution of the same equation
x2+y2=x+y+2 because 32+12 = 106=3+i+2.

The set of solutions of an equation p(x, y) = q(x, y) is the set
S={() ER2 p(3)=q(3)}

Thus, if S is the set of solutions of the equation from the previous examples,
= x+y+2, then (1,2) E Sand (0,—i) eS, while (3,1)ØS.
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(3, —2), and (3, 100) are solutions of the equation x— 0. The set of
all solutions, of all pairs of numbers whose x-coordina’qual 3, forms a
vertical line in the plane.
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• Similar to the previous example, the set of solutions of the equation
x = 5 also forms a vertical line in the plane. It’s a vertical line comprised of
points whose x-coordinates equal 5.

• x = y is an equation in two variables. The solutions of this equation
are all of the points (↵, �) such that ↵ = �. In other words, the solutions
of this equation are all of the points of the form (↵,↵) — all of the points
whose x-coordinates equal their y-coordinates. There are infinitely many of
these solutions, including (4, 4), (7, 7) and (�10,�10). If we placed a tiny
dot in the plane for each of these solutions, they’d collectively form a line, a
line that’s often called the “x = y line”.

• The set of solutions of the equation 4x2� 2xy+ y2+3x� 7y� 5 = 0
form a geometric object called an ellipse. We’ll have more to say about
ellipses later. They’re examples of conics.
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• Similar to the previous example, the set of solutions of the equation
x — 5 = 0 also forms a vertiline in the plane. It’s a vertical line comprised
of points whose x-coordinat’equal 5.

5

• x = y is an equation in two variables. The solutions of this equation
are all of the points (ce, /3) such that o = /3. In other words, the solutions
of this equation are all of the points of the form (ce, c) all of the points
whose x-coordinates equal their y-coordinates. There are infinitely many of
these solutions, including (4,4), (7, 7) and (—10, —10). If we placed a tiny
dot in the plane for each of these solutions, they’d collectively form a line, a
line that’s often called the “x = y line”.

• The set of solutions of the equation 4x2 — 2xy + y2 + 3x
—

7y — 5 = 0
isa geometric object called an ellipse. We’ll have more to say about ellipses
later. They’re examples of conics.

qx22÷+3x-75 o
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• The set of solutions of the equation y4 � y2 = x4 � 2x2 is called the
“devil’s curve”.

• The three previous examples were of equations that had infinitely
many solutions. Sometimes a polynomial equation will have no solutions. If
you square a number, the result cannot be negative. If you add two nonneg-
ative numbers together, the result is still nonnegative. This is to say that the
equation x2 + y2 = �1 has no solution. There are no pairs of numbers that
you can square and then add together to get the negative number �1.

• Some equations in two variables have a finite number of solutions.
The claim below displays one such equation.

Claim: The only solution of the equation x2 + y2 = 0 is the point (0, 0).

Proof: Suppose that (↵, �) is a solution of the equation x2+ y2 = 0. We’ll
show that (↵, �) = (0, 0). That means that (0, 0) is the only solution.
If (↵, �) is a solution of the equation x2 + y2 = 0, then ↵2 + �2 = 0. The

square of a number can’t be negative. Thus ↵2 � 0 and �2 � 0. Since neither
↵2 nor �2 are negative, the only way they could sum to 0 is if they both equal
zero. That is, ↵2 + �2 = 0 implies that ↵2 = 0 and �2 = 0. The only number
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• The three previous examples were of equations that had infinitely
many solutions. Sometimes a polynomial equation will have no solutions. If
you square a number, the result cannot be negative. If you add two nonneg
ative numbers together, the result is still nonnegative. This is to say that the
equation x2 + y2 —1 has no solution. There are no pairs of numbers that
you can square and then add together to get the negative number —1.

• Some equations in two variables have a finite number of solutions.
The claim below displays one such equation.

Claim: The only solution of the equation x2 + y2 = 0 is the point (0,0).

—.

Proof: Suppose that (a’, ,B) is a solution of the equation x2 + y2 = 0. We’ll
show that (a’, 3) = (0,0). That means that (0,0) is the only solution.
i ta’, i’ is a solution of the equation 2 + y2 = 0, then 2 + = 0. The

square of a number can’t he negative. Thus a’2 0 and /32 0. Since neither
a’2 nor ,2 are negative, the only way they could sum to 0 is if they both equal
zero. That is, a’2 + /32

= 0 implies that a’2 = 0 and 32 = 0. The only number
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that you can square to get 0, is 0 itself. In other words, since ↵2 = 0, we
must have that ↵ = 0. Since �2 = 0, we must have that � = 0.
We’ve now shown what we wanted to. If (↵, �) is a solution of the equation

x2+ y2 = 0, then ↵2+�2 = 0, which implies that (↵, �) = (0, 0). Thus, (0, 0)
is the only solution of the equation x2 + y2 = 0. ⌅

* * * * * * * * * * * * *

Equivalent equations
Similar to equations in one variable, there are rules for when equations in

two variables are equivalent, and equivalent equations have the same solu-
tions. When it comes to polynomial equations in two variables, there are
only two rules for equivalent equations that we’ll need.

Equivalent by addition:

The equation p(x, y) + h(x, y) = q(x, y)
is equivalent to p(x, y) = q(x, y)� h(x, y).

Equivalent by multiplication:

If c 6= 0 is a number, then the equation cp(x, y) = q(x, y)
is equivalent to p(x, y) = q(x,y)

c

.

Consequence of equivalent equations:

Equivalent equations have the same set of solutions.

Example.

• The equation

8x2 + 2y2 + 6x = 4xy + 14y + 10
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is equivalent by addition to the equation

8x2 + 2y2 + 6x� (4xy + 14y + 10) = 0

We can rearrange the terms above to write this equation as

8x2 � 4xy + 2y2 + 6x� 14y � 10 = 0

We can factor out the constant 2 and rewrite this equation as

2(4x2 � 2xy + y2 + 3x� 7y � 5) = 0

This is equivalent by multiplication to the equation

4x2 � 2xy + y2 + 3x� 7y � 5 =
0

2
= 0

We saw the solutions of this equation earlier in the chapter. The solutions
form an ellipse. Because equivalent equations have the same set of solutions,
the ellipse is also the set of solutions of our original equation from this example

8x2 + 2y2 + 6x = 4xy + 14y + 10

* * * * * * * * * * * * *

Planar transformations of solutions
Solutions of polynomial equations are geometric objects, and at times, we’ll

be interested in how planar transformations a↵ect these geometric objects.
The general principal is described in the following claim.

124

Similar to the previous example, the set of solutions of the equation
x — 5 = 0 also forms a verticQine in the plane. It’s a vertical line comprised
of points whose x-coordiuaiequal 5.
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. x = y is an equation in two variables. The solutions of this equation
are all of the points (ce, ,8) such that c = /3. In other words, the solutions
of this equation are all of the points of the form (cu, c) — all of the points
whose x—coordinates equal their y-coordinates. T•here are infinitely many of
these solutions, including (4,4), (7, 7) and (—10, —10). If we placed a tiny
dot in the plane for each of these solutions, they’d collectively form a line, a
line that’s often called the “ = y line”.

. The set of solutions of the equation 4x2 — 2xy + y2 + 3x
—

— 5 = 0
geometric object called an ellipse. We’ll have more to say about ellipses

later. They’re examples of conics.
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Claim: Suppose T : R2 ! R2 is a planar transformation — either an
addition function or an invertible matrix — and that S ✓ R2 is the set of
solutions of the polynomial equation p(x, y) = q(x, y). Then T (S) is the set
of solutions of the equation p � T�1(x, y) = q � T�1(x, y).

Proof: Let’s take a point in the set T (S). That is, a point of the form
T (↵, �) where (↵, �) 2 S, which means that (↵, �) is a solution of the equation
p(x, y) = q(x, y), or in other words, that

p(↵, �) = q(↵, �)

We want to show that this point, T (↵, �), in the set T (S) is a solution of the
equation

p � T�1(x, y) = q � T�1(x, y)

To see this, we need to check that p � T�1(T (↵, �)) equals q � T�1(T (↵, �)).
We’ll do this in a moment, but before we do, remember two things: that
the definition of inverse functions is that T�1(T (x, y)) = (x, y), and that
p(↵, �) = q(↵, �). Now we check that p�T�1(T (↵, �)) equals q�T�1(T (↵, �)):

p � T�1(T (↵, �)) = p(T�1(T (↵, �)))

= p(↵, �)

= q(↵, �)

= q(T�1(T (↵, �)))

= q � T�1(T (↵, �))

Thus, points in the set T (S), such as T (↵, �), are solutions of the equation
p � T�1(x, y) = q � T�1(x, y). ⌅

The previous claim is important to stress. We’ll call it the Principle of
Transforming Solutions (POTS). If S is the set of solutions of p(x, y) =
q(x, y), then T (S) is the set of solutions of p � T�1(x, y) = q � T�1(x, y).
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Example.

• Let p(x, y) = x and q(x, y) = 3. If S is the set of solutions of the
equation p(x, y) = q(x, y), which is the equation x = 3, then we’ve seen that
S is a vertical line.
The addition function A

(2,0)

: R2 ! R2 moves points in the plane right by
2 units, so the set A

(2,0)

(S) is the line of solutions of x = 3 shifted right by 2
units. It’s the vertical line of points whose x-coordinates equal 5.

POTS tells us that the line A
(2,0)

(S) is the set of solutions of the equation

p � A�1

(2,0)

(x, y) = q � A�1

(2,0)

(x, y)

Because A�1

(2,0)

(x, y) = (x� 2, y), you can check that the equation

p � A�1

(2,0)

(x, y) = q � A�1

(2,0)

(x, y)

is the same as the equation
x� 2 = 3

In summary, POTS tells us that the line A
(2,0)

(S) is the set of solutions of
x� 2 = 3, or equivalently, of x = 5.
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The addition function A(2,o) : R2 —+ R moves ponts in the plane right by
2 units, so the set A(2.o)(S) is the line of so1utions — 3 = 0 shifted right by
2 units. It’s the vertical line of points whose x-coordinatqua1.’5.

-

3 S

S

Namely,
A(2,o) (S), is the set of solutions of the equation

poA’O)(x,y) =0
In order to progress further, we’d need to know what the inverse of the
planar transformation A(2,o) is, and we do: A’0) = A_(2,o). Thus, our new
line, A(2,o) (8), is the set of solutions of the equation

p oA_(2,o)(x, y) = 0
We want to write the above equation more simply. To this end, notice that

p oA(_2,o)(x, y) = p(x — 2, y) = (x — 2) — 3 = x — 5
Thus, theVA(2,o)(S)is the set of solutions of the equation x — 5 = 0. We
had seen lier in this chapter that this is indeed the case. The solutions of
x — 5 = 0 are a vertical line of points whose x-coordinate equals 5.

The statement of the previous claim is important -po4ii- to stress. We’ll
use it to help us determine what sorts of solutions there are to equations
p(x, y) = 0 when p(x, y) is a quadratic polynomial.

If S is the set of solutions of p(x, y) = 0,
then T(S) is the set of solutions of p oT1(x, y) = 0.
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POTS
This is very important. It’s worth repeating.

If S is the set of solutions of p(x, y) = q(x, y),
then T (S) is the set of solutions of p � T�1(x, y) = q � T�1(x, y).
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Exercises

Let’s look at the equation 5x + y � 2 = 3x2 � xy. Determine whether the
points given in #1-4 are solutions of this equation.

1.) (2, 3) 2.) (1, 0) 3.) (�1,�2) 4.) (3, 4)

5.) Are the equations x2+2 = x and x2�x+2 = 0 equivalent by addition?

6.) Are the equations xy = y2 and xy� x = y2� y equivalent by addition?

7.) Are xy + 3 = y2 � x2 and 3 = y2 � x2 � xy equivalent by addition?

8.) Are the equations 2x� 3 = x2 and 2x = x2 equivalent by addition?

9.) Are the equations 2xy � 3x2 = y2 � x � y and xy � 3x2 = y2 � x � y
equivalent by multiplication?

10.) Are 5x2 � 5x + 10 = 20y2 and x2 � x + 2 = 4y2 equivalent by multi-
plication?

We saw in this chapter that x2+y2 = 0 has a single solution, the point (0, 0).
In #11-14, let p(x, y) = x2 + y2 and q(x, y) = 0, so that p(x, y) = q(x, y) is
an equation whose only solution is (0, 0).

11.) What is A
(2,3)

(0, 0)?

12.) What are p � A�1

(2,3)

(x, y) and q � A�1

(2,3)

(x, y)?

13.) What’s the only solution of the polynomial equation
p�A�1

(2,3)

(x, y) = q�A�1

(2,3)

(x, y)? (You can use POTS and #11 to answer this.)

14.) Use POTS and the polynomials p(x, y) = x2 + y2 and q(x, y) = 0 (as
in #13) to write a polynomial equation in two variables that has only one
solution: the point (a, b) in the plane.
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log
e

(x) is the most common logarithm used in math. There are lots of
benefits to using logarithms base e, and these benefits will be explained in
calculus. Because of these benefits, some call logarithm base e the “natural
logarithm”, and they write it as ln(x). (Scientists often prefer to write ln(x).
Mathematicians often write log

e

(x) as log(x). To make matters more con-
fusing, if a calculator has a button for log(x), it probably means log

10

(x).)
Because plenty of people write log

e

(x) as ln(x), we should practice seeing and
writing the logarithm base e in this way. Find the values asked for in #15-30.

15.) ln�1(2) 16.) ln(e) 17.) ln(e2) 18.) ln(e3)

19.) ln(e4) 20.) ln(1
e

) 21.) ln( 1

e

2 ) 22.) ln( 1

e

3 )

23.) ln(
p
e) 24.) ln( 3

p
e) 25.) ln( 4

p
e) 26.) ln( 1p

e

)

27.) ln( 1

3
p
e

) 28.) ln( 1

4
p
e

) 29.) ln(1) 30.) ln�1(e)

Find the solutions of the following equations in one variable.

31.) ln(2x� 3) = 0 32.) ln(3x� 5) = 2 33.) 3 ln(7� x)� 4 = �5
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