
Polar Coordinates and Multiplication

In the last chapter we wrote complex numbers in the form x + iy where x
and y are real numbers. We can think of this as writing complex numbers
using Cartesian coordinates. Every complex number is the sum of a number
on the real axis and a number on the imaginary axis. We saw that writing
complex numbers in this way made it simple to add and subtract complex
numbers. It was not as simple to multiply and divide complex numbers
written in Cartesian coordinates.

In this chapter we’ll look at complex numbers using polar coordinates.
We’ll see that multiplication and division of complex numbers written in
polar coordinates has a nice geometric interpretation involving scaling and
rotating.

Unit circle
We wrote C1 ⊆ R2 to refer to the unit circle in the plane of vectors. This

is the circle of all vectors that have norm 1, the circle of all vectors that can
be written in the form

(
cos(θ), sin(θ)

)
.

We now want to look at the unit circle in C, the plane of complex numbers.
The unit circle is the set of all complex numbers whose norms equal 1. Equiv-
alently, and similarly to the plane of vectors, the unit circle in the plane of
complex numbers can also be described as the set of complex numbers that
can be written in the form cos(θ) + i sin(θ). Even though the unit circle of
complex numbers is not exactly the same thing as the unit circle in the plane
of vectors—one is a circle of numbers, the other is a circle of vectors—they
are close enough to being the same that we’ll just recycle the symbols C1 and
use them in this chapter to refer to the unit circle of complex numbers. That
is, for the rest of this text, C1 ⊆ C.
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To repeat most of the remarks from the previous paragraph using set no-
tation:

C1 = {x+ iy ∈ C | |x+ iy| = 1 }

= {x+ iy ∈ C |
√
x2 + y2 = 1 }

= {x+ iy ∈ C | x2 + y2 = 1 }
= { cos(θ) + i sin(θ) | θ ∈ R }

Examples.

• 1 ∈ C, and |1| = 1, so 1 ∈ C1. Note that 1 = 1+i0 = cos(0)+i sin(0).

• −1 ∈ C, and −1 = −1 + i0 = cos(π) + i sin(π), so −1 is also a point
in the unit circle. Note that | − 1| = 1.

• i ∈ C is a point in the unit circle because

|i| = |0 + i1| =
√

02 + 12 =
√

1 = 1

and because

i = 0 + i1 = cos
(π

2

)
+ i sin

(π
2

)
• −i ∈ C is a point on the unit circle because

i = 0− i1 = cos
(3π

2

)
+ i sin

(3π

2

)
and because

| − i| = |0− i1| =
√

02 + (−1)2 =
√

1 = 1

•
√
3
2 + i12 ∈ C is a point on the unit circle since

√
3

2
+ i

1

2
= cos

(π
6

)
+ i sin

(π
6

)

The 5 examples above are illustrated on the next page.
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Polar coordinates
Any number, z ∈ C, in the plane of complex numbers can be identified

by the direction in which you’d have to travel in a straight line from 0 to
reach the number—this direction is a point in the unit circle—and by its
distance from 0—its norm. Thus, each complex number is identified by a
pair of coordinates: a number in the unit circle, and a norm.
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A point on the unit circle is a number of the form cos(θ) + i sin(θ) and
a norm is a real number that is greater than or equal 0. Thus, the above
paragraph states that any complex number can be written in the form

r(cos(θ) + i sin(θ))

for some r ≥ 0 and some θ ∈ R. The real number r is the norm of the
complex number r(cos(θ) + i sin(θ)). Writing complex numbers in the form
r(cos(θ) + i sin(θ)) is what is referred to as polar coordinates for the plane of
complex numbers.

Examples.

• Complex numbers written in polar coordinates include
3
(

cos
(
π
7

)
+ i sin

(
π
7

))
, 1

2

(
cos(4) + i sin(4)

)
, and cos

(
5
6

)
+ i sin

(
5
6

)
. In

the last of these three examples, r = 1. The norms of these three
complex numbers are 3, 1

2 , and 1, respectively.

You can write a complex number x+ iy ∈ C in polar coordinates in much
the same way that a vector in the plane can be written in polar coordinates.
Use the formula

x+ iy = |x+ iy|
( x

|x+ iy|
+ i

y

|x+ iy|

)
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Example.

• To write 3− i2 in polar coordinates, first find the norm of 3− i2:

|3− i2| =
√

32 + (−2)2 =
√

9 + 4 =
√

13

Then

3− i2 =
√

13
( 3√

13
− i 2√

13

)

Multiplication by a positive real number scales
If s > 0 is a real number, and if r(cos(θ) + i sin(θ)) is a complex number

written in polar coordinates, then the product of s and r(cos(θ) + i sin(θ)) is
the number

sr(cos(θ) + i sin(θ))
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Both r(cos(θ)+ i sin(θ)) and sr(cos(θ)+ i sin(θ)) have the same “unit circle
coordinate” of cos(θ) + i sin(θ). Where they are different is in their “norm
coordinates”, r and sr, respectively. That is, multiplying by the positive real
number s doesn’t change the direction of complex numbers, it only scales
their distance from 0.

Multiplying complex numbers by 2 makes them twice as far from 0. Mul-
tiplying by 1

3 makes complex numbers 1
3 as far from 0.

* * * * * * * * * * * * *

Multiplication in the unit circle
In the next theorem we’ll multiply two different complex numbers in the

unit circle. Remember that a number in the unit circle is exactly a number of
the form cos(θ) + i sin(θ) where θ ∈ R, or equivalently, a number of the form
cos(α) + i sin(α) where α ∈ R. The next theorem shows that multiplying two
complex numbers in the unit circle is as easy as adding two real numbers.

Theorem (23). Suppose α, θ ∈ R. Then(
cos(α) + i sin(α)

)(
cos(θ) + i sin(θ)

)
= cos(α + θ) + i sin(α + θ)
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Proof: For this proof, we’ll multiply the two complex numbers
cos(α)+ i sin(α) and cos(θ)+ i sin(θ) in the manner described in the previous
chapter. In the last line of the proof, we’ll use the angle sum formulas for
cosine and sine. Recall that those formulas are

cos(α + θ) = cos(α) cos(θ)− sin(α) sin(θ)

sin(α + θ) = sin(α) cos(θ) + cos(α) sin(θ)

Now to check that the theorem is true:(
cos(α) + i sin(α)

)(
cos(θ) + i sin(θ)

)
= cos(α) cos(θ) + cos(α)i sin(θ) + i sin(α) cos(θ) + i sin(α)i sin(θ)

= cos(α) cos(θ) + i
(

cos(α) sin(θ) + sin(α) cos(θ)
)

+ i2 sin(α) sin(θ)

=
(

cos(α) cos(θ)− sin(α) sin(θ)
)

+ i
(

sin(α) cos(θ) + cos(α) sin(θ)
)

= cos(α + θ) + i sin(α + θ)

�
Example.

•
(

cos(2) + i sin(2)
)(

cos(3) + i sin(3)
)

= cos(5) + i sin(5)

For this next corollary, which follows from the previous theorem, recall that
N is the set of natural numbers, numbers of the form 1, 2, 3, 4, . . .

Corollary (24). (De Moivre’s Formula) If n ∈ N, then(
cos(θ) + i sin(θ)

)n
= cos(nθ) + i sin(nθ)

Proof: If n=1, this corollary says(
cos(θ) + i sin(θ)

)1
= cos(θ) + i sin(θ)

which is clearly true. Any number to the first power is itself.
If n = 2, then Theorem 23 tells us that(

cos(θ) + i sin(θ)
)2

=
(

cos(θ) + i sin(θ)
)(

cos(θ) + i sin(θ)
)

= cos(θ + θ) + i sin(θ + θ)

= cos(2θ) + i sin(2θ)
369



If n = 3, then we can use our equation for when n = 2, along with Theorem
23, to see that(

cos(θ) + i sin(θ)
)3

=
(

cos(θ) + i sin(θ)
)2(

cos(θ) + i sin(θ)
)

=
(

cos(2θ) + i sin(2θ)
)(

cos(θ) + i sin(θ)
)

= cos(2θ + θ) + i sin(2θ + θ)

= cos(3θ) + i sin(3θ)

We’ve now checked that the corollary is true if n = 1 or n = 2 or n = 3.
This process can be continued indefinitely to show that the theorem is true
when n = 4, n = 5, n = 6, etc. You might want to check the next step of the
process yourself by checking that the corollary is true when n = 4. �

What De Moivre’s Formula tells us is that we can find the value of multi-
plying cos(θ)+i sin(θ) n-times by just adding θ n-times, that is by finding nθ.
De Moivre’s Formula turns the problem of finding powers of certain complex
numbers into a problem of multiplying a natural number and a real number,
and that’s a task that we’re very comfortable with.

Example.

• Let’s find
(√

3
2 + i12

)12
. We could perform this task by multiplying

√
3
2 + i12 twelve times, in the manner shown in the previous chapter, but that

would take a long time. If we recall that
√
3
2 + i12 = cos

(
π
6

)
+ i sin

(
π
6

)
then we

can use De Moivre’s Formula to more easily conclude that
(√

3
2 + i12

)12
= 1.

Here’s how: (√3

2
+ i

1

2

)12
=
(

cos
(π

6

)
+ i sin

(π
6

))12
= cos

(
12 · π

6

)
+ i sin

(
12 · π

6

)
= cos(2π) + i sin(2π)

= 1 + i0

= 1
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The complex number
√
3
2 + i12 is 1

12 of the unit circle away from the number

1, in the counterclockwise direction. Each time we multiply by
√
3
2 + i12 ,

we move counterclockwise another 1
12 of the total circumference of the unit

circle. Thus,
(√

3
2 + i12

)12
is the number in the unit circle that we arrive at

by beginning at 1, and then moving 1
12 of the way around the unit circle

counterclockwise, 12 times. To move 1
12 of the way around a circle 12 times

is to make a complete revolution around the circle, and to end up where you

began, in this case, at the number 1. That is,
(√

3
2 + i12

)12
= 1.

The geometry of this example is a lot like the geometry of the hour hand of
a clock, only instead of running clockwise and starting at the top of a circle, as

the hour hand of a clock does, multiplication by
√
3
2 +i12 runs counterclockwise

and begins at the rightmost point of the unit circle, at the number 1. Thus,
the algebra of multiplication of complex numbers can encode the arithmetic
and geometry of clocks.
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• Let’s find
(
−
√
3
2 + i12

)3
. Notice that −

√
3
2 + i12 = cos

(
5π
6

)
+ i sin

(
5π
6

)
.

Thus, De Moivre’s Formula tells us that
(
−
√
3
2 + i12

)3
is the complex number

that is obtained by beginning at 1, and rotating by an angle of 5π
6 three times,

which is an angle of 3
(
5π
6

)
= 15π

6 . Notice that 15π
6 = 12π

6 + 3π
6 = 2π + π

2 . That

is, to rotate by an angle of 15π
6 is to rotate first by a complete revolution

around the unit circle, and then to rotate by an angle of π
2 . Therefore,(

−
√
3
2 + i12

)3
= i.

• The complex number 1√
2

+ i 1√
2

equals cos
(
π
4

)
+ i sin

(
π
4

)
. It is the

number in the unit circle that is arrived at by beginning at 1, and rotat-
ing by an angle of π

4 , which is 1
8 of the way around the unit circle in the

counterclockwise direction.

To find
(

1√
2

+ i 1√
2

)5
, we just have to rotate the number 1 around the unit

circle by an angle of π
4 , 5 times. That makes an angle of 5π

4 . The number

in the unit circle obtained by rotating the number 1 by an angle of 5π
4 is the

number − 1√
2
− i 1√

2
. Therefore,

(
1√
2

+ i 1√
2

)5
= − 1√

2
− i 1√

2
.
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Roots of unity
Let n ∈ N. Any complex number z ∈ C that is a solution to the equation

zn = 1 is called an nth root of unity. For example, we saw on page 370 that√
3
2 + i12 is a twelfth root of unity, or equivalently, that cos

(
π
6

)
+ i sin

(
π
6

)
is a

twelfth root of unity.
What we’ll do here is describe all of the nth roots of unity, for any n ∈ N.

To begin with, notice that the solutions of the equation zn = 1 are the
solutions of the equation zn−1 = 0, or equivalently, they are the roots of the
polynomial zn − 1. This is a polynomial of degree n.

You may have learned in Math 1050 that a degree n polynomial with real
coefficients has at most n real numbers as roots. The algebra of real numbers
and complex numbers is similar enough that the same explanation would
apply essentially word-for-word to explain that zn−1 has at most n complex
numbers as roots. In fact it has exactly n roots. That is, there are exactly n
different nth roots of unity. They’re described in the following theorem.

Theorem (25). Let n ∈ N. Let k be any one of the n numbers in the set
{0, 1, 2, . . . , n − 1}. Then the nth roots of unity are the n complex numbers
of the form

cos
(
k · 2π

n

)
+ i sin

(
k · 2π

n

)
Before looking at a proof of this theorem, let’s see some examples.

Examples.

• If n = 2, then the 2 second roots of unity—the 2 solutions of z2 = 1—are

cos(0 · 2π2 ) + i sin(0 · 2π2 ) = cos(0) + i sin(0) = 1 + i0 = 1, and

cos(1 · 2π2 ) + i sin(1 · 2π2 ) = cos(π) + i sin(π) = 0 + i(−1) = −1.

• If n = 3, then the 3 third roots of unity—the 3 solutions of z3 = 1—are

cos(0 · 2π3 ) + i sin(0 · 2π3 ) = cos(0) + i sin(0) = 1 + i0 = 1,

cos(1 · 2π3 ) + i sin(1 · 2π3 ) = cos(2π3 ) + i sin(2π3 ) = −1
2 + i

√
3
2 , and

cos(2 · 2π3 ) + i sin(2 · 2π3 ) = cos(4π3 ) + i sin(4π3 ) = −1
2 − i

√
3
2 .
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Now let’s return to the proof of the theorem that cos
(
k · 2πn

)
+ i sin

(
k · 2πn

)
is a solution of the equation zn = 1.

Proof: We want to show that
(

cos
(
k · 2πn

)
+ i sin

(
k · 2πn

))n
= 1 if

k ∈ {0, 1, 2, . . . , n− 1}.
First note that an angle of k · 2π is exactly k full rotations around the unit

circle. Therefore, cos(k ·2π)+ i sin(k ·2π) is the complex number obtained by
beginning at 1, and completing k full rotations around the unit circle, thus
ending where we began, at the number 1. That is, cos(k·2π)+i sin(k·2π) = 1.
We’ll use this below.

Now applying De Moivre’s Formula, we have(
cos
(
k · 2π

n

)
+ i sin

(
k · 2π

n

))n
= cos

(
nk · 2π

n

)
+ i sin

(
nk · 2π

n

)
= cos(k · 2π) + i sin(k · 2π)

= 1

which shows that cos
(
k · 2πn

)
+ i sin

(
k · 2πn

)
is a solution of the equation zn = 1

regardless of whether k equals 0, 1, 2, . . . , or n− 1. That is,
cos
(
k · 2πn

)
+ i sin

(
k · 2πn

)
is an nth root of unity. �
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* * * * * * * * * * * * *

Multiplication by a number in the unit circle rotates
Suppose that α is a real number, so that cos(α) + i sin(α) is a complex

number in the unit circle.
Let r(cos(θ)+i sin(θ)) be a complex number written in polar coordinates, so

that r ≥ 0 and θ ∈ R. To see the effect that multiplication by cos(α)+i sin(α)
has on r

(
cos(θ)+i sin(θ)

)
, remember that multiplication of complex numbers

is commutative. That is, we can rearrange the order of numbers when we
multiply by them. Keeping this in mind, and applying Theorem 23 which
explained how to multiply two numbers in the unit circle, we have(

cos(α) + i sin(α)
)(
r( cos

(
θ) + i sin(θ)

))
= r
(

cos(α) + i sin(α)
)(

cos(θ) + i sin(θ)
)

= r
(

cos(α + θ) + i sin(α + θ)
)

Notice that multiplication by cos(α) + i sin(α) doesn’t change the “norm
coordinate” (the number r), it just affects the “unit circle coordinate”. It
affects the unit circle coordinate by adding the number α to the number θ.

You may recall that this is essentially the process by which we defined
rotation of the plane of vectors in the chapter “Rotation Matrices”. That
is, multiplication by cos(α) + i sin(α) is a rotation of the plane of complex
numbers by angle α.
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Examples.

• i = 0 + i1 = cos(π2 ) + i sin(π2 ), so multiplication by i rotates the plane
of complex numbers counterclockwise by an angle of π

2 .

• −1 = −1 + i0 = cos(π) + i sin(π) so multiplication by −1 rotates the
plane of complex numbers counterclockwise by an angle of π.

Notice that if you rotate the plane of complex numbers by an angle of π2 , and
then you rotate by an angle of π

2 again, the net effect is to have rotated the
plane of complex numbers by an angle of π. Using the two examples above,
the geometry of the previous sentence is encoded in the algebraic formula
that i2 = −1.

• For a numeric example of the formula on the previous page, the
product of cos(3) + i sin(3) and 4

(
cos(2) + i sin(2)

)
equals

4
(

cos(3 + 2) + i sin(3 + 2)
)

= 4
(

cos(5) + i sin(5)
)
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Multiplication scales and rotates
Suppose that α is a real number, and that s ≥ 0. Then s(cos(α) + i sin(α))

is a complex number. Any complex number can be written in this way.
Let r(cos(θ) + i sin(θ)) be a complex number written in polar coordinates,

so that r ≥ 0 and θ ∈ R. To see the effect that multiplication by
s(cos(α) + i sin(α)) has on r(cos(θ) + i sin(θ)), we’ll use again that multipli-
cation of complex numbers is commutative.(

s
(

cos(α) + i sin(α)
))(

r
(

cos(θ) + i sin(θ)
))

= sr
(

cos(α) + i sin(α)
)(

cos(θ) + i sin(θ)
)

= sr
(

cos(α + θ) + i sin(α + θ)
)

What the above equation shows us is that multiplication by
s(cos(α) + i sin(α)) changes the norm of the number r(cos(θ) + i sin(θ)) from
r to sr. It scales the number by s. It also adds α to the unit circle coordinate,
changing that coordinate from cos(θ) + i sin(θ) to cos(α + θ) + i sin(α + θ).
This is a rotation by angle α.

In summary we have:

Multiplication by s(cos(α) + i sin(α)) scales
the complex numbers in the plane by s

and it rotates the plane by angle α.
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Examples.

• Multiplying by the number 2
(

cos
(
π
7

)
+ i sin

(
π
7

))
scales the numbers

in the plane by 2, and rotates the plane counterclockwise by an angle
of π

7 .

• To find the product of 2
(

cos
(
π
7

)
+i sin

(
π
7

))
and 8

(
cos
(
4π
7

)
+i sin

(
4π
7

))
just multiply their norm coordinates (2 · 8 = 16) and add the angles of
their circle coordinates (π7 + 4π

7 = 5π
7 ) to see that

2
(

cos
(π

7

)
+ i sin

(π
7

))
· 8
(

cos
(4π

7

)
+ i sin

(4π

7

))
= 16

(
cos
(5π

7

)
+ i sin

(5π

7

))
Division

The formula for dividing two complex numbers written in polar coordinates
is also straightforward. Instead of multiplying their norms and adding the
angles of their circle coordinates, divide their norms and subtract their circle
coordinates

r(cos(θ) + i sin(θ))

s(cos(α) + i sin(α))
=
r

s

(
cos(θ − α) + i sin(θ − α)

)
Example.

• To find the quotient of the numbers 8
(

cos
(
4π
7

)
+ i sin

(
4π
7

))
and

2
(

cos
(
π
7

)
+ i sin

(
π
7

))
we need to divide the norm coordinates (82 = 4)

and subtract the angles of the circle coordinates (4π7 −
π
7 = 3π

7 ):

8
(

cos
(
4π
7

)
+ i sin

(
4π
7

))
2
(

cos
(
π
7

)
+ i sin

(
π
7

)) = 4
(

cos
(3π

7

)
+ i sin

(3π

7

))

Polar coordinates and addition
It’s easier to multiply and divide complex numbers when they are writ-

ten in polar coordinates—such as r(cos(θ) + i sin(θ))—than it is when they
are written in Cartesian coordinates—such as x + iy. However, adding two
complex numbers written in Cartesian coordinates is easy to do, and while
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there is a method for adding numbers written in polar coordinates, it’s a bit
complicated, and we won’t talk about it here.
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Exercises
In #1-6, match the complex numbers written in polar coordinates with the

complex numbers drawn to the right. Remember that the norm, or distance
from 0, of the number r

(
cos(θ) + i sin(θ)

)
is r. The number cos(θ) + i sin(θ)

is the point in the unit circle that represents the direction of the number
r
(

cos(θ) + i sin(θ)
)
.

1.) 3
(

cos(π4 ) + i sin(π4 )
)

2.) cos(2π3 ) + i sin(2π3 )

3.) cos(5π4 ) + i sin(5π4 )

4.) 2
(

cos(π4 ) + i sin(π4 )
)

5.) 3
(

cos(−π
6 ) + i sin(−π

6 )
)

6.) 2
(

cos(2π3 ) + i sin(2π3 )
)

7.) What’s the norm of the complex number 5(cos(16) + i sin(16))?

8.) What’s the norm of the complex number 1
3(cos(π) + i sin(π))?

9.) Write the complex number 3 + i7 in polar coordinates.

10.) Write the complex number 6 + i2 in polar coordinates.

11.) Find the product of 3 and 4(cos(5) + i sin(5)).

12.) Find the product of 6 and 2(cos(−6) + i sin(−6)).

13.) Find
(√

3
2 + i12

)7
.

14.) Find
(

1√
2

+ i 1√
2

)3
.

15.) Find
(

1√
2

+ i 1√
2

)4
.

16.) Find
(
1
2 + i

√
3
2

)4
.
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17.) Find
(
1
2 + i

√
3
2

)6
.

18.) Which number is
(

cos
(
k · 2πn

)
+ i sin

(
k · 2πn

))n
, where n ∈ N and

k ∈ {1, 2, . . . , n− 1}?

19.) How many different third roots of unity are there?

20.) How many different seventh roots of unity are there?

21.) How many different 34th roots of unity are there?

22.) Find the product of cos(2) + i sin(2) and 3(cos(8) + i sin(8)).

23.) Find the product of cos(7) + i sin(7) and 2(cos(5) + i sin(5)).

24.) Find the product of 9(cos(3) + i sin(3)) and 2(cos(4) + i sin(4)).

25.) Find the product of 8(cos(5) + i sin(5)) and 6(cos(1) + i sin(1)).

26.) Find the product of 3(cos(2) + i sin(2)) and 4(cos(6) + i sin(6)).

27.) Find the quotient

6(cos(5) + i sin(5))

3(cos(1) + i sin(1))

28.) Find the quotient

15(cos(8) + i sin(8))

5(cos(2) + i sin(2))

All further exercises in this chapter have nothing to do with complex num-
bers.
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Match the functions with their graphs.

29.) sin(x) 30.) 1
2 sin(x) 31.) sin(x+ π

2 )

32.) 2 sin(x) 33.) − sin(x) 34.) sin(x) + 1

35.) sin(−x) 36.) sin(x− π
2 ) 37.) sin(2x)

38.) sin(x2)

A.) B.) C.)

D.) E.) F.)

G.) H.) I.)
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Match the functions with their graphs.

39.) sin(x) 40.) csc(x)

41.) f(x) =

{
sin(x) if x ≤ 0;

csc(x) if x > 0.
42.) g(x) =

{
csc(x) if x < 0;

sin(x) if x ≥ 0.

A.) B.)

C.) D.)
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In the exercises from the previous chapter we reviewed when some equa-
tions have no solutions. The list below describes the solutions (if there are
solutions) of some common equations.

• x2 = c implies x =
p
c or x = �

p
c

• ax2 + bx+ c = 0 implies x = �b�
p
b

2�4ac

2a

or x = �b+

p
b

2�4ac

2a

•
p
x = c implies x = c2

• ex = c implies x = log
e

(c)

• log
e

(x) = c implies x = ec

• tan(x) = c implies x = arctan(c) + n⇡ where n 2 Z

• cos(x) = c implies x = arccos(c) +n2⇡ or � arccos(c) +n2⇡ where n 2 Z

• sin(x) = c implies x = arcsin(c) + n2⇡ or � arcsin(c) + (n2 + 1)⇡
where n 2 Z

For #43-58, use the rules above to find the solutions of the given equations.

43.) ex = 5 51.) x2 + 6x+ 1 = 0

44.)
p
x = 6 52.) log

e

(x) = �37

45.) cos(x) = 2

3

53.) x2 = 16

46.) x2 = 4 54.)
p
x = 1

2

47.) tan(x) = 43 55.) sin(x) = 4

5

48.) log
e

(x) = �2 56.) ex = 27

49.) 6x2 � x� 2 = 0 57.) cos(x) = �1

3

50.) sin(x) = �1

2

58.) tan(x) = �1
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Use that exey = ex+y to simplify the following expressions.

59.) exe2x

60.) ex+1e3−2x

61.) e2x+1e−4x−5

Use your answers from the problems above to solve the following equations.

62.) exe2x = e−5

63.) ex+1e3−2x = 5

64.) e2x+1e−4x−5 = e−13

Use that loge(x) + loge(y) = loge(xy) to simplify the following expressions.

65.) loge(x
2) + loge(x

−1)

66.) loge(x
2) + loge(x

3)

67.) loge(x) + loge(x
6)

Use your answers from the problems above to solve the following equations.

68.) loge(x
2) + loge(x

−1) = −11

69.) loge(x
2) + loge(x

3) = 5

70.) loge(x) + loge(x
6) = −6
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Use that a
b + c

d = ad+cb
bd to simplify the following expressions.

71.) x+ 1
x

72.) x+1
2x + 3

4

73.) 2x+8
3 + 4x−7

5

Use your answers from the problems above to solve the following equations.

74.) x+ 1
x = 5

75.) x+1
2x + 3

4 = −8

76.) 2x+8
3 + 4x−7

5 = −3
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